1
|
Bayindir-Bilgic M, Duman E, Turgut D, Kadikoylu AN, Ekimci-Gurcan N, Ozbey U, Kuskucu A, Bayrak OF. Investigation of the synergistic effect of metformin and FX11 on PANC-1 cell lines. Biol Res 2025; 58:15. [PMID: 40091035 PMCID: PMC11912783 DOI: 10.1186/s40659-025-00592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Pancreatic cancer is among the most aggressive and malignant tumors and is a leading cause of cancer-related mortality. It is characterized by its metabolic Warburg effect and glucose dependence. Aerobic glycolysis is a key feature of metabolic reprogramming in cancer cells. This study investigates the combined effect of metformin and FX11, hypothesizing that disrupting cancer cell energetics through complementary mechanisms may result in a synergistic therapeutic effect. The combination of metformin and FX11 affects the axis that regulates vital functions in cancer cells; thus, the uncontrolled growth of tumor cells, especially those that use a lactose-dependent energy pathway, can be controlled. Several in vitro experiments were conducted to evaluate this hypothesis. PANC-1 cell proliferation was assessed using an MTS assay, lactate levels were measured via an LDH assay, and apoptosis was determined using a flow cytometry-based PE-annexin V assay. The downstream effects of metformin and FX11 treatment were evaluated via western blot analysis. RESULTS The findings of this study revealed that metformin and FX11 significantly decreased the viability of PANC-1 cells when used in combination, and this effect was achieved by significantly affecting the energy mechanism of the cells through the AMPKα axis. Furthermore, the lactate levels in PANC1 cells co-treated with metformin and FX11 were significantly decreased, while the increased cellular stress led the cells to apoptosis. CONCLUSIONS Compared with metformin treatment alone, the combination treatment of metformin and FX11 stimulates cellular stress in pancreatic cancer and targets various energy processes that encourage cancer cells to undergo apoptosis. This study provides a novel therapeutic strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Melike Bayindir-Bilgic
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
- Department of Genetics and Bioengineering, Yeditepe University, Acıbadem Mah. Liseyolu sok. No:8 Kat: 3, Kadıköy/Istanbul, 34718, Turkey
| | - Ezgi Duman
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Deniz Turgut
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Ayse Naz Kadikoylu
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nur Ekimci-Gurcan
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
- Department of Genetics and Bioengineering, Yeditepe University, Acıbadem Mah. Liseyolu sok. No:8 Kat: 3, Kadıköy/Istanbul, 34718, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Turkey
| | - Utku Ozbey
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
- Department of Genetics and Bioengineering, Yeditepe University, Acıbadem Mah. Liseyolu sok. No:8 Kat: 3, Kadıköy/Istanbul, 34718, Turkey
| | - Aysegul Kuskucu
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Omer F Bayrak
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey.
- Department of Genetics and Bioengineering, Yeditepe University, Acıbadem Mah. Liseyolu sok. No:8 Kat: 3, Kadıköy/Istanbul, 34718, Turkey.
| |
Collapse
|
2
|
Glamočlija U, Mahmutović L, Bilajac E, Šoljić V, Vukojević K, Sezer A, Suljagić M. Single and Combinatorial Effects of Metformin and Thymoquinone in Diffuse Large B Cell Lymphoma Cells. Chem Biodivers 2025; 22:e202401533. [PMID: 39479950 DOI: 10.1002/cbdv.202401533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/02/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is classified into Germinal Center B-cell (GCB) and activated B-cell (ABC) subgroups originating from different stages of lymphoid differentiation. Cell of origin dictates the behavior and therapeutic response of DLBCL. This study aimed to evaluate single and combinatorial effects of metformin and thymoquinone (TQ) in two DLBCL cell lines belonging to GCB and ABC subtypes. Metformin and TQ caused dose-dependent responses in both ABC and GCB DLBCL subtypes. Metformin had a greater impact on the ABC subtype while TQ demonstrated more pronounced effects on the GCB subtype. Synergistic effects were observed in the DHL4 (GCB subtype) but not in the HBL1 (ABC subtype) cell line. This is the first study to compare the effects of metformin and TQ in ABC versus GCB subtype of DLBCL. It brings valuable results that could be utilized in further research aimed at reshaping treatments for subtype-specific lymphomas.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Benzoquinones/pharmacology
- Benzoquinones/chemistry
- Humans
- Metformin/pharmacology
- Metformin/chemistry
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Dose-Response Relationship, Drug
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Cell Survival/drug effects
- Cell Line, Tumor
- Apoptosis/drug effects
- Tumor Cells, Cultured
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Una Glamočlija
- Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, University of Sarajevo - Faculty of Pharmacy, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutović
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, Sarajevo, Bosnia and Herzegovina
| | - Esma Bilajac
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, Sarajevo, Bosnia and Herzegovina
| | - Violeta Šoljić
- Faculty of Health Studies, University of Mostar, Zrinskog Frankopana 34, Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2A, Split, Croatia
| | - Abas Sezer
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, Sarajevo, Bosnia and Herzegovina
| | - Mirza Suljagić
- 3D BioLabs, FabLab Bosnia and Herzegovina, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
3
|
HE CANCAN, ZHANG TINGTING, XIONG WEI, WANG SHENGYU, SUN XIN. Apigenin facilitates apoptosis of acute lymphoblastic leukemia cells via AMP-activated protein kinase-mediated ferroptosis. Oncol Res 2025; 33:421-429. [PMID: 39866226 PMCID: PMC11753985 DOI: 10.32604/or.2024.049757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/07/2024] [Indexed: 01/28/2025] Open
Abstract
Background The outcomes of pediatric patients with acute lymphoblastic leukemia (ALL) remain far less than favorable. While apigenin is an anti-cancer agent, studies on the mechanism by which it regulates ALL cell cycle progression are inadequate. Ferroptosis and AMP-activated protein kinase (AMPK) signaling are important processes for ALL patients. However, it remains unclear whether apigenin works by affecting AMPK and apoptosis. Materials and Methods SUP-B15 and T-cell Jurkat ALL cells were treated with apigenin, and cell viability and apoptosis were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, respectively. The thiobarbituric acid-reactive substances (TBARS) assay was used to evaluate lipid peroxidation. Intracellular Fe2+ levels were measured using a commercial kit. Corresponding proteins were detected by western blotting. Results Results showed that apigenin reduced cell viability and the levels of Ki67 and proliferating cell nuclear antigen (PCNA) expression in a concentration-dependent manner in both types of ALL cells. Apigenin also exerted anti-apoptotic effects on SUP-B15 and Jurkat cells. Apigenin activated AMP-activated protein kinase (AMPK) signaling and induced ferroptosis, and those effects were attenuated by inhibition of AMPK. Eventually, the reduced cell proliferation and increased cell apoptosis caused by apigenin in ALL cells were partly abolished by AMPK inhibition. Conclusion In summary, apigenin exerted anti-leukemia activity in ALL cells, and that effect was partially achieved by activation of AMPK signaling. Our findings suggest apigenin as a potential drug for treatment of ALL.
Collapse
Affiliation(s)
- CANCAN HE
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
- Department of Pediatrics, Guizhou Children’s Hospital, Zunyi, 563003, China
| | - TINGTING ZHANG
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - WEI XIONG
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - SHENGYU WANG
- Key Laboratory of Infectious Disease & Biosafety, College of Preclinical Medicine, Zunyi Medical University, Zunyi, 563003, China
| | - XIN SUN
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi, 563003, China
| |
Collapse
|
4
|
Lee DE, Lee HM, Jun Y, Choi SY, Lee SJ, Kwon OS. Metformin induces apoptosis in TRAIL-resistant colorectal cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119873. [PMID: 39500444 DOI: 10.1016/j.bbamcr.2024.119873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/11/2024]
Abstract
Resistance to chemotherapy drugs, which commonly occurs during the treatment of colorectal cancer (CRC), can lead to tumor recurrence and metastasis, so combinational treatment strategies according to the cancer cell type are urgently needed to overcome drug resistance and increase therapeutic efficiency. To this end, the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising anticancer strategy. Some CRC cell lines such as SW620 have low sensitivity to TRAIL, so additional sensitizers are required to make the strategy effective. Therefore, we focused on the apoptotic effect of combinational metformin and TRAIL treatment on TRAIL-resistant SW620 cells. Treatment with TRAIL alone did not induce apoptosis whereas combined treatment with metformin and TRAIL significantly increased it. TRAIL activated caspases through an extrinsic pathway but increased resistance to apoptosis through the protein kinase B or AKT (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway. On the other hand, metformin reduced the inhibitory effect of X-linked inhibitor of apoptosis (XIAP) by blocking the AKT and nuclear factor kappa B (NF-κB) pathways and activated CCAAT-enhancer-binding protein homologous protein (CHOP) via endoplasmic reticulum (ER) stress but without inducing apoptosis. In addition, metformin induced cell-cycle arrest, thereby blocking cell proliferation and growth. These results were also confirmed through an in vivo mouse xenograft CRC model, in which combined treatment with metformin and TRAIL induced tumor cell death, thus demonstrating the anticancer effect of their coadministration. Therefore, cotreatment of metformin and TRAIL could be an effective anticancer treatment strategy for TRAIL-resistant CRC.
Collapse
Affiliation(s)
- Da Eun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hae Min Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yunhyeok Jun
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea.
| | - Su Jin Lee
- Department of Biochemistry, Chungbuk National University College of Medicine and Medical Research Center, Cheongju 28644, Republic of Korea
| | - Oh-Shin Kwon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
Li Z, Ngu R, Naik AA, Trinh K, Paharkova V, Liao H, Liu Y, Zhuang C, Le D, Pei H, Asante I, Mittelman SD, Louie S. Adipocyte maturation impacts daunorubicin disposition and metabolism. Eur J Clin Invest 2024; 54:e14307. [PMID: 39254480 DOI: 10.1111/eci.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Acute lymphoblastic leukaemia (ALL) is the most common type of childhood leukaemia with effective chemotherapeutic treatment. However, obesity has been associated with higher ALL chemoresistance rates and lower event-free survival rates. The molecular mechanism of how obesity promotes chemotherapy resistance is not well delineated. OBJECTIVES This study evaluated the effect of adipocyte maturation on sequestration and metabolism of chemotherapeutic drug daunorubicin (DNR). METHODS Using targeted LC-MS/MS multi-analyte assay, DNR sequestration and metabolism were studied in human preadipocyte and adipocyte cell lines, where expressions of DNR-metabolizing enzymes aldo-keto reductases (AKR) and carbonyl reductases (CBR) were also evaluated. In addition, to identify the most DNR-metabolizing AKR/CBR isoforms, recombinant human AKR and CBR enzymes were subject to DNR metabolism. The results were further validated by AKR-, CBR-specific inhibitors. RESULTS This report shows that adipocyte maturation upregulates expressions of AKR and CBR enzymes (by 4- to 60- folds, p < .05), which is positively associated with enhanced sequestration and metabolism of DNR in adipocytes compared to preadipocytes (by ~30%, p < .05). In particular, adipocyte maturation upregulates AKR1C3 and CBR1, which are the predominate metabolic enzyme isoforms responsible for DNR biotransformation to its metabolites. CONCLUSION Fat is an expandable tissue that can sequester and detoxify DNR when stimulated by obesity, likely through the upregulation of DNR-metabolizing enzymes AKR1C3 and CBR1. Our data partially explains why obese ALL patients may be more likely to become chemoresistant towards DNR, and provides evidence for potential clinical investigation targeting obesity to reduce DNR chemoresistance.
