1
|
Smith CL, Bednarchik B, Aung H, Wilk DJ, Boxer RS, Daddato AE, Wilson BM, Gravenstein S, Canaday DH. Humoral and Cellular Immunity Induced by Adjuvanted and Standard Trivalent Influenza Vaccine in Older Nursing Home Residents. J Infect Dis 2023; 228:704-714. [PMID: 36951196 DOI: 10.1093/infdis/jiad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Despite wide use of adjuvanted influenza vaccine in nursing home residents (NHR), little immunogenicity data exist for this population. METHODS We collected blood from NHR (n = 85) living in nursing homes participating in a cluster randomized clinical trial comparing MF59-adjuvanted trivalent inactivated influenza vaccine (aTIV) with nonadjuvanted vaccine (TIV) (parent trial, NCT02882100). NHR received either vaccine during the 2016-2017 influenza season. We assessed cellular and humoral immunity using flow cytometry and hemagglutinin inhibition, antineuraminidase (enzyme-linked lectin assay), and microneutralization assays. RESULTS Both vaccines were similarly immunogenic and induced antigen-specific antibodies and T cells, but aTIV specifically induced significantly larger 28 days after vaccination (D28) titers against A/H3N2 neuraminidase than TIV. CONCLUSIONS NHRs respond immunologically to TIV and aTIV. From these data, the larger aTIV-induced antineuraminidase response at D28 may help explain the increased clinical protection observed in the parent clinical trial for aTIV over TIV in NHR during the A/H3N2-dominant 2016-2017 influenza season. Additionally, a decline back to prevaccination titers at 6 months after vaccination emphasizes the importance of annual vaccination against influenza. CLINICAL TRIALS REGISTRATION NCT02882100.
Collapse
Affiliation(s)
- Carson L Smith
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Beth Bednarchik
- Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Htin Aung
- Division of Infectious Diseases & HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Dennis J Wilk
- Division of Infectious Diseases & HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rebecca S Boxer
- Institute for Health Research, Kaiser Permanente of Colorado, Aurora, CO, USA
| | - Andrea E Daddato
- Institute for Health Research, Kaiser Permanente of Colorado, Aurora, CO, USA
| | - Brigid M Wilson
- Geriatric Research, Education and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Stefan Gravenstein
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center on Innovation in Long-Term Services and Supports, Providence Veterans Administration Medical Center, Providence, RI, USA
| | - David H Canaday
- Division of Infectious Diseases & HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Geriatric Research, Education and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
| |
Collapse
|
2
|
Kim DB, Lee SM, Geem KR, Kim J, Kim EH, Lee DW. In planta Production and Validation of Neuraminidase Derived from Genotype 4 Reassortant Eurasian Avian-like H1N1 Virus as a Vaccine Candidate. PLANTS (BASEL, SWITZERLAND) 2022; 11:2984. [PMID: 36365437 PMCID: PMC9655071 DOI: 10.3390/plants11212984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Influenza viruses are a major public health threat that causes repetitive outbreaks. In recent years, genotype 4 (G4) reassortant Eurasian avian-like (EA) H1N1 (G4 EA H1N1) has garnered attention as a potential novel pandemic strain. The necessity of developing vaccines against G4 EA H1N1 is growing because of the increasing cases of human infection and the low cross-reactivity of the strain with current immunity. In this study, we produced a G4 EA H1N1-derived neuraminidase (G4NA) as a vaccine candidate in Nicotiana benthamiana. The expressed G4NA was designed to be accumulated in the endoplasmic reticulum (ER). The M-domain of the human receptor-type tyrosine-protein phosphatase C was incorporated into the expression cassette to enhance the translation of G4NA. In addition, the family 3 cellulose-binding module and Brachypodium distachyon small ubiquitin-like modifier sequences were used to enable the cost-effective purification and removal of unnecessary domains after purification, respectively. The G4NA produced in plants displayed high solubility and assembled as a tetramer, which is required for the efficacy of an NA-based vaccine. In a mouse immunization model, the G4NA produced in plants could induce significant humoral immune responses. The plant-produced G4NA also stimulated antigen-specific CD4 T cell activation. These G4NA vaccine-induced immune responses were intensified by the administration of the antigen with a vaccine adjuvant. These results suggest that G4NA produced in plants has great potential as a vaccine candidate against G4 EA H1N1.
Collapse
Affiliation(s)
- Da Been Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Sun Min Lee
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Kyoung Rok Geem
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Jitae Kim
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
3
|
Ostolaza Ibáñez A, Corroza Laviñeta J, Ayuso Blanco T. Immunosenescence: the role of age in multiple sclerosis. NEUROLOGÍA (ENGLISH EDITION) 2022; 38:284-290. [PMID: 35260362 DOI: 10.1016/j.nrleng.2020.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION The number of elderly people with multiple sclerosis (MS) has increased in line with population ageing. As the immune system presents profound changes over an individual's lifetime, it is important to understand the differences between these patients and younger patients. DEVELOPMENT Immunosenescence, defined as age-related alterations naturally occurring in the immune system, particularly influences tolerance, response, and adverse effects of disease-modifying treatments for MS. Thymic involution is the most noteworthy characteristic of this phenomenon. This process leads to a reduction in the number of virgin T cells. Other effects include an inverted CD4+/CD8+ cell ratio, severe alterations in NK cell functioning, and reduced tissue repair capacity in the brain. CONCLUSIONS The number of older people with MS is increasing due to population ageing, advances in disease-modifying treatments, and improved health and social care of these patients. Ageing of the immune system increases the risk of infections, tumours, and autoimmune diseases in elderly individuals. Furthermore, neurodegeneration is accelerated in patients with MS due to the nervous system's loss of remyelination capacity. Understanding of the changes affecting the immune system in the elderly population is essential to improving the care provided to this ever-growing patient group.
