1
|
Li S, Zheng A, Chen Z, Wang X, Chen J, Zou Z, Liu G. Lactobacillus plantarum-Derived Inorganic Polyphosphate Regulates Immune Function via Inhibiting M1 Polarization and Resisting Oxidative Stress in Macrophages. Antioxidants (Basel) 2025; 14:428. [PMID: 40298816 PMCID: PMC12024265 DOI: 10.3390/antiox14040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Inorganic polyphosphate (PolyP) is a high-molecular-weight polymer that plays multiple roles in regulating immune responses. However, the specific anti-inflammatory mechanisms of bacteria-derived PolyP are unclear. In the present study, PolyP was extracted from Lactobacillus plantarum (L. plantarum), and the chain length was estimated to be approximately 250 Pi residues. The immune regulatory functions of PolyP were investigated using a lipopolysaccharide (LPS)-induced RAW264.7 cell oxidative stress model, and dexamethasone was used as a positive control. The result revealed that both dexamethasone and PolyP were protective against oxidative stress by inhibiting macrophage M1 polarization and the production of several markers, such as nitric oxide (NO), reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2. In addition, PolyP suppressed inflammation progression by regulating the production of several cytokines, such as interleukin (IL)-1β, interferon (INF)-γ, tumor necrosis factor (TNF)-α, and IL-6, and inhibited the expressions of inhibitory κB kinase (IKK) α, IKKβ, and extracellular regulated protein kinases 2 (ERK2). Conclusively, PolyP derived from L. plantarum has the ability to protect cells from oxidative stress damage by inhibiting M1 polarization in macrophages. These findings provide insights into the function of PolyP and offer support for the potential application of PolyP in immune-related diseases.
Collapse
Affiliation(s)
- Shuzhen Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (S.L.); (A.Z.); (Z.C.); (X.W.)
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (S.L.); (A.Z.); (Z.C.); (X.W.)
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (S.L.); (A.Z.); (Z.C.); (X.W.)
| | - Xiaoying Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (S.L.); (A.Z.); (Z.C.); (X.W.)
| | - Jiang Chen
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (J.C.); (Z.Z.)
| | - Zhiheng Zou
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (J.C.); (Z.Z.)
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China; (S.L.); (A.Z.); (Z.C.); (X.W.)
| |
Collapse
|
2
|
Kullik GA, Waldmann M, Renné T. Analysis of polyphosphate in mammalian cells and tissues: methods, functions and challenges. Curr Opin Biotechnol 2024; 90:103208. [PMID: 39321579 DOI: 10.1016/j.copbio.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Polyphosphates play a crucial role in various biological processes, such as blood coagulation, energy homeostasis, and cellular stress response. However, their isolation, detection, and quantification present significant challenges. These difficulties arise primarily from their solubility, low concentration in mammals, and structural similarity to other ubiquitous biopolymers. This review provides an overview of the current understanding of polyphosphates in mammals, including their proposed functions and tissue distribution. It also examines key isolation techniques, such as chromatography and precipitation, alongside detection methods, such as colorimetric assays and enzymatic digestion. The strengths and limitations of these methods are discussed, as well as the challenges in preserving polyphosphate integrity. Recent advancements in isolation and detection are also highlighted, offering a comprehensive perspective essential for advancing polyphosphate research.
Collapse
Affiliation(s)
- Giuliano A Kullik
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Waldmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
3
|
Huang WC, Mailer RK, Renné T. In-vivo functions and regulation of polyphosphate in the vascular system. Curr Opin Hematol 2023; 30:159-166. [PMID: 37459301 DOI: 10.1097/moh.0000000000000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE OF REVIEW Polyphosphate, an inorganic polymer consisting of linearly linked phosphate subunits, is ubiquitously found in living organisms. Functions and regulation of the polymer have been analyzed in plants, bacteria and yeast; however, the roles of polyphosphate in mammals are still emerging. RECENT FINDINGS In contrast to synthetic polyphosphate that has been extensively utilized in ex-vivo studies, natural polyphosphate is complexed with bivalent cations (mostly Ca 2+ ) and regardless of chain length, forms microparticles that are retained on the surface of procoagulant platelets, platelet-derived microparticles and cancer extracellular vesicles. On cell surfaces, these Ca 2+ /polyphosphate aggregates initiate the factor XII-driven contact system, triggering proinflammatory and procoagulant reactions through the kallikrein kinin system and intrinsic pathway of coagulation, respectively. Polyphosphate inhibitors interfere with thrombosis while sparing hemostasis, replicating the effect of factor XII neutralizing agents. Furthermore, polyphosphate binds to platelet factor 4, which has implications for autoimmune thrombotic diseases, such as heparin-induced thrombocytopenia (HIT) and vaccine-induced thrombotic thrombocytopenia (VITT), potentially contributing to their pathogenesis. The metabolism and organ-specific distribution of the polymer remain incompletely defined and is the topic of ongoing research. SUMMARY Polyphosphate acts as a procoagulant and proinflammatory mediator. Neutralizing polyphosphate provides well tolerated thromboprotection, mimicking the effects of factor XII deficiency.