Collapse
Affiliation(s)
- Zeyang Li
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Rachael Ngu
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Aditya Anil Naik
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Kaitlyn Trinh
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Vladislava Paharkova
- Division of Pediatric Endocrinology, University of California Los Angeles (UCLA) Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, California, USA
| | - Hanyue Liao
- College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Yulu Liu
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Cindy Zhuang
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Danh Le
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Hua Pei
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Isaac Asante
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven D Mittelman
- Division of Pediatric Endocrinology, University of California Los Angeles (UCLA) Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, California, USA
| | - Stan Louie
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Malla A, Gupta S, Sur R. Inhibition of lactate dehydrogenase A by diclofenac sodium induces apoptosis in HeLa cells through activation of AMPK. FEBS J 2024; 291:3628-3652. [PMID: 38767406 DOI: 10.1111/febs.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Cancer cells exhibit a unique metabolic preference for the glycolytic pathway over oxidative phosphorylation for maintaining the tumor microenvironment. Lactate dehydrogenase A (LDHA) is a key enzyme that facilitates glycolysis by converting pyruvate to lactate and has been shown to be upregulated in multiple cancers due to the hypoxic tumor microenvironment. Diclofenac (DCF), a nonsteroidal anti-inflammatory drug, has been shown to exhibit anticancer effects by interfering with the glucose metabolism pathway. However, the specific targets of this drug remain unknown. Using in silico, biochemical, and biophysical studies, we show that DCF binds to LDHA adjacent to the substrate binding site and inhibits its activity in a dose-dependent and allosteric manner in HeLa cells. Thus, DCF inhibits the hypoxic microenvironment and induces apoptosis-mediated cell death. DCF failed to induce cytotoxicity in HeLa cells when LDHA was knocked down, confirming that DCF exerts its antimitotic effects via LDHA inhibition. DCF-induced LDHA inhibition alters pyruvate, lactate, NAD+, and ATP production in cells, and this could be a possible mechanism through which DCF inhibits glucose uptake in cancer cells. DCF-induced ATP deprivation leads to mitochondria-mediated oxidative stress, which results in DNA damage, lipid peroxidation, and apoptosis-mediated cell death. Reduction in intracellular ATP levels additionally activates the sensor kinase, adenosine monophosphate-activated protein kinase (AMPK), which further downregulates phosphorylated ribosomal S6 kinase (p-S6K), leading to apoptosis-mediated cell death. We find that in LDHA knocked down cells, intracellular ATP levels were depleted, resulting in the inhibition of p-S6K, suggesting the involvement of DCF-induced LDHA inhibition in the activation of the AMPK/S6K signaling pathway.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| | - Suvroma Gupta
- Khejuri College, Purba Medinipur, West Bengal, India
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| |
Collapse
|
7
|
Ro DH, Cho GH, Kim JY, Min SK, Yang HR, Park HJ, Wang SY, Kim YJ, Lee MC, Bae HC, Han H. Selective targeting of dipeptidyl-peptidase 4 (DPP-4) positive senescent chondrocyte ameliorates osteoarthritis progression. Aging Cell 2024; 23:e14161. [PMID: 38556837 PMCID: PMC11258469 DOI: 10.1111/acel.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Senescent cells increase in many tissues with age and induce age-related pathologies, including osteoarthritis (OA). Senescent chondrocytes (SnCs) are found in OA cartilage, and the clearance of those chondrocytes prevents OA progression. However, targeting SnCs is challenging due to the absence of a senescent chondrocyte-specific marker. Therefore, we used flow cytometry to screen and select senescent chondrocyte surface markers and cross-validated with published transcriptomic data. Chondrocytes expressing dipeptidyl peptidase-4 (DPP-4), the selected senescent chondrocyte-specific marker, had multiple senescence phenotypes, such as increased senescence-associated-galactosidase, p16, p21, and senescence-associated secretory phenotype expression, and showed OA chondrocyte phenotypes. To examine the effects of DPP-4 inhibition on DPP-4+ SnCs, sitagliptin, a DPP-4 inhibitor, was treated in vitro. As a result, DPP-4 inhibition selectively eliminates DPP-4+ SnCs without affecting DPP-4- chondrocytes. To assess in vivo therapeutic efficacy of targeting DPP-4+ SnCs, three known senolytics (ABT263, 17DMAG, and metformin) and sitagliptin were comparatively verified in a DMM-induced rat OA model. Sitagliptin treatment specifically and effectively eliminated DPP-4+ SnCs, compared to the other three senolytics. Furthermore, Intra-articular sitagliptin injection to the rat OA model increased collagen type II and proteoglycan expression and physical functions and decreased cartilage destruction, subchondral bone plate thickness and MMP13 expression, leading to the amelioration of OA phenotypes. Collectively, OARSI score was lowest in the sitagliptin treatment group. Taken together, we verified DPP-4 as a surface marker for SnCs and suggested that the selective targeting of DPP-4+ chondrocytes could be a promising strategy to prevent OA progression.
Collapse
Affiliation(s)
- Du Hyun Ro
- Department of Orthopedic SurgerySeoul National University College of MedicineSeoulKorea
| | - Gun Hee Cho
- Department of Orthopedic SurgerySeoul National University College of MedicineSeoulKorea
| | - Ji Yoon Kim
- Department of Orthopedic SurgerySeoul National University College of MedicineSeoulKorea
| | - Seong Ki Min
- Laboratory for Cellular Response to Oxidative StressCell2in, Inc.SeoulKorea
| | - Ha Ru Yang
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - Hee Jung Park
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - Sun Young Wang
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - You Jung Kim
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - Myung Chul Lee
- Department of Orthopedic SurgerySeoul National University College of MedicineSeoulKorea
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - Hyun Cheol Bae
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| | - Hyuk‐Soo Han
- Department of Orthopedic SurgerySeoul National University College of MedicineSeoulKorea
- Department of Orthopedic SurgerySeoul National University HospitalSeoulKorea
| |
Collapse
|
8
|
Jalali F, Fakhari F, Sepehr A, Zafari J, Sarajar BO, Sarihi P, Jafarzadeh E. Synergistic anticancer effects of doxorubicin and metformin combination therapy: A systematic review. Transl Oncol 2024; 45:101946. [PMID: 38636389 PMCID: PMC11040171 DOI: 10.1016/j.tranon.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Doxorubicin (DOX) a chemotherapy drug often leads to the development of resistance, in cancer cells after prolonged treatment. Recent studies have suggested that using metformin plus doxorubicin could result in synergic effects. This study focuses on exploring the co-treat treatment of doxorubicin and metformin for various cancers. METHOD Following the PRISMA guidelines we conducted a literature search using different databases such as Embase, Scopus, Web of Sciences, PubMed, Science Direct and Google Scholar until July 2023. We selected search terms based on the objectives of this study. After screening a total of 30 articles were included. RESULTS The combination of doxorubicin and metformin demonstrated robust anticancer effects, surpassing the outcomes of monotherapy drug treatment. In vitro experiments consistently demonstrated inhibition of cancer cell growth and increased rates of cell death. Animal studies confirmed substantial reductions in tumor growth and improved survival rates, emphasizing the synergistic impact of the combined therapy. The research' discoveries collectively emphasize the capability of the co-treat doxorubicin-metformin as a compelling approach in cancer treatment, highlighting its potential to address medicate resistance and upgrade generally helpful results. CONCLUSION The findings of this study show that the combined treatment regimen including doxorubicin and metformin has significant promise in fighting cancer. The observed synergistic effects suggest that this combination therapy could be valuable, in a setting. This study highlights the need for clinical research to validate and enhance the application of the doxorubicin metformin regimen.
Collapse
Affiliation(s)
- Fereshtehsadat Jalali
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fakhari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afrah Sepehr
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaber Zafari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnam Omidi Sarajar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Sarihi
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran.
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ayagama T, Charles PD, Bose SJ, Boland B, Priestman DA, Aston D, Berridge G, Fischer R, Cribbs AP, Song Q, Mirams GR, Amponsah K, Heather L, Galione A, Herring N, Kramer H, Capel RA, Platt FM, Schotten U, Verheule S, Burton RA. Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation. iScience 2024; 27:109609. [PMID: 38827406 PMCID: PMC11141153 DOI: 10.1016/j.isci.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024] Open
Abstract
Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood. We isolated atrial EL organelles from AF goat biopsies and conducted a comprehensive integrated omics analysis to study the EL-specific proteins and pathways. We also performed electron tomography, protein and enzyme assays on these biopsies. Our results revealed the upregulation of the AMPK pathway and the expression of EL-specific proteins that were not found in whole tissue lysates, including GAA, DYNLRB1, CLTB, SIRT3, CCT2, and muscle-specific HSPB2. We also observed structural anomalies, such as autophagic-vacuole formation, irregularly shaped mitochondria, and glycogen deposition. Our results provide molecular information suggesting EL play a role in AF disease process over extended time frames.
Collapse
Affiliation(s)
- Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | | | - Daniel Aston
- Department of Anaesthesia and Critical Care, Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge CB2 0AY, UK
| | | | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Adam P. Cribbs
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington OX3 7LD, UK
| | - Qianqian Song
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kwabena Amponsah
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lisa Heather
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Holger Kramer
- Mass spectrometry Facility, The MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | - Ulrich Schotten
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Sander Verheule
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rebecca A.B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- University of Liverpool, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| |
Collapse
|
10
|
González-Esparragoza D, Carrasco-Carballo A, Rosas-Murrieta NH, Millán-Pérez Peña L, Luna F, Herrera-Camacho I. In Silico Analysis of Protein-Protein Interactions of Putative Endoplasmic Reticulum Metallopeptidase 1 in Schizosaccharomyces pombe. Curr Issues Mol Biol 2024; 46:4609-4629. [PMID: 38785548 PMCID: PMC11120530 DOI: 10.3390/cimb46050280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Ermp1 is a putative metalloprotease from Schizosaccharomyces pombe and a member of the Fxna peptidases. Although their function is unknown, orthologous proteins from rats and humans have been associated with the maturation of ovarian follicles and increased ER stress. This study focuses on proposing the first prediction of PPI by comparison of the interologues between humans and yeasts, as well as the molecular docking and dynamics of the M28 domain of Ermp1 with possible target proteins. As results, 45 proteins are proposed that could interact with the metalloprotease. Most of these proteins are related to the transport of Ca2+ and the metabolism of amino acids and proteins. Docking and molecular dynamics suggest that the M28 domain of Ermp1 could hydrolyze leucine and methionine residues of Amk2, Ypt5 and Pex12. These results could support future experimental investigations of other Fxna peptidases, such as human ERMP1.
