1
|
Tyagi S, Katara P. Metatranscriptomics: A Tool for Clinical Metagenomics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:394-407. [PMID: 39029911 DOI: 10.1089/omi.2024.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In the field of bioinformatics, amplicon sequencing of 16S rRNA genes has long been used to investigate community membership and taxonomic abundance in microbiome studies. As we can observe, shotgun metagenomics has become the dominant method in this field. This is largely owing to advancements in sequencing technology, which now allow for random sequencing of the entire genetic content of a microbiome. Furthermore, this method allows profiling both genes and the microbiome's membership. Although these methods have provided extensive insights into various microbiomes, they solely assess the existence of organisms or genes, without determining their active role within the microbiome. Microbiome scholarship now includes metatranscriptomics to decipher how a community of microorganisms responds to changing environmental conditions over a period of time. Metagenomic studies identify the microbes that make up a community but metatranscriptomics explores the diversity of active genes within that community, understanding their expression profile and observing how these genes respond to changes in environmental conditions. This expert review article offers a critical examination of the computational metatranscriptomics tools for studying the transcriptomes of microbial communities. First, we unpack the reasons behind the need for community transcriptomics. Second, we explore the prospects and challenges of metatranscriptomic workflows, starting with isolation and sequencing of the RNA community, then moving on to bioinformatics approaches for quantifying RNA features, and statistical techniques for detecting differential expression in a community. Finally, we discuss strengths and shortcomings in relation to other microbiome analysis approaches, pipelines, use cases and limitations, and contextualize metatranscriptomics as a tool for clinical metagenomics.
Collapse
Affiliation(s)
- Shivani Tyagi
- Computational Omics Lab, Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj, India
| | - Pramod Katara
- Computational Omics Lab, Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj, India
| |
Collapse
|
2
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. 'Multi-omics' data integration: applications in probiotics studies. NPJ Sci Food 2023; 7:25. [PMID: 37277356 DOI: 10.1038/s41538-023-00199-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
The concept of probiotics is witnessing increasing attention due to its benefits in influencing the host microbiome and the modulation of host immunity through the strengthening of the gut barrier and stimulation of antibodies. These benefits, combined with the need for improved nutraceuticals, have resulted in the extensive characterization of probiotics leading to an outburst of data generated using several 'omics' technologies. The recent development in system biology approaches to microbial science is paving the way for integrating data generated from different omics techniques for understanding the flow of molecular information from one 'omics' level to the other with clear information on regulatory features and phenotypes. The limitations and tendencies of a 'single omics' application to ignore the influence of other molecular processes justify the need for 'multi-omics' application in probiotics selections and understanding its action on the host. Different omics techniques, including genomics, transcriptomics, proteomics, metabolomics and lipidomics, used for studying probiotics and their influence on the host and the microbiome are discussed in this review. Furthermore, the rationale for 'multi-omics' and multi-omics data integration platforms supporting probiotics and microbiome analyses was also elucidated. This review showed that multi-omics application is useful in selecting probiotics and understanding their functions on the host microbiome. Hence, recommend a multi-omics approach for holistically understanding probiotics and the microbiome.
Collapse
Affiliation(s)
- Iliya Dauda Kwoji
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa
| | - Olayinka Ayobami Aiyegoro
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, Northwest, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa.
| |
Collapse
|
3
|
Wang L, Li F, Gu B, Qu P, Liu Q, Wang J, Tang J, Cai S, Zhao Q, Ming Z. Metaomics in Clinical Laboratory: Potential Driving Force for Innovative Disease Diagnosis. Front Microbiol 2022; 13:883734. [PMID: 35783436 PMCID: PMC9247514 DOI: 10.3389/fmicb.2022.883734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, more and more studies suggested that reductionism was lack of holistic and integrative view of biological processes, leading to limited understanding of complex systems like microbiota and the associated diseases. In fact, microbes are rarely present in individuals but normally live in complex multispecies communities. With the recent development of a variety of metaomics techniques, microbes could be dissected dynamically in both temporal and spatial scales. Therefore, in-depth understanding of human microbiome from different aspects such as genomes, transcriptomes, proteomes, and metabolomes could provide novel insights into their functional roles, which also holds the potential in making them diagnostic biomarkers in many human diseases, though there is still a huge gap to fill for the purpose. In this mini-review, we went through the frontlines of the metaomics techniques and explored their potential applications in clinical diagnoses of human diseases, e.g., infectious diseases, through which we concluded that novel diagnostic methods based on human microbiomes shall be achieved in the near future, while the limitations of these techniques such as standard procedures and computational challenges for rapid and accurate analysis of metaomics data in clinical settings were also examined.
