1
|
Kono DH, Hahn BH. Animal models of systemic lupus erythematosus (SLE). DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2025:189-234. [DOI: 10.1016/b978-0-323-93232-5.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Gökçe ŞF, Bolayır A, Çiğdem B. Is there a relationship between CSF Interleukin 34 Level and clinicoradiological activity and IgG index in patients with MS? Mult Scler Relat Disord 2024; 92:106150. [PMID: 39571220 DOI: 10.1016/j.msard.2024.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Multiple sclerosis is an autoimmune, inflammatory, and disabling disease that is subject to research, with the aspects of its pathogenesis awaiting clarification. It is essential to predict the prognosis of the disease and find the responsible mechanisms and molecules to become a treatment option. In this regard, researching the impact of Interleukin 34, with its immunomodulatory properties, on the clinicoradiological activity effect of MS and determining its role, if any, may be guiding. METHODS The study included 52 MS patients who underwent lumbar puncture at the diagnosis stage, and dimethyl fumarate treatment was initiated in these patients. During a one-year prospective follow-up, CSF IL-34 levels of 26 patients with clinical and/or radiological activity and 26 patients without activity were evaluated for prediction of disease activity. Additionally, CSF IL-34 levels of 26 control patients who underwent lumbar puncture due to pseudotumor cerebri but were not diagnosed with this disorder and whose CSF examinations were normal and were compared with MS patients. Our study also included the Immunoglobulin G index and investigated its relationship with IL-34. RESULTS The IL-34 level was higher in the MS patient group compared to the control group. No significant difference was identified between MS patient groups with and without clinical and/or radiological activity. A weak correlation without statistical significance was found between IL-34 and the IgG index. CONCLUSION The IL-34 level did not correlate with clinical and radiological activity in MS patients. However, the high IL-34 level observed in the patient group in comparison with the control group may be significant for MS pathogenesis. Furthermore, IL-34 may be a useful biomarker candidate for MS diagnosis, similar to the IgG index.
Collapse
Affiliation(s)
- Şeyda Figül Gökçe
- Sivas Cumhuriyet University, Faculty of Medicine, Department of Neurology, Sivas, Turkey.
| | - Aslı Bolayır
- Malatya Turgut Özal University, Faculty of Medicine, Department of Neurology, Malatya, Turkey
| | - Burhanettin Çiğdem
- Sivas Cumhuriyet University, Faculty of Medicine, Department of Neurology, Sivas, Turkey
| |
Collapse
|
3
|
Castellini-Pérez O, Povedano E, Barturen G, Martínez-Bueno M, Iakovliev A, Kerick M, López-Domínguez R, Marañón C, Martín J, Ballestar E, Borghi MO, Qiu W, Zhu C, Shankara S, Spiliopoulou A, de Rinaldis E, Carnero-Montoro E, Alarcón-Riquelme ME. Molecular subtypes explain lupus epigenomic heterogeneity unveiling new regulatory genetic risk variants. NPJ Genom Med 2024; 9:38. [PMID: 39013887 PMCID: PMC11252280 DOI: 10.1038/s41525-024-00420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/17/2024] [Indexed: 07/18/2024] Open
Abstract
The heterogeneity of systemic lupus erythematosus (SLE) can be explained by epigenetic alterations that disrupt transcriptional programs mediating environmental and genetic risk. This study evaluated the epigenetic contribution to SLE heterogeneity considering molecular and serological subtypes, genetics and transcriptional status, followed by drug target discovery. We performed a stratified epigenome-wide association studies of whole blood DNA methylation from 213 SLE patients and 221 controls. Methylation quantitative trait loci analyses, cytokine and transcription factor activity - epigenetic associations and methylation-expression correlations were conducted. New drug targets were searched for based on differentially methylated genes. In a stratified approach, a total of 974 differential methylation CpG sites with dependency on molecular subtypes and autoantibody profiles were found. Mediation analyses suggested that SLE-associated SNPs in the HLA region exert their risk through DNA methylation changes. Novel genetic variants regulating DNAm in disease or in specific molecular contexts were identified. The epigenetic landscapes showed strong association with transcription factor activity and cytokine levels, conditioned by the molecular context. Epigenetic signals were enriched in known and novel drug targets for SLE. This study reveals possible genetic drivers and consequences of epigenetic variability on SLE heterogeneity and disentangles the DNAm mediation role on SLE genetic risk and novel disease-specific meQTLs. Finally, novel targets for drug development were discovered.
Collapse
Affiliation(s)
- Olivia Castellini-Pérez
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- University of Granada, Granada, Spain
| | - Elena Povedano
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- Spanish National Research Council (CSIC), Institute of Economy, Geography and Demography, Madrid (IEGD), Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
| | - Guillermo Barturen
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Andrii Iakovliev
- Usher Institute of Population Health Sciences and Informatics. University of Edinburgh Medical School, EH8 9YL, Edinburgh, UK
| | - Martin Kerick
- IBPLN-CSIC, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, 18016, Spain
| | - Raúl López-Domínguez
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Concepción Marañón
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Javier Martín
- IBPLN-CSIC, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, 18016, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | | | - Weiliang Qiu
- Sanofi, Early Development and Research, Cambridge, MA, USA
| | - Cheng Zhu
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Srinivas Shankara
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Athina Spiliopoulou
- Usher Institute of Population Health Sciences and Informatics. University of Edinburgh Medical School, EH8 9YL, Edinburgh, UK
| | - Emanuele de Rinaldis
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Elena Carnero-Montoro
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain.
