1
|
Wang J, Sun Y, Wu R. ACSM3 Suppresses Ovarian Cancer Progression by Inactivating the IFN-γ/JAK/STAT3 Signaling Pathway. Adv Biol (Weinh) 2025; 9:e2400093. [PMID: 39913127 DOI: 10.1002/adbi.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/12/2024] [Indexed: 02/07/2025]
Abstract
This study aimed to investigate the role of Acyl-CoA medium-chain synthetase 3 (ACSM3) in ovarian cancer (OC) progression. ACSM3 expression in OC tissues and cells is detected by real-time quantitative polymerase chain reaction, immunohistochemistry, or western blot. The influences of ACSM3 on OC progression are assessed in vitro and in vivo experiments. Gene set enrichment analysis is performed to find significantly enriched pathways related to ACSM3. In this study, ACSM3 expression in OC tissues and cells is downregulated. ACSM3 inhibited tumor growth in vivo. Knockdown of ACSM3 promoted cell proliferation, migration, and invasion, inhibited cell apoptosis, and activated JAK/STAT3 signaling pathway in SKOV3 cells, while overexpression of ACSM3 in A2780 cells led to the opposite results. Moreover, treatment with interferon-gamma (IFN-γ) in A2780 cells reversed the effects of ACSM3 on cell proliferation, migration, invasion, and apoptosis, but IFN-γ further enhanced the effects of ACSM3 knockdown on SKOV3 cell proliferation, migration, invasion, and apoptosis. In conclusion, ACSM3 inhibited OC cell proliferation, migration, and invasion, and promoted cell apoptosis by suppressing the IFN-γ/JAK/STAT3 signaling pathway, which might provide a promising therapeutic target for OC treatment.
Collapse
Affiliation(s)
- Juan Wang
- Department of Gynecology, Bin Zhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| | - Yanqiu Sun
- Department of obstetrics and gynecology, Bin Zhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| | - Ruixue Wu
- Department of Gynecology, Bin Zhou Medical University Hospital, Binzhou, Shandong, 256603, P. R. China
| |
Collapse
|
2
|
Zhang C, Lv Z, Liang H, Hu F, Bi H. Bioinformatics insights into ACSL1 and ACSL5: prognostic and immune roles in low-grade glioma. BMC Cancer 2025; 25:226. [PMID: 39924494 PMCID: PMC11809057 DOI: 10.1186/s12885-025-13651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/05/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Fatty acid metabolism disruptions affect low-grade gliomas (LGGs), with glioma cells depending on fatty acids for survival. Targeting fatty acid oxidation through the acyl-coenzyme A synthetase long-chain (ACSL) family could alleviate glioma growth and improve prognosis management. However, the integration of ACSLs for analyzing their relationship with LGGs remains unexplored. METHODS We collected RNA expression data of ACSLs for LGGs from TCGA, GTEx, CGGA, and GEO datasets and validated the prognostic significance of gene expression in 37 glioma samples. DNA methylation data from UCSC Xena and promoter methylation levels via MEXPRESS were analyzed. Functional enrichments of co-expressed ACSLs genes were conducted using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis. Protein-protein interaction networks were established via GeneMANIA, and cBioPortal assessed somatic mutations and copy number variations of ACSLs in LGGs. TIMER and TISIDB databases investigated the correlation between ACSLs expression and immune infiltration and checkpoint genes. Hazard ratios (HR) with 95% confidence intervals (95% CI) were computed, and net reclassification index and integrated discrimination improvement were estimated to evaluate the predictive capability of the prognosis model. RESULTS Independent prognostic factors for overall survival included age, gender, tumor grade, MGMT promoter status, ACSL1, ACSL3, ACSL5, and ACSL6 expression levels. High ACSL1 (HR = 2.352, 95%CI: 1.647-3.359, P = 9.00E-06), ACSL3 (HR = 2.367, 95%CI: 1.547-3.624, P = 2.92E-04) and ACSL5 (HR = 2.329, 95%CI: 1.611-3.367, P = 2.80E-05) expression correlated with poor prognosis, while increased ACSL6 (HR = 0.449, 95%CI: 0.290-0.696, P = 1.02E-03) expression related to better survival rates. Furthermore, these associations were also confirmed in the validation datasets and our external cohort. Negative correlation between ACSL1 and ACSL3 gene expression and methylation was found. Functional enrichment analyses highlighted the roles of ACSL1 and ACSL5 in glioma mechanisms and immune function, with significant associations between somatic CNVs and immune cell infiltration. CONCLUSIONS ACSL1 and ACSL5 exhibit prognostic significance in gliomas and influence tumor immunity and immune cell migration, providing valuable insights into LGG prognosis and therapeutic targets.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, People's Republic of China
| | - Zhonghua Lv
- Department of Neurosurgery, The Tumor Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongsheng Liang
- Department of Neurosurgery, The First Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, China.
| | - Haoran Bi
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Murphy CS, Fairfield H, DeMambro VE, Fadel S, Gartner CA, Karam M, Potts C, Rodriguez P, Qiang YW, Hamidi H, Guan X, Vary CPH, Reagan MR. Inhibition of acyl-CoA synthetase long-chain isozymes decreases multiple myeloma cell proliferation and causes mitochondrial dysfunction. Mol Oncol 2025. [PMID: 39853696 DOI: 10.1002/1878-0261.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Herein, we explore the roles of long-chain fatty acid coenzyme A ligase (ACSL) family members in MM. ACSLs convert free long-chain fatty acids into fatty acyl-CoA esters and play key roles in catabolic and anabolic fatty acid metabolism. Analysis of the Multiple Myeloma Research Foundation (MMRF) CoMMpassSM study showed that high ACSL1 and ACSL4 expression in myeloma cells are both associated with worse clinical outcomes for MM patients. Cancer Dependency Map (DepMap) data showed that all five ACSLs have negative Chronos scores, and ACSL3 and ACSL4 were among the top 25% Hallmark Fatty Acid Metabolism genes that support myeloma cell line fitness. Inhibition of ACSLs in myeloma cell lines in vitro, using the pharmacological inhibitor Triacsin C (TriC), increased apoptosis, decreased proliferation, and decreased cell viability, in a dose- and time-dependent manner. RNA-sequencing analysis of MM.1S cells treated with TriC showed a significant enrichment in apoptosis, ferroptosis, and endoplasmic reticulum (ER) stress, and proteomic analysis of these cells revealed enriched pathways for mitochondrial dysfunction and oxidative phosphorylation. TriC also rewired mitochondrial metabolism by decreasing mitochondrial membrane potential, increasing mitochondrial superoxide levels, decreasing mitochondrial ATP production rates, and impairing cellular respiration. Overall, our data support the hypothesis that suppression of ACSLs in myeloma cells is a novel metabolic target in MM that inhibits their viability, implicating this family as a promising therapeutic target in treating myeloma.
Collapse
Affiliation(s)
- Connor S Murphy
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Heather Fairfield
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
| | - Victoria E DeMambro
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Samaa Fadel
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
- University of New England, Biddeford, ME, USA
| | - Carlos A Gartner
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Michelle Karam
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Christian Potts
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Princess Rodriguez
- Vermont Integrative Genomics Resource DNA Facility, University of Vermont, Burlington, VT, USA
| | - Ya-Wei Qiang
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | | | | | - Calvin P H Vary
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
| | - Michaela R Reagan
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
4
|
Li D, Jin P, Cai Y, Wu S, Guo X, Zhang Z, Liu K, Li P, Hu Y, Zhou Y. Clinical significance of lipid pathway-targeted therapy in breast cancer. Front Pharmacol 2025; 15:1514811. [PMID: 39834807 PMCID: PMC11743736 DOI: 10.3389/fphar.2024.1514811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Globally, breast cancer represents the most common cancer and the primary cause of death by cancer in women. Lipids are crucial in human physiology, serving as vital energy reserves, structural elements of biological membranes, and essential signaling molecules. The metabolic reprogramming of lipid pathways has emerged as a critical factor in breast cancer progression, drug resistance, and patient prognosis. In this study, we delve into the clinical implications of lipid pathway-targeted therapy in breast cancer. We highlight key enzymes and potential therapeutic targets involved in lipid metabolism reprogramming, and their associations with cancer progression and treatment outcomes. Furthermore, we detail the clinical trials exploring the anticancer and cancer chemopreventive activity of therapies targeting these molecules. However, the clinical efficacy of these therapies remains controversial, highlighting the urgent need for predictive biomarkers to identify patient subpopulations likely to benefit from such treatment. We propose the Selective Lipid Metabolism Therapy Benefit Hypothesis, emphasizing the importance of personalized medicine in optimizing lipid pathway-targeted therapy for breast cancer patients.
Collapse
Affiliation(s)
- Dan Li
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengcheng Jin
- Department of Surgical Oncology, Linhai Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Yiqi Cai
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Wu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianan Guo
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyun Zhang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Liu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panni Li
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Hu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Nguyen PA, Kwon YS, Kim NY, Lee M, Hwang IH, Kim S. Quercetin and its derivatives from lotus (Nelumbo nucifera) seedpod extract combat radioresistance by suppressing ACSL4. Biofactors 2025; 51:e2118. [PMID: 39167022 DOI: 10.1002/biof.2118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Radioresistance poses a significant obstacle in cancer treatment. Lotus seedpod extract (LSE) has demonstrated anticancer effects in various cancer cells. However, its potential against radioresistant tumors remains unclear. In this study, we aimed to investigate the effect of LSE on radioresistant breast cancer cells, explore the underlying mechanism, and identify the major constituents responsible for its cytotoxic effect. LSE, extracted using 70% ethanol, exhibited selective cytotoxic effects against radioresistant breast cancer cells compared with their parental cells. Chemical analysis identified quercetin and its derivatives, hyperoside and miquelianin, as the major constituents responsible for these selective effects. Notably, quercetin displayed the most potent cytotoxicity against radioresistant breast cancer cells compared with hyperoside and miquelianin. Further investigation revealed that these compounds inhibited the activation of DNA repair systems, leading to the accumulation of DNA damage and the induction of apoptosis. Importantly, they efficiently suppressed the expression of ACSL4, a factor previously associated with radioresistance. In an in vivo study, quercetin exhibited a significant suppression of tumor growth in radioresistant tumor-bearing mice. Taken together, our findings highlight the potential of LSE and its major constituents, quercetin and its derivatives, in overcoming radioresistance in breast cancer. This study provides compelling evidence to support the use of LSE as a medicinal source for the future adjunctive therapy to combat radioresistance in breast cancers.
Collapse
Affiliation(s)
- Phuong Anh Nguyen
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, Korea
| | - Yun-Suk Kwon
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, Korea
| | - Nam-Yi Kim
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, Korea
| | - Munseon Lee
- Department of Pharmacy, Woosuk University, Wanju, Jeollabuk-do, Korea
| | - In Hyun Hwang
- Department of Pharmacy, Woosuk University, Wanju, Jeollabuk-do, Korea
| | - Soyoung Kim
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, Korea
| |
Collapse
|
6
|
Zou P, He Q, Xia H, Zhong W. Ferroptosis and its impact on common diseases. PeerJ 2024; 12:e18708. [PMID: 39713140 PMCID: PMC11663406 DOI: 10.7717/peerj.18708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death characterized by iron accumulation, lipid peroxidation, and a decline in antioxidant capacity, all of which are regulated by gene expression. The onset of numerous diseases is closely associated with ferroptosis. Common diseases affect a large population, reduce the quality of life, and impose an increased burden on the healthcare system. The role of ferroptosis in common diseases, its therapeutic potential, and even its translation into clinical drug treatments are currently significant research topics worldwide. This study preliminarily explores the theoretical basis of ferroptosis, its mechanism and treatment prospect in common diseases including ischaemia-reperfusion injury, inflammatory bowel diseases, liver fibrosis, acute kidney injury, diabetic kidney disease, stroke, Alzheimer's disease, cardiovascular disease, immune and cancer. This review provides a theoretical foundation for the further study and development of ferroptosis, as well as for the prevention and treatment of common diseases.