Collapse
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Fen Li
- Department of Laboratory Medicine, Huaiyin Hospital, Huai’an, China
| | - Bin Gu
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Qu
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Qinghua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Junjiao Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Jiawei Tang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Shubin Cai
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
- *Correspondence: Qi Zhao,
| | - Zhong Ming
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
- Zhong Ming,
| |
Collapse
|
4
|
Sunkavalli A, McClure R, Genco C. Molecular Regulatory Mechanisms Drive Emergent Pathogenetic Properties of Neisseria gonorrhoeae. Microorganisms 2022; 10:922. [PMID: 35630366 PMCID: PMC9147433 DOI: 10.3390/microorganisms10050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022] Open
Abstract
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection (STI) gonorrhea, with an estimated 87 million annual cases worldwide. N. gonorrhoeae predominantly colonizes the male and female genital tract (FGT). In the FGT, N. gonorrhoeae confronts fluctuating levels of nutrients and oxidative and non-oxidative antimicrobial defenses of the immune system, as well as the resident microbiome. One mechanism utilized by N. gonorrhoeae to adapt to this dynamic FGT niche is to modulate gene expression primarily through DNA-binding transcriptional regulators. Here, we describe the major N. gonorrhoeae transcriptional regulators, genes under their control, and how these regulatory processes lead to pathogenic properties of N. gonorrhoeae during natural infection. We also discuss the current knowledge of the structure, function, and diversity of the FGT microbiome and its influence on gonococcal survival and transcriptional responses orchestrated by its DNA-binding regulators. We conclude with recent multi-omics data and modeling tools and their application to FGT microbiome dynamics. Understanding the strategies utilized by N. gonorrhoeae to regulate gene expression and their impact on the emergent characteristics of this pathogen during infection has the potential to identify new effective strategies to both treat and prevent gonorrhea.
Collapse
Affiliation(s)
- Ashwini Sunkavalli
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Ryan McClure
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - Caroline Genco
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| |
Collapse
|
5
|
Selis NN, Oliveira HBM, Souza CLS, Almeida JB, Andrade YMFS, Silva LSC, Romano CC, Rezende RP, Yatsuda R, Uetanabaro APT, Marques LM. Lactobacillus plantarum Lp62 exerts probiotic effects against Gardnerella vaginalis ATCC 49154 in bacterial vaginosis. Lett Appl Microbiol 2021; 73:579-589. [PMID: 34338346 DOI: 10.1111/lam.13547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
The severe side-effects elicited by conventional antibiotic therapy and the recurrence of Bacterial vaginosis-associated bacteria and bacterial resistance have led to the development of novel alternative therapies, among which genital probiotics are widely used. In this study, we aimed to evaluate the antimicrobial activities of Lactobacillus plantarum Lp62 and its supernatant against Gardnerella vaginalis, using both in vitro and in vivo approaches. In vitro assays were used to evaluate the viability of the strain and the antimicrobial activities of the supernatant in different pH ranges. An in vivo assay was performed on female BALB/c mice, wherein the animals were divided into eight groups: four control groups and four treated groups (for curative and preventive therapies). After infecting and treating the mice, the animals were killed to quantify the bacterial load using qPCR, evaluate leucocyte cellular response, determine vaginal cytokine levels and perform cytokine tissue gene expression. Our analyses revealed significant activity of the strain and its supernatant against G. vaginalis. Preliminary in vitro tests showed that the strain grew with equal efficiency in different pH ranges. Meanwhile, the presence of halo and inhibition of pathogen growth established the significant activity of the supernatant against G. vaginalis. We observed that both micro-organisms are resident bacteria of mouse microbiota and that the lactobacilli population growth was affected by G. vaginalis and vice versa. We also observed that the treated groups, with their low bacterial load, absence of leucocyte recruitment, reduced cytokine levels in the vaginal lavage and normalized cytokine gene expression, successfully controlled the infection.
Collapse
Affiliation(s)
- N N Selis
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - H B M Oliveira
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - C L S Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - J B Almeida
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - Y M F S Andrade
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - L S C Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - C C Romano
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - R P Rezende
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - R Yatsuda
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - A P T Uetanabaro
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil.,Departamento de Ciências Biológicas, Laboratório de Microbiologia da Agroindústria, Universidade Estadual de Santa Cruz, BA, Brazil
| | - L M Marques
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil.,Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| |
Collapse
|
6
|
Redelinghuys MJ, Geldenhuys J, Jung H, Kock MM. Bacterial Vaginosis: Current Diagnostic Avenues and Future Opportunities. Front Cell Infect Microbiol 2020; 10:354. [PMID: 32850469 PMCID: PMC7431474 DOI: 10.3389/fcimb.2020.00354] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
A healthy female genital tract harbors a microbiome dominated by lactic acid and hydrogen peroxide producing bacteria, which provide protection against infections by maintaining a low pH. Changes in the bacterial compositions of the vaginal microbiome can lead to bacterial vaginosis (BV), which is often associated with vaginal inflammation. Bacterial vaginosis increases the risk of acquiring sexually transmitted infections (STIs) like human immunodeficiency virus (HIV) and affects women's reproductive health negatively. In pregnant women, BV can lead to chorioamnionitis and adverse pregnancy outcomes, including preterm premature rupture of the membranes and preterm birth. In order to manage BV effectively, good diagnostic procedures are required. Traditionally clinical and microscopic methods have been used to diagnose BV; however, these methods require skilled staff and time and suffer from reduced sensitivity and specificity. New diagnostics, including highly sensitive and specific point-of-care (POC) tests, treatment modalities and vaccines can be developed based on the identification of biomarkers from the growing pool of vaginal microbiome and vaginal metabolome data. In this review the current and future diagnostic avenues will be discussed.