Collapse
|
4
|
Rüthrich MM, Giesen N, Mellinghoff SC, Rieger CT, von Lilienfeld-Toal M. Cellular Immune Response after Vaccination in Patients with Cancer-Review on Past and Present Experiences. Vaccines (Basel) 2022; 10:182. [PMID: 35214642 PMCID: PMC8875094 DOI: 10.3390/vaccines10020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Patients with cancer are at particular risk for infection but also have diminished vaccine responses, usually quantified by the level of specific antibodies. Nonetheless, vaccines are specifically recommended in this vulnerable patient group. Here, we discuss the cellular part of the vaccine response in patients with cancer. We summarize the experience with vaccines prior to and during the SARS-CoV-2 pandemic in different subgroups, and we discuss why, especially in patients with cancer, T cells may be the more reliable correlate of protection. Finally, we provide a brief outlook on options to improve the cellular response to vaccines.
Collapse
Affiliation(s)
- Maria Madeleine Rüthrich
- Department of Internal Medicine II, Hematology and Medical Oncology, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany;
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Nicola Giesen
- Department of Haematology and Oncology, Internal Medicine V, University Hospital Heidelberg, 69115 Heidelberg, Germany;
| | - Sibylle C. Mellinghoff
- Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, University of Cologne, 50923 Cologne, Germany;
| | - Christina T. Rieger
- Hemato-Oncology Germering & Interdisciplinary Tumorcenter, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Marie von Lilienfeld-Toal
- Department of Internal Medicine II, Hematology and Medical Oncology, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany;
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| |
Collapse
|
5
|
Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A, Kuthuru O, Gouma S, Hicks P, Meng W, Rosenfeld AM, Dysinger S, Lundgreen KA, Kuri-Cervantes L, Adamski S, Hicks A, Korte S, Oldridge DA, Baxter AE, Giles JR, Weirick ME, McAllister CM, Dougherty J, Long S, D'Andrea K, Hamilton JT, Betts MR, Luning Prak ET, Bates P, Hensley SE, Greenplate AR, Wherry EJ. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination. Sci Immunol 2021; 6:eabi6950. [PMID: 33858945 PMCID: PMC8158969 DOI: 10.1126/sciimmunol.abi6950] [Citation(s) in RCA: 496] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Novel mRNA vaccines for SARS-CoV-2 have been authorized for emergency use. Despite their efficacy in clinical trials, data on mRNA vaccine-induced immune responses are mostly limited to serological analyses. Here, we interrogated antibody and antigen-specific memory B cells over time in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects. SARS-CoV-2 naïve individuals required both vaccine doses for optimal increases in antibodies, particularly for neutralizing titers against the B.1.351 variant. Memory B cells specific for full-length spike protein and the spike receptor binding domain (RBD) were also efficiently primed by mRNA vaccination and detectable in all SARS-CoV-2 naive subjects after the second vaccine dose, though the memory B cell response declined slightly with age. In SARS-CoV-2 recovered individuals, antibody and memory B cell responses were significantly boosted after the first vaccine dose; however, there was no increase in circulating antibodies, neutralizing titers, or antigen-specific memory B cells after the second dose. This robust boosting after the first vaccine dose strongly correlated with levels of pre-existing memory B cells in recovered individuals, identifying a key role for memory B cells in mounting recall responses to SARS-CoV-2 antigens. Together, our data demonstrated robust serological and cellular priming by mRNA vaccines and revealed distinct responses based on prior SARS-CoV-2 exposure, whereby COVID-19 recovered subjects may only require a single vaccine dose to achieve peak antibody and memory B cell responses. These findings also highlight the utility of defining cellular responses in addition to serologies and may inform SARS-CoV-2 vaccine distribution in a resource-limited setting.
Collapse
Affiliation(s)
- Rishi R Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark M Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Philip Hicks
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wenzhao Meng
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah Dysinger
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharon Adamski
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda Hicks
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott Korte
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Derek A Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine R Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Madison E Weirick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher M McAllister
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sherea Long
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacob T Hamilton
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Subrahmanyam PB, Holmes TH, Lin D, Su LF, Obermoser G, Banchereau J, Pascual V, García-Sastre A, Albrecht RA, Palucka K, Davis MM, Maecker HT. Mass Cytometry Defines Virus-Specific CD4 + T Cells in Influenza Vaccination. Immunohorizons 2020; 4:774-788. [PMID: 33310880 PMCID: PMC7891553 DOI: 10.4049/immunohorizons.1900097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
The antiviral response to influenza virus is complex and multifaceted, involving many immune cell subsets. There is an urgent need to understand the role of CD4+ T cells, which orchestrate an effective antiviral response, to improve vaccine design strategies. In this study, we analyzed PBMCs from human participants immunized with influenza vaccine, using high-dimensional single-cell proteomic immune profiling by mass cytometry. Data were analyzed using a novel clustering algorithm, denoised ragged pruning, to define possible influenza virus–specific clusters of CD4+ T cells. Denoised ragged pruning identified six clusters of cells. Among these, one cluster (Cluster 3) was found to increase in abundance following stimulation with influenza virus peptide ex vivo. A separate cluster (Cluster 4) was found to expand in abundance between days 0 and 7 postvaccination, indicating that it is vaccine responsive. We examined the expression profiles of all six clusters to characterize their lineage, functionality, and possible role in the response to influenza vaccine. Clusters 3 and 4 consisted of effector memory cells, with high CD154 expression. Cluster 3 expressed cytokines like IL-2, IFN-γ, and TNF-α, whereas Cluster 4 expressed IL-17. Interestingly, some participants had low abundance of Clusters 3 and 4, whereas others had higher abundance of one of these clusters compared with the other. Taken together, we present an approach for identifying novel influenza virus–reactive CD4+ T cell subsets, a method that could help advance understanding of the immune response to influenza, predict responsiveness to vaccines, and aid in better vaccine design.