Collapse
Affiliation(s)
- Pengjian Zou
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Feng J, Bin JL, Liao XW, Wu Y, Tang Y, Lu PZ, Zhu GZ, Cui QR, Dan YY, Yang GH, Li LX, Deng JH, Peng T, Hooi SC, Zhou J, Lu GD. The prognostic role of ACSL4 in postoperative adjuvant TACE-treated HCC: implications for therapeutic response and mechanistic insights. J Exp Clin Cancer Res 2024; 43:306. [PMID: 39563427 PMCID: PMC11575417 DOI: 10.1186/s13046-024-03222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The response of hepatocellular carcinoma (HCC) to transarterial chemoembolization (TACE) treatment and its underlying mechanisms remain elusive. This study investigates the role of enzymes involved in fatty acid activation, specifically Acyl-CoA synthetase long chain 4 (ACSL4), in HCC patients treated with postoperative adjuvant TACE (PA-TACE) and in nutrient-deprived HCC cells. METHODS We examined the expression of ACSL4 and its family members in HCC clinical samples and cell lines. The clinical significance of ACSL4, particularly regarding the prognosis of patients treated with PA-TACE, was assessed using two independent HCC cohorts. We further explored the role of ACSL4 in glucose starvation-induced cell death in HCC cells and xenograft mouse models. RESULTS Among the family members, ACSL4 is the most up-regulated enzyme, associated with poor survival in HCC patients, particularly in post-recurrent TACE-treated patients in a Singapore cohort. ACSL4 is essential for HCC cell survival in response to glucose starvation, rather than to hypoxia or to the combination of hypoxia with doxorubicin or cisplatin. ACSL4-mediated arachidonic acid (AA) metabolism supports mitochondrial β-oxidation and energy production. CCAAT/enhancer binding protein α (CEBPA) transcriptionally regulates ACSL4 by binding 3 motifs (-623 to -613, -1197 to -1187 and -1745 to -1735) of ACSL4 upstream promoter region, enhancing its pro-survival effects. Furthermore, canagliflozin (Cana), a clinical-approved drug for type 2 diabetes, mimics glucose starvation and inhibits the growth of ACSL4-low xenograft tumors. Moreover, high ACSL4 or CEBPA expressions correlate with increased recurrence susceptibility after PA-TACE in the China-Guangxi HCC cohort. CONCLUSIONS The CEBPA-ACSL4 pathway is critical in protecting HCC cells from glucose starvation-induced cell death, suggesting that ACSL4 and CEBPA could serve as valuable prognostic indicators and potential therapeutic targets in the context of PA-TACE treatment for HCC.
Collapse
Affiliation(s)
- Ji Feng
- School of Public Health, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Basic Research On Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Jin-Lian Bin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Yong Wu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yue Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Pei-Zhi Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Qian-Ru Cui
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Guo-Huan Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Xin Li
- Department of Hepato-Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing-Huan Deng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, (Guangxi Medical University), Nanning, Guangxi, 530021, China.
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore, 117593, Singapore.
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Guo-Dong Lu
- School of Public Health, Fudan University, 130 Dong-An Road, Shanghai, 200032, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, (Guangxi Medical University), Nanning, Guangxi, 530021, China.
| |
Collapse
|
8
|
Kwon YS, Nguyen PA, Dao HY, Jang H, Kim S. Advantages of single high-dose radiation therapy compared with conventional fractionated radiation therapy in overcoming radioresistance. Int J Radiat Biol 2024:1-12. [PMID: 39446049 DOI: 10.1080/09553002.2024.2418493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Radioresistance is a major clinical challenge in cancer treatment, as it reduces the effectiveness of radiation therapy (RT). While advances in radiation delivery have enabled the clinical use of high-dose hypofractionated RT, its impact on radioresistant tumors remains unclear. This study aimed to compare the effects of single high-dose RT with conventional fractionated RT on radioresistant breast cancer cells and explore the underlying mechanisms. METHODS Radioresistant cell lines were previously established by exposing SK-BR-3 and MCF-7 cells to 48 Gy and 70 Gy of radiation, respectively, in multiple fractions. We compared the effects of 2 Gy × 5 and 7 Gy × 1 fractions on these cells using clonogenic survival assays and western blot analysis. In vivo antitumor effects were assessed in SR tumor-bearing BALB/c mice irradiated with either 2 Gy × 5 or 7 Gy × 1 fractions. RESULTS 7 Gy x1 was more efficient at killing radioresistant breast cancer cells than 2 Gy x5. Furthermore, the 7 Gy x1 fraction produced higher levels of reactive oxygen species (ROS) and decreased the expression of radioresistance factors such as p-STAT3, ACSL4, FOXM1, RAD51, Bcl-xL, and survivin. Consistent with the in vitro studies, the 7 Gy × 1 fraction also showed superior antitumor effects in SR tumor-bearing BALB/c mice. CONCLUSIONS Single high-dose RT offers superior advantages over conventional fractionated RT in regard to overcoming radioresistance, supporting its potential as a promising treatment for recurrent tumors.
Collapse
Affiliation(s)
- Yun-Suk Kwon
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Jeju-do, Republic of Korea
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, Republic of Korea
| | - Phuong Anh Nguyen
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, Republic of Korea
| | - Hai Yen Dao
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, Republic of Korea
| | - Hyunsoo Jang
- Department of Radiation Oncology, Pohang St. Mary's Hospital, Pohang, Gyeongsangbuk-do, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
9
|
Cao PHA, Dominic A, Lujan FE, Senthilkumar S, Bhattacharya PK, Frigo DE, Subramani E. Unlocking ferroptosis in prostate cancer - the road to novel therapies and imaging markers. Nat Rev Urol 2024; 21:615-637. [PMID: 38627553 PMCID: PMC12067944 DOI: 10.1038/s41585-024-00869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Ferroptosis is a distinct form of regulated cell death that is predominantly driven by the build-up of intracellular iron and lipid peroxides. Ferroptosis suppression is widely accepted to contribute to the pathogenesis of several tumours including prostate cancer. Results from some studies reported that prostate cancer cells can be highly susceptible to ferroptosis inducers, providing potential for an interesting new avenue of therapeutic intervention for advanced prostate cancer. In this Perspective, we describe novel molecular underpinnings and metabolic drivers of ferroptosis, analyse the functions and mechanisms of ferroptosis in tumours, and highlight prostate cancer-specific susceptibilities to ferroptosis by connecting ferroptosis pathways to the distinctive metabolic reprogramming of prostate cancer cells. Leveraging these novel mechanistic insights could provide innovative therapeutic opportunities in which ferroptosis induction augments the efficacy of currently available prostate cancer treatment regimens, pending the elimination of major bottlenecks for the clinical translation of these treatment combinations, such as the development of clinical-grade inhibitors of the anti-ferroptotic enzymes as well as non-invasive biomarkers of ferroptosis. These biomarkers could be exploited for diagnostic imaging and treatment decision-making.
Collapse
Affiliation(s)
- Pham Hong Anh Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Abishai Dominic
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fabiola Ester Lujan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sanjanaa Senthilkumar
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Elavarasan Subramani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Rupa D, Chuang H, Hu C, Su W, Wu S, Lee H, Yuan T. ACSL4 upregulates IFI44 and IFI44L expression and promotes the proliferation and invasiveness of head and neck squamous cell carcinoma cells. Cancer Sci 2024; 115:3026-3040. [PMID: 38989827 PMCID: PMC11462949 DOI: 10.1111/cas.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024] Open
Abstract
Reprogramming of cellular energy metabolism, including deregulated lipid metabolism, is a hallmark of head and neck squamous cell carcinoma (HNSCC). However, the underlying molecular mechanisms remain unclear. Long-chain acyl-CoA synthetase 4 (ACSL4), which catalyzes fatty acids to form fatty acyl-CoAs, is critical for synthesizing phospholipids or triglycerides. Despite the differing roles of ACSL4 in cancers, our data showed that ACSL4 was highly expressed in HNSCC tissues, positively correlating with poor survival rates in patients. Knockdown of ACSL4 in HNSCC cells led to reduced cell proliferation and invasiveness. RNA sequencing analyses identified interferon-induced protein 44 (IFI44) and interferon-induced protein 44-like (IFI44L), encoded by two interferon-stimulated genes, as potential effectors of ACSL4. Silencing IFI44 or IFI44L expression in HNSCC cells decreased cell proliferation and invasiveness. Manipulating ACSL4 expression or activity modulated the expression levels of JAK1, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription 1 (STAT1), interferon α (IFNα), IFNβ, and interferon regulatory factor 1 (IRF1), which regulate IFI44 and IFI44L expression. Knockdown of IRF1 reduced the expression of JAK1, TYK2, IFNα, IFNβ, IFI44, or IFI44L and diminished cell proliferation and invasiveness. Our results suggest that ACSL4 upregulates interferon signaling, enhancing IFI44 and IFI44L expression and promoting HNSCC cell proliferation and invasiveness. Thus, ACSL4 could serve as a novel therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Darius Rupa
- Department of Life ScienceNational Dong Hwa UniversityHualienTaiwan, ROC
- Present address:
Department of Biology EducationBorneo Tarakan UniversityIndonesia
| | - Hao‐Wen Chuang
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan, ROC
| | - Chung‐En Hu
- Department of Life ScienceNational Dong Hwa UniversityHualienTaiwan, ROC
| | - Wen‐Min Su
- Department of Life ScienceNational Dong Hwa UniversityHualienTaiwan, ROC
| | - Shiou‐Rong Wu
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan, ROC
| | - Herng‐Sheng Lee
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan, ROC
| | - Ta‐Chun Yuan
- Department of Life ScienceNational Dong Hwa UniversityHualienTaiwan, ROC
| |
Collapse
|
11
|
Torres-Ruiz S, Garrido-Cano I, Lameirinhas A, Burgués O, Hernando C, Martínez MT, Rojo F, Bermejo B, Tapia M, Carbonell-Asins JA, Peña CJ, Lluch A, Cejalvo JM, Tormo E, Eroles P. MiRNA-449 family is epigenetically repressed and sensitizes to doxorubicin through ACSL4 downregulation in triple-negative breast cancer. Cell Death Discov 2024; 10:372. [PMID: 39174500 PMCID: PMC11341569 DOI: 10.1038/s41420-024-02128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
Despite progress in breast cancer treatment, a significant portion of patients still relapse because of drug resistance. The involvement of microRNAs in cancer progression and chemotherapy response is well established. Therefore, this study aimed to elucidate the dysregulation of the microRNA-449 family (specifically, microRNA-449a, microRNA-449b-5p, and microRNA-449c-5p) and its impact on resistance to doxorubicin, a commonly used chemotherapeutic drug for the treatment of triple-negative breast cancer. We found that the microRNA-449 family is downregulated in triple-negative breast cancer and demonstrated its potential as a diagnostic biomarker. Besides, our findings indicate that the downregulation of the microRNA-449 family is mediated by the microRNAs-449/SIRT1-HDAC1 negative feedback loop. Moreover, it was found that the microRNA-449 family dysregulates the fatty acid metabolism by targeting ACSL4, which is a potential prognostic biomarker that mediates doxorubicin response through regulation of the drug extrusion pump ABCG2. Altogether, our results suggest that the microRNA-449 family might be a potential therapeutic target for the treatment of triple-negative breast cancer since it is implicated in doxorubicin response through ACSL4/ABCG2 axis regulation. Ultimately, our results also highlight the value of microRNAs-449 and ACSL4 as diagnostic and prognostic biomarkers in triple-negative breast cancer. Proposed model of miRNAs-449 downregulation in TNBC and doxorubicin response. MiRNAs-449 are downregulated in TNBC through a negative feedback loop with SIRT1 and HDAC1. Moreover, ACSL4 increases ABCG2 expression, thus diminishing the intracellular doxorubicin concentration and promoting doxorubicin resistance. MiRNAs-449 overexpression downregulates the ACSL4/ABCG2 axis and sensitizes doxorubicin-resistant cells to doxorubicin. Created with BioRender. TNBC: triple-negative breast cancer; DOX: doxorubicin; SIRT1: Sirtuin 1; HDAC1: Histone deacetylase 1; ACSL4: Acyl-CoA Synthetase Long-Chain Family Member 4; ABCG2: ATP-binding cassette superfamily G member 2.