Collapse
Affiliation(s)
- Mathys J. Redelinghuys
- School of Clinical Medicine, Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Janri Geldenhuys
- UP-Ampath Translational Genomics Initiative, Department of Biochemistry, Genetics and Microbiology, Faculty of Health Sciences and Faculty of Natural and Agricultural Sciences, Division of Genetics, University of Pretoria, Pretoria, South Africa
| | - Hyunsul Jung
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Marleen M. Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| |
Collapse
|
7
|
Berman HL, McLaren MR, Callahan BJ. Understanding and interpreting community sequencing measurements of the vaginal microbiome. BJOG 2020; 127:139-146. [PMID: 31597208 PMCID: PMC10801814 DOI: 10.1111/1471-0528.15978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 02/03/2023]
Abstract
Community-wide high-throughput sequencing has transformed the study of the vaginal microbiome, and clinical applications are on the horizon. Here we outline the three main community sequencing methods: (1) amplicon sequencing, (2) shotgun metagenomic sequencing, and (3) metatranscriptomic sequencing. We discuss the advantages and limitations of community sequencing generally, and the unique strengths and weaknesses of each method. We briefly review the contributions of community sequencing to vaginal microbiome research and practice. We develop suggestions for critically interpreting research results and potential clinical applications based on community sequencing of the vaginal microbiome. TWEETABLE ABSTRACT: We review the advantages and limitations of amplicon sequencing, metagenomics, and metatranscriptomics methods for the study of the vaginal microbiome.
Collapse
Affiliation(s)
- HL Berman
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - MR McLaren
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - BJ Callahan
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Carda-Diéguez M, Cárdenas N, Aparicio M, Beltrán D, Rodríguez JM, Mira A. Variations in Vaginal, Penile, and Oral Microbiota After Sexual Intercourse: A Case Report. Front Med (Lausanne) 2019; 6:178. [PMID: 31440511 PMCID: PMC6692966 DOI: 10.3389/fmed.2019.00178] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Bacterial vaginosis is the most common infection in women and it has been proved that dysbiosis of vaginal microbiota can promote the infectious status. This case report shows the effect of oral and vaginal sex over the microbiota of a heterosexual couple who reported repeated problems of vaginal and oral infections after sexual intercourse. Case Presentation: A woman (32) reported to have vaginal infections and gingivitis after she had started a relationship with a man (34) and associated them with unprotected sex. No treatments successfully removed the problem and it repeated every time they had sexual encounters. Vaginal, penile and oral swabs were collected before and after sexual encounters in order to analyze changes in the respective microbiotas. DNA was extracted from all samples and the bacterial 16S rRNA gene was sequenced using Illumina MiSeq. Conclusions: Lactobacillus occupied the great majority of the vaginal microbiota in all scenarios except after unprotected sex, which caused a bacterial dysbiosis that lasted at least for a week. Similarly, the penile microbiota changed significantly after unprotected sexual relationships. Interestingly, both oral and vaginal sex increased the abundance of Lactobacillus in the male oral and penile microbiota, respectively. In conclusion, unprotected sexual intercourse influenced the genital microbiota in the couple studied and future studies with larger sample sizes should study if sex may be a factor promoting vaginal infection through dysbiosis and hampered protection by the resident microbiota.
Collapse
Affiliation(s)
- Miguel Carda-Diéguez
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO, Valencia, Spain
| | - Nívia Cárdenas
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Marina Aparicio
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - David Beltrán
- Centro de Diagnóstico Médico, Ayuntamiento de Madrid, Madrid, Spain
| | - Juan M Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO, Valencia, Spain.,Network of Epidemiology and Public Health, CIBERESP, Madrid, Spain
| |
Collapse
|
9
|
Abdool Karim SS, Baxter C, Passmore JS, McKinnon LR, Williams BL. The genital tract and rectal microbiomes: their role in HIV susceptibility and prevention in women. J Int AIDS Soc 2019; 22:e25300. [PMID: 31144462 PMCID: PMC6541743 DOI: 10.1002/jia2.25300] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Young women in sub-Saharan Africa are disproportionately affected by HIV, accounting for 25% of all new infections in 2017. Several behavioural and biological factors are known to impact a young woman's vulnerability for acquiring HIV. One key, but lesser understood, biological factor impacting vulnerability is the vaginal microbiome. This review describes the vaginal microbiome and examines its alterations, its influence on HIV acquisition as well as the efficacy of HIV prevention technologies, the role of the rectal microbiome in HIV acquisition, advances in technologies to study the microbiome and some future research directions. DISCUSSION Although the composition of each woman's vaginal microbiome is unique, a microbiome dominated by Lactobacillus species is generally associated with a "healthy" vagina. Disturbances in the vaginal microbiota, characterized by a shift from a low-diversity, Lactobacillus-dominant state to a high-diversity non-Lactobacillus-dominant state, have been shown to be associated with a range of adverse reproductive health outcomes, including increasing the risk of genital inflammation and HIV acquisition. Gardnerella vaginalis and Prevotella bivia have been shown to contribute to both HIV risk and genital inflammation. In addition to impacting HIV risk, the composition of the vaginal microbiome affects the vaginal concentrations of some antiretroviral drugs, particularly those administered intravaginally, and thereby their efficacy as pre-exposure prophylaxis (PrEP) for HIV prevention. Although the role of rectal microbiota in HIV acquisition in women is less well understood, the composition of this compartment's microbiome, particularly the presence of species of bacteria from the Prevotellaceae family likely contribute to HIV acquisition. Advances in technologies have facilitated the study of the genital microbiome's structure and function. While next-generation sequencing advanced knowledge of the diversity and complexity of the vaginal microbiome, the emerging field of metaproteomics, which provides important information on vaginal bacterial community structure, diversity and function, is further shedding light on functionality of the vaginal microbiome and its relationship with bacterial vaginosis (BV), as well as antiretroviral PrEP efficacy. CONCLUSIONS A better understanding of the composition, structure and function of the microbiome is needed to identify opportunities to alter the vaginal microbiome and prevent BV and reduce the risk of HIV acquisition.