Collapse
Affiliation(s)
- Dalia González-Esparragoza
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias de la Universidad Autónoma de Puebla (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias de la Universidad Autónoma de Puebla (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Consejo Nacional de Humanidades Ciencia y Tecnología, Instituto de Ciencias de la Universidad Autónoma de Puebla (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Nora H. Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
| | - Lourdes Millán-Pérez Peña
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
| | - Felix Luna
- Laboratorio de Neuroendocrinología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.G.-E.); (N.H.R.-M.); (L.M.-P.P.)
| |
Collapse
|
11
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
12
|
Rezaei S, Timani KA, He JJ. Metformin Treatment Leads to Increased HIV Transcription and Gene Expression through Increased CREB Phosphorylation and Recruitment to the HIV LTR Promoter. Aging Dis 2024; 15:831-850. [PMID: 37450926 PMCID: PMC10917544 DOI: 10.14336/ad.2023.0705] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Antiretroviral therapy has effectively suppressed HIV infection and replication and prolonged the lifespan of HIV-infected individuals. In the meantime, various complications including type 2 diabetes associated with the long-term antiviral therapy have shown steady increases. Metformin has been the front-line anti-hyperglycemic drug of choice and the most widely prescribed medication for the treatment of type 2 diabetes. However, little is known about the effects of Metformin on HIV infection and replication. In this study, we showed that Metformin treatment enhanced HIV gene expression and transcription in HIV-transfected 293T and HIV-infected Jurkat and human PBMC. Moreover, we demonstrated that Metformin treatment resulted in increased CREB expression and phosphorylation, and TBP expression. Furthermore, we showed that Metformin treatment increased the recruitment of phosphorylated CREB and TBP to the HIV LTR promoter. Lastly, we showed that inhibition of CREB phosphorylation/activation significantly abrogated Metformin-enhanced HIV gene expression. Taken together, these results demonstrated that Metformin treatment increased HIV transcription, gene expression, and production through increased CREB phosphorylation and recruitment to the HIV LTR promoter. These findings may help design the clinical management plan and HIV cure strategy of using Metformin to treat type 2 diabetes, a comorbidity with an increasing prevalence, in people living with HIV.
Collapse
Affiliation(s)
- Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | - Khalid A Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | - Johnny J He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| |
Collapse
|
13
|
Wang Q, Wei X. Research Progress on the Use of Metformin in Leukemia Treatment. Curr Treat Options Oncol 2024; 25:220-236. [PMID: 38286894 PMCID: PMC10873432 DOI: 10.1007/s11864-024-01179-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
OPINION STATEMENT Metformin is a first-line drug in the clinical treatment of type 2 diabetes. Its main molecular mechanism involves the activation of adenosine 5'-monophosphate-activated protein kinase (AMPK), which regulates cell energy metabolism. Many clinical studies have shown that metformin can reduce the incidence and mortality of cancer in patients with or without diabetes. In vitro studies also confirmed that metformin can inhibit proliferation, promote apoptosis, and enhance the response of cells to chemical drugs and other anticancer effects on a variety of leukemia cells. In recent years, leukemia has become one of the most common malignant diseases. Although great progress has been made in therapeutic approaches for leukemia, novel drugs and better treatments are still needed to improve the therapeutic efficacy of these treatments. This article reviews the application status and possible mechanism of metformin in the treatment of leukemia to further understand the anticancer mechanism of metformin and expand its clinical application.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xudong Wei
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
14
|
Sun G, Leclerc GJ, Chahar S, Barredo JC. AMPK Associates with Chromatin and Phosphorylates the TAF-1 Subunit of the Transcription Initiation Complex to Regulate Histone Gene Expression in ALL Cells. Mol Cancer Res 2023; 21:1261-1273. [PMID: 37682252 PMCID: PMC10690046 DOI: 10.1158/1541-7786.mcr-23-0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The survival rates for relapsed/refractory acute lymphoblastic leukemia (ALL) remain poor. We and others have reported that ALL cells are vulnerable to conditions inducing energy/ER-stress mediated by AMP-activated protein kinase (AMPK). To identify the target genes directly regulated by AMPKα2, we performed genome-wide RNA-seq and ChIP-seq in CCRF-CEM (T-ALL) cells expressing HA-AMPKα2 (CN2) under normal and energy/metabolic stress conditions. CN2 cells show significantly altered AMPKα2 genomic binding and transcriptomic profile under metabolic stress conditions, including reduced histone gene expression. Proteomic analysis and in vitro kinase assays identified the TATA-Box-Binding Protein-Associated Factor 1 (TAF1) as a novel AMPKα2 substrate that downregulates histone gene transcription in response to energy/metabolic stress. Knockdown and knockout studies demonstrated that both AMPKα2 and TAF1 are required for histone gene expression. Mechanistically, upon activation, AMPKα2 phosphorylates TAF1 at Ser-1353 which impairs TAF1 interaction with RNA polymerase II (Pol II), leading to a compromised state of p-AMPKα2/p-TAF1/Pol II chromatin association and suppression of transcription. This mechanism was also observed in primary ALL cells and in vivo in NSG mice. Consequently, we uncovered a non-canonical function of AMPK that phosphorylates TAF1, both members of a putative chromatin-associated transcription complex that regulate histone gene expression, among others, in response to energy/metabolic stress. IMPLICATIONS Fully delineating the protein interactome by which AMPK regulates adaptive survival responses to energy/metabolic stress, either via epigenetic gene regulation or other mechanisms, will allow the rational development of strategies to overcome de novo or acquired resistance in ALL and other cancers.
Collapse
Affiliation(s)
- Guangyan Sun
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Guy J. Leclerc
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Sanjay Chahar
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Julio C. Barredo
- Department of Pediatrics, Biochemistry, and Molecular Biology and Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
15
|
Hu M, Chen Y, Ma T, Jing L. Repurposing Metformin in hematologic tumor: State of art. Curr Probl Cancer 2023; 47:100972. [PMID: 37364455 DOI: 10.1016/j.currproblcancer.2023.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/19/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
Metformin is an ancient drug for the treatment of type 2 diabetes, and many studies now suggested that metformin can be used as an adjuvant drug in the treatment of many types of tumors. The mechanism of action of metformin for tumor treatment mainly involves: 1. activation of AMPK signaling pathway 2. inhibition of DNA damage repair in tumor cells 3. downregulation of IGF-1 expression 4. inhibition of chemoresistance and enhancement of chemotherapy sensitivity in tumor cells 5. enhancement of antitumor immunity 6. inhibition of oxidative phosphorylation (OXPHOS). Metformin also plays an important role in the treatment of hematologic tumors, especially in leukemia, lymphoma, and multiple myeloma (MM). The combination of metformin and chemotherapy enhances the efficacy of chemotherapy, and metformin reduces the progression of monoclonal gammopathy of undetermined significance (MGUS) to MM. The purpose of this review is to summarize the anticancer mechanism of metformin and the role and mechanism of action of metformin in hematologic tumors. We mainly summarize the studies related to metformin in hematologic tumors, including cellular experiments and animal experiments, as well as controlled clinical studies and clinical trials. In addition, we also focus on the possible side effects of metformin. Although a large number of preclinical and clinical studies have been performed and the role of metformin in preventing the progression of MGUS to MM has been demonstrated, metformin has not been approved for the treatment of hematologic tumors, which is related to the adverse effects of its high-dose application. Low-dose metformin reduces adverse effects and has been shown to alter the tumor microenvironment and enhance antitumor immune response, which is one of the main directions for future research.
Collapse
Affiliation(s)
- Min Hu
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Li Jing
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
16
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
17
|
Zhang Y, Zhou F, Guan J, Zhou L, Chen B. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules 2023; 13:250. [PMID: 36830619 PMCID: PMC9953052 DOI: 10.3390/biom13020250] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Hematologic malignancies (HMs) mainly include acute and chronic leukemia, lymphoma, myeloma and other heterogeneous tumors that seriously threaten human life and health. The common effective treatments are radiotherapy, chemotherapy and hematopoietic stem cell transplantation (HSCT), which have limited options and are prone to tumor recurrence and (or) drug resistance. Metformin is the first-line drug for the treatment of type 2 diabetes (T2DM). Recently, studies identified the potential anti-cancer ability of metformin in both T2DM patients and patients that are non-diabetic. The latest epidemiological and preclinical studies suggested a potential benefit of metformin in the prevention and treatment of patients with HM. The mechanism may involve the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway by metformin as well as other AMPK-independent pathways to exert anti-cancer properties. In addition, combining current conventional anti-cancer drugs with metformin may improve the efficacy and reduce adverse drug reactions. Therefore, metformin can also be used as an adjuvant therapeutic agent for HM. This paper highlights the anti-hyperglycemic effects and potential anti-cancer effects of metformin, and also compiles the in vitro and clinical trials of metformin as an anti-cancer and chemosensitizing agent for the treatment of HM. The need for future research on the use of metformin in the treatment of HM is indicated.
Collapse
Affiliation(s)
| | | | | | | | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
18
|
Sanati M, Aminyavari S, Mollazadeh H, Motamed-Sanaye A, Bibak B, Mohtashami E, Teng Y, Afshari AR, Sahebkar A. The Potential Therapeutic Impact of Metformin in Glioblastoma Multiforme. Curr Med Chem 2023; 30:857-877. [PMID: 35796457 DOI: 10.2174/0929867329666220707103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/13/2022] [Accepted: 04/16/2022] [Indexed: 02/08/2023]
Abstract
In terms of frequency and aggressiveness, glioblastoma multiforme (GBM) is undoubtedly the most frequent and fatal primary brain tumor. Despite advances in clinical management, the response to current treatments is dismal, with a 2-year survival rate varying between 6 and 12 percent. Metformin, a derivative of biguanide widely used in treating type 2 diabetes, has been shown to extend the lifespan of patients with various malignancies. There is limited evidence available on the long-term survival of GBM patients who have taken metformin. This research examined the literature to assess the connection between metformin's anticancer properties and GBM development. Clinical findings, together with the preclinical data from animal models and cell lines, are included in the present review. This comprehensive review covers not only the association of hyperactivation of the AMPK pathway with the anticancer activity of metformin but also other mechanisms underpinning its role in apoptosis, cell proliferation, metastasis, as well as its chemo-radio-sensitizing behavior against GBM. Current challenges and future directions for developments and applications of metformin-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Motamed-Sanaye
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA30322, USA
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Glamoclija U, Mahmutovic L, Bilajac E, Soljic V, Vukojevic K, Suljagic M. Metformin and Thymoquinone Synergistically Inhibit Proliferation of Imatinib-Resistant Human Leukemic Cells. Front Pharmacol 2022; 13:867133. [PMID: 35496297 PMCID: PMC9043685 DOI: 10.3389/fphar.2022.867133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance is one of the major challenges in cancer treatment, including leukemia. A massive array of research is evaluating combinations of drugs directed against different intracellular signaling molecules to overcome cancer resistance, increase therapy effectiveness, and decrease its adverse effects. Combining chemicals with proven safety profiles, such as drugs already used in therapy and active substances isolated from natural sources, could potentially have superior effects compared to monotherapies. In this study, we evaluated the effects of metformin and thymoquinone (TQ) as monotherapy and combinatorial treatments in chronic myeloid leukemia (CML) cell lines sensitive and resistant to imatinib therapy. The effects were also evaluated in primary monocytic acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) cells. Both compounds induced a dose- and time-dependent decrease of viability and proliferation in tested cells. Metformin had similar IC50 values in imatinib-sensitive and imatinib-resistant cell lines. IC50 values of TQ were significantly higher in imatinib-resistant cells, but with a limited resistance index (2.4). Synergistic effects of combinatorial treatments were observed in all tested cell lines, as well as in primary cells. The strongest synergistic effects were observed in the inhibition of imatinib-resistant cell line proliferation. Metformin and TQ inhibited the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and induced apoptosis in tested cell lines and primary cells. The enhanced effects of combinatorial treatments on the induction of apoptosis were more dominant in imatinib-resistant compared to imatinib-sensitive CML cells. Primary cells were more sensitive to combinatorial treatments compared to cell lines. A combination of 1.25 mM metformin and 0.625 µM TQ increased the levels of cleaved poly (ADP-ribose) polymerase (PARP), decreased the levels of proliferation regulatory proteins, and inhibited protein kinase B (Akt) and NF-κB signaling in primary CLL cells. This study demonstrates that combinatorial treatments of imatinib-resistant malignant clones with metformin and TQ by complementary intracellular multi-targeting represents a promising approach in future studies.