Collapse
Affiliation(s)
| | - Iris Garrido-Cano
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universidad politécnica de Valencia, Universidad de Valencia, Valencia, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Madrid, Spain
| | | | - Octavio Burgués
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Pathology, Hospital Clínico Universitario de València, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
| | - Cristina Hernando
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - María Teresa Martínez
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - Federico Rojo
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Pathology, Fundación Jiménez Díaz, Madrid, Spain
| | - Begoña Bermejo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - Marta Tapia
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | | | | | - Ana Lluch
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
- Department of Medicine, Universidad de Valencia, Valencia, Spain
| | - Juan Miguel Cejalvo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de València, Valencia, Spain
| | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, Valencia, Spain.
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain.
| | - Pilar Eroles
- INCLIVA Biomedical Research Institute, Valencia, Spain.
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid, Spain.
- Department of Physiology, Universidad de Valencia, Valencia, Spain.
| |
Collapse
|
12
|
Zhang H, Sun Q, Dong H, Jin Z, Li M, Jin S, Zeng X, Fan J, Kong Y. Long-chain acyl-CoA synthetase-4 regulates endometrial decidualization through a fatty acid β-oxidation pathway rather than lipid droplet accumulation. Mol Metab 2024; 84:101953. [PMID: 38710444 PMCID: PMC11099325 DOI: 10.1016/j.molmet.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Lipid metabolism plays an important role in early pregnancy, but its effects on decidualization are poorly understood. Fatty acids (FAs) must be esterified by fatty acyl-CoA synthetases to form biologically active acyl-CoA in order to enter the anabolic and/or catabolic pathway. Long-chain acyl-CoA synthetase 4 (ACSL4) is associated with female reproduction. However, whether it is involved in decidualization is unknown. METHODS The expression of ACSL4 in human and mouse endometrium was detected by immunohistochemistry. ACSL4 levels were regulated by the overexpression of ACSL4 plasmid or ACSL4 siRNA, and the effects of ACSL4 on decidualization markers and morphology of endometrial stromal cells (ESCs) were clarified. A pregnant mouse model was established to determine the effect of ACSL4 on the implantation efficiency of mouse embryos. Modulation of ACSL4 detects lipid anabolism and catabolism. RESULTS Through examining the expression level of ACSL4 in human endometrial tissues during proliferative and secretory phases, we found that ACSL4 was highly expressed during the secretory phase. Knockdown of ACSL4 suppressed decidualization and inhibited the mesenchymal-to-epithelial transition induced by MPA and db-cAMP in ESCs. Further, the knockdown of ACSL4 reduced the efficiency of embryo implantation in pregnant mice. Downregulation of ACSL4 inhibited FA β-oxidation and lipid droplet accumulation during decidualization. Interestingly, pharmacological and genetic inhibition of lipid droplet synthesis did not affect FA β-oxidation and decidualization, while the pharmacological and genetic inhibition of FA β-oxidation increased lipid droplet accumulation and inhibited decidualization. In addition, inhibition of β-oxidation was found to attenuate the promotion of decidualization by the upregulation of ACSL4. The decidualization damage caused by ACSL4 knockdown could be reversed by activating β-oxidation. CONCLUSIONS Our findings suggest that ACSL4 promotes endometrial decidualization by activating the β-oxidation pathway. This study provides interesting insights into our understanding of the mechanisms regulating lipid metabolism during decidualization.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qianyi Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haojie Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zeen Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mengyue Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shanyuan Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaolan Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jianhui Fan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
13
|
Benzo Y, Prada JG, Dattilo MA, Bigi MM, Castillo AF, Mori Sequeiros Garcia MM, Poderoso C, Maloberti PM. Acyl-CoA synthetase 4 modulates mitochondrial function in breast cancer cells. Heliyon 2024; 10:e30639. [PMID: 38756582 PMCID: PMC11096749 DOI: 10.1016/j.heliyon.2024.e30639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Mitochondria are dynamic organelles that respond to cellular stress through changes in global mass, interconnection, and subcellular location. As mitochondria play an important role in tumor development and progression, alterations in energy metabolism allow tumor cells to survive and spread even in challenging conditions. Alterations in mitochondrial bioenergetics have been recently proposed as a hallmark of cancer, and positive regulation of lipid metabolism constitutes one of the most common metabolic changes observed in tumor cells. Acyl-CoA synthetase 4 (ACSL4) is an enzyme catalyzing the activation of long chain polyunsaturated fatty acids with a strong substrate preference for arachidonic acid (AA). High ACSL4 expression has been related to aggressive cancer phenotypes, including breast cancer, and its overexpression has been shown to positively regulate the mammalian Target of Rapamycin (mTOR) pathway, involved in the regulation of mitochondrial metabolism genes. However, little is known about the role of ACSL4 in the regulation of mitochondrial function and metabolism in cancer cells. In this context, our objective was to study whether mitochondrial function and metabolism, processes usually altered in tumors, are modulated by ACSL4 in breast cancer cells. Using ACSL4 overexpression in MCF-7 cells, we demonstrate that this enzyme can increase the mRNA and protein levels of essential mitochondrial regulatory proteins such as nuclear respiratory factor 1 (NRF-1), voltage-dependent anion channel 1 (VDAC1) and respiratory chain Complex III. Furthermore, respiratory parameters analysis revealed an increase in oxygen consumption rate (OCR) and in spare respiratory capacity (SRC), among others. ACSL4 knockdown in MDA-MB-231 cells led to the decrease in OCR and in SCR, supporting the role of ACSL4 in the regulation of mitochondrial bioenergetics. Moreover, ACSL4 overexpression induced an increase in glycolytic function, in keeping with an increase in mitochondrial respiratory activity. Finally, there was a decrease in mitochondrial mass detected in cells that overexpressed ACSL4, while the knockdown of ACSL4 expression in MDA-MB-231 cells showed the opposite effect. Altogether, these results unveil the role of ACSL4 in mitochondrial function and metabolism and expand the knowledge of ACSL4 participation in pathological processes such as breast cancer.
Collapse
Affiliation(s)
- Yanina Benzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Jesica G. Prada
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Melina A. Dattilo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Mercedes Bigi
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Ana F. Castillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Mercedes Mori Sequeiros Garcia
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula M. Maloberti
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| |
Collapse
|
14
|
Kwon YS, Lee MG, Kim NY, Nam GS, Nam KS, Jang H, Kim S. Overcoming radioresistance of breast cancer cells with MAP4K4 inhibitors. Sci Rep 2024; 14:7410. [PMID: 38548749 PMCID: PMC10978830 DOI: 10.1038/s41598-024-57000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) has recently emerged as a promising therapeutic target in cancer. In this study, we explored the biological function of MAP4K4 in radioresistant breast cancer cells using two MAP4K4 inhibitors, namely PF06260933 and GNE-495. Radioresistant SR and MR cells were established by exposing SK-BR-3 and MCF-7 breast cancer cells to 48-70 Gy of radiation delivered at 4-5 Gy twice a week over 10 months. Surprisingly, although radioresistant cells were derived from two different subtypes of breast cancer cell lines, MAP4K4 was significantly elevated regardless of subtype. Inhibition of MAP4K4 with PF06260933 or GNE-495 selectively targeted radioresistant cells and improved the response to irradiation. Furthermore, MAP4K4 inhibitors induced apoptosis through the accumulation of DNA damage by inhibiting DNA repair systems in radioresistant cells. Notably, Inhibition of MAP4K4 suppressed the expressions of ACSL4, suggesting that MAP4K4 functioned as an upstream effector of ACSL4. This study is the first to report that MAP4K4 plays a crucial role in mediating the radioresistance of breast cancer by acting upstream of ACSL4 to enhance DNA damage response and inhibit apoptosis. We hope that our findings provide a basis for the development of new drugs targeting MAP4K4 to overcome radioresistance.
Collapse
Affiliation(s)
- Yun-Suk Kwon
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Jeju-do, 63240, Republic of Korea
| | - Min-Gu Lee
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Nam-Yi Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Gi Suk Nam
- Department of Biomedical Laboratory Science, Honam University, Gwangsan-gu, Gwangju, 62399, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Hyunsoo Jang
- Department of Radiation Oncology, Pohang St. Mary's Hospital, Pohang, Gyeongsangbuk-do, 37661, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea.
| |
Collapse
|
15
|
Mejbel HA, Zein-Sabatto B, Wei S, Siegal GP. An Aneurysmal bone cyst harboring a novel ACSL4::USP6 fusion gene. J Orthop Sci 2024; 29:690-694. [PMID: 37349178 DOI: 10.1016/j.jos.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Haider A Mejbel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Bassel Zein-Sabatto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249, USA; Department of Pathology & Laboratory Medicine, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| | - Gene P Siegal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249, USA; Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35249, USA.
| |
Collapse
|
16
|
Bacci M, Lorito N, Smiriglia A, Subbiani A, Bonechi F, Comito G, Morriset L, El Botty R, Benelli M, López-Velazco JI, Caffarel MM, Urruticoechea A, Sflomos G, Malorni L, Corsini M, Ippolito L, Giannoni E, Meattini I, Matafora V, Havas K, Bachi A, Chiarugi P, Marangoni E, Morandi A. Acetyl-CoA carboxylase 1 controls a lipid droplet-peroxisome axis and is a vulnerability of endocrine-resistant ER + breast cancer. Sci Transl Med 2024; 16:eadf9874. [PMID: 38416843 DOI: 10.1126/scitranslmed.adf9874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2024] [Indexed: 03/01/2024]
Abstract
Targeting aromatase deprives ER+ breast cancers of estrogens and is an effective therapeutic approach for these tumors. However, drug resistance is an unmet clinical need. Lipidomic analysis of long-term estrogen-deprived (LTED) ER+ breast cancer cells, a model of aromatase inhibitor resistance, revealed enhanced intracellular lipid storage. Functional metabolic analysis showed that lipid droplets together with peroxisomes, which we showed to be enriched and active in the LTED cells, controlled redox homeostasis and conferred metabolic adaptability to the resistant tumors. This reprogramming was controlled by acetyl-CoA-carboxylase-1 (ACC1), whose targeting selectively impaired LTED survival. However, the addition of branched- and very long-chain fatty acids reverted ACC1 inhibition, a process that was mediated by peroxisome function and redox homeostasis. The therapeutic relevance of these findings was validated in aromatase inhibitor-treated patient-derived samples. Last, targeting ACC1 reduced tumor growth of resistant patient-derived xenografts, thus identifying a targetable hub to combat the acquisition of estrogen independence in ER+ breast cancers.