Collapse
Affiliation(s)
- Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of EpidemiologyColumbia UniversityNew YorkNYUSA
| | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
| | - Jo‐Ann S Passmore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- National Health Laboratory ServiceCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
- Department of Medical MicrobiologyUniversity of NairobiNairobiKenya
| | - Brent L Williams
- Department of EpidemiologyColumbia UniversityNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNYUSA
| |
Collapse
|
10
|
Abstract
We report a case of spinal epidural abscess (SEA) in a 58-year-old woman who had recently been diagnosed with gonococcal infection, but did not receive guideline-recommended therapy. She presented with back pain and signs and symptoms of pelvic inflammatory disease (PID). MRI of the spine demonstrated epidural abscess extending from L4-L5 to T10. She underwent T10-L1 and L3-L4 laminectomies for evacuation of the abscess and Gardnerella vaginalis and Prevotella amnii were isolated from the abscess fluid cultures. Our case demonstrates SEA as a rare, but morbid complication of PID and highlights the pathogenic potential of the anaerobic flora associated with PID.
Collapse
|
11
|
Plummer EL, Vodstrcil LA, Danielewski JA, Murray GL, Fairley CK, Garland SM, Hocking JS, Tabrizi SN, Bradshaw CS. Combined oral and topical antimicrobial therapy for male partners of women with bacterial vaginosis: Acceptability, tolerability and impact on the genital microbiota of couples - A pilot study. PLoS One 2018; 13:e0190199. [PMID: 29293559 PMCID: PMC5749747 DOI: 10.1371/journal.pone.0190199] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Objectives Recurrence following recommended treatment for bacterial vaginosis is unacceptably high. While the pathogenesis of recurrence is not well understood, recent evidence indicates re-infection from sexual partners is likely to play a role. The aim of this study was to assess the acceptability and tolerability of topical and oral antimicrobial therapy in male partners of women with bacterial vaginosis (BV), and to investigate the impact of dual-partner treatment on the vaginal and penile microbiota. Methods Women with symptomatic BV (Nugent Score of 4–10 and ≥3 Amsel criteria) and their regular male sexual partner were recruited from Melbourne Sexual Health Centre, Melbourne, Australia. Women received oral metronidazole 400mg twice daily (or intra-vaginal 2% clindamycin cream, if contraindicated) for 7-days. Male partners received oral metronidazole 400mg twice daily and 2% clindamycin cream topically to the penile skin twice daily for 7-days. Couples provided self-collected genital specimens and completed questionnaires at enrolment and then weekly for 4-weeks. Genital microbiota composition was determined by 16S rRNA gene sequencing. Changes in genital microbiota composition were assessed by Bray-Curtis index. Bacterial diversity was measured by the Shannon Diversity Index. Results Twenty-two couples were recruited. Sixteen couples (76%) completed all study procedures. Adherence was high; most participants took >90% of prescribed medication. Medication, and particularly topical clindamycin in males, was well tolerated. Dual-partner treatment had an immediate and sustained effect on the composition of vaginal microbiota (median Bray-Curtis score day 0 versus day 8 = 0.03 [IQR 0–0.15], day 0 vs day 28 = 0.03 [0.02–0.11]). We observed a reduction in bacterial diversity of the vaginal microbiota and a decrease in the prevalence and abundance of BV-associated bacteria following treatment. Treatment had an immediate effect on the composition of the cutaneous penile microbiota (median Bray-Curtis score day 0 vs day 8 = 0.09 [0.04–0.17]), however this was not as pronounced at day 28 (median Bray-Curtis score day 0 vs day 28 = 0.38 [0.11–0.59]). A decrease in the prevalence and abundance of BV-associated bacteria in the cutaneous penile microbiota was observed immediately following treatment at day 8. Conclusion Combined oral and topical treatment of male partners of women with BV is acceptable and well tolerated. The combined acceptability and microbiological data presented in this paper supports the need for larger studies with longer follow up to characterize the sustained effect of dual partner treatment on the genital microbiota of couples and assess the impact on BV recurrence.