Collapse
Affiliation(s)
- Priyanka B Subrahmanyam
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | - Tyson H Holmes
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | - Dongxia Lin
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | - Laura F Su
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | - Gerlinde Obermoser
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75246
| | | | - Virginia Pascual
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75246
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Karolina Palucka
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75246
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | - Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
7
|
Hwang HS, Chang M, Kim YA. Influenza-Host Interplay and Strategies for Universal Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030548. [PMID: 32962304 PMCID: PMC7564814 DOI: 10.3390/vaccines8030548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Influenza is an annual epidemic and an occasional pandemic caused by pathogens that are responsible for infectious respiratory disease. Humans are highly susceptible to the infection mediated by influenza A viruses (IAV). The entry of the virus is mediated by the influenza virus hemagglutinin (HA) glycoprotein that binds to the cellular sialic acid receptors and facilitates the fusion of the viral membrane with the endosomal membrane. During IAV infection, virus-derived pathogen-associated molecular patterns (PAMPs) are recognized by host intracellular specific sensors including toll-like receptors (TLRs), C-type lectin receptors, retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) either on the cell surface or intracellularly in endosomes. Herein, we comprehensively review the current knowledge available on the entry of the influenza virus into host cells and the molecular details of the influenza virus–host interface. We also highlight certain strategies for the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| |
Collapse
|
8
|
Ostolaza Ibáñez A, Corroza Laviñeta J, Ayuso Blanco T. Immunosenescence: the role of age in multiple sclerosis. Neurologia 2020; 38:S0213-4853(20)30226-7. [PMID: 32962809 DOI: 10.1016/j.nrl.2020.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The number of elderly people with multiple sclerosis (MS) has increased in line with population ageing. As the immune system presents profound changes over an individual's lifetime, it is important to understand the differences between these patients and younger patients. DEVELOPMENT Immunosenescence, defined as age-related alterations naturally occurring in the immune system, particularly influences tolerance, response, and adverse effects of disease-modifying treatments for MS. Thymic involution is the most noteworthy characteristic of this phenomenon. This process leads to a reduction in the number of virgin T cells. Other effects include an inverted CD4 + /CD8 + cell ratio, severe alterations in NK cell functioning, and reduced tissue repair capacity in the brain. CONCLUSIONS The number of older people with MS is increasing due to population ageing, advances in disease-modifying treatments, and improved health and social care of these patients. Ageing of the immune system increases the risk of infections, tumours, and autoimmune diseases in elderly individuals. Furthermore, neurodegeneration is accelerated in patients with MS due to the nervous system's loss of remyelination capacity. Understanding of the changes affecting the immune system in the elderly population is essential to improving the care provided to this ever-growing patient group.
Collapse
Affiliation(s)
- A Ostolaza Ibáñez
- Servicio de Neurología, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), Navarra, España.
| | - J Corroza Laviñeta
- Servicio de Neurología, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), Navarra, España
| | - T Ayuso Blanco
- Servicio de Neurología, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), Navarra, España
| |
Collapse
|
9
|
Systems Vaccinology for a Live Attenuated Tularemia Vaccine Reveals Unique Transcriptional Signatures That Predict Humoral and Cellular Immune Responses. Vaccines (Basel) 2019; 8:vaccines8010004. [PMID: 31878161 PMCID: PMC7158697 DOI: 10.3390/vaccines8010004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Tularemia is a potential biological weapon due to its high infectivity and ease of dissemination. This study aimed to characterize the innate and adaptive responses induced by two different lots of a live attenuated tularemia vaccine and compare them to other well-characterized viral vaccine immune responses. Methods: Microarray analyses were performed on human peripheral blood mononuclear cells (PBMCs) to determine changes in transcriptional activity that correlated with changes detected by cellular phenotyping, cytokine signaling, and serological assays. Transcriptional profiles after tularemia vaccination were compared with yellow fever [YF-17D], inactivated [TIV], and live attenuated [LAIV] influenza. Results: Tularemia vaccine lots produced strong innate immune responses by Day 2 after vaccination, with an increase in monocytes, NK cells, and cytokine signaling. T cell responses peaked at Day 14. Changes in gene expression, including upregulation of STAT1, GBP1, and IFIT2, predicted tularemia-specific antibody responses. Changes in CCL20 expression positively correlated with peak CD8+ T cell responses, but negatively correlated with peak CD4+ T cell activation. Tularemia vaccines elicited gene expression signatures similar to other replicating vaccines, inducing early upregulation of interferon-inducible genes. Conclusions: A systems vaccinology approach identified that tularemia vaccines induce a strong innate immune response early after vaccination, similar to the response seen after well-studied viral vaccines, and produce unique transcriptional signatures that are strongly correlated to the induction of T cell and antibody responses.
Collapse
|
10
|
Cobey S, Gouma S, Parkhouse K, Chambers BS, Ertl HC, Schmader KE, Halpin RA, Lin X, Stockwell TB, Das SR, Landon E, Tesic V, Youngster I, Pinsky BA, Wentworth DE, Hensley SE, Grad YH. Poor Immunogenicity, Not Vaccine Strain Egg Adaptation, May Explain the Low H3N2 Influenza Vaccine Effectiveness in 2012-2013. Clin Infect Dis 2019; 67:327-333. [PMID: 29471464 PMCID: PMC6051447 DOI: 10.1093/cid/ciy097] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/03/2018] [Indexed: 12/28/2022] Open
Abstract
Background Influenza vaccination aims to prevent infection by influenza virus and reduce associated morbidity and mortality; however, vaccine effectiveness (VE) can be modest, especially for subtype A(H3N2). Low VE has been attributed to mismatches between the vaccine and circulating influenza strains and to the vaccine’s elicitation of protective immunity in only a subset of the population. The low H3N2 VE in the 2012–2013 season was attributed to egg-adaptive mutations that created antigenic mismatch between the actual vaccine strain (IVR-165) and both the intended vaccine strain (A/Victoria/361/2011) and the predominant circulating strains (clades 3C.2 and 3C.3). Methods We investigated the basis of low VE in 2012–2013 by determining whether vaccinated and unvaccinated individuals were infected by different viral strains and by assessing the serologic responses to IVR-165, A/Victoria/361/2011, and 3C.2 and 3C.3 strains in an adult cohort before and after vaccination. Results We found no significant genetic differences between the strains that infected vaccinated and unvaccinated individuals. Vaccination increased titers to A/Victoria/361/2011 and 3C.2 and 3C.3 representative strains as much as to IVR-165. These results are consistent with the hypothesis that vaccination boosted cross-reactive immune responses instead of specific responses against unique vaccine epitopes. Only approximately one-third of the cohort achieved a ≥4-fold increase in titer. Conclusions In contrast to analyses based on ferret studies, low H3N2 VE in 2012–2013 in adults does not appear to be due to egg adaptation of the vaccine strain. Instead, low VE might have been caused by low vaccine immunogenicity in a subset of the population.