Collapse
Affiliation(s)
- Wen-Chan Huang
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
4
|
Roewe J, Walachowski S, Sharma A, Berthiaume KA, Reinhardt C, Bosmann M. Bacterial polyphosphates induce CXCL4 and synergize with complement anaphylatoxin C5a in lung injury. Front Immunol 2022; 13:980733. [PMID: 36405694 PMCID: PMC9669059 DOI: 10.3389/fimmu.2022.980733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/18/2022] [Indexed: 08/01/2023] Open
Abstract
Polyphosphates are linear polymers of inorganic phosphates that exist in all living cells and serve pleiotropic functions. Bacteria produce long-chain polyphosphates, which can interfere with host defense to infection. In contrast, short-chain polyphosphates are released from platelet dense granules and bind to the chemokine CXCL4. Here, we report that long-chain polyphosphates induced the release of CXCL4 from mouse bone marrow-derived macrophages and peritoneal macrophages in a dose-/time-dependent fashion resulting from an induction of CXCL4 mRNA. This polyphosphate effect was lost after pre-incubation with recombinant exopolyphosphatase (PPX) Fc fusion protein, demonstrating the potency of long chains over monophosphates and ambient cations. In detail, polyphosphate chains >70 inorganic phosphate residues were required to reliably induce CXCL4. Polyphosphates acted independently of the purinergic P2Y1 receptor and the MyD88/TRIF adaptors of Toll-like receptors. On the other hand, polyphosphates augmented LPS/MyD88-induced CXCL4 release, which was explained by intracellular signaling convergence on PI3K/Akt. Polyphosphates induced Akt phosphorylation at threonine-308. Pharmacologic blockade of PI3K (wortmannin, LY294002) antagonized polyphosphate-induced CXCL4 release from macrophages. Intratracheal polyphosphate administration to C57BL/6J mice caused histologic signs of lung injury, disruption of the endothelial-epithelial barrier, influx of Ly6G+ polymorphonuclear neutrophils, depletion of CD11c+SiglecF+ alveolar macrophages, and release of CXCL4. Long-chain polyphosphates synergized with the complement anaphylatoxin, C5a, which was partly explained by upregulation of C5aR1 on myeloid cells. C5aR1-/- mice were protected from polyphosphate-induced lung injury. C5a generation occurred in the lungs and bronchoalveolar lavage fluid (BALF) of polyphosphate-treated C57BL/6J mice. In conclusion, we demonstrate that polyphosphates govern immunomodulation in macrophages and promote acute lung injury.
Collapse
Affiliation(s)
- Julian Roewe
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Sarah Walachowski
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Arjun Sharma
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Kayleigh A. Berthiaume
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Müller WEG, Wang X, Neufurth M, Schröder HC. Polyphosphate in Antiviral Protection: A Polyanionic Inorganic Polymer in the Fight Against Coronavirus SARS-CoV-2 Infection. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:145-189. [PMID: 35697940 DOI: 10.1007/978-3-031-01237-2_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyanions as polymers carrying multiple negative charges have been extensively studied with regard to their potential antiviral activity. Most studies to date focused on organic polyanionic polymers, both natural and synthetic. The inorganic polymer, polyphosphate (polyP), despite the ubiquitous presence of this molecule from bacteria to man, has attracted much less attention. More recently, and accelerated by the search for potential antiviral agents in the fight against the pandemic caused by the coronavirus SARS-CoV-2, it turned out that polyP disrupts the first step of the viral replication cycle, the interaction of the proteins in the virus envelope and in the cell membrane that are involved in the docking process of the virus with the target host cell. Experiments on a molecular level using the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the cellular angiotensin converting enzyme 2 (ACE2) receptor revealed that polyP strongly inhibits the binding reaction through an electrostatic interaction between the negatively charged centers of the polyP molecule and a cationic groove, which is formed by positively charged amino acids on the RBD surface. In addition, it was found that polyP, due to its morphogenetic and energy delivering activities, enhances the antiviral host innate immunity defense of the respiratory epithelium. The underlying mechanisms and envisaged application of polyP in the therapy and prevention of COVID-19 are discussed.