Collapse
Affiliation(s)
- Erica L. Plummer
- Department of Molecular Microbiology, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
| | - Lenka A. Vodstrcil
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer A. Danielewski
- Department of Molecular Microbiology, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
| | - Gerald L. Murray
- Department of Molecular Microbiology, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
| | - Christopher K. Fairley
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Suzanne M. Garland
- Department of Molecular Microbiology, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Jane S. Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Sepehr N. Tabrizi
- Department of Molecular Microbiology, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Catriona S. Bradshaw
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
12
|
Hellner K, Dorrell L. Recent advances in understanding and preventing human papillomavirus-related disease. F1000Res 2017; 6:F1000 Faculty Rev-269. [PMID: 28357043 PMCID: PMC5357030 DOI: 10.12688/f1000research.9701.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 12/19/2022] Open
Abstract
High-risk human papillomaviruses (hrHPV) are responsible for anogenital and oropharyngeal cancers, which together account for at least 5% of cancers worldwide. Industrialised nations have benefitted from highly effective screening for the prevention of cervical cancer in recent decades, yet this vital intervention remains inaccessible to millions of women in low- and middle-income countries (LMICs), who bear the greatest burden of HPV disease. While there is an urgent need to increase investment in basic health infrastructure and rollout of prophylactic vaccination, there are now unprecedented opportunities to exploit recent scientific and technological advances in screening and treatment of pre-invasive hrHPV lesions and to adapt them for delivery at scale in resource-limited settings. In addition, non-surgical approaches to the treatment of cervical intraepithelial neoplasia and other hrHPV lesions are showing encouraging results in clinical trials of therapeutic vaccines and antiviral agents. Finally, the use of next-generation sequencing to characterise the vaginal microbial environment is beginning to shed light on host factors that may influence the natural history of HPV infections. In this article, we focus on recent advances in these areas and discuss their potential for impact on HPV disease.
Collapse
Affiliation(s)
- Karin Hellner
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, The Joint Research Office, Block 60, Churchill Hospital, Old Road, Headington, Oxford, UK
| |
Collapse
|
13
|
Vodstrcil LA, Twin J, Garland SM, Fairley CK, Hocking JS, Law MG, Plummer EL, Fethers KA, Chow EPF, Tabrizi SN, Bradshaw CS. The influence of sexual activity on the vaginal microbiota and Gardnerella vaginalis clade diversity in young women. PLoS One 2017; 12:e0171856. [PMID: 28234976 PMCID: PMC5325229 DOI: 10.1371/journal.pone.0171856] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/26/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To examine the influence of sexual activity on the composition and consistency of the vaginal microbiota over time, and distribution of Gardnerella vaginalis clades in young women. METHODS Fifty-two participants from a university cohort were selected. Vaginal swabs were self-collected every 3-months for up to 12 months with 184 specimens analysed. The vaginal microbiota was characterised using Roche 454 V3/4 region 16S rRNA sequencing, and G.vaginalis clade typing by qPCR. RESULTS A Lactobacillus crispatus dominated vaginal microbiota was associated with Caucasian ethnicity (adjusted relative risk ratio[ARRR] = 7.28, 95%CI:1.37,38.57,p = 0.020). An L.iners (ARRR = 17.51, 95%CI:2.18,140.33,p = 0.007) or G.vaginalis (ARRR = 14.03, 95%CI:1.22,160.69, p = 0.034) dominated microbiota was associated with engaging in penile-vaginal sex. Microbiota dominated by L.crispatus, L.iners or other lactobacilli exhibited greater longitudinal consistency of the bacterial communities present compared to ones dominated by heterogeneous non-lactobacilli (p<0.030); sexual activity did not influence consistency. Women who developed BV were more likely to have clade GV4 compared to those reporting no sex/practiced non-coital activities (OR = 11.82, 95%CI:1.87,74.82,p = 0.009). Specimens were more likely to contain multiple G.vaginalis clades rather than a single clade if women engaged in penile-vaginal sex (RRR = 9.55, 95%CI:1.33,68.38,p = 0.025) or were diagnosed with BV (RRR = 31.5, 95%CI:1.69,586.87,p = 0.021). CONCLUSIONS Sexual activity and ethnicity influenced the composition of the vaginal microbiota of these young, relatively sexually inexperienced women. Women had consistent vaginal microbiota over time if lactobacilli were the dominant spp. present. Penile-vaginal sex did not alter the consistency of microbial communities but increased G.vaginalis clade diversity in young women with and without BV, suggesting sexual transmission of commensal and potentially pathogenic clades.