- University of Granada, Granada, Spain.
| | - Marta E Alarcón-Riquelme
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain.
- Institute for Environmental Medicine, Karolinska Institutet, 171 67, Solna, Sweden.
| |
Collapse
|
4
|
Karahan D, Bolayir HA, Bolayir A, Demir B, Otlu Ö, Erdem M. Can serum interleukin 34 levels be used as an indicator for the prediction and prognosis of COVID-19? PLoS One 2024; 19:e0302002. [PMID: 38626032 PMCID: PMC11020891 DOI: 10.1371/journal.pone.0302002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/25/2024] [Indexed: 04/18/2024] Open
Abstract
OBJECTIVE Interleukin 34 (IL-34) is a molecule whose expression is increased in conditions such as autoimmune disorders, inflammation, and infections. Our study aims to determine the role of IL-34 in the diagnosis, follow-up, and prognosis of Coronavirus Disease-19 (COVID-19). METHOD A total of 80 cases were included in the study as 40 COVID-19 positive patient groups and 40 COVID-19 negative control groups. The COVID-19-positive group consisted of 20 intensive-care unit (ICU) patients and 20 outpatients. Serum IL-34, c-reactive protein (CRP), ferritin, D-dimer, troponin I, hemogram, and biochemical parameters of the cases were studied and compared between groups. RESULTS IL-34 levels were significantly higher in the COVID-19-positive group than in the negative group. IL-34 levels increased in correlation with CRP in predicting the diagnosis of COVID-19. IL-34 levels higher than 31.75 pg/m predicted a diagnosis of COVID-19. IL-34 levels did not differ between the outpatient and ICU groups in COVID-19-positive patients. IL-34 levels were also not different between those with and without lung involvement. CONCLUSION While IL-34 levels increased in COVID-19-positive patients and were successful in predicting the diagnosis of COVID-19, it was not found to be significant in determining lung involvement, risk of intensive care hospitalization, and prognosis. The role of IL-34 in COVID-19 deserves further evaluation.
Collapse
Affiliation(s)
- Doğu Karahan
- Department of Internal Medicine, Malatya Turgut Özal University School of Medicine, Malatya, Turkey
| | - Hasan Ata Bolayir
- Department of Cardiology, Malatya Turgut Özal University School of Medicine, Malatya, Turkey
| | - Aslı Bolayir
- Department of Neurology, Malatya Turgut Özal University School of Medicine, Malatya, Turkey
| | - Bilgehan Demir
- Department of Emergency Medicine, Malatya Turgut Özal University School of Medicine, Malatya, Turkey
| | - Önder Otlu
- Department of Medical Biochemistry, Malatya Turgut Özal University School of Medicine, Malatya, Turkey
| | - Mehmet Erdem
- Department of Medical Biochemistry, Malatya Turgut Özal University School of Medicine, Malatya, Turkey
| |
Collapse
|
5
|
Cai B, Lu H, Ye Q, Xiao Q, Wu X, Xu H. Identification of potent target and its mechanism of action of Tripterygium wilfordii Hook F in the treatment of lupus nephritis. Int J Rheum Dis 2023. [PMID: 37317623 DOI: 10.1111/1756-185x.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
AIM The Chinese anti-rheumatic herbal remedy Tripterygium wilfordii Hook F (TWHF) has been widely shown to be effective in treating lupus nephritis (LN), but the therapeutic targets and mechanisms of action are still unclear. In this study, we aimed to combine mRNA expression profile analysis and network pharmacology analysis to screen the pathogenic genes and pathways involved in LN and to explore the potential targets of TWHF in the treatment of LN. METHODS The mRNA expression profiles of LN patients were used to screen differentially expressed genes (DEGs) and to predict associated pathogenic pathways and networks via the Ingenuity Pathway Analysis database. Through molecular docking, we predicted the mechanism by which TWHF interacts with candidate targets. RESULTS A total of 351 DEGs were screened from the glomeruli of LN patients and were mainly concentrated in the role of pattern recognition receptors in the recognition of bacteria and viruses and interferon signaling pathways. A total of 130 DEGs were screened from the tubulointerstitium of LN patients, which were concentrated in the interferon signaling pathway. TWHF might be effective in treating LN by hydrogen bonding to regulate the functions of 24 DEGs (including HMOX1, ALB, and CASP1), which are mainly concentrated in the B-cell signaling pathway. CONCLUSION The mRNA expression profile of renal tissue from LN patients revealed a large number of DEGs. TWHF has been shown to interact with the DEGs (including HMOX1, ALB and CASP1) through hydrogen bonding to treat LN.