Collapse
Affiliation(s)
- Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Angela Subbiani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Francesca Bonechi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Ludivine Morriset
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Matteo Benelli
- Department of Medical Oncology, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, 59100 Prato, Italy
| | - Joanna I López-Velazco
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
| | - Maria M Caffarel
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ander Urruticoechea
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
- Gipuzkoa Cancer Unit, OSI Donostialdea-Onkologikoa Foundation, Paseo Dr Begiristain 121, 20014 San Sebastian, Spain
| | - George Sflomos
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Luca Malorni
- Department of Medical Oncology, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, 59100 Prato, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, 25123 Brescia, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Vittoria Matafora
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Kristina Havas
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Bachi
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
17
|
Gong H, Li Z, Wu Z, Lian G, Su Z. Modulation of ferroptosis by non‑coding RNAs in cancers: Potential biomarkers for cancer diagnose and therapy. Pathol Res Pract 2024; 253:155042. [PMID: 38184963 DOI: 10.1016/j.prp.2023.155042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Ferroptosis is a recently discovered cell programmed death. Extensive researches have indicated that ferroptosis plays an essential role in tumorigenesis, development, migration and chemotherapy drugs resistance, which makes it become a new target for tumor therapy. Non-coding RNAs (ncRNAs) are considered to control a wide range of cellular processes by modulating gene expression. Recent studies have indicated that ncRNAs regulate the process of ferroptosis via various pathway to affect the development of cancer. However, the regulation network remains ambiguous. In this review, we outlined the major metabolic processes of ferroptosis and concluded the relationship between ferroptosis-related ncRNAs and cancer progression. In addition, the prospect of ncRNAs being new therapeutic targets and early diagnosis biomarkers for cancer by regulating ferroptosis were presented, and the possible obstacles were also predicted. This could help in discovering novel cancer early diagnostic methods and therapeutic approaches.
Collapse
Affiliation(s)
- Huifang Gong
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zheng Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhimin Wu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gaojian Lian
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Zehong Su
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
18
|
Ray SK, Mukherjee S. Emerging Role of Ferroptosis in Breast Cancer: Characteristics, Therapy, and Translational Implications for the Present and Future. Curr Mol Med 2024; 24:1470-1482. [PMID: 37711099 DOI: 10.2174/1566524023666230913105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
Ferroptosis is a nonapoptotic, iron-dependent form of cell death that can be actuated in disease cells by expected improvements and manufactured specialists. Different studies have recently resurrected the role of this newly discovered cell death pathway and demonstrated its efficacy in treating breast cancer. Breast cancer is the most well-known type of cancer among women worldwide. Despite many years of research focusing on cell death in breast cancer, counting apoptosis, clinical treatment leftovers are difficult due to the high likelihood of recurrence. Ferroptosis is defined by a lack of lipid peroxide repair capacity by phospholipid hydroperoxides GPX4, accessibility of redox-active iron, and followed oxidation of polyunsaturated fatty acids acid-containing phospholipids signalling, amino acid and iron metabolism, ferritinophagy, epithelial-tomesenchymal transition, cell adhesion, and mevalonate and phospholipid biosynthesis can all be factors that influence ferroptosis susceptibility. Ferroptosis, an iron-dependent controlled cell death caused by excessive lipid peroxidation, has been entwined in breast cancer development and therapeutic response for the past decade. Advances in enhancing clinical drugs targeting ferroptosis are developing silver linings to treat breast cancer. Ferroptosis is influenced by metabolism and the expression of certain genes, making it a prospective therapeutic target for monitoring malignant growth and an appealing target for precision cancer medication disclosure. In the coming years, research into biomarkers to follow ferroptosis in patients with breast cancer and the course of events and the subsequent use of novel ferroptosis-based treatments will be captious. We present a fundamental analysis of the actual understanding of molecular mechanisms along with regulatory networks associated with ferroptosis, expected physiological functions in growth concealment, ferroptosis-associated differentially expressed genes, treatment targeting potential, and recent advances in the development of therapeutic strategies in this review.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
| |
Collapse
|
19
|
Bhat Y, Thrishna MR, Banerjee S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol Biol Rep 2023; 50:10535-10577. [PMID: 37924450 DOI: 10.1007/s11033-023-08868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its heterogeneous complexity and is often difficult to treat. TNBC lacks the expression of major hormonal receptors like estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 and is further subdivided into androgen receptor (AR) positive and AR negative. In contrast, AR negative is also known as quadruple-negative breast cancer (QNBC). Compared to AR-positive TNBC, QNBC has a great scarcity of prognostic biomarkers and therapeutic targets. QNBC shows excessive cellular growth and proliferation of tumor cells due to increased expression of growth factors like EGF and various surface proteins. This study briefly reviews the limited data available as protein biomarkers that can be used as molecular targets in treating TNBC as well as QNBC. Targeted therapy and immune checkpoint inhibitors have recently changed cancer treatment. Many studies in medicinal chemistry continue to focus on the synthesis of novel compounds to discover new antiproliferative medicines capable of treating TNBC despite the abundance of treatments currently on the market. Drug repurposing is one of the therapeutic methods for TNBC that has been examined. Moreover, some additional micronutrients, nutraceuticals, and functional foods may be able to lower cancer risk or slow the spread of malignant diseases that have already been diagnosed with cancer. Finally, nanomedicines, or applications of nanotechnology in medicine, introduce nanoparticles with variable chemistry and architecture for the treatment of cancer. This review emphasizes the most recent research on nutraceuticals, medication repositioning, and novel therapeutic strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Yashasvi Bhat
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M R Thrishna
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
20
|
Pardo-Rodriguez D, Santamaría-Torres M, Salinas A, Jiménez-Charris E, Mosquera M, Cala MP, García-Perdomo HA. Unveiling Disrupted Lipid Metabolism in Benign Prostate Hyperplasia, Prostate Cancer, and Metastatic Patients: Insights from a Colombian Nested Case-Control Study. Cancers (Basel) 2023; 15:5465. [PMID: 38001725 PMCID: PMC10670336 DOI: 10.3390/cancers15225465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer is a significant global health concern, and its prevalence is increasing worldwide. Despite extensive research efforts, the complexity of the disease remains challenging with respect to fully understanding it. Metabolomics has emerged as a powerful approach to understanding prostate cancer by assessing comprehensive metabolite profiles in biological samples. In this study, metabolic profiles of patients with benign prostatic hyperplasia (BPH), prostate cancer (PCa), and metastatic prostate cancer (Met) were characterized using an untargeted approach that included metabolomics and lipidomics via liquid chromatography and gas chromatography coupled with high-resolution mass spectrometry. Comparative analysis among these groups revealed distinct metabolic profiles, primarily associated with lipid biosynthetic pathways, such as biosynthesis of unsaturated fatty acids, fatty acid degradation and elongation, and sphingolipid and linoleic acid metabolism. PCa patients showed lower levels of amino acids, glycerolipids, glycerophospholipids, sphingolipids, and carnitines compared to BPH patients. Compared to Met patients, PCa patients had reduced metabolites in the glycerolipid, glycerophospholipid, and sphingolipid groups, along with increased amino acids and carbohydrates. These altered metabolic profiles provide insights into the underlying pathways of prostate cancer's progression, potentially aiding the development of new diagnostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 110111, Colombia; (D.P.-R.); (M.S.-T.)
| | - Mary Santamaría-Torres
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 110111, Colombia; (D.P.-R.); (M.S.-T.)
| | - Angela Salinas
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (A.S.); (E.J.-C.); (M.M.)
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (A.S.); (E.J.-C.); (M.M.)
| | - Mildrey Mosquera
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (A.S.); (E.J.-C.); (M.M.)
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 110111, Colombia; (D.P.-R.); (M.S.-T.)
| | - Herney Andrés García-Perdomo
- UROGIV Research Group, School of Medicine, Universidad del Valle, Cali 72824, Colombia
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali 72824, Colombia
| |
Collapse
|
21
|
Ding K, Liu C, Li L, Yang M, Jiang N, Luo S, Sun L. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism. Chin Med J (Engl) 2023; 136:2521-2537. [PMID: 37442770 PMCID: PMC10617883 DOI: 10.1097/cm9.0000000000002533] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Long-chain acyl-coenzyme A (CoA) synthase 4 (ACSL4) is an enzyme that esterifies CoA into specific polyunsaturated fatty acids, such as arachidonic acid and adrenic acid. Based on accumulated evidence, the ACSL4-catalyzed biosynthesis of arachidonoyl-CoA contributes to the execution of ferroptosis by triggering phospholipid peroxidation. Ferroptosis is a type of programmed cell death caused by iron-dependent peroxidation of lipids; ACSL4 and glutathione peroxidase 4 positively and negatively regulate ferroptosis, respectively. In addition, ACSL4 is an essential regulator of fatty acid (FA) metabolism. ACSL4 remodels the phospholipid composition of cell membranes, regulates steroidogenesis, and balances eicosanoid biosynthesis. In addition, ACSL4-mediated metabolic reprogramming and antitumor immunity have attracted much attention in cancer biology. Because it facilitates the cross-talk between ferroptosis and FA metabolism, ACSL4 is also a research hotspot in metabolic diseases and ischemia/reperfusion injuries. In this review, we focus on the structure, biological function, and unique role of ASCL4 in various human diseases. Finally, we propose that ACSL4 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| |
Collapse
|
22
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. An intricate rewiring of cancer metabolism via alternative splicing. Biochem Pharmacol 2023; 217:115848. [PMID: 37813165 DOI: 10.1016/j.bcp.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
All human genes undergo alternative splicing leading to the diversity of the proteins. However, in some cases, abnormal regulation of alternative splicing can result in diseases that trigger defects in metabolism, reduced apoptosis, increased proliferation, and progression in almost all tumor types. Metabolic dysregulations and immune dysfunctions are crucial factors in cancer. In this respect, alternative splicing in tumors could be a potential target for therapeutic cancer strategies. Dysregulation of alternative splicing during mRNA maturation promotes carcinogenesis and drug resistance in many cancer types. Alternative splicing (changing the target mRNA 3'UTR binding site) can result in a protein with altered drug affinity, ultimately leading to drug resistance.. Here, we will highlight the function of various alternative splicing factors, how it regulates the reprogramming of cancer cell metabolism, and their contribution to tumor initiation and proliferation. Also, we will discuss emerging therapeutics for treating tumors via abnormal alternative splicing. Finally, we will discuss the challenges associated with these therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | - Sarmistha Saha
- Department of Biotechnology, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
23
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
24
|
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (Beijing) 2023; 4:e363. [PMID: 37746665 PMCID: PMC10511835 DOI: 10.1002/mco2.363] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Arachidonic acid (AA), an n-6 essential fatty acid, is a major component of mammalian cells and can be released by phospholipase A2. Accumulating evidence indicates that AA plays essential biochemical roles, as it is the direct precursor of bioactive lipid metabolites of eicosanoids such as prostaglandins, leukotrienes, and epoxyeicosatrienoic acid obtained from three distinct enzymatic metabolic pathways: the cyclooxygenase pathway, lipoxygenase pathway, and cytochrome P450 pathway. AA metabolism is involved not only in cell differentiation, tissue development, and organ function but also in the progression of diseases, such as hepatic fibrosis, neurodegeneration, obesity, diabetes, and cancers. These eicosanoids are generally considered proinflammatory molecules, as they can trigger oxidative stress and stimulate the immune response. Therefore, interventions in AA metabolic pathways are effective ways to manage inflammatory-related diseases in the clinic. Currently, inhibitors targeting enzymes related to AA metabolic pathways are an important area of drug discovery. Moreover, many advances have also been made in clinical studies of AA metabolic inhibitors in combination with chemotherapy and immunotherapy. Herein, we review the discovery of AA and focus on AA metabolism in relation to health and diseases. Furthermore, inhibitors targeting AA metabolism are summarized, and potential clinical applications are discussed.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Yingxiang Liu
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Jin Sun
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zheng Guo
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Qiong Ma
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
25
|
Ríos Medrano MA, Bigi MM, Martínez Ponce P, Podesta EJ, Orlando UD. Exposure to anticancer drugs modulates the expression of ACSL4 and ABCG2 proteins in adrenocortical carcinoma cells. Heliyon 2023; 9:e20769. [PMID: 37867801 PMCID: PMC10585233 DOI: 10.1016/j.heliyon.2023.e20769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare and malignant disease, with more than 50 % of patients developing hormone-secreting tumors. These tumors are genetically heterogeneous and potentially lethal, as metastasis is often underway at the time of diagnosis. While chemoresistance can be multifactorial, Acyl CoA synthetase 4 (ACSL4) is known to contribute to the generation of highly aggressive cellular phenotypes, while increased expression and activity of multidrug transporters such as ATP-binding cassette subfamily G member 2 (ABCG2) are known to play a key role. Therefore, the objective of this work was to determine changes in the expression of ACSL4 and ABCG2 in ACC cell lines after exposure to antitumor drugs. Bioinformatics analysis of public database GSE140818 revealed higher ACSL4 and ABCG2 expression in HAC15 cells resistant to mitotane when compared to wild type cells. In addition, our studies revealed an increase in ACSL4 and ABCG2 expression in lowly aggressive H295R cells undergoing early treatment with non-lethal concentrations of mitotane, doxorubicin and cisplatin. Comparable results were obtained in lowly aggressive breast cancer cells MCF-7. The increase in ACSL4 and ABCG2 expression favored tumor cell viability, proliferation and compound efflux, an effect partially offset by ACSL4 and ABCG2 inhibitors. These results provide relevant data on the undesired molecular effects of antitumor drugs and may fuel future studies on patients' early response to antitumor treatment.