Collapse
Affiliation(s)
- Lenka A. Vodstrcil
- Melbourne Sexual Health Centre, Alfred Health, Carlton, Melbourne, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria
- Department of Molecular Microbiology, Murdoch Children’s Research Institute, Melbourne, Australia
- * E-mail:
| | - Jimmy Twin
- Department of Molecular Microbiology, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Melbourne, Australia
| | - Suzanne M. Garland
- Department of Molecular Microbiology, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Melbourne, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
| | - Christopher K. Fairley
- Melbourne Sexual Health Centre, Alfred Health, Carlton, Melbourne, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Jane S. Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria
| | - Matthew G. Law
- The Kirby Institute, University of New South Wales, Darlinghurst, Australia
| | - Erica L. Plummer
- Department of Molecular Microbiology, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Melbourne, Australia
| | | | - Eric P. F. Chow
- Melbourne Sexual Health Centre, Alfred Health, Carlton, Melbourne, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Sepehr N. Tabrizi
- Department of Molecular Microbiology, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Melbourne, Australia
- Department of Microbiology, The Royal Children’s Hospital, Melbourne, Australia
| | - Catriona S. Bradshaw
- Melbourne Sexual Health Centre, Alfred Health, Carlton, Melbourne, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria
| |
Collapse
|
14
|
Redelinghuys MJ, Ehlers MM, Bezuidenhoudt JE, Becker PJ, Kock MM. Assessment of Atopobium vaginae and Gardnerella vaginalis concentrations in a cohort of pregnant South African women. Sex Transm Infect 2017; 93:410-415. [PMID: 28143901 DOI: 10.1136/sextrans-2016-052883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/26/2016] [Accepted: 01/14/2017] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES The purpose of this cross-sectional study was to assess Atopobium vaginae and Gardnerella vaginalis concentrations in pregnant women of different age groups, gestational age groups, vaginal flora categories and HIV status, and also to determine which DNA concentrations best discriminated between bacterial vaginosis (BV)-positive and non-BV categories. METHODS Self-collected vaginal swabs were obtained from 220 pregnant women attending an antenatal clinic in Pretoria, Gauteng, South Africa, from July 2012 to December 2012. BV was detected with the Nugent scoring system, and A. vaginae and G. vaginalis DNA was quantified with a multiplex quantitative real-time PCR assay. RESULTS Median concentrations of A. vaginae and G. vaginalis were not significantly different among various age groups (A. vaginae p=0.98 and G. vaginalis p=0.18) or different trimesters (A. vaginae p=0.31 and G. vaginalis p=0.19), but differed significantly among the vaginal flora categories (A. vaginae p<0.001 and G. vaginalis p<0.001) and HIV status (A. vaginae p<0.001 and G. vaginalis p=0.004). The presence of A. vaginae (OR=5.8; 95% CI 1.34 to 25.21 and p value=0.02) but not that of G. vaginalis (OR=1.90; 95% CI 0.81 to 4.43 and p value=0.14) was associated with HIV infection. An A. vaginae DNA concentration of ≥107 copies/mL together with a positive G. vaginalis result (≥100 copies/mL) best discriminated between BV-positive (39/220) and non-BV categories (181/220) with a sensitivity of 85% (95% CI 0.70 to 0.94) and a specificity of 82% (95% CI 0.76 to 0.88). CONCLUSIONS A. vaginae and G. vaginalis were present in high numbers and concentrations in this pregnant cohort. Threshold concentrations should be established for specific populations to ensure sensitive molecular assays for BV detection.
Collapse
Affiliation(s)
- M J Redelinghuys
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - M M Ehlers
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | | | - P J Becker
- Biostatistics Unit, University of Pretoria, Pretoria, South Africa
| | - M M Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| |
Collapse
|
15
|
First Trimester Levels of BV-Associated Bacteria and Risk of Miscarriage Among Women Early in Pregnancy. Matern Child Health J 2016; 19:2682-7. [PMID: 26156825 DOI: 10.1007/s10995-015-1790-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Prior studies have examined the role of bacterial vaginosis (BV) and increased risk of miscarriage; however the risk has been modest and many BV positive pregnant women deliver at term. BV is microbiologically heterogeneous, and thus the identification of specific BV-associated bacteria associated with miscarriage is warranted. METHODS We measured the presence and level of seven BV-associated bacteria prior to 14 weeks gestation among urban pregnant women seeking routine prenatal care at five urban obstetric practices at Temple University Hospital in Philadelphia PA from July 2008 through September 2011. 418 Pregnant women were included in this assessment and 74 experienced a miscarriage. RESULTS Mean log concentration of BVAB3 was significantly higher among women experiencing a miscarriage (4.27 vs. 3.71, p value = 0.012). Younger women with high levels of BVAB3 had the greatest risk of miscarriage. In addition, we found a significant decreased risk of miscarriage among women with higher log concentrations of Leptotrichia/Sneathia species or Megasphaera phylotype 1-like species early in pregnancy. CONCLUSIONS FOR PRACTICE The identification of selected vaginal bacteria associated with an increased risk of miscarriage could support screening programs early in pregnancy and promote early therapies to reduce early pregnancy loss.
Collapse
|
16
|
Screening of Compounds against Gardnerella vaginalis Biofilms. PLoS One 2016; 11:e0154086. [PMID: 27111438 PMCID: PMC4844189 DOI: 10.1371/journal.pone.0154086] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA) led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass) and 61% (viability). Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV.