Collapse
Affiliation(s)
- Bin Cai
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongjuan Lu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianyi Ye
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qingqing Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Boruah P, Deka N. Interleukin 34 in Disease Progressions: A Comprehensive Review. Crit Rev Immunol 2023; 43:25-43. [PMID: 37943151 DOI: 10.1615/critrevimmunol.2023050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
IL-34, a cytokine, discovered a decade before and is known to be a colony stimulating factor CSF-1 receptor (CSF-1R) ligand. Along with CSF-1R, it also interacts with syndecan-1 receptors and protein-tyrosine phosphatase (PTP-ζ). Hence, IL-34 takes part in a number of biological activities owing to its involvement in different signaling pathways. This review was done to analyze the recent studies on the functions of IL-34 in progression of diseases. The role of IL-34 under the physiological and pathological settings is studied by reviewing current data. In the last ten years, studies suggested that the IL-34 was involved in the regulation of morbid states such as inflammatory diseases, infections, transplant rejection, autoimmune diseases, neurologic diseases, and cancer. In general, the involvement of IL-34 is observed in many serious health ailments like metabolic diseases, heart diseases, infections and even cancer. As such, IL-34 can be regarded as a therapeutic target, potential biomarker or as a therapeutic tool, which ought to be assessed in future research activities.
Collapse
Affiliation(s)
- Prerona Boruah
- Shanghai Veterinary Research Institute, Shanghai, China; School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, India
| | - Nikhita Deka
- Department of Life Sciences, Dibrugarh University, Assam, India
| |
Collapse
|
7
|
Ryan H, Morel L, Moore E. Vascular Inflammation in Mouse Models of Systemic Lupus Erythematosus. Front Cardiovasc Med 2022; 9:767450. [PMID: 35419427 PMCID: PMC8996195 DOI: 10.3389/fcvm.2022.767450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Vascular inflammation mediated by overly activated immune cells is a significant cause of morbidity and mortality in systemic lupus erythematosus (SLE). Several mouse models to study the pathogenesis of SLE are currently in use, many of which have different mechanisms of pathogenesis. The diversity of these models allows interrogation of different aspects of the disease pathogenesis. To better determine the mechanisms by which vascular inflammation occurs in SLE, and to assist future researchers in choosing the most appropriate mouse models to study cardiovascular complications in SLE, we suggest that direct comparisons of vascular inflammation should be conducted among different murine SLE models. We also propose the use of in vitro vascular assays to further investigate vascular inflammation processes prevalent among different murine SLE models.
Collapse
Affiliation(s)
- Holly Ryan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Erika Moore
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Teng X, Brown J, Morel L. Redox Homeostasis Involvement in the Pharmacological Effects of Metformin in Systemic Lupus Erythematosus. Antioxid Redox Signal 2022; 36:462-479. [PMID: 34619975 PMCID: PMC8982129 DOI: 10.1089/ars.2021.0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022]
Abstract
Significance: Metformin has been proposed as a treatment for systemic lupus erythematosus (SLE). The primary target of metformin, the electron transport chain complex I in the mitochondria, is associated with redox homeostasis in immune cells, which plays a critical role in the pathogenesis of autoimmune diseases. This review addresses the evidence and knowledge gaps on whether a beneficial effect of metformin in lupus may be due to a restoration of a balanced redox state. Recent Advances: Clinical trials in SLE patients with mild-to-moderate disease activity and preclinical studies in mice have provided encouraging results for metformin. The mechanism by which this therapeutic effect was achieved is largely unknown. Metformin regulates redox homeostasis in a context-specific manner. Multiple cell types contribute to SLE, with evidence of increased mitochondrial oxidative stress in T cells and neutrophils. Critical Issues: The major knowledge gaps are whether the efficacy of metformin is linked to a restored redox homeostasis in the immune system, and if it does, in which cell types it occurs? We also need to know which patients may have a better response to metformin, and whether it corresponds to a specific mechanism? Finally, the identification of biomarkers to predict treatment outcomes would be of great value. Future Directions: Mechanistic studies must address the context-dependent pharmacological effects of metformin. Multiple cell types as well as a complex disease etiology should be considered. These studies must integrate the rapid advances made in understanding how metabolic programs direct the effector functions of immune cells. Antioxid. Redox Signal. 36, 462-479.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Josephine Brown
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Ham YJ, Nicklason E, Wightman T, Akom S, Sandhu K, Harraka P, Colville D, Catran A, Barit D, Langsford D, Pianta T, Foote A, Buchanan R, Mack H, Savige J. Retinal drusen are more common and larger in SLE with renal impairment. Kidney Int Rep 2022; 7:848-856. [PMID: 35497809 PMCID: PMC9039474 DOI: 10.1016/j.ekir.2022.01.1063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Complement has been implicated in systemic lupus erythematosus (SLE) pathogenesis on the basis of the associations with inherited complement defects and genome-wide association study risk alleles, glomerular deposits, reduced serum levels, and occasional reports of retinal drusen. This study examined drusen in SLE and their clinical significance. Methods This cross-sectional observational study compared individuals with SLE recruited from renal and rheumatology clinics with hospital controls. Participants were reviewed for clinical features and underwent imaging with a nonmydriatic retinal camera. Deidentified images were examined by 2 trained graders for drusen number and size using a grid overlay. Results The cohort with SLE (n = 65) comprised 55 women (85%) and 10 men (15%) with a median age of 47 years (interquartile range 35–59), where 23 (35%) were of southern European or Asian ancestry, and 32 (49%) had biopsy-proven lupus nephritis. Individuals with SLE had higher mean drusen numbers than controls (27 ± 60, 3 ± 9, respectively, P = 0.001), more drusen counts ≥10 (31, 48% and 3, 5%, respectively, P < 0.001), and more medium-large drusen (14, 22% and 3, 5%, respectively, P < 0.001). In SLE, mean drusen counts were higher, and drusen were larger, with an estimated glomerular filtration rate (eGFR) <90 ml/min per 1.73 m2 (P = 0.02, P = 0.02, respectively) or class IV nephritis (P = 0.03, P = 0.02). Conclusion Drusen composition resembles that of glomerular immune deposits. CFH controls complement activation in the extracellular matrix and CFH risk variants are shared by drusen in macular degeneration and by SLE. CFH represents a possible treatment target for SLE especially with renal impairment.