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Okawa M, Sakoda M, Ohta S, Hasegawa K, Yatomi Y, Ito T. The Balance between the Hemostatic Effect and Immune Response of Hyaluronan Conjugated with Different Chain Lengths of Inorganic Polyphosphate. Biomacromolecules 2020; 21:2695-2704. [DOI: 10.1021/acs.biomac.0c00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Masashi Okawa
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Megumu Sakoda
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Christ JJ, Willbold S, Blank LM. Methods for the Analysis of Polyphosphate in the Life Sciences. Anal Chem 2020; 92:4167-4176. [PMID: 32039586 DOI: 10.1021/acs.analchem.9b05144] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inorganic polyphosphate (polyP) is the polymer of orthophosphate and can be found in all living organisms. For polyP characterization, one or more of six parameters are of interest: the molecular structure (linear, cyclic, or branched), the concentration, the average chain length, the chain length distribution, the cellular localization, and the cation composition. Here, the merits, limitations, and critical parameters of the state-of-the-art methods for the analysis of the six parameters from the life sciences are discussed. With this contribution, we aim to lower the entry barrier into the analytics of polyP, a molecule with prominent, yet often incompletely understood, contributions to cellular function.
Collapse
Affiliation(s)
- Jonas Johannes Christ
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, Worringer Weg 1, RWTH Aachen University, D-52074 Aachen, Germany
| | - Sabine Willbold
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, Worringer Weg 1, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
8
|
Christ JJ, Willbold S, Blank LM. Polyphosphate Chain Length Determination in the Range of Two to Several Hundred P-Subunits with a New Enzyme Assay and 31P NMR. Anal Chem 2019; 91:7654-7661. [PMID: 31082217 DOI: 10.1021/acs.analchem.9b00567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, 31P NMR is the only analytical method that quantitatively determines the average chain length of long inorganic polyphosphate (>80 P-subunits). In this study, an enzyme assay is presented that determines the average chain length of polyphosphate in the range of two to several hundred P-subunits. In the enzyme assay, the average polyP chain length is calculated by dividing the total polyphosphate concentration by the concentration of the polyphosphate chains. The total polyphosphate is determined by enzymatic polyphosphate hydrolysis with Saccharomyces cerevisiae exopolyphosphatase 1 and S. cerevisiae inorganic pyrophosphatase 1, followed by colorimetric orthophosphate detection. Because the exopolyphosphatase leaves one pyrophosphate per polyphosphate chain, the polyphosphate chain concentration is assayed by coupling the enzymes exopolyphosphatase (polyP into pyrophosphate), ATP sulfurylase (pyrophosphate into ATP), hexokinase (ATP into glucose 6-phosphate), and glucose 6-phosphate dehydrogenase (glucose 6-phosphate into NADPH), followed by fluorometric NADPH detection. The ability of 31P NMR and the enzyme assay to size polyP was demonstrated with polyP lengths in the range from 2 to ca. 280 P-subunits (no polyP with a longer chain length was available). The small deviation between methods (-4 ± 4%) indicated that the new enzyme assay performed accurately. The limitations of 31P NMR (i.e., low throughput, high sample concentration, expensive instrument) are overcome by the enzyme assay that is presented here, which allows for high sample throughput and requires only a commonly available plate reader and micromole per liter concentrations of polyphosphate.