Collapse
Affiliation(s)
- Mayra Agustina Ríos Medrano
- Universidad de Buenos Aires-CONICET. Instituto de Investigaciones Biomédicas (INBIOMED). Buenos Aires. Argentina
| | - María Mercedes Bigi
- Universidad de Buenos Aires-CONICET. Instituto de Investigaciones Biomédicas (INBIOMED). Buenos Aires. Argentina
| | - Paloma Martínez Ponce
- Universidad de Buenos Aires-CONICET. Instituto de Investigaciones Biomédicas (INBIOMED). Buenos Aires. Argentina
| | - Ernesto Jorge Podesta
- Universidad de Buenos Aires-CONICET. Instituto de Investigaciones Biomédicas (INBIOMED). Buenos Aires. Argentina
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana. Buenos Aires. Argentina
| | - Ulises Daniel Orlando
- Universidad de Buenos Aires-CONICET. Instituto de Investigaciones Biomédicas (INBIOMED). Buenos Aires. Argentina
| |
Collapse
|
26
|
Sahebkar A, Foroutan Z, Katsiki N, Jamialahmadi T, Mantzoros CS. Ferroptosis, a new pathogenetic mechanism in cardiometabolic diseases and cancer: Is there a role for statin therapy? Metabolism 2023; 146:155659. [PMID: 37442270 DOI: 10.1016/j.metabol.2023.155659] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
One of the newly recognized types of cell death is ferroptosis which is related to the accumulation of iron and lipid-reactive oxygen species. Ferroptosis is considered a programmed cell death with a different mechanism from apoptosis, necrosis, and autophagy. Emerging evidence suggests that ferroptosis may occur in the context of cardiovascular disease (CVD), cancer, neurodegenerative diseases, and non-alcoholic fatty liver disease (NAFLD). Statins are the first-line therapy for dyslipidemia. The suppression of the HMG-CoA reductase by statins leads to decreased expression of glutathione peroxidase 4 (GPX4), a key regulator of lipid peroxidation, which in turn results in lipid ROS production and induction of ferroptosis. Experimental data suggest that statins may act as anti-cancer drugs by enhancing tumor cells' ferroptosis. In contrast, statins have also been reported to mitigate ferroptosis in animal models of myocardial ischemia-reperfusion and heart failure. This mini-review presents statin effects on the ferroptosis pathway, based on up-to-date in vivo and in vitro research. Furthermore, the potential impact of these effects on cardiometabolic diseases (e.g., CVD and NAFLD) and cancer is briefly discussed. Overall, there is a need for future studies focusing on statin-induced changes in ferroptosis as a therapeutic approach to such diseases.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Western Australia, Mashhad, Iran.
| | - Zahra Foroutan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus.
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Li C, Wang F, Cui L, Li S, Zhao J, Liao L. Association between abnormal lipid metabolism and tumor. Front Endocrinol (Lausanne) 2023; 14:1134154. [PMID: 37305043 PMCID: PMC10248433 DOI: 10.3389/fendo.2023.1134154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Metabolic Reprogramming is a sign of tumor, and as one of the three major substances metabolism, lipid has an obvious impact. Abnormal lipid metabolism is related to the occurrence of various diseases, and the proportion of people with abnormal lipid metabolism is increasing year by year. Lipid metabolism is involved in the occurrence, development, invasion, and metastasis of tumors by regulating various oncogenic signal pathways. The differences in lipid metabolism among different tumors are related to various factors such as tumor origin, regulation of lipid metabolism pathways, and diet. This article reviews the synthesis and regulatory pathways of lipids, as well as the research progress on cholesterol, triglycerides, sphingolipids, lipid related lipid rafts, adipocytes, lipid droplets, and lipid-lowering drugs in relation to tumors and their drug resistance. It also points out the limitations of current research and potential tumor treatment targets and drugs in the lipid metabolism pathway. Research and intervention on lipid metabolism abnormalities may provide new ideas for the treatment and survival prognosis of tumors.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Fei Wang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Lili Cui
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Shaoxin Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
28
|
Zeng X, Li J, Yang F, Xia R. The effect of narcotics on ferroptosis-related molecular mechanisms and signalling pathways. Front Pharmacol 2022; 13:1020447. [PMID: 36313359 PMCID: PMC9606818 DOI: 10.3389/fphar.2022.1020447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Ferroptosis is a novel programmed cell death form characterized by iron-mediated reactive oxygen species-induced lipid peroxidation and subsequent cell damage that is distinct from apoptosis, necroptosis, pyroptosis, and autophagy. Most studies on ferroptosis are based on its function and mechanism, but there have been relatively few studies on the effects of drugs, especially anaesthetics, on ferroptosis. Therefore, we summarized the recent literature on the effects of anaesthetics on ferroptosis to understand the underlying mechanism. In particular, we focused on the targets of various anaesthetics in different mechanisms of ferroptosis and the effects of ferroptosis induction or inhibition by narcotics on various diseases. The aims of this review are to provide a relatively reasonable drug regimen for clinicians, to explore potential ferroptosis protection drugs and targets, to reduce perioperative complications and to improve the postoperative performance of patients, especially those who are critically ill.
Collapse
Affiliation(s)
- Xiaoqin Zeng
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jingda Li
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fuyuan Yang
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| | - Rui Xia
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| |
Collapse
|
29
|
Racial Disparity in Quadruple Negative Breast Cancer: Aggressive Biology and Potential Therapeutic Targeting and Prevention. Cancers (Basel) 2022; 14:cancers14184484. [PMID: 36139643 PMCID: PMC9497140 DOI: 10.3390/cancers14184484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Quadruple negative breast cancer (QNBC), a subgroup of triple negative BC, has emerged as a highly aggressive BC subtype that disproportionately afflicts and impacts Black/African-American (AA) women. In this article, we review molecular distinctions in Black/AA and White/European-American (EA) QNBC biology as well as address potential non-genetic risk factors that could be underlying this racially disparate burden. We aim to provide deeper insight and provide a framework for novel discovery of actionable therapeutic targets and identify lifestyle changes to improve outcomes for Black/AA QNBC patients. Abstract Black/African-American (AA) women, relative to their White/European-American (EA) counterparts, experience disproportionately high breast cancer mortality. Central to this survival disparity, Black/AA women have an unequal burden of aggressive breast cancer subtypes, such as triple-negative breast cancer (ER/PR-, HER2-wild type; TNBC). While TNBC has been well characterized, recent studies have identified a highly aggressive androgen receptor (AR)-negative subtype of TNBC, quadruple-negative breast cancer (ER/PR-, HER2-wildtype, AR-; QNBC). Similar to TNBC, QNBC disproportionately impacts Black/AA women and likely plays an important role in the breast cancer survival disparities experienced by Black/AA women. Here, we discuss the racial disparities of QNBC and molecular signaling pathways that may contribute to the aggressive biology of QNBC in Black/AA women. Our immediate goal is to spotlight potential prevention and therapeutic targets for Black/AA QNBC; ultimately our goal is to provide greater insight into reducing the breast cancer survival burden experienced by Black/AA women.