Collapse
|
10
|
Otsuka R, Wada H, Seino KI. IL-34, the rationale of its expression in physiological and pathological condition. Semin Immunol 2021; 54:101517. [PMID: 34774392 DOI: 10.1016/j.smim.2021.101517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
IL-34 is a cytokine that shares one of its receptors with CSF-1. It has long been thought that CSF-1 receptor (CSF-1R) receives signals only from CSF-1, but the identification of IL-34 reversed this stereotype. Regardless of low structural homology, IL-34 and CSF-1 emanate similar downstream signaling through binding to CSF-1R and provoke similar but different physiological events afterward. In addition to CSF-1R, protein-tyrosine phosphatase (PTP)-ζ and Syndecan-1 were also identified as IL-34 receptors and shown to be at play. Although IL-34 expression is limited to particular tissues in physiological conditions, previous studies have revealed that it is upregulated in several diseases. In cancer, IL-34 is produced by several types of tumor cells and contributes to therapy resistance and disease progression. A recent study has demonstrated that tumor cell-derived IL-34 abrogates immunotherapy efficacy through myeloid cell remodeling. On the other hand, IL-34 expression is downregulated in some brain and dermal disorders. Despite accumulating insights, our understanding of IL-34 may not be even close to its nature. This review aims to comprehensively describe the physiological and pathological roles of IL-34 based on its similarity and differences to CSF-1 and discuss the rationale for its disease-dependent expression pattern.
Collapse
Affiliation(s)
- Ryo Otsuka
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Haruka Wada
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Ken-Ichiro Seino
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan.
| |
Collapse
|
11
|
Mishra R, Bethunaickan R, Berthier CC, Yi Z, Strohl JJ, Huerta PT, Zhang W, Davidson A. Reversible dysregulation of renal circadian rhythm in lupus nephritis. Mol Med 2021; 27:99. [PMID: 34488619 PMCID: PMC8419890 DOI: 10.1186/s10020-021-00361-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/23/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We have found disruption of expression of major transcriptional regulators of circadian rhythm in the kidneys of several mouse models of lupus nephritis. Here we define the consequence of this disturbance with respect to circadian gene expression and renal homeostatic function in a mouse model of lupus nephritis. METHODS Molecular profiling of kidneys from 47 young and 41 nephritic female NZB/W F1 mice was performed at 4 hourly intervals over a 24 h period. Disruption of major circadian transcriptional regulators was confirmed by qPCR. Molecular data was normalized and analyzed for rhythmicity using RAIN analysis. Serum aldosterone and glucose and urine sodium and potassium were measured at 4 hourly intervals in pre-nephritic and nephritic mice and blood pressure was measured every 4 h. Analyses were repeated after induction of complete remission of nephritis using combination cyclophosphamide and costimulatory blockade. RESULTS We show a profound alteration of renal circadian rhythms in mice with lupus nephritis affecting multiple renal pathways. Using Cosinor analysis we identified consequent alterations of renal homeostasis and metabolism as well as blood pressure dipper status. This circadian dysregulation was partially reversed by remission induction therapy. CONCLUSIONS Our studies indicate the role of inflammation in causing the circadian disruption and suggest that screening for loss of normal blood pressure dipping should be incorporated into LN management. The data also suggest a potential role for circadian agonists in the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Rakesh Mishra
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ramalingam Bethunaickan
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Celine C Berthier
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhengzi Yi
- Department of Medicine, Mount Sinai Medical Center, One Gustave L. Levy Place, P.O. Box 1243, New York, NY, 10029, USA
| | - Joshua J Strohl
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Patricio T Huerta
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Weijia Zhang
- Department of Medicine, Mount Sinai Medical Center, One Gustave L. Levy Place, P.O. Box 1243, New York, NY, 10029, USA.