Collapse
Affiliation(s)
- Sarah Cobey
- Department of Ecology & Evolution, University of Chicago, Illinois
| | - Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kaela Parkhouse
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Benjamin S Chambers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Hildegund C Ertl
- Division of Geriatrics, Duke University Medical Center, North Carolina.,Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, North Carolina
| | - Kenneth E Schmader
- Division of Geriatrics, Duke University Medical Center, North Carolina.,Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, North Carolina
| | - Rebecca A Halpin
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland
| | - Xudong Lin
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland
| | - Timothy B Stockwell
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland
| | - Suman R Das
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland
| | - Emily Landon
- Department of Medicine, University of Chicago, Illinois
| | - Vera Tesic
- Department of Pathology, University of Chicago, Illinois
| | - Ilan Youngster
- Division of Pediatrics and the Center for Microbiome Research, Assaf Harofeh Medical Center, Tel Aviv University, Israel.,Division of Infectious Diseases, Boston Children's Hospital, Massachusetts
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, California.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, California
| | - David E Wentworth
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, Massachusetts.,Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Sanyal M, Holmes TH, Maecker HT, Albrecht RA, Dekker CL, He XS, Greenberg HB. Diminished B-Cell Response After Repeat Influenza Vaccination. J Infect Dis 2019; 219:1586-1595. [PMID: 30496437 PMCID: PMC6473172 DOI: 10.1093/infdis/jiy685] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Annual vaccination with influenza vaccines is recommended for protection against influenza in the United States. Past clinical studies and meta-analysis, however, have reported conflicting results on the benefits of annual vaccination. B-cell responses elicited following repeat influenza vaccinations over multiple seasons have not been examined in detail. We analyzed the B-cell and antibody (Ab) responses in volunteers vaccinated yearly, from 2010 or 2011 through 2014, with seasonal trivalent inactivated influenza vaccines. Statistical analyses were designed to help correct for possible bias due to reduced sample size in the later years of the study. We show that, after the second annual vaccination, the frequency of vaccine-specific plasmablasts and the binding reactivity of plasmablast-derived polyclonal Abs are reduced and do not increase in subsequent years. Similar trends are observed with the serum hemagglutination inhibition Ab response after each annual vaccination, as well as the binding reactivity of plasmablast-derived polyclonal Abs to the hemagglutinin of influenza A virus vaccine components, even with changes in the seasonal vaccine components during the study. Our findings indicate a diminished B-cell response to annual vaccination with seasonal trivalent influenza vaccine. These results emphasize the need for developing improved strategies to enhance the immunogenicity and efficacy of annual influenza vaccination.
Collapse
Affiliation(s)
- Mrinmoy Sanyal
- Department of Medicine, Stanford University School of Medicine, Stanford
- Department of Biochemistry, Stanford University School of Medicine, Stanford
- VA Palo Alto Health Care System, Palo Alto, California
| | - Tyson H Holmes
- Department of Medicine, Stanford University School of Medicine, Stanford
| | - Holden T Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cornelia L Dekker
- Department of Pediatrics, Stanford University School of Medicine, Stanford
| | - Xiao-Song He
- Department of Medicine, Stanford University School of Medicine, Stanford
- VA Palo Alto Health Care System, Palo Alto, California
| | - Harry B Greenberg
- Department of Medicine, Stanford University School of Medicine, Stanford
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford
- VA Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
12
|
Trieu MC, Zhou F, Lartey SL, Sridhar S, Mjaaland S, Cox RJ. Augmented CD4 + T-cell and humoral responses after repeated annual influenza vaccination with the same vaccine component A/H1N1pdm09 over 5 years. NPJ Vaccines 2018; 3:37. [PMID: 30131880 PMCID: PMC6092382 DOI: 10.1038/s41541-018-0069-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Annual seasonal influenza vaccination is recommended for high-risk populations and often occupational groups such as healthcare workers (HCWs). Repeated annual vaccination has been reported to either have no impact or reduce antibody responses or protection. However, whether repeated vaccination influences T-cell responses has not been sufficiently studied, despite the increasing evidence of the protective roles of T-cell immunity. Here, we explored the impact of repeated annual vaccination with the same vaccine strain (H1N1pdm09) over multiple seasons in the post-2009 pandemic era and showed that repeated vaccination increased both T-cell and humoral responses. Using the T-cell FluroSpot and intracellular cytokine-staining, the hemagglutination inhibition (HI), and the memory B-cell (MBC) ELISpot assays, we investigated pre- and postvaccination T cells, antibodies, and MBCs in a cohort of HCWs repeatedly vaccinated with H1N1pdm09 for 5 years (pandemic vaccination in 2009 and subsequently annual seasonal vaccination containing H1N1pdm09 during 2010-2013). We found that the prevaccination H1N1pdm09-specific T cells, antibodies, and MBCs were significantly increased after 3-4 repeated vaccinations and maintained at high levels throughout seasons 2012 and 2013. The cross-reactive IFN-γ-secreting CD4+ cells recognizing conserved viral external or internal epitopes were also maintained throughout 2012 and 2013. Repeated vaccination improved the multifunctional memory CD4+ responses. Particularly, the IFN-γ+TNF-α+CD4+ T cells were boosted following each vaccination. HI antibodies were significantly induced after each vaccination over 5 years. Our findings indicate a broad impact of repeated annual vaccination, even with the same vaccine component, on the influenza-specific T-cell and humoral immunity and support the continuing recommendation of annual influenza vaccination. Despite the widespread implementation of annual influenza vaccination, the effect of repeated vaccinations on the immune response in subsequent seasons is poorly understood. A team led by Rebecca Jane Cox at the University of Bergen examined the humoral and T-cell response elicited by 2009's H1N1pdm09 seasonal vaccine. Since the H1N1pdm09 strain continued to circulate in subsequent years it was included in later vaccine formulations and the authors could therefore examine the effects of repeated annual vaccination over multiple seasons. They observed that H1N1pdm09-specific polyfunctional T-cell responses and antibodies were enhanced by multiple annual vaccinations. In particular, T cells showed progressive skewing to IFN-γ+TNF+ double producers, but the magnitude of the T-cell response tended to plateau after 3-4 repeated vaccinations. The findings suggest that including the same component in subsequent annual vaccines can significantly impact the influenza immune response.