Collapse
|
17
|
Nelson DB, Hanlon AL, Wu G, Liu C, Fredricks DN. First Trimester Levels of BV-Associated Bacteria and Risk of Miscarriage Among Women Early in Pregnancy. Matern Child Health J 2015. [PMID: 26156825 DOI: 10.1007/s10995-015-1790-2.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
OBJECTIVES Prior studies have examined the role of bacterial vaginosis (BV) and increased risk of miscarriage; however the risk has been modest and many BV positive pregnant women deliver at term. BV is microbiologically heterogeneous, and thus the identification of specific BV-associated bacteria associated with miscarriage is warranted. METHODS We measured the presence and level of seven BV-associated bacteria prior to 14 weeks gestation among urban pregnant women seeking routine prenatal care at five urban obstetric practices at Temple University Hospital in Philadelphia PA from July 2008 through September 2011. 418 Pregnant women were included in this assessment and 74 experienced a miscarriage. RESULTS Mean log concentration of BVAB3 was significantly higher among women experiencing a miscarriage (4.27 vs. 3.71, p value = 0.012). Younger women with high levels of BVAB3 had the greatest risk of miscarriage. In addition, we found a significant decreased risk of miscarriage among women with higher log concentrations of Leptotrichia/Sneathia species or Megasphaera phylotype 1-like species early in pregnancy. CONCLUSIONS FOR PRACTICE The identification of selected vaginal bacteria associated with an increased risk of miscarriage could support screening programs early in pregnancy and promote early therapies to reduce early pregnancy loss.
Collapse
Affiliation(s)
- Deborah B Nelson
- Department of Obstetrics and Gynecology, Temple University, Philadelphia, PA, USA. .,Department of Public Health, College of Health Professions and Social Work, Temple University, 1301 Cecil B Moore Avenue, Ritter Annex, Room 905, Philadelphia, PA, 19122, USA.
| | - Alexandra L Hanlon
- University of Pennsylvania School of Nursing, Room 479 Fagin Hall, 418 Curie Boulevard, Philadelphia, PA, 19104, USA.
| | - Guojiao Wu
- Department of Statistics, Temple University, Philadelphia, PA, USA.
| | - Congzhou Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Division of Allergy and Infectious Diseases, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Eastlake Ave, E4-100, Box 358080, Seattle, WA, 98109, USA.
| | - David N Fredricks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Division of Allergy and Infectious Diseases, Fred Hutchinson Cancer Research Center, University of Washington, 1100 Eastlake Ave, E4-100, Box 358080, Seattle, WA, 98109, USA.
| |
Collapse
|
18
|
Sensitive Detection of Thirteen Bacterial Vaginosis-Associated Agents Using Multiplex Polymerase Chain Reaction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:645853. [PMID: 26078959 PMCID: PMC4452834 DOI: 10.1155/2015/645853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/28/2015] [Indexed: 11/24/2022]
Abstract
Bacterial vaginosis (BV) is characterized by a polymicrobial proliferation of anaerobic bacteria and depletion of lactobacilli, which are components of natural vaginal microbiota. Currently, there are limited conventional methods for BV diagnosis, and these methods are time-consuming, expensive, and rarely allow for the detection of more than one agent simultaneously. Therefore, we conceived and validated a multiplex polymerase chain reaction (M-PCR) assay for the simultaneous screening of thirteen bacterial vaginosis-associated agents (BV-AAs) related to symptomatic BV: Gardnerella vaginalis, Mobiluncus curtisii, Mobiluncus mulieris, Bacteroides fragilis, Mycoplasma hominis, Atopobium vaginae, Ureaplasma urealyticum, Megasphaera type I, Clostridia-like bacteria vaginosis-associated bacteria (BVABs) 1, 2, and 3, Sneathia sanguinegens, and Mycoplasma genitalium. The overall validation parameters of M-PCR compared to single PCR (sPCR) were extremely high, including agreement of 99.1% and sensitivity, specificity, and positive predictive values of 100.0%, negative predictive value of 97.0%, accuracy of 99.3%, and agreement with Nugent results of 100.0%. The prevalence of BV-AAs was very high (72.6%), and simultaneous agents were detected in 53.0%, which demonstrates the effectiveness of the M-PCR assay. Therefore, the M-PCR assay has great potential to impact BV diagnostic methods in vaginal samples and diminish associated complications in the near future.
Collapse
|
19
|
UCHIHASHI M, BERGIN IL, BASSIS CM, HASHWAY SA, CHAI D, BELL JD. Influence of age, reproductive cycling status, and menstruation on the vaginal microbiome in baboons (Papio anubis). Am J Primatol 2015; 77:563-78. [PMID: 25676781 PMCID: PMC4458466 DOI: 10.1002/ajp.22378] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022]
Abstract
The vaginal microbiome is believed to influence host health by providing protection from pathogens and influencing reproductive outcomes such as fertility and gestational length. In humans, age-associated declines in diversity of the vaginal microbiome occur in puberty and persist into adulthood. Additionally, menstruation has been associated with decreased microbial community stability. Adult female baboons, like other non-human primates (NHPs), have a different and highly diverse vaginal microbiome compared to that of humans, which is most commonly dominated by Lactobacillus spp. We evaluated the influence of age, reproductive cycling status (cycling vs. non-cycling) and menstruation on the vaginal microbiome of 38 wild-caught, captive female olive baboons (Papio anubis) by culture-independent sequencing of the V3-V5 region of the bacterial 16S rRNA gene. All baboons had highly diverse vaginal microbial communities. Adult baboons had significantly lower microbial diversity in comparison to subadult baboons, which was attributable to decreased relative abundance of minor taxa. No significant differences were detected based on cycling state or menstruation. Predictive metagenomic analysis showed uniformity in relative abundance of metabolic pathways regardless of age, cycle stage, or menstruation, indicating conservation of microbial community functions. This study suggests that selection of an optimal vaginal microbial community occurs at puberty. Since decreased diversity occurs in both baboons and humans at puberty, this may reflect a general strategy for selection of adult vaginal microbial communities. Comparative evaluation of vaginal microbial community development and composition may elucidate mechanisms of community formation and function that are conserved across host species or across microbial community types. These findings have implications for host health, evolutionary biology, and microbe-host ecosystems.