Collapse
|
30
|
Dai G, Wang D, Ma S, Hong S, Ding K, Tan X, Ju W. ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154149. [PMID: 35567995 DOI: 10.1016/j.phymed.2022.154149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is an important death-related disease in the world and new therapeutic strategies are urgently needed to reduce mortality. Several studies have demonstrated that emodin, the main ingredient of Rheum palmatum, fights cancer but its potential anti-tumor effect on CRC is still unknown. PURPOSE The present study is aimed to explore the potential anti-tumor effects of emodin against CRC and the underlying molecular mechanism. METHODS CRC-related datasets were screened according to filter criteria in the GEO database and TCGA database. By using screened differentially expressed genes, GO, KEGG and survival analysis were carried out. The expressions of ACSL4, VEGFR1, and VEGFR2 were examined by immunohistochemistry and western blot. Then, pcDNA-ACSL4, pcDNA-VEGFR1, and pcDNA-VEGFR2 were used to overexpress ACSL4, VEGFR1, and VEGFR2, while ACSL4 siRNA was used to silence ACSL4 expression in HCT116 cells. CCK-8 assay and transwell migration assay were used to detect the cell proliferation and invasion. A docking simulation assay and an MST assay were performed to explore the potential mode of emodin binding to ACSL4. The HCT116 cells and CRC mouse model were established to investigate the effects of emodin on CRC. RESULTS The ACSL4, VEGFR1, and VEGFR2 expression were upregulated in CRC tissues and ACSL4 was associated with a shorter survival time in CRC patients. ACSL4 downregulation reduced cell proliferation and invasion, while ACSL4 exhibited a positive correlation with the levels of VEGFR1, VEGFR2, and VEGF. In HCT116 cells, emodin reduced cell proliferation and invasion by inhibiting ACSL4, VEGFR1, and VEGFR2 expression and VEGF secretion. Docking simulation and MST assay confirmed that emodin can directly bind to ACSL4 target. Moreover, ACSL4 overexpression abolished the inhibitory effect of emodin on VEGF secretion and VEGFR1 and VEGFR2 expression, but VEGFR1 and VEGFR2 overexpression did not affect the inhibitory effect of emodin on ACSL4 expression and VEGF secretion. Furthermore, emodin reduced the mortality and tumorigenesis of CRC mice and reduced ACSL4, VEGFR1, VEGFR2 expression, and VEGF content. CONCLUSION Our findings indicate that emodin inhibits proliferation and invasion of CRC cells and reduces VEGF secretion and VEGFR1 and VEGFR2 expression by inhibiting ACSL4. This emodin-induced pathway offers insights into the molecular mechanism of its antitumor effect and provides a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Dong Wang
- Department of Acupuncture and Rehabilitation, Jiangsu Second Chinese Medicine Hospital, Nanjing 210017, China
| | - Shitang Ma
- Life and Health College, Anhui Science and Technology University, Fengyang 233100, China
| | - Shengwei Hong
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Kang Ding
- National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Xiying Tan
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
31
|
Muhammad A, Forcados GE, Katsayal BS, Bako RS, Aminu S, Sadiq IZ, Abubakar MB, Yusuf AP, Malami I, Faruk M, Ibrahim S, Pase PA, Ahmed S, Abubakar IB, Abubakar M, Yates C. Potential epigenetic modifications implicated in triple- to quadruple-negative breast cancer transition: a review. Epigenomics 2022; 14:711-726. [PMID: 35473304 DOI: 10.2217/epi-2022-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Current research on triple-negative breast cancer (TNBC) has resulted in delineation into the quadruple-negative breast cancer (QNBC) subgroup. Epigenetic modifications such as DNA methylation, histone posttranslational modifications and associated changes in chromatin architecture have been implicated in breast cancer pathogenesis. Herein, the authors highlight genes with observed epigenetic modifications that are associated with more aggressive TNBC/QNBC pathogenesis and possible interventions. Advanced literature searches were done on PubMed/MEDLINE, Scopus and Google Scholar. The results suggest that nine epigenetically altered genes/differentially expressed proteins in addition to the downregulated androgen receptor are associated with TNBC aggressiveness and could be implicated in the TNBC to QNBC transition. Thus, restoring the normal expression of these genes via epigenetic reprogramming could be therapeutically beneficial to TNBC and QNBC patients.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria.,Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | | | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Rabiatu Suleiman Bako
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria.,Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria
| | | | - Ibrahim Malami
- Department of Pharmacognosy & Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Nigeria.,Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria
| | - Mohammed Faruk
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Peter Abur Pase
- Department of Surgery, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Saad Ahmed
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Ibrahim Babangida Abubakar
- Deparment of Biochemistry, Kebbi State University of Science & Technology, PMB 1144, Aliero, Kebbi State, Nigeria
| | - Murtala Abubakar
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Clayton Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
32
|
Mozihim AK, Chung I, Said NABM, Jamil AHA. Reprogramming of Fatty Acid Metabolism in Gynaecological Cancers: Is There a Role for Oestradiol? Metabolites 2022; 12:metabo12040350. [PMID: 35448537 PMCID: PMC9031151 DOI: 10.3390/metabo12040350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Gynaecological cancers are among the leading causes of cancer-related death among women worldwide. Cancer cells undergo metabolic reprogramming to sustain the production of energy and macromolecules required for cell growth, division and survival. Emerging evidence has provided significant insights into the integral role of fatty acids on tumourigenesis, but the metabolic role of high endogenous oestrogen levels and increased gynaecological cancer risks, notably in obesity, is less understood. This is becoming a renewed research interest, given the recently established association between obesity and incidence of many gynaecological cancers, including breast, ovarian, cervical and endometrial cancers. This review article, hence, comprehensively discusses how FA metabolism is altered in these gynaecological cancers, highlighting the emerging role of oestradiol on the actions of key regulatory enzymes of lipid metabolism, either directly through its classical ER pathways, or indirectly via the IGIFR pathway. Given the dramatic rise in obesity and parallel increase in the prevalence of gynaecological cancers among premenopausal women, further clarifications of the complex mechanisms underpinning gynaecological cancers are needed to inform future prevention efforts. Hence, in our review, we also highlight opportunities where metabolic dependencies can be exploited as viable therapeutic targets for these hormone-responsive cancers.
Collapse
Affiliation(s)
- Azilleo Kristo Mozihim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nur Akmarina B. M. Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
- Correspondence: ; Tel.: +60-3-7967-4909
| |
Collapse
|
33
|
Peng Q, Zhou Y, Oyang L, Wu N, Tang Y, Su M, Luo X, Wang Y, Sheng X, Ma J, Liao Q. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics. Mol Ther 2022; 30:1018-1035. [PMID: 34793975 PMCID: PMC8899522 DOI: 10.1016/j.ymthe.2021.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
Alternative pre-mRNA splicing (AS) provides the potential to produce diversity at RNA and protein levels. Disruptions in the regulation of pre-mRNA splicing can lead to diseases. With the development of transcriptome and genome sequencing technology, increasing diseases have been identified to be associated with abnormal splicing of mRNAs. In tumors, abnormal alternative splicing frequently plays critical roles in cancer pathogenesis and may be considered as new biomarkers and therapeutic targets for cancer intervention. Metabolic abnormalities and immune disorders are important hallmarks of cancer. AS produces multiple different isoforms and diversifies protein expression, which is utilized by the immune and metabolic reprogramming systems to expand gene functions. The abnormal splicing events contributed to tumor progression, partially due to effects on immune response and metabolic reprogramming. Herein, we reviewed the vital role of alternative splicing in regulating cancer metabolism and immune response. We discussed how alternative splicing regulates metabolic reprogramming of cancer cells and antitumor immune response, and the possible strategies to targeting alternative splicing pathways or splicing-regulated metabolic pathway in the context of anticancer immunotherapy. Further, we highlighted the challenges and discuss the perspectives for RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Ying Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xiaowu Sheng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Jian Ma
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China.
| |
Collapse
|
34
|
Qattan A, Al-Tweigeri T, Suleman K. Translational Implications of Dysregulated Pathways and MicroRNA Regulation in Quadruple-Negative Breast Cancer. Biomedicines 2022; 10:biomedicines10020366. [PMID: 35203574 PMCID: PMC8962346 DOI: 10.3390/biomedicines10020366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancers (HER2−, ER−, PR−) continue to present a unique treatment challenge and carry unfavorable prognoses. The elucidation of novel therapeutic targets has necessitated the re-evaluation of stratification approaches to best predict prognosis, treatment response and theranostic and prognostic markers. Androgen receptor expression and function have important implications on proliferation, tumor progression, immunity and molecular signaling in breast cancer. Accordingly, there has been increasing support for classification of androgen receptor-negative triple-negative breast cancer or quadruple-negative breast cancer (QNBC). QNBC has unique molecular, signaling and expression regulation profiles, particularly those affected by microRNA regulatory networks. MicroRNAs are now known to regulate AR-related targets and pathways that are dysregulated in QNBC, including immune checkpoint inhibitors (ICIs), SKP2, EN1, ACSL4 and EGFR. In this review, we explore and define the QNBC tumor subtype, its molecular and clinical distinctions from other subtypes, miRNA dysregulation and function in QNBC, and knowledge gaps in the field. Potential insights into clinical and translational implications of these dysregulated networks in QNBC are discussed.
Collapse
Affiliation(s)
- Amal Qattan
- Translational Cancer Research Section, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Correspondence:
| | - Taher Al-Tweigeri
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (T.A.-T.); (K.S.)
| | - Kausar Suleman
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (T.A.-T.); (K.S.)
| |
Collapse
|
35
|
Role of ACSL4 in the chemical-induced cell death in human proximal tubule epithelial HK-2 cells. Biosci Rep 2022; 42:230722. [PMID: 35103282 PMCID: PMC8829018 DOI: 10.1042/bsr20212433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Acyl-CoA synthetase long-chain family member 4 (ACSL4) activates polyunsaturated fatty acids (PUFAs) to produce PUFA-derived acyl-CoAs, which are utilised for the synthesis of various biological components, including phospholipids (PLs). Although the roles of ACSL4 in non-apoptotic programmed cell death ferroptosis are well-characterised, its role in the other types of cell death is not fully understood. In the present study, we investigated the effects of ACSL4 knockdown on the levels of acyl-CoA, PL, and ferroptosis in the human normal kidney proximal tubule epithelial (HK-2) cells. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analyses revealed that the knockdown of ACSL4 markedly reduced the levels of PUFA-derived acyl-CoA, but not those of other acyl-CoAs. In contrast with acyl-CoA levels, the docosahexaenoic acid (DHA)-containing PL levels were preferentially decreased in the ACSL4-knockdown cells compared with the control cells. Cell death induced by the ferroptosis inducers RSL3 and FIN56 was significantly suppressed by treatment with ferrostatin-1 or ACSL4 knockdown, and, unexpectedly, upon treating with a necroptosis inhibitor. In contrast, ACSL4 knockdown failed to suppress the other oxidative stress-induced cell deaths initiated by cadmium chloride and sodium arsenite. In conclusion, ACSL4 is involved in the biosynthesis of DHA-containing PLs in HK-2 cells and is specifically involved in the cell death induced by ferroptosis inducers.