Collapse
Affiliation(s)
- Mai-Chi Trieu
- 1The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway.,2K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fan Zhou
- 1The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway.,2K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sarah Larteley Lartey
- 1The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway.,2K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Saranya Sridhar
- 3Jenner Institute, University of Oxford, Oxford, UK.,6Present Address: Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy l'Etoile, France
| | - Siri Mjaaland
- 2K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,4Department of Infectious Disease Immunology, Norwegian Institute of Public Health, Oslo, Norway
| | - Rebecca Jane Cox
- 1The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway.,2K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,5Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Sycheva AL, Pogorelyy MV, Komech EA, Minervina AA, Zvyagin IV, Staroverov DB, Chudakov DM, Lebedev YB, Mamedov IZ. Quantitative profiling reveals minor changes of T cell receptor repertoire in response to subunit inactivated influenza vaccine. Vaccine 2018; 36:1599-1605. [PMID: 29454515 DOI: 10.1016/j.vaccine.2018.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 12/26/2022]
Abstract
Vaccination against influenza is widely used to protect against seasonal flu epidemic although its effectiveness is debated. Here we performed deep quantitative T cell receptor repertoire profiling in peripheral blood of a healthy volunteer in response to trivalent subunit influenza vaccine. We did not observe significant rebuilding of peripheral blood T cell receptors composition in response to vaccination. However, we found several clonotypes in memory T cell fraction that were undetectable before the vaccination and had a maximum concentration at day 45 after vaccine administration. These cells were found in lower concentration in the course of repertoire monitoring for two years period. Our observation suggests a potential for recruitment of only a limited number of new T cells after each seasonal influenza vaccination.
Collapse
Affiliation(s)
- Anastasiia L Sycheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Mikhail V Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ekaterina A Komech
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasia A Minervina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ivan V Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, 117997 Moscow, Russia; Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia; Central European Institute of Technology, Brno 60177, Czech Republic
| | - Yuri B Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
| |
Collapse
|
14
|
Immunologic response to vaccine challenge in pregnant PTPN22 R620W carriers and non-carriers. PLoS One 2017; 12:e0181338. [PMID: 28723925 PMCID: PMC5517002 DOI: 10.1371/journal.pone.0181338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/29/2017] [Indexed: 11/21/2022] Open
Abstract
Objectives Influenza infection is a significant cause of respiratory morbidity among pregnant women. Seasonal influenza vaccination engages innate immune receptors to promote protective immunity. A coding polymorphism (R620W) in PTPN22 imparts elevated risk for human infection and autoimmune disease, predisposes to diminished innate immune responses, and associates with reduced immunization responses. We sought to quantify the effects of PTPN22-R620W on humoral and cell-mediated immune responses to the inactivated influenza vaccine among healthy pregnant women. Study Design Immune responses were measured in healthy pregnant R620W carrier (n = 17) and non-carrier (n = 33) women receiving the 2013 quadrivalent inactivated influenza vaccine (Fluzone). Hemagglutination inhibition assays were performed to quantify neutralizing antibodies; functional influenza-reactive CD4 T cells were quantified by flow cytometry, and influenza-specific CD8 T cells were enumerated with MHC Class I tetramers. Antibody seroconversion data were evaluated by Chi-square analysis, and the Mann-Whitney or Wilcoxon signed-rank tests were applied to T cell response data. Results PTPN22 R620W carrier (n = 17) and non-carrier (n = 33) groups did not differ in age, parity, BMI, gestational age at time of vaccine, or history of prior influenza vaccination. After Fluzone exposure, 51.5% of non-carriers met criteria for antibody seroconversion to H1N1 influenza, compared with 23.5% of R620W carriers (p = 0.06). Influenza-reactive CD4 T cells showed modest increase at days 9–15 after vaccination in both R620W carriers and non-carriers (p = 0.02 and p = 0.04, respectively). However, there was no difference in overall response between the two groups (p = 0.6). The vaccine did not result in significant induction of influenza-specific CD8 T cells in either group. Conclusions There was no significant difference among healthy pregnant R620W carriers and non-carriers in H1N1 antibody seroconversion rates after influenza vaccination. Studies of larger cohorts will be needed to define the effect of PTPN22 risk allele carriage on antibody and T cell responses to influenza vaccination during pregnancy.