Collapse
Affiliation(s)
- Una Glamoclija
- Department of Biochemistry and Clinical Analysis, University of Sarajevo-Faculty of Pharmacy, Sarajevo, Bosnia and Herzegovina
- Department of Histology and Embryology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
- Scientific Research Unit, Bosnalijek JSC, Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutovic
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Esma Bilajac
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Violeta Soljic
- Department of Histology and Embryology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Katarina Vukojevic
- Department of Histology and Embryology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Mirza Suljagic
- 3D BioLabs, FabLab Bosnia and Herzegovina, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- *Correspondence: Mirza Suljagic,
| |
Collapse
|
20
|
Repas J, Zupin M, Vodlan M, Veranič P, Gole B, Potočnik U, Pavlin M. Dual Effect of Combined Metformin and 2-Deoxy-D-Glucose Treatment on Mitochondrial Biogenesis and PD-L1 Expression in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:1343. [PMID: 35267651 PMCID: PMC8909901 DOI: 10.3390/cancers14051343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Metformin and 2-deoxy-D-glucose (2DG) exhibit multiple metabolic and immunomodulatory anti-cancer effects, such as suppressed proliferation or PD-L1 expression. Their combination or 2DG alone induce triple-negative breast cancer (TNBC) cell detachment, but their effects on mitochondria, crucial for anchorage-independent growth and metastasis formation, have not yet been evaluated. In the present study, we explored the effects of metformin, 2DG and their combination (metformin + 2DG) on TNBC cell mitochondria in vitro. Metformin + 2DG increased mitochondrial mass in TNBC cells. This was associated with an increased size but not number of morphologically normal mitochondria and driven by the induction of mitochondrial biogenesis rather than suppressed mitophagy. 2DG and metformin + 2DG strongly induced the unfolded protein response by inhibiting protein N-glycosylation. Together with adequate energy stress, this was one of the possible triggers of mitochondrial enlargement. Suppressed N-glycosylation by 2DG or metformin + 2DG also caused PD-L1 deglycosylation and reduced surface expression in MDA-MB-231 cells. PD-L1 was increased in low glucose and normalized by both drugs. 2DG and metformin + 2DG reduced PD-1 expression in Jurkat cells beyond the effects on activation, while cytokine secretion was mostly preserved. Despite increasing mitochondrial mass in TNBC cells, metformin and 2DG could therefore potentially be used as an adjunct therapy to improve anti-tumor immunity in TNBC.
Collapse
Affiliation(s)
- Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
| | - Mateja Zupin
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
| | - Maja Vodlan
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Boris Gole
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
- Laboratory for Biochemistry, Molecular Biology and Genomics, University of Maribor, SI-2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, SI-2000 Maribor, Slovenia
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Adeshakin FO, Adeshakin AO, Liu Z, Cheng J, Zhang P, Yan D, Zhang G, Wan X. Targeting Oxidative Phosphorylation-Proteasome Activity in Extracellular Detached Cells Promotes Anoikis and Inhibits Metastasis. Life (Basel) 2021; 12:life12010042. [PMID: 35054435 PMCID: PMC8779336 DOI: 10.3390/life12010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Metastasis arises owing to tumor cells’ capacity to evade pro-apoptotic signals. Anoikis—the apoptosis of detached cells (from the extracellular matrix (ECM)) is often circumvented by metastatic cells as a result of biochemical and molecular transformations. These facilitate cells’ ability to survive, invade and reattach to secondary sites. Here, we identified deregulated glucose metabolism, oxidative phosphorylation, and proteasome in anchorage-independent cells compared to adherent cells. Metformin an anti-diabetic drug that reduces blood glucose (also known to inhibit mitochondrial Complex I), and proteasome inhibitors were employed to target these changes. Metformin or proteasome inhibitors alone increased misfolded protein accumulation, sensitized tumor cells to anoikis, and impaired pulmonary metastasis in the B16F10 melanoma model. Mechanistically, metformin reduced cellular ATP production, activated AMPK to foster pro-apoptotic unfolded protein response (UPR) through enhanced expression of CHOP in ECM detached cells. Furthermore, AMPK inhibition reduced misfolded protein accumulation, thus highlight relevance of AMPK activation in facilitating metformin-induced stress and UPR cell death. Our findings provide insights into the molecular biology of anoikis resistance and identified metformin and proteasome inhibitors as potential therapeutic options for tumor metastasis.
Collapse
Affiliation(s)
- Funmilayo O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Adeleye O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zhao Liu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
| | - Jian Cheng
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
| | - Pengchao Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- Correspondence: (G.Z.); (X.W.)
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
- Correspondence: (G.Z.); (X.W.)
| |
Collapse
|
22
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
23
|
Responsiveness to Hedgehog Pathway Inhibitors in T-Cell Acute Lymphoblastic Leukemia Cells Is Highly Dependent on 5'AMP-Activated Kinase Inactivation. Int J Mol Sci 2021; 22:ijms22126384. [PMID: 34203724 PMCID: PMC8232330 DOI: 10.3390/ijms22126384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/17/2022] Open
Abstract
Numerous studies have shown that hedgehog inhibitors (iHHs) only partially block the growth of tumor cells, especially in vivo. Leukemia often expands in a nutrient-depleted environment (bone marrow and thymus). In order to identify putative signaling pathways implicated in the adaptive response to metabolically adverse conditions, we executed quantitative phospho-proteomics in T-cell acute lymphoblastic leukemia (T-ALL) cells subjected to nutrient-depleted conditions (serum starvation). We found important modulations of peptides phosphorylated by critical signaling pathways including casein kinase, mammalian target of rapamycin, and 5′AMP-activated kinase (AMPK). Surprisingly, in T-ALL cells, AMPK signaling was the most consistently downregulated pathway under serum-depleted conditions, and this coincided with increased GLI1 expression and sensitivity to iHHs, especially the GLI1/2 inhibitor GANT-61. Increased sensitivity to GANT-61 was also found following genetic inactivation of the catalytic subunit of AMPK (AMPKα1) or pharmacological inhibition of AMPK by Compound C. Additionally, patient-derived xenografts showing high GLI1 expression lacked activated AMPK, suggesting an important role for this signaling pathway in regulating GLI1 protein levels. Further, joint targeting of HH and AMPK signaling pathways in T-ALL cells by GANT-61 and Compound C significantly increased the therapeutic response. Our results suggest that metabolic adaptation that occurs under nutrient starvation in T-ALL cells increases responsiveness to HH pathway inhibitors through an AMPK-dependent mechanism and that joint therapeutic targeting of AMPK signaling and HH signaling could represent a valid therapeutic strategy in rapidly expanding tumors where nutrient availability becomes limiting.
Collapse
|
24
|
Activation of PERK-ATF4-CHOP pathway as a novel therapeutic approach for efficient elimination of HTLV-1-infected cells. Blood Adv 2021; 4:1845-1858. [PMID: 32369565 DOI: 10.1182/bloodadvances.2019001139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with adult T-cell leukemia (ATL) exhibit a poor prognosis and overall survival rate when treated with standard chemotherapy, highlighting the continued requirement for the development of novel safe and effective therapies for human T-cell leukemia virus type 1 (HTLV-1)-related diseases. In this study, we demonstrated that MK-2048, a second-generation HIV-1 integrase (IN) inhibitor, potently and selectively kills HTLV-1-infected cells. Differential transcriptome profiling revealed significantly elevated levels of gene expression of the unfolded protein response (UPR) PKR-like ER kinase (PERK) signaling pathway in ATL cell lines following MK-2048 treatment. We also identified a significant downregulation in glucose regulated protein 78 (GRP78), a master regulator of the UPR in the CD4+CADM1+ HTLV-1-infected cell population of primary HTLV-1 carrier peripheral blood mononuclear cells (PBMCs) (n = 9), suggesting that HTLV-1-infected cells are hypersensitive to endoplasmic reticulum (ER) stress-mediated apoptosis. MK-2048 efficiently reduced proviral loads in primary HTLV-1 carrier PBMCs (n = 4), but had no effect on the total numbers of these cells, indicating that MK-2048 does not affect the proliferation of HTLV-1-uninfected PBMCs. MK-2048 specifically activated the ER stress-related proapoptotic gene, DNA damage-inducible transcript 3 protein (DDIT3), also known as C/EBP homologous protein (CHOP), in HTLV-1-infected but not uninfected cells of HTLV-1-carrier PBMCs. Our findings demonstrated that MK-2048 selectively induces HTLV-1-infected cell apoptosis via the activation of the UPR. This novel regulatory mechanism of the HIV IN inhibitor MK-2048 in HTLV-1-infected cells provides a promising prophylactic and therapeutic target for HTLV-1-related diseases including ATL.
Collapse
|
25
|
Sun G, Shvab A, Leclerc GJ, Li B, Beckedorff F, Shiekhattar R, Barredo JC. Protein Kinase D-Dependent Downregulation of Immediate Early Genes through Class IIA Histone Deacetylases in Acute Lymphoblastic Leukemia. Mol Cancer Res 2021; 19:1296-1307. [PMID: 33980612 DOI: 10.1158/1541-7786.mcr-20-0808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a leading cause of cancer-related death in children and adolescents, and cure rates for relapsed/refractory ALL remain dismal, highlighting the need for novel targeted therapies. To identify genome-wide metabolic-stress regulated genes, we used RNA-sequencing in ALL cells treated with AICAR, an AMPK activator. RNA-sequencing identified the immediate early genes (IEGs) as a subset of genes downregulated by AICAR. We show that AICAR-induced IEGs downregulation was blocked by an adenosine uptake inhibitor indicating AICAR was responsible for IEGs reprogramming. Using pharmacologic and genetic models we established this mechanism was AMPK-independent. Further investigations using kinase assays, PKD/PKC inhibitors and rescue experiments, demonstrated that AICAR directly inhibited PKD kinase activity and identified PKD as responsible for IEGs downregulation. Mechanistically, PKD inhibition suppressed phosphorylation and nuclear export of class IIa HDACs, which lowered histone H3 acetylation and decreased NFκB(p65) recruitment to IEGs promoters. Finally, PKD inhibition induced apoptosis via DUSP1/DUSP6 downregulation eliciting a DNA damage response. More importantly, ALL patient cells exhibited the same PKD-HDACs-IEGs-mediated mechanism. As proof of principle of the therapeutic potential of targeting PKD, we established the in vivo relevance of our findings using an NSG ALL mouse model. In conclusion, we identified a previously unreported PKD-dependent survival mechanism in response to AICAR-induced cellular stress in ALL through regulation of DUSPs and IEGs' expression. IMPLICATIONS: PKD mediates early transcriptional responses in ALL cells as an adaptive survival mechanism to overcome cellular stress.