| | - Anne Davidson
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
12
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
13
|
Impact of IL-34, IFN-α and IFN-λ1 on activity of systemic lupus erythematosus in Egyptian patients. Reumatologia 2020; 58:221-230. [PMID: 32921829 PMCID: PMC7477477 DOI: 10.5114/reum.2020.98434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/01/2020] [Indexed: 01/09/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune, multi-system inflammatory disease. Among cytokines involved in SLE pathogenesis, interferons (particularly IFN-α) and interleukin 34 play a pivotal role. Interestingly, the gene signatures of type III (IFN-λ1) and type I IFNs may overlap. Increased levels of IFN-λ also have been reported in SLE. Objectives: The aim of this study was to assess serum levels of IL-34, IFN-λ1, IFN-α and the relationship between these cytokines and clinical and laboratory parameters and response to treatment in a cohort of Egyptian SLE patients. Material and methods The study included 82 newly diagnosed SLE patients: male 17.1% (n = 14), female 82.9% (n = 68), mean age ±SD: 48.6 ±8.2 and 60 healthy subjects matched by age and gender as a control group. Medical history, physical examination and laboratory tests for confirming SLE diagnosis and assessment of disease activity were collected. The assessment of serum levels of studied cytokines were performed using the ELISA method. All studied patients after first cytokine evaluation were treated with a combination of antimalarial drugs, glucocorticosteroids and/or immunosuppressive drugs with follow-up after six months of treatment. Results In the SLE group the mean serum levels of IL-34, IFN-α and IFN-λ1 were 175.9 ±125.9 pg/ml, 109.3 ±32.5 pg/ml and 227.9 ±144.8 pg/ml respectively. These cytokine levels were significantly higher in the SLE group than in healthy controls. 39% of SLE patients (n = 32) had SLAM > 6 and 26.8% (n = 22) had SLEDAI >6. There were 21 SLE patients (25.6%) with lupus nephritis. IL-34 and IFN-λ1 were positively correlated with anti-dsDNA antibodies but negatively correlated with C3 complement component (p ≤ 0.05). IL-34, INF-α and IFN-λ1 were significantly higher in lupus nephritis patients, and correlated with poorest response to treatment. IL-34 and IFN-λ1 were correlated with higher SLAM > 6 and SLEDAI > 6 results; there was no such correlation between IFN-α and disease activity. Accumulation of three or more clinical features during follow-up was significantly associated with high levels of studied cytokines. Triple high positivity was found in 17 patients (20.7%) and correlated with presence of anti-dsDNA antibodies, low levels of C3 component of complement and lupus nephritis. Conclusions SLE patients with high serum levels of IL-34, IFN-α and IFN-λ1 more often had lupus nephritis and poor response to immunosuppressive treatment. The triple cytokine elevation was strongly associated with higher disease activity. These results may indicate the need to distinguish this group of patients with such aggressive phenotype and consider targeted multi-therapy.
Collapse
|
14
|
Dorraji SE, Kanapathippillai P, Hovd AMK, Stenersrød MR, Horvei KD, Ursvik A, Figenschau SL, Thiyagarajan D, Fenton CG, Pedersen HL, Fenton KA. Kidney Tertiary Lymphoid Structures in Lupus Nephritis Develop into Large Interconnected Networks and Resemble Lymph Nodes in Gene Signature. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2203-2225. [PMID: 32818496 DOI: 10.1016/j.ajpath.2020.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Immune aggregates organized as tertiary lymphoid structures (TLS) are observed within the kidneys of patients with systemic lupus erythematosus and lupus nephritis (LN). Renal TLS was characterized in lupus-prone New Zealand black × New Zealand white F1 mice analyzing cell composition and vessel formation. RNA sequencing was performed on transcriptomes isolated from lymph nodes, macrodissected TLS from kidneys, and total kidneys of mice at different disease stages by using a personal genome machine and RNA sequencing. Formation of TLS was found in anti-double-stranded DNA antibody-positive mice, and the structures were organized as interconnected large networks with distinct T/B cell zones with adjacent dendritic cells, macrophages, plasma cells, high endothelial venules, supporting follicular dendritic cells network, and functional germinal centers. Comparison of gene profiles of whole kidney, renal TLS, and lymph nodes revealed a similar gene signature of TLS and lymph nodes. The up-regulated genes within the kidneys of lupus-prone mice during LN development reflected TLS formation, whereas the down-regulated genes were involved in metabolic processes of the kidney cells. A comparison with human LN gene expression revealed similar up-regulated genes as observed during the development of murine LN and TLS. In conclusion, kidney TLS have a similar cell composition, structure, and gene signature as lymph nodes and therefore may function as a kidney-specific type of lymph node.