Collapse
|
15
|
Different Repeat Annual Influenza Vaccinations Improve the Antibody Response to Drifted Influenza Strains. Sci Rep 2017; 7:5258. [PMID: 28701762 PMCID: PMC5507920 DOI: 10.1038/s41598-017-05579-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022] Open
Abstract
Seasonal influenza vaccine formulas change almost every year yet information about how this affects the antibody repertoire of vaccine recipients is inadequate. New vaccine virus strains are selected, replacing older strains to better match the currently circulating strains. But even while the vaccine is being manufactured the circulating strains can evolve. The ideal response to a seasonal vaccine would maintain antibodies toward existing strains that might continue to circulate, and to generate cross-reactive antibodies, particularly towards conserved influenza epitopes, potentially limiting infections caused by newly evolving strains. Here we use the hemagglutination inhibition assay to analyze the antibody repertoire in subjects vaccinated two years in a row with either identical vaccine virus strains or with differing vaccine virus strains. The data indicates that changing the vaccine formulation results in an antibody repertoire that is better able to react with strains emerging after the vaccine virus strains are selected. The effect is observed for both influenza A and B strains in groups of subjects vaccinated in three different seasons. Analyses include stratification by age and sex.
Collapse
|
16
|
Goldeck D, Theeten H, Hassouneh F, Oettinger L, Wistuba-Hamprecht K, Cools N, Tsitsilonis OE, Pawelec G. Frequencies of peripheral immune cells in older adults following seasonal influenza vaccination with an adjuvanted vaccine. Vaccine 2017; 35:4330-4338. [PMID: 28689651 DOI: 10.1016/j.vaccine.2017.06.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/23/2017] [Accepted: 06/25/2017] [Indexed: 01/12/2023]
Abstract
As age increases, immune responses and consequently protection following vaccination to seasonal influenza is commonly believed to decrease. Possible drivers of this immune dysfunction include immunosenescence, repeated exposure to the same seasonal influenza antigens, and prior infection with cytomegalovirus (CMV). Here, to determine immune parameters distinguishing vaccine humoral responders (R) from non-responders (NR) following vaccination, we surveyed broad peripheral blood "cellular immune correlates" of older adults vaccinated with Fluad® (an adjuvanted subunit influenza vaccine containing strains H1N1, H3N2 and B). Phenotyping included αβ-T-cells, γδ-T-cells, B-cells and myeloid cells. The frequencies of most of these lymphocyte phenotypes were found to be similar in R and NR, although perhaps counterintuitively, one of the few differences seen between the two groups was higher frequencies of regulatory T-cells in R. These differences were more prominent for responses to the vaccine strains H1N1 and H3N2 than to the B strain, and in CMV-seropositive than CMV-seronegative elderly. Further, frequencies of early-differentiated CD4+ T-cells tended to be higher and frequencies of memory CD4+ T-cells tended to be lower in R than NR. There were also differences in B-cells, with higher frequencies in R compared to NR. To the best of our knowledge, these results are the first to report such differences in elderly people responding or failing to respond to adjuvanted seasonal influenza vaccination.
Collapse
Affiliation(s)
- David Goldeck
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, 72072 Tübingen, Germany.
| | - Heidi Theeten
- Faculty of Medicine and Health Sciences, Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Fakhri Hassouneh
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, 72072 Tübingen, Germany; Department of Immunology, Maimonides Institute for Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Lilly Oettinger
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, 72072 Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, 72072 Tübingen, Germany
| | - Nathalie Cools
- Faculty of Medicine and Health Sciences, Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Ourania E Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Graham Pawelec
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, 72072 Tübingen, Germany; Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
17
|
The Predominant CD4 + Th1 Cytokine Elicited to Chlamydia trachomatis Infection in Women Is Tumor Necrosis Factor Alpha and Not Interferon Gamma. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00010-17. [PMID: 28100498 DOI: 10.1128/cvi.00010-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 01/17/2023]
Abstract
Chlamydia trachomatis infection is the most prevalent bacterial sexually transmitted infection and can cause significant reproductive morbidity in women. There is insufficient knowledge of C. trachomatis-specific immune responses in humans, which could be important in guiding vaccine development efforts. In contrast, murine models have clearly demonstrated the essential role of T helper type 1 (Th1) cells, especially interferon gamma (IFN-γ)-producing CD4+ T cells, in protective immunity to chlamydia. To determine the frequency and magnitude of Th1 cytokine responses elicited to C. trachomatis infection in humans, we stimulated peripheral blood mononuclear cells from 90 chlamydia-infected women with C. trachomatis elementary bodies, Pgp3, and major outer membrane protein and measured IFN-γ-, tumor necrosis factor alpha (TNF-α)-, and interleukin-2 (IL-2)-producing CD4+ and CD8+ T-cell responses using intracellular cytokine staining. The majority of chlamydia-infected women elicited CD4+ TNF-α responses, with frequency and magnitude varying significantly depending on the C. trachomatis antigen used. CD4+ IFN-γ and IL-2 responses occurred infrequently, as did production of any of the three cytokines by CD8+ T cells. About one-third of TNF-α-producing CD4+ T cells coproduced IFN-γ or IL-2. In summary, the predominant Th1 cytokine response elicited to C. trachomatis infection in women was a CD4+ TNF-α response, not CD4+ IFN-γ, and a subset of the CD4+ TNF-α-positive cells produced a second Th1 cytokine.