Collapse
Affiliation(s)
- Guangyan Sun
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Anna Shvab
- Cancer Biology Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Guy J Leclerc
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Bin Li
- Stemsynergy Therapeutics, Inc, Miami, Florida
| | - Felipe Beckedorff
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ramin Shiekhattar
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Julio C Barredo
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
26
|
Conza D, Mirra P, Calì G, Insabato L, Fiory F, Beguinot F, Ulianich L. Metformin Dysregulates the Unfolded Protein Response and the WNT/β-Catenin Pathway in Endometrial Cancer Cells through an AMPK-Independent Mechanism. Cells 2021; 10:cells10051067. [PMID: 33946426 PMCID: PMC8147131 DOI: 10.3390/cells10051067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple lines of evidence suggest that metformin, an antidiabetic drug, exerts anti-tumorigenic effects in different types of cancer. Metformin has been reported to affect cancer cells' metabolism and proliferation mainly through the activation of AMP-activated protein kinase (AMPK). Here, we show that metformin inhibits, indeed, endometrial cancer cells' growth and induces apoptosis. More importantly, we report that metformin affects two important pro-survival pathways, such as the Unfolded Protein Response (UPR), following endoplasmic reticulum stress, and the WNT/β-catenin pathway. GRP78, a key protein in the pro-survival arm of the UPR, was indeed downregulated, while GADD153/CHOP, a transcription factor that mediates the pro-apoptotic response of the UPR, was upregulated at both the mRNA and protein level. Furthermore, metformin dramatically inhibited β-catenin mRNA and protein expression. This was paralleled by a reduction in β-catenin transcriptional activity, since metformin inhibited the activity of a TCF/LEF-luciferase promoter. Intriguingly, compound C, a well-known inhibitor of AMPK, was unable to prevent all these effects, suggesting that metformin might inhibit endometrial cancer cells' growth and survival through the modulation of specific branches of the UPR and the inhibition of the Wnt/β-catenin pathway in an AMPK-independent manner. Our findings may provide new insights on the mechanisms of action of metformin and refine the use of this drug in the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Domenico Conza
- Department of Medical and Translational Sciences & Institute of Endocrinology and Experimental Oncology of CNR, University “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (F.B.)
| | - Paola Mirra
- Department of Medical and Translational Sciences & Institute of Endocrinology and Experimental Oncology of CNR, University “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (F.B.)
| | - Gaetano Calì
- Institute of Endocrinology and Molecular Oncology of CNR, University “Federico II”, 80131 Naples, Italy;
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy;
| | - Francesca Fiory
- Department of Medical and Translational Sciences & Institute of Endocrinology and Experimental Oncology of CNR, University “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (F.B.)
| | - Francesco Beguinot
- Department of Medical and Translational Sciences & Institute of Endocrinology and Experimental Oncology of CNR, University “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (F.B.)
| | - Luca Ulianich
- Department of Medical and Translational Sciences & Institute of Endocrinology and Experimental Oncology of CNR, University “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (F.B.)
- Correspondence: ; Tel.: +39-081-7463248
| |
Collapse
|
27
|
Nascimento Mello AL, Sagrillo FS, de Souza AG, Costa ARP, Campos VR, Cunha AC, Imbroisi Filho R, da Costa Santos Boechat F, Sola-Penna M, de Souza MCBV, Zancan P. Selective AMPK activator leads to unfolded protein response downregulation and induces breast cancer cell death and autophagy. Life Sci 2021; 276:119470. [PMID: 33831423 DOI: 10.1016/j.lfs.2021.119470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
AIMS AMPK plays a critical role regulating cell metabolism, growth and survival. Interfering with this enzyme activity has been extensively studied as putative mechanism for cancer therapy. The present work aims to identify a specific AMPK activator for cancer cells among a series of novel heterocyclic compounds. MATERIALS AND METHODS A series of novel hybrid heterocyclic compounds, namely naphtoquinone-4-oxoquinoline and isoquinoline-5,8-quinone-4-oxoquinoline derivatives, were synthesized via Michael reaction and their structures confirmed by spectral data: infrared; 1H and 13C NMR spectroscopy (COSY, HSQC, HMBC); and high-resolution mass spectrometry (HRMS). The novel compounds were screened and tested for antitumoral activity and have part of their mechanism of action scrutinized. KEY FINDINGS Here, we identified a selective AMPK activator among the new hybrid heterocyclic compounds. This new compound presents selective cytotoxicity on breast cancer cells but not on non-cancer counterparts. We identified that by specifically activating AMPK in cancer cells, the drug downregulates unfolded protein response pathway, as well as inhibits mTOR signaling. SIGNIFICANCE These effects, that are selective for cancer cells, lead to activation of autophagy and, ultimately, to cancer cells death. Taken together, our data support the promising anticancer activity of this novel compound which is a strong modulator of metabolism.
Collapse
Affiliation(s)
- Angélica Lauria Nascimento Mello
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fernanda Savacini Sagrillo
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, 24010-141, Outeiro de São João Batista, s/n, Niterói, Rio de Janeiro, Brazil
| | - Alan Gonçalves de Souza
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, 24010-141, Outeiro de São João Batista, s/n, Niterói, Rio de Janeiro, Brazil
| | - Amanda Rodrigues Pinto Costa
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, 24010-141, Outeiro de São João Batista, s/n, Niterói, Rio de Janeiro, Brazil
| | - Vinícius Rangel Campos
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, 24010-141, Outeiro de São João Batista, s/n, Niterói, Rio de Janeiro, Brazil
| | - Anna Claudia Cunha
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, 24010-141, Outeiro de São João Batista, s/n, Niterói, Rio de Janeiro, Brazil
| | - Ricardo Imbroisi Filho
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fernanda da Costa Santos Boechat
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, 24010-141, Outeiro de São João Batista, s/n, Niterói, Rio de Janeiro, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Maria Cecília Bastos Vieira de Souza
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, 24010-141, Outeiro de São João Batista, s/n, Niterói, Rio de Janeiro, Brazil.
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
28
|
Proteomic Discovery of VEEV E2-Host Partner Interactions Identifies GRP78 Inhibitor HA15 as a Potential Therapeutic for Alphavirus Infections. Pathogens 2021; 10:pathogens10030283. [PMID: 33801554 PMCID: PMC8000471 DOI: 10.3390/pathogens10030283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
Alphaviruses are a genus of the Togaviridae family and are widely distributed across the globe. Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV), cause encephalitis and neurological sequelae while chikungunya virus (CHIKV) and Sindbis virus (SINV) cause arthralgia. There are currently no approved therapeutics or vaccines available for alphaviruses. In order to identify novel therapeutics, a V5 epitope tag was inserted into the N-terminus of the VEEV E2 glycoprotein and used to identify host-viral protein interactions. Host proteins involved in protein folding, metabolism/ATP production, translation, cytoskeleton, complement, vesicle transport and ubiquitination were identified as VEEV E2 interactors. Multiple inhibitors targeting these host proteins were tested to determine their effect on VEEV replication. The compound HA15, a GRP78 inhibitor, was found to be an effective inhibitor of VEEV, EEEV, CHIKV, and SINV. VEEV E2 interaction with GRP78 was confirmed through coimmunoprecipitation and colocalization experiments. Mechanism of action studies found that HA15 does not affect viral RNA replication but instead affects late stages of the viral life cycle, which is consistent with GRP78 promoting viral assembly or viral protein trafficking.
Collapse
|
29
|
Féral K, Jaud M, Philippe C, Di Bella D, Pyronnet S, Rouault-Pierre K, Mazzolini L, Touriol C. ER Stress and Unfolded Protein Response in Leukemia: Friend, Foe, or Both? Biomolecules 2021; 11:biom11020199. [PMID: 33573353 PMCID: PMC7911881 DOI: 10.3390/biom11020199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive signaling pathway triggered by a stress of the endoplasmic reticulum (ER) lumen compartment, which is initiated by the accumulation of unfolded proteins. This response, mediated by three sensors-Inositol Requiring Enzyme 1 (IRE1), Activating Transcription Factor 6 (ATF6), and Protein Kinase RNA-Like Endoplasmic Reticulum Kinase (PERK)—allows restoring protein homeostasis and maintaining cell survival. UPR represents a major cytoprotective signaling network for cancer cells, which frequently experience disturbed proteostasis owing to their rapid proliferation in an usually unfavorable microenvironment. Increased basal UPR also participates in the resistance of tumor cells against chemotherapy. UPR activation also occurs during hematopoiesis, and growing evidence supports the critical cytoprotective role played by ER stress in the emergence and proliferation of leukemic cells. In case of severe or prolonged stress, pro-survival UPR may however evolve into a cell death program called terminal UPR. Interestingly, a large number of studies have revealed that the induction of proapoptotic UPR can also strongly contribute to the sensitization of leukemic cells to chemotherapy. Here, we review the current knowledge on the consequences of the deregulation of UPR signaling in leukemias and their implications for the treatment of these diseases.
Collapse
Affiliation(s)
- Kelly Féral
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Manon Jaud
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Doriana Di Bella
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Stéphane Pyronnet
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Kevin Rouault-Pierre
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Laurent Mazzolini
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- CNRS ERL5294, CRCT, F-31037 Toulouse, France
- Correspondence: (L.M.); (C.T.)
| | - Christian Touriol
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
- Correspondence: (L.M.); (C.T.)
| |
Collapse
|
30
|
Cioce M, Pulito C, Strano S, Blandino G, Fazio VM. Metformin: Metabolic Rewiring Faces Tumor Heterogeneity. Cells 2020; 9:E2439. [PMID: 33182253 PMCID: PMC7695274 DOI: 10.3390/cells9112439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor heterogeneity impinges on all the aspects of tumor history, from onset to metastasis and relapse. It is growingly recognized as a propelling force for tumor adaptation to environmental and micro-environmental cues. Metabolic heterogeneity perfectly falls into this process. It strongly contributes to the metabolic plasticity which characterizes cancer cell subpopulations-capable of adaptive switching under stress conditions, between aerobic glycolysis and oxidative phosphorylation-in both a convergent and divergent modality. The mitochondria appear at center-stage in this adaptive process and thus, targeting mitochondria in cancer may prove of therapeutic value. Metformin is the oldest and most used anti-diabetic medication and its relationship with cancer has witnessed rises and falls in the last 30 years. We believe it is useful to revisit the main mechanisms of action of metformin in light of the emerging views on tumor heterogeneity. We first analyze the most consolidated view of its mitochondrial mechanism of action and then we frame the latter in the context of tumor adaptive strategies, cancer stem cell selection, metabolic zonation of tumors and the tumor microenvironment. This may provide a more critical point of view and, to some extent, may help to shed light on some of the controversial evidence for metformin's anticancer action.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Sabrina Strano
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Vito Michele Fazio
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
- Institute of Translation Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| |
Collapse
|
31
|
Dushnicky MJ, Nazarali S, Mir A, Portwine C, Samaan MC. Is There A Causal Relationship between Childhood Obesity and Acute Lymphoblastic Leukemia? A Review. Cancers (Basel) 2020; 12:E3082. [PMID: 33105727 PMCID: PMC7690432 DOI: 10.3390/cancers12113082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Childhood obesity is a growing epidemic with numerous global health implications. Over the past few years, novel insights have emerged about the contribution of adult obesity to cancer risk, but the evidence base is far more limited in children. While pediatric patients with acute lymphoblastic leukemia (ALL) are at risk of obesity, it is unclear if there are potential causal mechanisms by which obesity leads to ALL development. This review explores the endocrine, metabolic and immune dysregulation triggered by obesity and its potential role in pediatric ALL's genesis. We describe possible mechanisms, including adipose tissue attraction and protection of lymphoblasts, and their impact on ALL chemotherapies' pharmacokinetics. We also explore the potential contribution of cytokines, growth factors, natural killer cells and adipose stem cells to ALL initiation and propagation. While there are no current definite causal links between obesity and ALL, critical questions persist as to whether the adipose tissue microenvironment and endocrine actions can play a causal role in childhood ALL, and there is a need for more research to address these questions.