Collapse
Affiliation(s)
- Seyed Esmaeil Dorraji
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Premasany Kanapathippillai
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Aud-Malin Karlsson Hovd
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Mikael Ryan Stenersrød
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Kjersti Daae Horvei
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Anita Ursvik
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Stine Linn Figenschau
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Christopher Graham Fenton
- Genomic Support Center, Department of Clinical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromso, Norway
| | - Hege Lynum Pedersen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway
| | - Kristin Andreassen Fenton
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
15
|
Abdel-Rehim AS, Mohamed NA, Shakweer MM. Interleukin-34 as a marker for subclinical proliferative lupus nephritis. Lupus 2020; 29:607-616. [PMID: 32237962 DOI: 10.1177/0961203320914976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Lupus nephritis (LN) is an ominous manifestation of systemic lupus erythematosus (SLE). Clinical renal affection is present in about 70% of lupus patients, and more patients have histological evidence of renal involvement without clinical manifestations. This study aimed to investigate the potential role of serum interleukin-34 (IL-34) as an early marker for the detection of silent LN. Methods Thirty-three lupus patients with silent LN (group I), 37 patients with clinical LN (group II) and 20 controls were included. The SLE Disease Activity Index (SLEDAI), IL-34, anti-dsDNA antibodies and renal biopsy were assessed in all patients. Results Serum IL-34 levels were significantly higher in all lupus patients compared to healthy controls ( p < 0.001) and showed a significant positive correlation with SLEDAI score. SLE patients with positive anti-dsDNA antibodies had more active disease according to SLEDAI and higher levels of IL-34 than those with negative anti-dsDNA antibodies. In both studied groups, serum IL-34 levels were significantly higher in patients with proliferative LN (class III and class IV) than those with non-proliferative lupus (class II and class V) and controls. Yet, in both groups, IL-34 was not useful in differentiating active from chronic renal affection. Conclusion In lupus patients with insignificant proteinuria, serum levels of IL-34 distinguished the different histological classes of subclinical LN. Serum IL-34 may be used as a surrogate marker for early renal affection in silent LN, especially the proliferative type.
Collapse
Affiliation(s)
- Asmaa Sm Abdel-Rehim
- Department of Internal Medicine, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesrine A Mohamed
- Department of Clinical Pathology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Elevated serum interleukin-34 level in juvenile systemic lupus erythematosus and disease activity. Clin Rheumatol 2020; 39:1627-1632. [DOI: 10.1007/s10067-019-04899-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/25/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022]
|
17
|
Rao DA, Arazi A, Wofsy D, Diamond B. Design and application of single-cell RNA sequencing to study kidney immune cells in lupus nephritis. Nat Rev Nephrol 2019; 16:238-250. [PMID: 31853010 DOI: 10.1038/s41581-019-0232-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
Abstract
The immune mechanisms that cause tissue injury in lupus nephritis have been challenging to define. The advent of high-dimensional cellular analyses, such as single-cell RNA sequencing, has enabled detailed characterization of the cell populations present in small biopsy samples of kidney tissue. In parallel, the development of methods that cryopreserve kidney biopsy specimens in a manner that preserves intact, viable cells, has enabled the uniform analysis of tissue samples collected at multiple sites and across many geographic areas and demographic cohorts with high-dimensional platforms. The application of these methods to kidney biopsy samples from patients with lupus nephritis has begun to define the phenotypes of both infiltrating and resident immune cells, as well as parenchymal cells, present in nephritic kidneys. The detection of similar immune cell populations in urine suggests that it might be possible to non-invasively monitor immune activation in kidneys. Once applied to large patient cohorts, these high-dimensional studies might enable patient stratification according to patterns of immune cell activation in the kidney or identify disease features that can be used as surrogate measures of efficacy in clinical trials. Applied broadly across multiple inflammatory kidney diseases, these studies promise to enormously expand our understanding of renal inflammation in the next decade.
Collapse
Affiliation(s)
- Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arnon Arazi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Wofsy
- Rheumatology Division and Russell/Engleman Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
18
|
Jackson SW, Davidson A. BAFF inhibition in SLE-Is tolerance restored? Immunol Rev 2019; 292:102-119. [PMID: 31562657 PMCID: PMC6935406 DOI: 10.1111/imr.12810] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The B cell activating factor (BAFF) inhibitor, belimumab, is the first biologic drug approved for the treatment of SLE, and exhibits modest, but durable, efficacy in decreasing disease flares and organ damage. BAFF and its homolog APRIL are TNF-like cytokines that support the survival and differentiation of B cells at distinct developmental stages. BAFF is a crucial survival factor for transitional and mature B cells that acts as rheostat for the maturation of low-affinity autoreactive cells. In addition, BAFF augments innate B cell responses via complex interactions with the B cell receptor (BCR) and Toll like receptor (TLR) pathways. In this manner, BAFF impacts autoreactive B cell activation via extrafollicular pathways and fine tunes affinity selection within germinal centers (GC). Finally, BAFF and APRIL support plasma cell survival, with differential impacts on IgM- and IgG-producing populations. Therapeutically, BAFF and combined BAFF/APRIL inhibition delays disease onset in diverse murine lupus strains, although responsiveness to BAFF inhibition is model dependent, in keeping with heterogeneity in clinical responses to belimumab treatment in humans. In this review, we discuss the mechanisms whereby BAFF/APRIL signals promote autoreactive B cell activation, discuss whether altered selection accounts for therapeutic benefits of BAFF inhibition, and address whether new insights into BAFF/APRIL family complexity can be exploited to improve human lupus treatments.