Collapse
|
18
|
Herati RS, Muselman A, Vella L, Bengsch B, Parkhouse K, Del Alcazar D, Kotzin J, Doyle SA, Tebas P, Hensley SE, Su LF, Schmader KE, Wherry EJ. Successive annual influenza vaccination induces a recurrent oligoclonotypic memory response in circulating T follicular helper cells. Sci Immunol 2017; 2. [PMID: 28620653 DOI: 10.1126/sciimmunol.aag2152] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T follicular helper (Tfh) CD4 cells are crucial providers of B cell help during adaptive immune responses. A circulating population of CD4 T cells, termed cTfh, have similarity to lymphoid Tfh, can provide B cell help, and responded to influenza vaccination. However, it is unclear whether human vaccination-induced cTfh respond in an antigen-specific manner and whether they form long-lasting memory. Here, we identified a cTfh population that expressed multiple T cell activation markers and could be readily identified by coexpression of ICOS and CD38. This subset expressed more Bcl-6, c-Maf, and IL-21 than other blood CD4 subsets. Influenza vaccination induced a strong response in the ICOS+CD38+ cTfh at day 7, and this population included hemagglutinin-specific cells by tetramer staining and antigen-stimulated Activation Induced Marker (AIM) expression. Moreover, TCRB sequencing identified a clonal response in ICOS+CD38+ cTfh that correlated strongly with the increased circulating ICOS+CD38+ cTfh frequency and the circulating plasmablast response. In subjects who received successive annual vaccinations, a recurrent oligoclonal response was identified in the ICOS+CD38+ cTfh subset at 7 days after every vaccination. These oligoclonal responses in ICOS+CD38+ cTfh after vaccination persisted in the ICOS-CD38- cTfh repertoire in subsequent years, suggesting clonal maintenance in a memory reservoir in the more-stable ICOS-CD38- cTfh subset. These data highlight the antigen-specificity, lineage relationships and memory properties of human cTfh responses to vaccination, providing new avenues for tracking and monitoring cTfh responses during infection and vaccination in humans.
Collapse
Affiliation(s)
- Ramin Sedaghat Herati
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Alexander Muselman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Laura Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Bertram Bengsch
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Daniel Del Alcazar
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jonathan Kotzin
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Susan A Doyle
- Division of Geriatrics, Department of Medicine, Duke University Medical Center and Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, North Carolina
| | - Pablo Tebas
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Scott E Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Wistar Institute, Philadelphia, PA
| | - Laura F Su
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kenneth E Schmader
- Division of Geriatrics, Department of Medicine, Duke University Medical Center and Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, North Carolina
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
19
|
Nougarede N, Bisceglia H, Rozières A, Goujon C, Boudet F, Laurent P, Vanbervliet B, Rodet K, Hennino A, Nicolas JF. Nine μg intradermal influenza vaccine and 15 μg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults. Hum Vaccin Immunother 2016; 10:2713-20. [PMID: 25483667 PMCID: PMC4977438 DOI: 10.4161/hv.29695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intanza® 9 μg (Sanofi Pasteur), a trivalent split-virion vaccine administered by intradermal (ID) injection, was approved in Europe in 2009 for the prevention of seasonal influenza in adults 18 to 59 years. Here, we examined the immune responses induced in adults by the ID 9 μg vaccine and the standard trivalent intramuscular (IM) vaccine (Vaxigrip® 15 μg, Sanofi Pasteur). This trial was a randomized, controlled, single-center, open-label study in healthy adults 18 to 40 years of age during the 2007/8 influenza season. Subjects received a single vaccination with the ID 9 μg (n=38) or IM 15 μg (n=42) vaccine. Serum, saliva, and peripheral blood mononuclear cells were collected up to 180 days post-vaccination. Geometric mean hemagglutination inhibition titers, seroprotection rates, seroconversion rates, and pre-vaccination-to-post-vaccination ratios of geometric mean hemagglutination inhibition titers did not differ between the two vaccines. Compared with pre-vaccination, the vaccines induced similar increases in vaccine-specific circulating B cells at day 7 but did not induce significant increases in vaccine-specific memory B cells at day 180. Cell-mediated immunity to all three vaccine strains, measured in peripheral blood mononuclear cells, was high at baseline and not increased by either vaccine. Neither vaccine induced a mucosal immune response. These results show that the humoral and cellular immune responses to the ID 9 μg vaccine are similar to those to the standard IM 15 μg vaccine.
Collapse
Key Words
- BSA, bovine serum albumin
- CHMP, Committee for Medicinal Products for Human Use
- ELISA, enzyme-linked immunosorbent assay
- ELISPOT, enzyme-linked immunospot
- HI, hemagglutination inhibition
- ID, intradermal
- IM, intramuscular
- Ig, immunoglobulin
- PBMC, peripheral blood mononuclear cells
- PBS, phosphate-buffered saline
- adult
- immunogenicity
- intradermal influenza vaccine
- intramuscular vaccination
- trivalent influenza vaccine
Collapse
|
20
|
Crabtree JN, He W, Guan W, Flage M, Miller MS, Peterson EJ. Autoimmune Variant PTPN22 C1858T Is Associated With Impaired Responses to Influenza Vaccination. J Infect Dis 2016; 214:248-57. [PMID: 27034343 DOI: 10.1093/infdis/jiw126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/25/2016] [Indexed: 01/22/2023] Open
Abstract
High-affinity-antibody production, T-cell activation, and interferon upregulation all contribute to protective immunity that occurs in humans following influenza immunization. Hematopoietic cell-specific PTPN22 encodes lymphoid phosphatase (Lyp), which regulates lymphocyte antigen receptor and pattern recognition receptor (PRR) signaling. A PTPN22 variant, R620W (LypW), predisposes to autoimmune and infectious diseases and confers altered signaling through antigen receptors and PRRs. We tested the hypothesis that LypW-bearing humans would have diminished immune response to trivalent influenza vaccine (TIV). LypW carriers exhibited decreased induction of influenza virus-specific CD4(+) T cells expressing effector cytokines and failed to increase antibody affinity following TIV receipt. No differences between LypW carriers and noncarriers were observed in virus-specific CD8(+) T-cell responses, early interferon transcriptional responses, or myeloid antigen-presenting cell costimulatory molecule upregulation. The association of LypW with defects in TIV-induced CD4(+) T-cell expansion and antibody affinity maturation suggests that LypW may predispose individuals to have a diminished capacity to generate protective immunity against influenza virus.