Collapse
Affiliation(s)
- Molly J. Dushnicky
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Samina Nazarali
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Adhora Mir
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Carol Portwine
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Hematology/Oncology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Muder Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
32
|
Giuli MV, Diluvio G, Giuliani E, Franciosa G, Di Magno L, Pignataro MG, Tottone L, Nicoletti C, Besharat ZM, Peruzzi G, Pelullo M, Palermo R, Canettieri G, Talora C, d'Amati G, Bellavia D, Screpanti I, Checquolo S. Notch3 contributes to T-cell leukemia growth via regulation of the unfolded protein response. Oncogenesis 2020; 9:93. [PMID: 33071287 PMCID: PMC7569087 DOI: 10.1038/s41389-020-00279-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Unfolded protein response (UPR) is a conserved adaptive response that tries to restore protein homeostasis after endoplasmic reticulum (ER) stress. Recent studies highlighted the role of UPR in acute leukemias and UPR targeting has been suggested as a therapeutic approach. Aberrant Notch signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), as downregulation of Notch activity negatively affects T-ALL cell survival, leading to the employment of Notch inhibitors in T-ALL therapy. Here we demonstrate that Notch3 is able to sustain UPR in T-ALL cells, as Notch3 silencing favored a Bip-dependent IRE1α inactivation under ER stress conditions, leading to increased apoptosis via upregulation of the ER stress cell death mediator CHOP. By using Juglone, a naturally occurring naphthoquinone acting as an anticancer agent, to decrease Notch3 expression and induce ER stress, we observed an increased ER stress-associated apoptosis. Altogether our results suggest that Notch3 inhibition may prevent leukemia cells from engaging a functional UPR needed to compensate the Juglone-mediated ER proteotoxic stress. Notably, in vivo administration of Juglone to human T-ALL xenotransplant models significantly reduced tumor growth, finally fostering the exploitation of Juglone-dependent Notch3 inhibition to perturb the ER stress/UPR signaling in Notch3-dependent T-ALL subsets.
Collapse
Affiliation(s)
- Maria Valeria Giuli
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giulia Diluvio
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eugenia Giuliani
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, University of Copenaghen, Copenaghen, Denmark
| | - Laura Di Magno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University, Rome, Italy
| | - Luca Tottone
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Carmine Nicoletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
| | - Zein Mersini Besharat
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Rocco Palermo
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Gianluca Canettieri
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Claudio Talora
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University, Rome, Italy
| | - Diana Bellavia
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy.
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome, Italy.
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina, Italy.
| |
Collapse
|
33
|
Garrido MP, Salvatierra R, Valenzuela-Valderrama M, Vallejos C, Bruneau N, Hernández A, Vega M, Selman A, Quest AFG, Romero C. Metformin Reduces NGF-Induced Tumour Promoter Effects in Epithelial Ovarian Cancer Cells. Pharmaceuticals (Basel) 2020; 13:E315. [PMID: 33081077 PMCID: PMC7602813 DOI: 10.3390/ph13100315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a lethal gynaecological neoplasm characterized by rapid growth and angiogenesis. Nerve growth factor (NGF) and its high affinity receptor tropomyosin receptor kinase A (TRKA) contribute to EOC progression by increasing the expression of c-MYC, survivin and vascular endothelial growth factor (VEGF) along with a decrease in microRNAs (miR) 23b and 145. We previously reported that metformin prevents NGF-induced proliferation and angiogenic potential of EOC cells. In this study, we sought to obtain a better understanding of the mechanism(s) by which metformin blocks these NGF-induced effects in EOC cells. Human ovarian surface epithelial (HOSE) and EOC (A2780/SKOV3) cells were stimulated with NGF and/or metformin to assess the expression of c-MYC, β-catenin, survivin and VEGF and the abundance of the tumor suppressor miRs 23b and 145. Metformin decreased the NGF-induced transcriptional activity of MYC and β-catenin/T-cell factor/lymphoid enhancer-binding factor (TCF-Lef), as well as the expression of c-MYC, survivin and VEGF in EOC cells, while it increased miR-23b and miR-145 levels. The preliminary analysis of ovarian biopsies from women users or non-users of metformin was consistent with these in vitro results. Our observations shed light on the mechanisms by which metformin may suppress tumour growth in EOC and suggest that metformin should be considered as a possible complementary therapy in EOC treatment.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Renato Salvatierra
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile;
| | - Christopher Vallejos
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
| | - Nicole Bruneau
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
| | - Andrea Hernández
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
| | - Margarita Vega
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Alberto Selman
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Instituto Nacional del Cáncer, Santiago 8380455, Chile
| | - Andrew F. G. Quest
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad De Medicina, Universidad de Chile, Santiago 8380453, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380000, Chile
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (M.P.G.); (R.S.); (C.V.); (N.B.); (A.H.); (M.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| |
Collapse
|
34
|
Orgel E, Sea JL, Mittelman SD. Mechanisms by Which Obesity Impacts Survival from Acute Lymphoblastic Leukemia. J Natl Cancer Inst Monogr 2020; 2019:152-156. [PMID: 31532535 DOI: 10.1093/jncimonographs/lgz020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/22/2019] [Accepted: 07/01/2019] [Indexed: 01/29/2023] Open
Abstract
The prevalence of obesity has steadily risen over the past decades, even doubling in more than 70 countries. High levels of body fat (adiposity) and obesity are associated with endocrine and hormonal dysregulation, cardiovascular compromise, hepatic dysfunction, pancreatitis, changes in drug metabolism and clearance, inflammation, and metabolic stress. It is thus unsurprising that obesity can affect the development of and survival from a wide variety of malignancies. This review focuses on acute lymphoblastic leukemia, the most common malignancy in children, to explore the multiple mechanisms connecting acute lymphoblastic leukemia, obesity, and adipocytes, and the implications for leukemia therapy.
Collapse
Affiliation(s)
- Etan Orgel
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA Department of Pediatrics, Keck School of Medicine, University of Southern California
| | - Jessica L Sea
- Division of Pediatric Endocrinology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, CA
| | - Steven D Mittelman
- Division of Pediatric Endocrinology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, CA
| |
Collapse
|
35
|
Abstract
Despite great advances in treatment, cancer remains a leading cause of death worldwide. Diet can greatly impact health, while caloric restriction and fasting have putative benefits for disease prevention and longevity. Strong epidemiological associations exist between obesity and cancer, whereas healthy diets can reduce cancer risk. However, less is known about how diet might impact cancer once it has been diagnosed and particularly how diet can impact cancer treatment. In the present review, we discuss the links between obesity, diet, and cancer. We explore potential mechanisms by which diet can improve cancer outcomes, including through hormonal, metabolic, and immune/inflammatory effects, and present the limited clinical research that has been published in this arena. Though data are sparse, diet intervention may reduce toxicity, improve chemotherapy efficacy, and lower the risk of long-term complications in cancer patients. Thus, it is important that we understand and expand the science of this important but complex adjunctive cancer treatment strategy.
Collapse
Affiliation(s)
- Steven D Mittelman
- Division of Pediatric Endocrinology, University of California, Los Angeles (UCLA), Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA;
| |
Collapse
|
36
|
Khateb A, Ronai ZA. Unfolded Protein Response in Leukemia: From Basic Understanding to Therapeutic Opportunities. Trends Cancer 2020; 6:960-973. [PMID: 32540455 DOI: 10.1016/j.trecan.2020.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
Understanding genetic and epigenetic changes that underlie abnormal proliferation of hematopoietic stem and progenitor cells is critical for development of new approaches to monitor and treat leukemia. The unfolded protein response (UPR) is a conserved adaptive signaling pathway that governs protein folding, secretion, and energy production and serves to maintain protein homeostasis in various cellular compartments. Deregulated UPR signaling, which often occurs in hematopoietic stem cells and leukemia, defines the degree of cellular toxicity and perturbs protein homeostasis, and at the same time, offers a novel therapeutic target. Here, we review current knowledge related to altered UPR signaling in leukemia and highlight possible strategies for exploiting the UPR as treatment for this disease.
Collapse
Affiliation(s)
- Ali Khateb
- Tumor Initiation and Maintenance Program, National Cancer Institute (NCI) Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, National Cancer Institute (NCI) Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Liu J, Chen Z, Cui Y, Wei H, Zhu Z, Mao F, Wang Y, Liu Y. Berberine promotes XIAP-mediated cells apoptosis by upregulation of miR-24-3p in acute lymphoblastic leukemia. Aging (Albany NY) 2020; 12:3298-3311. [PMID: 32062612 PMCID: PMC7066883 DOI: 10.18632/aging.102813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Berberine (BBR) has gained considerable attention because of its anti-tumor activity. BBR can induce apoptosis of acute lymphoblastic leukemia (ALL) cells through the MDM2/p53 pathway. However, the effects of BBR on those ALL patients with p53 deficiency remain unclear. RESULTS We found that BBR reduced ALL cell viability and induced apoptosis in p53-null EU-4 and p53-mutant EU-6 cells by downregulating X-linked inhibitor of apoptosis protein (XIAP), which is increased in ALL tissues and cells. BBR-induced cell apoptosis was attenuated by inhibition of XIAP that was controlled by PIM-2. Mechanistic studies showed that BBR treatment induced an enhancement of miR-24-3p. PIM-2 is a direct target of miR-24-3p. Blockade of PIM-2 or miR-24-3p reversed BBR-induced cell apoptosis. In vivo studies, BBR remarkably alleviated leukemia conditions in a EU4 xenograft mouse model, whereas inhibition of miR-24-3p significantly reversed the effects of BBR in the leukemia condition. CONCLUSIONS miR-24-3p/PIM-2/XIAP signaling contributes to BBR-mediated leukemia mitigation in p53-defect ALL, which should be further developed as a treatment strategy in ALL patients with p53 deficiency. METHODS Cell viability and apoptosis were determined using CCK-8 and TUNEL assays, respectively. The dual-luciferase reporter gene system was used to determine the interaction between miR-24-3p and 3'-untranslated regions (UTRs) of PIM-2.
Collapse
Affiliation(s)
- Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zhiwei Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yunping Cui
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Huixia Wei
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zhenjing Zhu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Fengxia Mao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yingchao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW In an attempt to identify potential new therapeutic targets, efforts to describe the metabolic features unique to cancer cells are increasingly being reported. Although current standard of care regimens for several pediatric malignancies incorporate agents that target tumor metabolism, these drugs have been part of the therapeutic landscape for decades. More recent research has focused on the identification and targeting of new metabolic vulnerabilities in pediatric cancers. The purpose of this review is to describe the most recent translational findings in the metabolic targeting of pediatric malignancies. RECENT FINDINGS Across multiple pediatric cancer types, dependencies on a number of key metabolic pathways have emerged through study of patient tissue samples and preclinical modeling. Among the potentially targetable vulnerabilities are glucose metabolism via glycolysis, oxidative phosphorylation, amino acid and polyamine metabolism, and NAD metabolism. Although few agents have yet to move forward into clinical trials for pediatric cancer patients, the robust and promising preclinical data that have been generated suggest that future clinical trials should rationally test metabolically targeted agents for relevant disease populations. SUMMARY Recent advances in our understanding of the metabolic dependencies of pediatric cancers represent a source of potential new therapeutic opportunities for these diseases.