Collapse
Affiliation(s)
- Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
19
|
Ge Y, Huang M, Yao YM. Immunomodulation of Interleukin-34 and its Potential Significance as a Disease Biomarker and Therapeutic Target. Int J Biol Sci 2019; 15:1835-1845. [PMID: 31523186 PMCID: PMC6743287 DOI: 10.7150/ijbs.35070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-34 is a cytokine discovered a few years ago and identified as the second colony-stimulating factor (CSF)-1 receptor (CSF-1R) ligand. Although CSF-1 and IL-34 share the same receptor through which they trigger similar effects, IL-34 also binds to receptors protein-tyrosine phosphatase (PTP)-ζ and syndecan-1. Thus, IL-34 is involved in several signaling pathways and participates in a wide array of biological actions. This review analyzes current studies on the role of IL-34 under physiological and pathological conditions, and explores its potential significance as a disease biomarker and therapeutic target. In physiological conditions, IL-34 expression is restricted to the microglia and Langerhans cells, with a fundamental role in cellular differentiation, adhesion and migration, proliferation, metabolism, and survival. It is released in response to inflammatory stimuli, such as pathogen-associated molecular patterns or pro-inflammatory cytokines, with effects over various immune cells, including monocytes, macrophages, and regulatory T cells that shape the immune microenvironment. Over the past decade, accumulating evidence has suggested a potent immune regulation of IL-34 in pathological states such as autoimmune diseases, cancer, transplant rejection, neurologic diseases, infections, and inflammatory diseases. Importantly, IL-34 may hold great promise for acting as a biomarker for monitoring disease severity and progression, and may serve as a new therapeutic target for the treatment of several diseases in clinical settings.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yong-Ming Yao
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China.,Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.,State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|
20
|
Ge Y, Huang M, Zhu XM, Yao YM. Biological functions and clinical implications of interleukin-34 in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:39-63. [PMID: 31997772 DOI: 10.1016/bs.apcsb.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-34 is a recently discovered cytokine and ligand of the colony-stimulating factor (CSF)-1 receptor. Although CSF-1 and IL-34 share similar biological properties, their expression patterns and downstream signaling pathways are distinct. IL-34 can influence differentiation and has functions in multiple cell types (e.g., dendritic cells, monocytes, macrophages). In the pathological conditions, IL-34 is induced by pro-inflammatory stimuli (e.g., cytokines, pathogen-associated molecular patterns, and infection). Current evidence shows that IL-34 is a critical player in inflammatory response and is involved in the pathogenesis of inflammatory autoimmune dysfunction. Therefore, IL-34 may be a promising clinical biomarker and therapeutic target for treating inflammatory related disorders. In this article, we review the advances in biological functions of IL-34 and our understanding of its role in the development of inflammatory diseases as well as therapeutic applications.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiao-Mei Zhu
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
21
|
Cheng Y, Yang X, Zhang X, An Z. Analysis of expression levels of IL-17 and IL-34 and influencing factors for prognosis in patients with lupus nephritis. Exp Ther Med 2019; 17:2279-2283. [PMID: 30783486 PMCID: PMC6364195 DOI: 10.3892/etm.2019.7168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
Expression levels of interleukin-17 (IL-17) and IL-34 was investigated to analyze the influencing factors for prognosis in patients with lupus nephritis (LN). Clinical data of 45 patients (LN group) treated and diagnosed with LN via renal biopsy in Yanan University Affiliated Hospital from October 2010 to October 2012 and 50 healthy subjects (control group) were analyzed retrospectively. Levels of serum IL-17 and IL-34 were detected via enzyme-linked immunosorbent assay. Correlations of serum IL-17 and IL-34 with urinary protein in LN patients were analyzed via Pearson correlation analysis. Univariate survival analysis was performed using the Kaplan-Meier method, and multivariate analysis was performed for LN prognosis using the Cox proportional hazards model. Levels of serum IL-34 and IL-17 in patients in LN group were significantly higher than those in control group (P<0.001). Serum IL-17 and IL-34 in LN patients were positively correlated with urinary protein (r= 0.436 and 0.714, P<0.05). Adverse factors affecting the prognosis of 45 LN patients including age, hemoglobin, platelet, blood uric acid, urinary protein, IL-17 and IL-34, showing statistically significant differences (P<0.05). Age, hemoglobin, blood uric acid, urinary protein, IL-17 and IL-34 were independent risk factors for poor prognosis of LN (P<0.05). The inflammatory factors IL-17 and IL-34 are highly expressed in the serum of LN patients. Levels of serum IL-17 and IL-34 in LN patients have positive correlations with urinary protein. Results of univariate and multivariate Cox regression analyses reveal that age, hemoglobin, blood uric acid, urinary protein, IL-17 and IL-34 are independent risk factors for poor prognosis of LN. IL-17 and IL-34 can therefore serve as effective indexes for clinical diagnosis, treatment and prognosis of LN.