Collapse
|
36
|
Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D. SLC7A11/ xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett 2021; 522:211-224. [PMID: 34571083 DOI: 10.1016/j.canlet.2021.09.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 01/15/2023]
Abstract
Breast cancer cells evade cell death by overexpressing SLC7A11, which functions by transporting cystine into cells in exchange for intracellular glutamate facilitating glutathione synthesis and reducing reactive oxygen species (ROS)-mediated stress. Using an in silico approach, we predicted an miRNA (miR-5096) that can target and downregulate SLC7A11. We demonstrated SLC7A11 as a target of miR-5096 by 3'UTR luciferase assay and further validated it by identifying reduced mRNA and protein levels of SLC7A11 upon miR-5096 overexpression. miR-5096-induced ferroptotic cell death in human breast cancer cells was confirmed by concurrently increased ROS, OH-, lipid ROS, and iron accumulation levels and decreased GSH and mitochondrial membrane potential (MitoTracker™ Orange) with mitochondrial shrinkage and partial cristae loss (observed by TEM). miR-5096 inhibited colony formation, transwell migration, and breast cancer cell invasion, whereas antimiR-5096 promoted these tumorigenic properties. Ectopic expression of SLC7A11 partly reversed miR-5096-mediated effects on cell survival, ROS, lipid peroxides, iron accumulation, GSH, hydroxyl radicals, mitochondrial membrane potential, and colony formation. miR-5096 modulated the expression of epithelial-mesenchymal transition markers in vitro and inhibited the metastatic potential of MDA-MB-231 cells in a tumor xenograft model of zebrafish larvae. Our results demonstrate that miR-5096 is a tumor-suppressive miRNA in breast cancer cells, and this paper discusses its therapeutic implications.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Priyanshu Sharma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
37
|
Sha R, Xu Y, Yuan C, Sheng X, Wu Z, Peng J, Wang Y, Lin Y, Zhou L, Xu S, Zhang J, Yin W, Lu J. Predictive and prognostic impact of ferroptosis-related genes ACSL4 and GPX4 on breast cancer treated with neoadjuvant chemotherapy. EBioMedicine 2021; 71:103560. [PMID: 34482070 PMCID: PMC8417304 DOI: 10.1016/j.ebiom.2021.103560] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Recent evidence shows that inducing ferroptosis may improve efficacy of tumor therapy. However, ferroptosis-related genes have been little studied in patients with breast cancer especially in the neoadjuvant setting. ACSL4 and GPX4 have been well established as the positive and negative regulator of ferroptosis, respectively. This study aimed to explore the predictive value of ACSL4 and GPX4 for patients with breast cancer administered neoadjuvant chemotherapy. METHODS This study included patients treated with paclitaxel-cisplatin-based neoadjuvant chemotherapy. Immunohistochemistry staining of ACSL4 and GPX4 was carried out on the core needle biopsy specimens. Logistic regression was performed to explore the predictive biomarkers of pathological complete response (pCR). Survival analyses were examined by log-rank test and Cox proportional hazard regression. FINDINGS A total of 199 patients were included for the analyses. Both ACSL4 expression and ACSL4/GPX4 combination status could serve as independent predictive factors for pCR. The interaction for pCR was observed between ACSL4 and clinical tumor stage. Besides, ACSL4 expression, GPX4 expression, and their combination status were independent prognostic factors for disease-free survival. Analyses of the Kaplan-Meier Plotter database suggested that higher ACSL4 expression is related to better overall survival, and higher GPX4 expression is related to better distant metastasis-free survival. Pathway analyses revealed that ACSL4 and GPX4 might function in crucial pathways including apoptosis, autophagy, cell adhesion, lipid metabolism, etc. INTERPRETATION: This study revealed the critical value of ACSL4 and GPX4 serving as novel predictive and prognostic biomarkers for patients with breast cancer receiving neoadjuvant chemotherapy. It might be a novel strategy to induce ferroptosis to promote chemosensitivity. Future studies are required to elucidate the potential mechanisms. FUNDING This work was supported by Shanghai Natural Science Foundation [grant number 19ZR1431100], Clinical Research Plan of Shanghai Hospital Development Center [grant numbers SHDC2020CR3003A, 16CR3065B, and 12016231], Shanghai "Rising Stars of Medical Talent" Youth Development Program for Youth Medical Talents - Specialist Program [grant number 2018-15], Shanghai "Rising Stars of Medical Talent" Youth Development Program for Outstanding Youth Medical Talents [grant number 2018-16], Shanghai Collaborative Innovation Center for Translational Medicine [grant number TM201908], Multidisciplinary Cross Research Foundation of Shanghai Jiao Tong University [grant numbers YG2017QN49, ZH2018QNA42, and YG2019QNA28], Nurturing Fund of Renji Hospital [grant numbers PYMDT-002, PY2018-IIC-01, PY2018-III-15, and PYIII20-09], Science and Technology Commission of Shanghai Municipality [grant numbers 20DZ2201600 and 15JC1402700], and Shanghai Municipal Key Clinical Specialty.
Collapse
Affiliation(s)
- Rui Sha
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yaqian Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Chenwei Yuan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Ziping Wu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jie Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
38
|
Ghasemishahrestani Z, Melo Mattos LM, Tilli TM, Santos ALSD, Pereira MD. Pieces of the Complex Puzzle of Cancer Cell Energy Metabolism: An Overview of Energy Metabolism and Alternatives for Targeted Cancer Therapy. Curr Med Chem 2021; 28:3514-3534. [PMID: 32814521 DOI: 10.2174/0929867327999200819123357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
Over the past decades, several advances in cancer cell biology have led to relevant details about a phenomenon called the 'Warburg effect'. Currently, it has been accepted that the Warburg effect is not compatible with all cancer cells, and thus the process of aerobic glycolysis is now challenged by the knowledge of a large number of cells presenting mitochondrial function. The energy metabolism of cancer cells is focused on the bioenergetic and biosynthetic pathways in order to meet the requirements of rapid proliferation. Changes in the metabolism of carbohydrates, amino acids and lipids have already been reported for cancer cells and this might play an important role in cancer progression. To the best of our knowledge, these changes are mainly attributed to genetic reprogramming which leads to the transformation of a healthy into a cancerous cell. Indeed, several enzymes that are highly relevant for cellular energy are targets of oncogenes (e.g. PI3K, HIF1, and Myc) and tumor suppressor proteins (e.g. p53). As a consequence of extensive studies on cancer cell metabolism, some new therapeutic strategies have appeared that aim to interrupt the aberrant metabolism, in addition to influencing genetic reprogramming in cancer cells. In this review, we present an overview of cancer cell metabolism (carbohydrate, amino acid, and lipid), and also describe oncogenes and tumor suppressors that directly affect the metabolism. We also discuss some of the potential therapeutic candidates which have been designed to target and disrupt the main driving forces associated with cancer cell metabolism and proliferation.
Collapse
Affiliation(s)
- Zeinab Ghasemishahrestani
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Maura Melo Mattos
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Martins Tilli
- Centro de Desenvolvimento Tecnologico em Saude, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Dias Pereira
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Zhang Y, Li S, Li F, Lv C, Yang QK. High-fat diet impairs ferroptosis and promotes cancer invasiveness via downregulating tumor suppressor ACSL4 in lung adenocarcinoma. Biol Direct 2021; 16:10. [PMID: 34053456 PMCID: PMC8166005 DOI: 10.1186/s13062-021-00294-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Long-chain acyl-CoA synthetase-4 (ACSL4) is involved in fatty acid metabolism, and aberrant ACSL4 expression could be either tumorigenic or tumor-suppressive in different tumor types. However, the function and clinical significance of ACSL4 in lung adenocarcinoma remain elusive. RESULTS ACSL4 was frequently downregulated in lung adenocarcinoma when analyzing both the TCGA database and the validation samples, and the lower ACSL4 expression was correlated with a worse prognosis. Using gene set enrichment analysis, we found that high ACSL4 expression was frequently associated with the oxidative stress pathway, especially ferroptosis-related proteins. In vitro functional studies showed that knockdown of ACSL4 increased tumor survival/invasiveness and inhibited ferroptosis, while ACSL4 overexpression exhibited the opposite effects. Moreover, high-fat treatment could also inhibit erastin-induced ferroptosis by affecting ACSL4 expression. The anti-tumor effects of ferroptosis inducers and the anti-ferroptosis effects of the high-fat diet were further validated using the mouse xenograft model. CONCLUSIONS ACSL4 plays a tumor-suppressive role in lung adenocarcinoma by suppressing tumor survival/invasiveness and promoting ferroptosis. Our study provided a theoretical reference for the application of ferroptotic inducers and dietary guidance for lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Yixiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medicine University, No. 222 Zhongshan Road, Liaoning, 116000, Dalian, China
| | - Songyu Li
- Department of Oncology, Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Lvshun South Road, Liaoning, 116044, Dalian, China
| | - Fengzhou Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medicine University, No. 222 Zhongshan Road, Liaoning, 116000, Dalian, China
| | - Changsheng Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medicine University, No. 222 Zhongshan Road, Liaoning, 116000, Dalian, China.
| | - Qing-Kai Yang
- Department of Oncology, Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Lvshun South Road, Liaoning, 116044, Dalian, China.
| |
Collapse
|
40
|
Lin Z, Liu J, Kang R, Yang M, Tang D. Lipid Metabolism in Ferroptosis. Adv Biol (Weinh) 2021; 5:e2100396. [PMID: 34015188 DOI: 10.1002/adbi.202100396] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Indexed: 12/19/2022]
Abstract
Lipid metabolism is a complex biochemical process that participates in the regulation of cell survival and death. Ferroptosis is a form of iron-dependent regulated cell death driven by abnormal lipid metabolism, leading to lipid peroxidation and subsequent plasma membrane rupture. A variety of antioxidant systems and membrane repair pathways can diminish oxidative damage, enabling survival and growth in response to ferroptotic signals. Such impairment of ferroptosis machinery is implicated in various pathological conditions and diseases, especially cancer and tissue damage. It is discussed here how lipid metabolism pathways, including lipid synthesis, degradation, storage, transformation, and utilization, modulate ferroptosis sensitivity or tolerance in different models, especially cancer.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510600, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
41
|
Immunohistochemical staining reveals differential expression of ACSL3 and ACSL4 in hepatocellular carcinoma and hepatic gastrointestinal metastases. Biosci Rep 2021; 40:222647. [PMID: 32286604 PMCID: PMC7198044 DOI: 10.1042/bsr20200219] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long-chain fatty acyl CoA synthetases (ACSLs) activate fatty acids by CoA addition thus facilitating their intracellular metabolism. Dysregulated ACSL expression features in several cancers and can affect processes such as ferroptosis, fatty acid β-oxidation, prostaglandin biosynthesis, steroidogenesis and phospholipid acyl chain remodelling. Here we investigate long chain acyl-CoA synthetase 3 (ACSL3) and long chain acyl-CoA synthetase 4 (ACSL4) expression in liver malignancies. The expression and subcellular localisations of the ACSL3 and ACSL4 isoforms in hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA) and hepatic metastases were assessed by immunohistochemical analyses of multiple tumour tissue arrays and by subcellular fractionation of cultured HepG2 cells. The expression of both enzymes was increased in HCC compared with normal liver. Expression of ACSL3 was similar in HCC and hepatic metastases but lower in healthy tissue. Increased ACSL3 expression distinguished HCC from CCA with a sensitivity of 87.2% and a specificity of 75%. ACSL4 expression was significantly greater in HCC than in all other tumours and distinguished HCC from normal liver tissue with a sensitivity of 93.8% and specificity of 93.6%. Combined ACSL3 and ACSL4 staining scores distinguished HCC from hepatic metastases with 80.1% sensitivity and 77.1% specificity. These enzymes had partially overlapping intracellular distributions, ACSL4 localised to the plasma membrane and both isoforms associated with lipid droplets and the endoplasmic reticulum (ER). In conclusion, analysis of ACSL3 and ACSL4 expression can distinguish different classes of hepatic tumours.
Collapse
|
42
|
Castillo AF, Orlando UD, Maloberti PM, Prada JG, Dattilo MA, Solano AR, Bigi MM, Ríos Medrano MA, Torres MT, Indo S, Caroca G, Contreras HR, Marelli BE, Salinas FJ, Salvetti NR, Ortega HH, Lorenzano Menna P, Szajnman S, Gomez DE, Rodríguez JB, Podesta EJ. New inhibitor targeting Acyl-CoA synthetase 4 reduces breast and prostate tumor growth, therapeutic resistance and steroidogenesis. Cell Mol Life Sci 2021; 78:2893-2910. [PMID: 33068124 PMCID: PMC11072814 DOI: 10.1007/s00018-020-03679-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Acyl-CoA synthetase 4 (ACSL4) is an isoenzyme of the fatty acid ligase-coenzyme-A family taking part in arachidonic acid metabolism and steroidogenesis. ACSL4 is involved in the development of tumor aggressiveness in breast and prostate tumors through the regulation of various signal transduction pathways. Here, a bioinformatics analysis shows that the ACSL4 gene expression and proteomic signatures obtained using a cell model was also observed in tumor samples from breast and cancer patients. A well-validated ACSL4 inhibitor, however, has not been reported hindering the full exploration of this promising target and its therapeutic application on cancer and steroidogenesis inhibition. In this study, ACSL4 inhibitor PRGL493 was identified using a homology model for ACSL4 and docking based virtual screening. PRGL493 was then chemically characterized through nuclear magnetic resonance and mass spectroscopy. The inhibitory activity was demonstrated through the inhibition of arachidonic acid transformation into arachidonoyl-CoA using the recombinant enzyme and cellular models. The compound blocked cell proliferation and tumor growth in both breast and prostate cellular and animal models and sensitized tumor cells to chemotherapeutic and hormonal treatment. Moreover, PGRL493 inhibited de novo steroid synthesis in testis and adrenal cells, in a mouse model and in prostate tumor cells. This work provides proof of concept for the potential application of PGRL493 in clinical practice. Also, these findings may prove key to therapies aiming at the control of tumor growth and drug resistance in tumors which express ACSL4 and depend on steroid synthesis.