Collapse
|
39
|
Son HE, Min HY, Kim EJ, Jang WG. Fat Mass and Obesity-Associated (FTO) Stimulates Osteogenic Differentiation of C3H10T1/2 Cells by Inducing Mild Endoplasmic Reticulum Stress via a Positive Feedback Loop with p-AMPK. Mol Cells 2020; 43:58-65. [PMID: 31940720 PMCID: PMC6999711 DOI: 10.14348/molcells.2019.0136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/29/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Fat mass and obesity-associated (FTO) gene helps to regulate energy homeostasis in mammals by controlling energy expenditure. In addition, FTO functions in the regulation of obesity and adipogenic differentiation; however, a role in osteogenic differentiation is unknown. This study investigated the effects of FTO on osteogenic differentiation of C3H10T1/2 cells and the underlying mechanism. Expression of osteogenic and endoplasmic reticulum (ER) stress markers were characterized by reverse-transcriptase polymerase chain reaction and western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity. BMP2 treatment increased mRNA expression of osteogenic genes and FTO. Overexpression of FTO increased expression of the osteogenic genes distal-less homeobox5 (Dlx5) and runt-related transcription factor 2 (Runx2). Activation of adenosine monophosphate-activated protein kinase (AMPK) increased FTO expression, and there was a positive feedback loop between FTO and p-AMPK. p-AMPK and FTO induced mild ER stress; however, tunicamycin-induced severe ER stress suppressed FTO expression and AMPK activation. In summary, FTO induces osteogenic differentiation of C3H10T1/2 cells upon BMP2 treatment by inducing mild ER stress via a positive feedback loop with p-AMPK. FTO expression and AMPK activation induce mild ER stress. By contrast, severe ER stress inhibits osteogenic differentiation by suppressing FTO expression and AMPK activation.
Collapse
Affiliation(s)
- Hyo-Eun Son
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongsan 38453,
Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongsan 38453,
Korea
| | - Hyeon-Young Min
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongsan 38453,
Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongsan 38453,
Korea
| | - Eun-Jung Kim
- Research Institute of Anti-Aging, Daegu University, Gyeongsan 38453,
Korea
- Department of Immunology, Kyungpook National University School of Medicine, Daegu 41944,
Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongsan 38453,
Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongsan 38453,
Korea
| |
Collapse
|
40
|
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13:23-34. [PMID: 31794280 PMCID: PMC6959472 DOI: 10.1080/17512433.2020.1698288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Dementia is the 7th leading cause of death that imposes a significant financial and service burden on the global population. Presently, only symptomatic care exists for cognitive loss, such as Alzheimer's disease.Areas covered: Given the advancing age of the global population, it becomes imperative to develop innovative therapeutic strategies for cognitive loss. New studies provide insight to the association of cognitive loss with metabolic disorders, such as diabetes mellitus.Expert opinion: Diabetes mellitus is increasing in incidence throughout the world and affects 350 million individuals. Treatment strategies identifying novel pathways that oversee metabolic and neurodegenerative disorders offer exciting prospects to treat dementia. The mechanistic target of rapamycin (mTOR) and circadian clock gene pathways that include AMP activated protein kinase (AMPK), Wnt1 inducible signaling pathway protein 1 (WISP1), erythropoietin (EPO), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) provide novel strategies to treat cognitive loss that has its basis in metabolic cellular dysfunction. However, these pathways are complex and require precise regulation to maximize treatment efficacy and minimize any potential clinical disability. Further investigations hold great promise to treat both the onset and progression of cognitive loss that is associated with metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
41
|
Zhou X, Kuang Y, Liang S, Wang L. Metformin inhibits cell proliferation in SKM-1 cells via AMPK-mediated cell cycle arrest. J Pharmacol Sci 2019; 141:146-152. [PMID: 31744691 DOI: 10.1016/j.jphs.2019.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 02/08/2023] Open
Abstract
Metformin, a widely used antidiabetic drug, has previously been demonstrated to exert anti-cancer effects in certain hematological malignancies, but its effects on the transformation of myelodysplastic syndromes to acute myeloid leukemia (AML-MDS) remain unclear. The present study aimed to investigate the effects of metformin on SKM-1 cells (an AML-MDS cell line) and its underlying mechanisms. SKM-1 cells were treated with different concentrations of metformin. Cell proliferation was assayed by CCK-8. Apoptosis and cell cycle phases were detected by flow cytometry, while cell cycle related proteins and AMPK were tested by Western blot. SKM-1 cells were transfected with LV-AMPKα1-RNAi to reduce the expression of AMPK. Metformin inhibited cell proliferation in a dose and time dependent manner by inducing G0/G1 phase arrest rather than apoptosis induction. Metformin promoted the expression of p-AMPK, P53, P21CIP1 and P27KIP1, while inhibited the expression of CDK4 and CyclinD1. AMPK knockdown attenuated the effects of metformin on SKM-1 cells. These findings suggested that metformin inhibited proliferation of SKM-1 cells, potentially through an AMPK-mediated cell cycle arrest.
Collapse
Affiliation(s)
- Xiaojia Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunchun Kuang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Simin Liang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
42
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|
43
|
Elbere I, Silamikelis I, Ustinova M, Kalnina I, Zaharenko L, Peculis R, Konrade I, Ciuculete DM, Zhukovsky C, Gudra D, Radovica-Spalvina I, Fridmanis D, Pirags V, Schiöth HB, Klovins J. Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals. Clin Epigenetics 2018; 10:156. [PMID: 30545422 PMCID: PMC6293577 DOI: 10.1186/s13148-018-0593-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Metformin is a widely prescribed antihyperglycemic agent that has been also associated with multiple therapeutic effects in various diseases, including several types of malignancies. There is growing evidence regarding the contribution of the epigenetic mechanisms in reaching metformin's therapeutic goals; however, the effect of metformin on human cells in vivo is not comprehensively studied. The aim of our study was to examine metformin-induced alterations of DNA methylation profiles in white blood cells of healthy volunteers, employing a longitudinal study design. RESULTS Twelve healthy metformin-naïve individuals where enrolled in the study. Genome-wide DNA methylation pattern was estimated at baseline, 10 h and 7 days after the start of metformin administration. The whole-genome DNA methylation analysis in total revealed 125 differentially methylated CpGs, of which 11 CpGs and their associated genes with the most consistent changes in the DNA methylation profile were selected: POFUT2, CAMKK1, EML3, KIAA1614, UPF1, MUC4, LOC727982, SIX3, ADAM8, SNORD12B, VPS8, and several differentially methylated regions as novel potential epigenetic targets of metformin. The main functions of the majority of top-ranked differentially methylated loci and their representative cell signaling pathways were linked to the well-known metformin therapy targets: regulatory processes of energy homeostasis, inflammatory responses, tumorigenesis, and neurodegenerative diseases. CONCLUSIONS Here we demonstrate for the first time the immediate effect of short-term metformin administration at therapeutic doses on epigenetic regulation in human white blood cells. These findings suggest the DNA methylation process as one of the mechanisms involved in the action of metformin, thereby revealing novel targets and directions of the molecular mechanisms underlying the various beneficial effects of metformin. TRIAL REGISTRATION EU Clinical Trials Register, 2016-001092-74. Registered 23 March 2017, https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-001092-74/LV .
Collapse
Affiliation(s)
- Ilze Elbere
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga, LV-1067, Latvia
| | - Ivars Silamikelis
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga, LV-1067, Latvia
| | - Monta Ustinova
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga, LV-1067, Latvia
| | - Ineta Kalnina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga, LV-1067, Latvia
| | - Linda Zaharenko
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga, LV-1067, Latvia
| | - Raitis Peculis
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga, LV-1067, Latvia
| | - Ilze Konrade
- Riga East Clinical University Hospital, 2 Hipokrata Street, Riga, LV-1038, Latvia
| | - Diana Maria Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Christina Zhukovsky
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Dita Gudra
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga, LV-1067, Latvia
| | - Ilze Radovica-Spalvina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga, LV-1067, Latvia
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga, LV-1067, Latvia
| | - Valdis Pirags
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga, LV-1067, Latvia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga, LV-1067, Latvia.
| |
Collapse
|
44
|
Hussein AM, Eldosoky M, El-Shafey M, El-Mesery M, Ali AN, Abbas KM, Abulseoud OA. Effects of metformin on apoptosis and α-synuclein in a rat model of pentylenetetrazole-induced epilepsy. Can J Physiol Pharmacol 2018; 97:37-46. [PMID: 30308130 DOI: 10.1139/cjpp-2018-0266] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was designed to examine the possible neuroprotective and antiepileptic effects of metformin (Metf) in a rat model of pentylenetetrazole (PTZ)-induced epilepsy and its possible underlying mechanisms. Forty male albino rats were assigned to 4 groups of equal size: (1) normal control (NC) group, (2) Metf group: daily treatment with Metf (200 mg/kg, i.p.) for 2 weeks, (3) PTZ group: treatment with PTZ (50 mg/kg, i.p.) every other day for 2 weeks, and (4) Metf + PTZ group: daily treatment with PTZ and metformin (200 mg/kg, i.p.) for 2 weeks. Administration of PTZ caused a significant increase in seizure score and duration, induced a state of oxidative stress (high malondialdehyde, low reduced glutathione and catalase activity), and led to the upregulation of β-catenin, caspase-3, and its cleavage products, Hsp70 and α-synuclein, in hippocampal regions as well as a significant reduction in seizure latency. While Metf treatment significantly ameliorated PTZ-induced seizures, attenuated oxidative stress, and upregulated α-synuclein and β-catenin expression, it also inhibited caspase-3 activation and the release of the cleavage product and caused more upregulation in Hsp70 expression in hippocampal regions (p < 0.05). In conclusion, the antiepileptic and neuroprotective effects of Metf in PTZ-induced epilepsy might be due to the inhibition of apoptosis, attenuation of oxidative stress and α-synuclein expression, and upregulation of Hsp70.
Collapse
Affiliation(s)
- Abdelaziz M Hussein
- a Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Eldosoky
- a Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Shafey
- b Department of Human Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- c Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amr N Ali
- d Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled M Abbas
- d Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- e Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, Baltimore, MD, USA
| |
Collapse
|
45
|
Opposite Regulation of CHOP and GRP78 and Synergistic Apoptosis Induction by Selenium Yeast and Fish Oil via AMPK Activation in Lung Adenocarcinoma Cells. Nutrients 2018; 10:nu10101458. [PMID: 30297634 PMCID: PMC6213479 DOI: 10.3390/nu10101458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
Selenium has been intensively studied for the use of cancer prevention and treatment. However, the clinical effects are still plausible. To enhance its efficacy, a combinational study of selenium yeast (SY) and fish oil (FO) was performed in A549, CL1-0, H1299, HCC827 lung adenocarcinoma (LADC) cells to investigate the enhancement in apoptosis induction and underlying mechanism. By sulforhodamine B staining, Western blot and flow cytometric assays, we found a synergism between SY and FO in growth inhibition and apoptosis induction of LADC cells. In contrast, the fetal lung fibroblast cells (MRC-5) were unsusceptible to this combination effect. FO synergized SY-induced apoptosis of A549 cells, accompanied with synergistic activation of AMP-activated protein kinase (AMPK) and reduction of Cyclooxygenase (COX)-2 and β-catenin. Particularly, combining with FO not only enhanced the SY-elevated proapoptotic endoplasmic reticulum (ER) stress marker CCAAT/enhancer-binding protein homologous protein (CHOP), but also reduced the cytoprotective glucose regulated protein of molecular weight 78 kDa (GRP78). Consequently, the CHOP downstream targets such as phospho-JNK and death receptor 5 were also elevated, along with the cleavage of caspase-8, -3, and the ER stress-related caspase-4. Accordingly, inhibition of AMPK by compound C diminished the synergistic apoptosis induction, and elevated CHOP/GRP78 ratio by SY combined with FO. The AMPK-dependent synergism suggests the combination of SY and FO for chemoprevention and integrative treatment of LADC.