Collapse
Affiliation(s)
- M. UCHIHASHI
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - I. L. BERGIN
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - C. M. BASSIS
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - S. A. HASHWAY
- Research Animal Resources, University of Minnesota, Minneapolis, Minnesota
| | - D. CHAI
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - J. D. BELL
- Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
- Program on Women's Healthcare Effectiveness Research, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Redelinghuys MJ, Ehlers MM, Dreyer AW, Kock MM. Normal flora and bacterial vaginosis in pregnancy: an overview. Crit Rev Microbiol 2015; 42:352-63. [DOI: 10.3109/1040841x.2014.954522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Aiyar A, Quayle AJ, Buckner LR, Sherchand SP, Chang TL, Zea AH, Martin DH, Belland RJ. Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections. Front Cell Infect Microbiol 2014; 4:72. [PMID: 24918090 PMCID: PMC4042155 DOI: 10.3389/fcimb.2014.00072] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 11/13/2022] Open
Abstract
The natural history of genital Chlamydia trachomatis infections can vary widely; infections can spontaneously resolve but can also last from months to years, potentially progressing to cause significant pathology. The host and bacterial factors underlying this wide variation are not completely understood, but emphasize the bacterium's capacity to evade/adapt to the genital immune response, and/or exploit local environmental conditions to survive this immune response. IFNγ is considered to be a primary host protective cytokine against endocervical C.trachomatis infections. IFNγ acts by inducing the host enzyme indoleamine 2,3-dioxgenase, which catabolizes tryptophan, thereby depriving the bacterium of this essential amino acid. In vitro studies have revealed that tryptophan deprivation causes Chlamydia to enter a viable but non-infectious growth pattern that is termed a persistent growth form, characterized by a unique morphology and gene expression pattern. Provision of tryptophan can reactivate the bacterium to the normal developmental cycle. There is a significant difference in the capacity of ocular and genital C. trachomatis serovars to counter tryptophan deprivation. The latter uniquely encode a functional tryptophan synthase to synthesize tryptophan via indole salvage, should indole be available in the infection microenvironment. In vitro studies have confirmed the capacity of indole to mitigate the effects of IFNγ; it has been suggested that a perturbed vaginal microbiome may provide a source of indole in vivo. Consistent with this hypothesis, the microbiome associated with bacterial vaginosis includes species that encode a tryptophanase to produce indole. In this review, we discuss the natural history of genital chlamydial infections, morphological and molecular changes imposed by IFNγ on Chlamydia, and finally, the microenvironmental conditions associated with vaginal co-infections that can ameliorate the effects of IFNγ on C. trachomatis.
Collapse
Affiliation(s)
- Ashok Aiyar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Alison J Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Lyndsey R Buckner
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Shardulendra P Sherchand
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Theresa L Chang
- Department of Microbiology and Molecular Genetics, Public Health Research Institute Center, New Jersey Medical School-Rutgers, The State University of New Jersey Newark, NJ, USA
| | - Arnold H Zea
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - David H Martin
- Section of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Robert J Belland
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Sciences Center Memphis, TN, USA
| |
Collapse
|
22
|
Murray JL, Connell JL, Stacy A, Turner KH, Whiteley M. Mechanisms of synergy in polymicrobial infections. J Microbiol 2014; 52:188-99. [PMID: 24585050 PMCID: PMC7090983 DOI: 10.1007/s12275-014-4067-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 01/09/2023]
Abstract
Communities of microbes can live almost anywhere and contain many different species. Interactions between members of these communities often determine the state of the habitat in which they live. When these habitats include sites on the human body, these interactions can affect health and disease. Polymicrobial synergy can occur during infection, in which the combined effect of two or more microbes on disease is worse than seen with any of the individuals alone. Powerful genomic methods are increasingly used to study microbial communities, including metagenomics to reveal the members and genetic content of a community and metatranscriptomics to describe the activities of community members. Recent efforts focused toward a mechanistic understanding of these interactions have led to a better appreciation of the precise bases of polymicrobial synergy in communities containing bacteria, eukaryotic microbes, and/or viruses. These studies have benefited from advances in the development of in vivo models of polymicrobial infection and modern techniques to profile the spatial and chemical bases of intermicrobial communication. This review describes the breadth of mechanisms microbes use to interact in ways that impact pathogenesis and techniques to study polymicrobial communities.
Collapse
Affiliation(s)
- Justine L. Murray
- Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jodi L. Connell
- Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712 USA
| | - Apollo Stacy
- Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712 USA
| | - Keith H. Turner
- Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712 USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, Institute of Cell and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|