Collapse
Affiliation(s)
- Jonas Johannes Christ
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, Worringer Weg 1 , RWTH Aachen University , Aachen D-52074 , Germany
| | - Sabine Willbold
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3) , Wilhelm-Johnen-Straße, Jülich D-52428 , Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, Worringer Weg 1 , RWTH Aachen University , Aachen D-52074 , Germany
| |
Collapse
|
9
|
Terashima-Hasegawa M, Ashino T, Kawazoe Y, Shiba T, Manabe A, Numazawa S. Inorganic polyphosphate protects against lipopolysaccharide-induced lethality and tissue injury through regulation of macrophage recruitment. Biochem Pharmacol 2018; 159:96-105. [PMID: 30472240 DOI: 10.1016/j.bcp.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/21/2018] [Indexed: 01/14/2023]
Abstract
Sepsis is an etiologically complex and often fatal inflammatory process involving a multitude of cytokine signaling pathways. Tumor necrosis factor α (TNFα) acts as a central regulator of the acute-phase inflammatory response by recruiting immune cells, including circulating monocyte/macrophages, to sites of infection or tissue damage. Inorganic polyphosphate (polyP), a linear polymer of orthophosphate residues, has been found in almost all cells and tissues, but its functions in immunity remain largely unknown. In this study, we show that pre- or post-treatment of mice with polyP150 (average chain length of 150 phosphate residues) markedly increases survival from lipopolysaccharide (LPS)-induced shock and inhibits macrophage recruitment to the liver and lungs, resulting in protection against tissue injury. In accord with these in vivo results, pretreatment of cultured peritoneal macrophages with polyP150 inhibited chemotaxis and actin polarization in response to TNFα. PolyP150 also inhibited phosphorylation of stress-activated protein kinases c-Jun N-terminal kinase (JNK) and p38, two downstream signaling molecules of the TNFα cascade, thereby preventing cyclooxygenase-2 gene expression by macrophages. These findings suggest that polyP150 inhibits recruitment of macrophages into organs by regulating the TNFα-JNK/p38 pathway, which may, in turn, protect against multi-organ dysfunction and lethality induced by LPS. Our findings identify polyP regulation as a novel therapeutic target for sepsis.
Collapse
Affiliation(s)
- Mikako Terashima-Hasegawa
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Takashi Ashino
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Yumi Kawazoe
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Regenetiss Inc., 1-7-20 Higashi, Kunitachi-shi, Tokyo 186-0002, Japan
| | - Toshikazu Shiba
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan; Regenetiss Inc., 1-7-20 Higashi, Kunitachi-shi, Tokyo 186-0002, Japan
| | - Atsufumi Manabe
- Division of Aesthetic Dentistry and Clinical Cariology, Department of Conservative Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
10
|
Positively-charged semi-tunnel is a structural and surface characteristic of polyphosphate-binding proteins: an in-silico study. PLoS One 2015; 10:e0123713. [PMID: 25879219 PMCID: PMC4400040 DOI: 10.1371/journal.pone.0123713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Phosphate is essential for all major life processes, especially energy metabolism and signal transduction. A linear phosphate polymer, polyphosphate (polyP), linked by high-energy phosphoanhydride bonds, can interact with various proteins, playing important roles as an energy source and regulatory factor. However, polyP-binding structures are largely unknown. Here we proposed a putative polyP binding site, a positively-charged semi-tunnel (PCST), identified by surface electrostatics analyses in polyP kinases (PPKs) and many other polyP-related proteins. We found that the PCSTs in varied proteins were folded in different secondary structure compositions. Molecular docking calculations revealed a significant value for binding affinity to polyP in PCST-containing proteins. Utilizing the PCST identified in the β subunit of PPK3, we predicted the potential polyP-binding domain of PPK3. The discovery of this feature facilitates future searches for polyP-binding proteins and discovery of the mechanisms for polyP-binding activities. This should greatly enhance the understanding of the many physiological functions of protein-bound polyP and the involvement of polyP and polyP-binding proteins in various human diseases.
Collapse
|
11
|
A soluble pyrophosphatase is essential to oogenesis and is required for polyphosphate metabolism in the red flour beetle (Tribolium castaneum). Int J Mol Sci 2015; 16:6631-44. [PMID: 25811926 PMCID: PMC4424980 DOI: 10.3390/ijms16046631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/13/2015] [Accepted: 03/09/2015] [Indexed: 11/26/2022] Open
Abstract
Polyphosphates have been found in all cell types examined to date and play diverse roles depending on the cell type. In eukaryotic organisms, polyphosphates have been mainly investigated in mammalian cells with few studies on insects. Some studies have demonstrated that a pyrophosphatase regulates polyphosphate metabolism, and most of them were performed on trypanosomatids. Here, we investigated the effects of sPPase gene knocked down in oogenesis and polyphosphate metabolism in the red flour beetle (Tribolium castaneum) A single sPPase gene was identified in insect genome and is maternally provided at the mRNA level and not restricted to any embryonic or extraembryonic region during embryogenesis. After injection of Tc-sPPase dsRNA, female survival was reduced to 15% of the control (dsNeo RNA), and egg laying was completely impaired. The morphological analysis by nuclear DAPI staining of the ovarioles in Tc-sPPase dsRNA-injected females showed that the ovariole number is diminished, degenerated oocytes can be observed, and germarium is reduced. The polyphosphate level was increased in cytoplasmic and nuclear fractions in Tc-sPPase RNAi; Concomitantly, the exopolyphosphatase activity decreased in both fractions. Altogether, these data suggest a role for sPPase in the regulation on polyphosphate metabolism in insects and provide evidence that Tc-sPPase is essential to oogenesis.