Collapse
Affiliation(s)
- Juliet N Crabtree
- Center for Immunology Division of Rheumatic and Autoimmune Diseases, Department of Medicine, University of Minnesota Medical School
| | - Wenqian He
- Department of Microbiology, School of Graduate Studies, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis
| | | | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Institute for Infectious Diseases Research, McMaster Immunology Research Center, McMaster University, Hamilton, Canada
| | - Erik J Peterson
- Center for Immunology Division of Rheumatic and Autoimmune Diseases, Department of Medicine, University of Minnesota Medical School
| |
Collapse
|
21
|
McElhaney JE, Kuchel GA, Zhou X, Swain SL, Haynes L. T-Cell Immunity to Influenza in Older Adults: A Pathophysiological Framework for Development of More Effective Vaccines. Front Immunol 2016; 7:41. [PMID: 26941738 PMCID: PMC4766518 DOI: 10.3389/fimmu.2016.00041] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/28/2016] [Indexed: 02/03/2023] Open
Abstract
One of the most profound public health consequences of immune senescence is reflected in an increased susceptibility to influenza and other acute respiratory illnesses, as well as a loss of influenza vaccine effectiveness in older people. Common medical conditions and mental and psychosocial health issues as well as degree of frailty and functional dependence accelerate changes associated with immune senescence. All contribute to the increased risk for complications of influenza infection, including pneumonias, heart diseases, and strokes that lead to hospitalization, disability, and death in the over 65 population. Changes in mucosal barrier mechanisms and both innate and adaptive immune functions converge in the reduced response to influenza infection, and lead to a loss of antibody-mediated protection against influenza with age. The interactions of immune senescence and reduced adaptive immune responses, persistent cytomegalovirus infection, inflammaging (chronic elevation of inflammatory cytokines), and dysregulated cytokine production, pose major challenges to the development of vaccines designed to improve T-cell-mediated immunity. In older adults, the goal of vaccination is more realistically targeted to providing clinical protection against disease rather than to inducing sterilizing immunity to infection. Standard assays of antibody titers correlate with protection against influenza illness but do not detect important changes in cellular immune mechanisms that correlate with vaccine-mediated protection against influenza in older people. This article will discuss: (i) the burden of influenza in older adults and how this relates to changes in T-cell function, (ii) age-related changes in different T-cell subsets and immunologic targets for improved influenza vaccine efficacy in older, and (iii) the development of correlates of clinical protection against influenza disease to expedite the process of new vaccine development for the 65 and older population. Ultimately, these efforts will address the public health need for improved protection against influenza in older adults and “vaccine preventable disability.”
Collapse
Affiliation(s)
- Janet E McElhaney
- Health Sciences North Research Institute, Sudbury, ON, Canada; UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine , Farmington, CT , USA
| | - Xin Zhou
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School , North Worcester, MA , USA
| | - Laura Haynes
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
22
|
Hegde NR. Cell culture-based influenza vaccines: A necessary and indispensable investment for the future. Hum Vaccin Immunother 2016; 11:1223-34. [PMID: 25875691 DOI: 10.1080/21645515.2015.1016666] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The traditional platform of using embryonated chicken eggs for the production of influenza vaccines has several drawbacks including the inability to meet the volume of required doses in the case of widespread epidemics and pandemics. Cell culture platforms have therefore been explored in the last 2 decades, and have attracted further attention following the H1N1 pandemic outbreak. This platform, while not the most economical for large-scale production, has several advantages, and can supplement the vaccine requirement when needed. Recent developments in production technologies have contributed greatly to fine-tuning this platform. In combination with other technologies such as live attenuated and recombinant protein or virus-like particle vaccines, and different adjuvants and delivery systems, cell culture-based influenza vaccine platform can be used both for production of seasonal vaccine, and to mitigate vaccine shortages in pandemic situations.
Collapse
Affiliation(s)
- Nagendra R Hegde
- a Ella Foundation; Genome Valley; Turkapally , Shameerpet Mandal , Hyderabad , India
| |
Collapse
|
23
|
Isakova-Sivak I, Rudenko L. Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev Vaccines 2015; 14:1313-29. [PMID: 26289975 DOI: 10.1586/14760584.2015.1075883] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Live attenuated influenza vaccines (LAIVs) are believed to be immunologically superior to inactivated influenza vaccines, because they can induce a variety of adaptive immune responses, including serum antibodies, mucosal and cell-mediated immunity. In addition to the licensed cold-adapted LAIV backbones, a number of alternative LAIV approaches are currently being developed and evaluated in preclinical and clinical studies. This review summarizes recent progress in the development and evaluation of LAIVs, with special attention to their safety, immunogenicity and infectivity for humans, and discusses their perspectives for the future.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- a Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, Saint Petersburg, Russia
| | | |
Collapse
|
24
|
Rudenko L, Isakova-Sivak I. Pandemic preparedness with live attenuated influenza vaccines based on A/Leningrad/134/17/57 master donor virus. Expert Rev Vaccines 2015; 14:395-412. [PMID: 25555687 DOI: 10.1586/14760584.2015.979159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Continuously evolving avian influenza viruses pose a constant threat to the human public health. In response to this threat, a number of pandemic vaccine candidates have been prepared and evaluated in animal models and clinical trials. This review summarizes the data from the development and preclinical and clinical evaluation of pandemic live attenuated influenza vaccines (LAIV) based on Russian master donor virus A/Leningrad/134/17/57. LAIV candidates of H5N1, H5N2, H7N3, H1N1 and H2N2 subtypes were safe, immunogenic and protected animals from challenge with homologous and heterologous viruses. Clinical trials of the pandemic LAIVs demonstrated their safety and immunogenicity for healthy adult volunteers. The vaccine viruses were infectious, genetically stable and did not transmit to unvaccinated contacts. In addition, here we discuss criteria for the assessment of pandemic LAIV immunogenicity and efficacy necessary for their licensure.
Collapse
Affiliation(s)
- Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, Saint Petersburg, 195220, Russia
| | | |
Collapse
|