Collapse
|
46
|
Ramos-Peñafiel C, Olarte-Carrillo I, Cerón-Maldonado R, Rozen-Fuller E, Kassack-Ipiña JJ, Meléndez-Mier G, Collazo-Jaloma J, Martínez-Tovar A. Effect of metformin on the survival of patients with ALL who express high levels of the ABCB1 drug resistance gene. J Transl Med 2018; 16:245. [PMID: 30176891 PMCID: PMC6122769 DOI: 10.1186/s12967-018-1620-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/25/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In acute lymphoblastic leukemia (ALL), high ABCB1 gene expression has been associated with treatment resistance, which affects patient prognosis. Many preclinical reports and retrospective population studies have shown an anti-cancer effect of metformin. Therefore, the objective of this study was to assess the effect of metformin on the treatment regimen in patients with ALL who exhibited high levels of ABCB1 gene expression and to determine its impact on overall survival. METHODS A total of 102 patients with ALL were recruited; one group (n = 26) received metformin, and the other received chemotherapy (n = 76). Measurement of ABCB1 transcript expression was performed using qRT-PCR prior to treatment initiation. Survival analysis was performed using Kaplan-Meier curves. The impact of both the type of treatment and the level of expression on the response (remission or relapse) was analyzed by calculating the odds ratio. RESULTS The survival of patients with high ABCB1 expression was lower than those with low or absent ABCB1 gene expression (p = 0.030). In the individual analysis, we identified a benefit to adding metformin in the group of patients with high ABCB1 gene expression (p = 0.025). In the metformin user group, the drug acted as a protective factor against both therapeutic failure (odds ratio [OR] 0.07, 95% confidence interval [CI] 0.0037-1.53) and early relapse (OR 0.05, 95% CI 0.0028-1.153). CONCLUSION The combined use of metformin with chemotherapy is effective in patients with elevated levels of ABCB1 gene expression. Trial registration NCT 03118128: NCT.
Collapse
Affiliation(s)
- Christian Ramos-Peñafiel
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Irma Olarte-Carrillo
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Rafael Cerón-Maldonado
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Etta Rozen-Fuller
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Juan Julio Kassack-Ipiña
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Guillermo Meléndez-Mier
- Dirección de Investigación, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Juan Collazo-Jaloma
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Adolfo Martínez-Tovar
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México. .,Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México.
| |
Collapse
|
47
|
Trucco M, Barredo JC, Goldberg J, Leclerc GM, Hale GA, Gill J, Setty B, Smith T, Lush R, Lee JK, Reed DR. A phase I window, dose escalating and safety trial of metformin in combination with induction chemotherapy in relapsed refractory acute lymphoblastic leukemia: Metformin with induction chemotherapy of vincristine, dexamethasone, PEG-asparaginase, and doxorubicin. Pediatr Blood Cancer 2018; 65:e27224. [PMID: 29856514 DOI: 10.1002/pbc.27224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) remains a major cause of death in children. AMP-activated protein kinase (AMPK) affects the unfolded protein response (UPR), leading to increased vulnerability to endoplasmic reticulum (ER) stress in ALL cells. In vitro, metformin causes ALL cell death via AMPK-mediated inhibition of the UPR. It was evaluated whether ER stress could be induced in relapsed ALL through a phase I study investigating the safety and feasibility of metformin in combination with relapse induction chemotherapy. PROCEDURE Metformin was administered twice daily for 28 days in addition to vincristine, dexamethasone, PEG-asparaginase and doxorubicin (VXLD). Dose escalation of metformin was evaluated using a 3+3 design. Pharmacokinetics (PK), pharmacodynamic (PD) evaluation of the AMPK and ER stress/UPR pathways, and treatment response were assessed. RESULTS Fourteen patients were enrolled; all were evaluable for toxicity. The recommended phase 2 dose (RP2D) was Dose level 2, 1,000 mg/m2 /day. A single dose-limiting toxicity (DLT), hypoglycemia with acidosis, was observed at the RP2D and two DLTs, diarrhea and acidosis, were observed at Dose Level 3. Nine patients were evaluable for response as defined by the protocol, receiving at least 85% of planned metformin doses. Five complete remissions, one partial response, and one stable disease were observed. PD evaluation showed induction of ER stress, activation of AMPK, and inhibition of the UPR. CONCLUSIONS The VXLD with metformin was tolerable with a RP2D for metformin of 1,000 mg/m2 /day and yielded responses in a heavily pretreated population. ER stress was induced and toxicities attributable to metformin occurred in all dose levels.
Collapse
Affiliation(s)
- Matteo Trucco
- University of Miami Sylvester Comprehensive Cancer Center, Miami, FL.,UM Department of Pediatrics, Miami, FL
| | - Julio C Barredo
- University of Miami Sylvester Comprehensive Cancer Center, Miami, FL.,UM Department of Pediatrics, Miami, FL.,UM Department of Medicine, Miami, FL.,UM Department of Biochemistry and Molecular Biology, Miami, FL
| | | | - Gilles M Leclerc
- University of Miami Sylvester Comprehensive Cancer Center, Miami, FL.,UM Department of Pediatrics, Miami, FL
| | - Gregory A Hale
- Johns Hopkins All Children's Hospital, St. Petersburg, FL
| | | | | | - Tiffany Smith
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center, Tampa, FL
| | - Richard Lush
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center, Tampa, FL
| | - Jae K Lee
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL
| | - Damon R Reed
- Johns Hopkins All Children's Hospital, St. Petersburg, FL.,Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center, Tampa, FL.,Adolescent and Young Adult Program, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
48
|
Maniar K, Singh V, Moideen A, Bhattacharyya R, Chakrabarti A, Banerjee D. Inhalational supplementation of metformin butyrate: A strategy for prevention and cure of various pulmonary disorders. Biomed Pharmacother 2018; 107:495-506. [PMID: 30114633 DOI: 10.1016/j.biopha.2018.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/22/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
The management of chronic lung diseases such as cancer, asthma, COPD and pulmonary hypertension remains unsatisfactory till date, and several strategies are being tried to control the same. Metformin, a popular anti-diabetic drug has shown promising effects in pre-clinical studies and has been subject to several trials in patients with debilitating pulmonary diseases. However, the clinical evidence for the use of metformin in these conditions is disappointing. Recent observations suggest that metformin use in diabetic patients is associated with an increase in butyrate-producing bacteria in the gut microbiome. Butyrate, similar to metformin, shows beneficial effects in pathological conditions found in pulmonary diseases. Further, the pharmacokinetic data of metformin suggests that metformin is predominantly concentrated in the gut, even after absorption. Butyrate, on the other hand, has a short half-life and thus oral supplementation of butyrate and metformin is unlikely to result in high concentrations of these drugs in the lung. In this paper, we review the pre-clinical studies of metformin and butyrate pertaining to pathologies commonly encountered in chronic lung diseases and underscore the need to administer these drugs directly to the lung via the inhalational route.
Collapse
Affiliation(s)
- Kunal Maniar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, India
| | - Vandana Singh
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, India
| | - Amal Moideen
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, India
| | - Amitava Chakrabarti
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, India
| | - Dibyajyoti Banerjee
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, India.
| |
Collapse
|
49
|
Zhang J, Wu J, He Q, Liang W, He J. The prognostic value of metformin for advanced non-small cell lung cancer: a systematic review and meta-analysis. Transl Lung Cancer Res 2018; 7:389-396. [PMID: 30050776 DOI: 10.21037/tlcr.2018.03.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background The prognostic value of Metformin for concurrent non-small cell lung cancer (NSCLC) has been controversial in previous individual studies and meta-analyses. In order to further investigate the value of this medication, we conducted a systematic review and meta-analysis for patients with advanced or inoperable NSCLC. Methods We searched articles from PubMed, Scopus and Web of Science databases; the time interval was from the inception date of the databases to 1 September 2017. Inclusion criteria for eligible studies were: advanced or inoperable NSCLC; Metformin as an experimental group, and non-Metformin usage as a control group; progression-free survival (PFS) or overall survival (OS) as the outcome, with available hazard ratio (HR). Data synthesis was conducted based on the random-effect model. Results From a total of 97 articles in databases, we included seven eligible studies. Among them, only one study compared Metformin usage and non-Metformin usage for NSCLC patients who didn't have diabetes mellitus (DM): no significant difference was found in either OS or PFS. The remaining six studies compared Metformin usage and non-Metformin usage for patients with concurrent NSCLC and DM: according to meta-analysis, significantly prolonged OS was found in Metformin usage rather than non-Metformin usage [pooled HR =0.87 (0.77-0.99), P=0.04]; no significant difference was indicated in PFS [pooled HR =0.85 (0.67-1.07), P=0.16]. In subgroup analysis, among patients with late-stage NSCLC and DM, significant difference was found, regardless of OS [pooled HR =0.81 (0.70-0.94), P<0.01] or PFS [pooled HR =0.71 (0.58-0.88), P<0.01]. However, among patients with local advanced NSCLC and DM, there was no significant difference [OS: pooled HR =1.05 (0.79-1.40), P=0.74; PFS: pooled HR =0.94 (0.68-1.32), P=0.74]. Conclusions The prognostic value of Metformin for concurrent late-stage NSCLC and DM was demonstrated. It deserves further confirmation and explanation.
Collapse
Affiliation(s)
- Jianrong Zhang
- George Warren Brown School, Washington University in St. Louis, St. Louis, USA
| | - Jieyu Wu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Qihua He
- Department of Thoracic Surgery and Oncology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou 501530, China.,National Clinical Research Centre of Respiratory Disease, Guangzhou 510120, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou 501530, China.,National Clinical Research Centre of Respiratory Disease, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou 501530, China.,National Clinical Research Centre of Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
50
|
Proteomic analyses of brain tumor cell lines amidst the unfolded protein response. Oncotarget 2018; 7:47831-47847. [PMID: 27323862 PMCID: PMC5216982 DOI: 10.18632/oncotarget.10032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023] Open
Abstract
Brain tumors such as high grade gliomas are among the deadliest forms of human cancers. The tumor environment is subject to a number of cellular stressors such as hypoxia and glucose deprivation. The persistence of the stressors activates the unfolded proteins response (UPR) and results in global alterations in transcriptional and translational activity of the cell. Although the UPR is known to effect tumorigenesis in some epithelial cancers, relatively little is known about the role of the UPR in brain tumors. Here, we evaluated the changes at the molecular level under homeostatic and stress conditions in two glioma cell lines of differing tumor grade. Using mass spectrometry analysis, we identified proteins unique to each condition (unstressed/stressed) and within each cell line (U87MG and UPN933). Comparing the two, we find differences between both the conditions and cell lines indicating a unique profile for each. Finally, we used our proteomic data to identify the predominant pathways within these cells under unstressed and stressed conditions. Numerous predominant pathways are the same in both cell lines, but there are differences in biological and molecular classifications of the identified proteins, including signaling mechanisms, following UPR induction; we see that relatively minimal proteomic alterations can lead to signaling changes that ultimately promote cell survival.
Collapse
|