Collapse
|
12
|
Dedkova EN, Blatter LA. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front Physiol 2014; 5:260. [PMID: 25101001 PMCID: PMC4102118 DOI: 10.3389/fphys.2014.00260] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
We provide a comprehensive review of the role of β-hydroxybutyrate (β-OHB), its linear polymer poly-β-hydroxybutyrate (PHB), and inorganic polyphosphate (polyP) in mammalian health and disease. β-OHB is a metabolic intermediate that constitutes 70% of ketone bodies produced during ketosis. Although ketosis has been generally considered as an unfavorable pathological state (e.g., diabetic ketoacidosis in type-1 diabetes mellitus), it has been suggested that induction of mild hyperketonemia may have certain therapeutic benefits. β-OHB is synthesized in the liver from acetyl-CoA by β-OHB dehydrogenase and can be used as alternative energy source. Elevated levels of PHB are associated with pathological states. In humans, short-chain, complexed PHB (cPHB) is found in a wide variety of tissues and in atherosclerotic plaques. Plasma cPHB concentrations correlate strongly with atherogenic lipid profiles, and PHB tissue levels are elevated in type-1 diabetic animals. However, little is known about mechanisms of PHB action especially in the heart. In contrast to β-OHB, PHB is a water-insoluble, amphiphilic polymer that has high intrinsic viscosity and salt-solvating properties. cPHB can form non-specific ion channels in planar lipid bilayers and liposomes. PHB can form complexes with polyP and Ca(2+) which increases membrane permeability. The biological roles played by polyP, a ubiquitous phosphate polymer with ATP-like bonds, have been most extensively studied in prokaryotes, however polyP has recently been linked to a variety of functions in mammalian cells, including blood coagulation, regulation of enzyme activity in cancer cells, cell proliferation, apoptosis and mitochondrial ion transport and energy metabolism. Recent evidence suggests that polyP is a potent activator of the mitochondrial permeability transition pore in cardiomyocytes and may represent a hitherto unrecognized key structural and functional component of the mitochondrial membrane system.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| |
Collapse
|
13
|
Andreeva N, Trilisenko L, Kulakovskaya T, Dumina M, Eldarov M. Purification and properties of recombinant exopolyphosphatase PPN1 and effects of its overexpression on polyphosphate in Saccharomyces cerevisiae. J Biosci Bioeng 2014; 119:52-6. [PMID: 25034634 DOI: 10.1016/j.jbiosc.2014.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 11/17/2022]
Abstract
Inorganic polyphosphate performs many regulatory functions in living cells. The yeast exopolyphosphatase PPN1 is an enzyme with multiple cellular localization and probably variable functions. The Saccharomyces cerevisiae strain with overexpressed PPN1 was constructed for large-scale production of the enzyme and for studying the effect of overproduction on polyphosphate metabolism. The ΔPPN1 strain was transformed by the vector containing this gene under a strong constitutive promoter of glycerol aldehyde-triphosphate dehydrogenase of S. cerevisiae. Exopolyphosphatase activity in the transformant increased 28- and 11-fold compared to the ΔPPN1 and parent strains, respectively. The content of acid-soluble polyphosphate decreased ∼6-fold and the content of acid-insoluble polyphosphate decreased ∼2.5-fold in the cells of the transformant compared to the ΔPPN1 strain. The recombinant enzyme was purified. The substrate specificity, cation requirement, and inhibition by heparin were found to be similar to native PPN1. The molecular mass of a subunit (∼33 kD) and the amino acid sequence of the recombinant enzyme were the same as in mature PPN1. The recombinant enzyme was localized mainly in the cytoplasm (40%) and vacuoles (20%). The overproducer strain had no growths defects under phosphate deficiency or phosphate excess. In contrast to the parent strains accumulating polyphosphate, the transformant accumulated orthophosphate under phosphate surplus.
Collapse
Affiliation(s)
- Nadeshda Andreeva
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290 Russia
| | - Ludmila Trilisenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290 Russia
| | - Tatiana Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290 Russia.
| | - Maria Dumina
- Bioengineering Centre, Russian Academy of Sciences, pr. Shestidesyatiletiya Oktyabrya 7-1, Moscow 117312, Russia
| | - Michail Eldarov
- Bioengineering Centre, Russian Academy of Sciences, pr. Shestidesyatiletiya Oktyabrya 7-1, Moscow 117312, Russia
| |
Collapse
|