Collapse
Affiliation(s)
- Ana F Castillo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ulises D Orlando
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula M Maloberti
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jesica G Prada
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melina A Dattilo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angela R Solano
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María M Bigi
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mayra A Ríos Medrano
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María T Torres
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastián Indo
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Graciela Caroca
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Hector R Contreras
- Departamento de Oncología Básico Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Belkis E Marelli
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), CONICET, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Facundo J Salinas
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), CONICET, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Natalia R Salvetti
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), CONICET, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Hugo H Ortega
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), CONICET, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Pablo Lorenzano Menna
- Laboratorio de Oncología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Provincia de Buenos Aires, Argentina
| | - Sergio Szajnman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratorio de Oncología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Provincia de Buenos Aires, Argentina
| | - Juan B Rodríguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ernesto J Podesta
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina.
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
43
|
Bhattarai S, Saini G, Gogineni K, Aneja R. Quadruple-negative breast cancer: novel implications for a new disease. Breast Cancer Res 2020; 22:127. [PMID: 33213491 PMCID: PMC7678108 DOI: 10.1186/s13058-020-01369-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Based on the androgen receptor (AR) expression, triple-negative breast cancer (TNBC) can be subdivided into AR-positive TNBC and AR-negative TNBC, also known as quadruple-negative breast cancer (QNBC). QNBC characterization and treatment is fraught with many challenges. In QNBC, there is a greater paucity of prognostic biomarkers and therapeutic targets than AR-positive TNBC. Although the prognostic role of AR in TNBC remains controversial, many studies revealed that a lack of AR expression confers a more aggressive disease course. Literature characterizing QNBC tumor biology and uncovering novel biomarkers for improved management of the disease remains scarce. In this comprehensive review, we summarize the current QNBC landscape and propose avenues for future research, suggesting potential biomarkers and therapeutic strategies that warrant investigation.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Geetanjali Saini
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Keerthi Gogineni
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
44
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
45
|
Fernández LP, Merino M, Colmenarejo G, Moreno-Rubio J, Sánchez-Martínez R, Quijada-Freire A, Gómez de Cedrón M, Reglero G, Casado E, Sereno M, Ramírez de Molina A. Metabolic enzyme ACSL3 is a prognostic biomarker and correlates with anticancer effectiveness of statins in non-small cell lung cancer. Mol Oncol 2020; 14:3135-3152. [PMID: 33030783 PMCID: PMC7718959 DOI: 10.1002/1878-0261.12816] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common cancers, still characterized by high mortality rates. As lipid metabolism contributes to cancer metabolic reprogramming, several lipid metabolism genes are considered prognostic biomarkers of cancer. Statins are a class of lipid-lowering compounds used in treatment of cardiovascular disease that are currently studied for their antitumor effects. However, their exact mechanism of action and specific conditions in which they should be administered remains unclear. Here, we found that simvastatin treatment effectively promoted antiproliferative effects and modulated lipid metabolism-related pathways in non-small cell lung cancer (NSCLC) cells and that the antiproliferative effects of statins were potentiated by overexpression of acyl-CoA synthetase long-chain family member 3 (ACSL3). Moreover, ACSL3 overexpression was associated with worse clinical outcome in patients with high-grade NSCLC. Finally, we found that patients with high expression levels of ACSL3 displayed a clinical benefit of statins treatment. Therefore, our study highlights ACSL3 as a prognostic biomarker for NSCLC, useful to select patients who would obtain a clinical benefit from statin administration.
Collapse
Affiliation(s)
| | - María Merino
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Juan Moreno-Rubio
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | | | | | | | - Guillermo Reglero
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | | |
Collapse
|
46
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
47
|
Ma Y, Zhang X, Alsaidan OA, Yang X, Sulejmani E, Zha J, Beharry Z, Huang H, Bartlett M, Lewis Z, Cai H. Long-Chain Acyl-CoA Synthetase 4-Mediated Fatty Acid Metabolism Sustains Androgen Receptor Pathway-Independent Prostate Cancer. Mol Cancer Res 2020; 19:124-135. [PMID: 33077484 DOI: 10.1158/1541-7786.mcr-20-0379] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
Androgen deprivation therapy has led to elevated cases of androgen receptor (AR) pathway-independent prostate cancer with dysregulated fatty acid metabolism. However, it is unclear how prostate cancer cells sustain dysregulated fatty acid metabolism to drive AR-independent prostate cancer. Long-chain acyl-CoA synthetases (ACSL) catalyze the conversion of fatty acids into fatty acyl-CoAs that are required for fatty acid metabolism. In this study, we demonstrate that expression levels of ACSL3 and 4 were oppositely regulated by androgen-AR signaling in prostate cancer cells. AR served as a transcription suppressor to bind at the ACSL4 promoter region and inhibited its transcription. Inhibition of androgen-AR signaling significantly downregulated ACSL3 and PSA, but elevated ACSL4 levels. ACSL4 regulated a broad spectrum of fatty acyl-CoA levels, and its catalytic efficiency in fatty acyl-CoAs biosynthesis was about 1.9- to 4.3-fold higher than ACSL3. In addition, in contrast to ACSL3, ACSL4 significantly regulated global protein myristoylation or myristoylation of Src kinase in prostate cancer cells. Knockdown of ACSL4 inhibited the proliferation, migration, invasion, and xenograft growth of AR-independent prostate cancer cells. Our results suggest that the surge of ACSL4 levels by targeting AR signaling increases fatty acyl-CoAs biosynthesis and protein myristoylation, indicating the opposite, yet complementary or Yin-Yang regulation of ACSL3 and 4 levels in sustaining fatty acid metabolism when targeting androgen-AR signaling. This study reveals a mechanistic understanding of ACSL4 as a potential therapeutic target for treatment of AR-independent prostate cancer. IMPLICATIONS: AR coordinately regulates the expression of ACSL3 and ACSL4, such that AR pathway-independent prostate tumors become dependent on ACSL4-mediated fatty acid metabolism.
Collapse
Affiliation(s)
- Yongjie Ma
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Xiaohan Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Essilvo Sulejmani
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Junyi Zha
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Zanna Beharry
- Department of Chemical and Physical Sciences, University of the Virgin Islands, St. Thomas, Virgin Islands
| | - Hanwen Huang
- Department of Epidemiology & Biostatistics, University of Georgia Athens, Athens, Georgia
| | - Michael Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Zachary Lewis
- Department of Microbiology, University of Georgia Athens, Athens, Georgia
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia.
| |
Collapse
|
48
|
Li D, Li Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther 2020; 5:108. [PMID: 32606298 PMCID: PMC7327075 DOI: 10.1038/s41392-020-00216-5] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/08/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Ferroptosis is a new form of programmed cell death characterized by the accumulation of iron-dependent lethal lipid peroxides. Recent discoveries have focused on alterations that occur in lipid metabolism during ferroptosis and have provided intriguing insights into the interplay between ferroptosis and lipid metabolism in cancer. Their interaction regulates the initiation, development, metastasis, therapy resistance of cancer, as well as the tumor immunity, which offers several potential strategies for cancer treatment. This review is a brief overview of the features characterizing the interaction between ferroptosis and lipid metabolism, and highlights the significance of this interaction in cancer.
Collapse
Affiliation(s)
- Dingshan Li
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yongsheng Li
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China. .,Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
49
|
Wang J, Wang Z, Yuan J, Wang J, Shen X. The positive feedback between ACSL4 expression and O-GlcNAcylation contributes to the growth and survival of hepatocellular carcinoma. Aging (Albany NY) 2020; 12:7786-7800. [PMID: 32357142 PMCID: PMC7244051 DOI: 10.18632/aging.103092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 04/13/2020] [Indexed: 06/01/2023]
Abstract
Acyl-CoA ligase 4 (ACSL4) has been reported to be overexpressed in hepatocellular carcinoma (HCC) and to enhance cell proliferation. However, the molecular mechanisms underlying the role of ACSL4 in HCC progression remain largely unclear. Here, we aimed to investigate whether and how O-GlcNAcylation and ACSL4 regulate each other and HCC progression. The clinical significance of ACSL4, O-GlcNAc and GLUT1 in HCC was determined by Pearson chi-squared test and Kaplan-Meier analysis. CCK-8, flow cytometry and in vivo tumour formation assays were performed to detect cell proliferation, apoptosis and tumorigenesis. IP technology was used to evaluate the relationship between ACSL4 and O-GlcNAc. ACSL4, GLUT1 and O-GlcNAc levels were elevated in HCC tissues and predicted poor prognosis in HCC patients. ACSL4 overexpression significantly promoted cell proliferation and tumorigenesis and inhibited cell apoptosis, whereas these effects were all obviously impaired when mTOR signalling was repressed or GLUT1 was downregulated. ACSL4 could be O-GlcNAcylated, and silencing of ACSL4 abolished the effects of O-GlcNAcylation on cell growth promotion and apoptosis inhibition. Collectively, this study demonstrates that ACSL4 contributes to the growth and survival of HCC by enhancing GLUT1-mediated O-GlcNAcylation. In turn, O-GlcNAcylation promotes HCC growth partially by increasing ACSL4 expression.
Collapse
Affiliation(s)
- Jiachen Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhao Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiaxiang Yuan
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiaxiang Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xinsheng Shen
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
50
|
Feng WW, Kurokawa M. Lipid metabolic reprogramming as an emerging mechanism of resistance to kinase inhibitors in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3. [PMID: 32226926 PMCID: PMC7100881 DOI: 10.20517/cdr.2019.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is one of the leading causes of death in women in the United States. In general, patients with breast cancer undergo surgical resection of the tumor and/or receive drug treatment to kill or suppress the growth of cancer cells. In this regard, small molecule kinase inhibitors serve as an important class of drugs used in clinical and research settings. However, the development of resistance to these compounds, in particular HER2 and CDK4/6 inhibitors, often limits durable clinical responses to therapy. Emerging evidence indicates that PI3K/AKT/mTOR pathway hyperactivation is one of the most prominent mechanisms of resistance to many small molecule inhibitors as it bypasses upstream growth factor receptor inhibition. Importantly, the PI3K/AKT/mTOR pathway also plays a pertinent role in regulating various aspects of cancer metabolism. Recent studies from our lab and others have demonstrated that altered lipid metabolism mediates the development of acquired drug resistance to HER2-targeted therapies in breast cancer, raising an interesting link between reprogrammed kinase signaling and lipid metabolism. It appears that, upon development of resistance to HER2 inhibitors, breast cancer cells rewire lipid metabolism to somehow circumvent the inhibition of kinase signaling. Here, we review various mechanisms of resistance observed for kinase inhibitors and discuss lipid metabolism as a potential therapeutic target to overcome acquired drug resistance.
Collapse
Affiliation(s)
- William W Feng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Manabu Kurokawa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|