Collapse
Affiliation(s)
- Yanna Cheng
- Department of Nephrology, Yanan University Affiliated Hospital, Yanan, Shaanxi 716000, P.R. China
| | - Xiaojuan Yang
- Department of Nephrology, Yanan University Affiliated Hospital, Yanan, Shaanxi 716000, P.R. China
| | - Xijun Zhang
- Department of Nephrology, Yanan People's Hospital, Yanan, Shaanxi 716000, P.R. China
| | - Zhi An
- Department of Nephrology, Yanan University Affiliated Hospital, Yanan, Shaanxi 716000, P.R. China
| |
Collapse
|
22
|
Hahn BH, Kono DH. Animal Models in Lupus. DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2019:164-215. [DOI: 10.1016/b978-0-323-47927-1.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Baghdadi M, Umeyama Y, Hama N, Kobayashi T, Han N, Wada H, Seino KI. Interleukin-34, a comprehensive review. J Leukoc Biol 2018; 104:931-951. [PMID: 30066957 DOI: 10.1002/jlb.mr1117-457r] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/28/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
IL-34 is a novel cytokine that was identified in 2008 in a comprehensive proteomic analysis as a tissue-specific ligand of CSF-1 receptor (CSF-1R). IL-34 exists in all vertebrates including fish, amphibians, birds, and mammals, showing high conservation among species. Structurally, IL-34 belongs to the short-chain helical hematopoietic cytokine family but shows no apparent consensus structural domains, motifs, or sequence homology with other cytokines. IL-34 is synthesized as a secreted homodimeric glycoprotein that binds to the extracellular domains of CSF-1R and receptor-type protein-tyrosine phosphatase-zeta (PTP-ζ) in addition to the chondroitin sulfate chains of syndecan-1. These interactions result in activating several signaling pathways that regulate major cellular functions, including proliferation, differentiation, survival, metabolism, and cytokine/chemokine expression in addition to cellular adhesion and migration. In the steady state, IL-34 contributes to the development and maintenance of specific myeloid cell subsets in a tissue-specific manner: Langerhans cells in the skin and microglia in the brain. In pathological conditions, changes in IL-34 expression-increased or decreased-are involved in disease pathogenesis and correlate with progression, severity, and chronicity. One decade after its discovery, IL-34 has been introduced as a newcomer to the big family of interleukins with specific physiological functions, critical pathological roles, and promising clinical applications in disease diagnosis and treatment. In this review, we celebrate the 10th anniversary of IL-34 discovery, introducing its biological characteristics, and discussing the importance of IL-34 signaling network in health and disease.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yui Umeyama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Nanumi Han
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Xie HH, Shen H, Zhang L, Cui MY, Xia LP, Lu J. Elevated Serum Interleukin-34 Level in Patients with Systemic Lupus Erythematosus Is Associated with Disease Activity. Sci Rep 2018; 8:3462. [PMID: 29472590 PMCID: PMC5823931 DOI: 10.1038/s41598-018-21859-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/12/2018] [Indexed: 11/09/2022] Open
Abstract
We measured the interleukin-34 (IL-34) level in sera from patients with systemic lupus erythematosus (SLE) and discoid lupus erythematosus (DLE) using an enzyme-linked immunosorbent assay (ELISA). Blood tests, including assays to determine C-reactive protein (CRP), complement (C) 3, C4, immunoglobulin (Ig) A, IgG, IgM, anti-double-stranded DNA antibody (Anti-dsDNA Ab) and hemoglobin (Hb) levels and white blood cell (WBC) and platelet (PLT) counts, were performed using standard methods. Lupus nephritis (LN) was diagnosed according to the American College of Rheumatology (ACR) renal criteria. The SLE disease activity was scored using the SLE Disease Activity Index (SLEDAI). Among the 110 SLE cases, IL-34 could be detected in 79 cases (71.8%). IL-34 was barely detected in the control group. The serum level of IL-34 was significantly higher in the SLE group. No change was observed in the serum IL-34 concentration in the SLE patients regardless of LN status. Correlations were observed between the serum IL-34 level and the disease activity parameters. The SLE patients with detectable IL-34 levels had higher SLEDAI and IgG concentrations and lower C3 and Hb levels than patients with undetectable IL-34 levels. Therefore, IL-34 could be a potential disease activity marker for SLE.
Collapse
Affiliation(s)
- Huan Huan Xie
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shen Yang, China.,Department of Rheumatology, Dazhou Central Hospital, Da Zhou, China
| | - Hui Shen
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shen Yang, China.
| | - Li Zhang
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shen Yang, China
| | - Mei Ying Cui
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shen Yang, China
| | - Li Ping Xia
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shen Yang, China
| | - Jing Lu
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shen Yang, China
| |
Collapse
|
25
|
Liu YC, Chun J. Prospects for Precision Medicine in Glomerulonephritis Treatment. Can J Kidney Health Dis 2018; 5:2054358117753617. [PMID: 29449955 PMCID: PMC5808958 DOI: 10.1177/2054358117753617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Glomerulonephritis (GN) consists of a group of kidney diseases that are categorized based on shared histopathological features. The current classifications for GN make it difficult to distinguish the individual variability in presentation, disease progression, and response to treatment. GN is a significant cause of end-stage renal disease (ESRD), and improved therapies are desperately needed because current immunosuppressive therapies sometimes lack efficacy and can lead to significant toxicities. In recent years, the combination of high-throughput genetic approaches and technological advances has identified important regulators contributing to GN. Objectives: In this review, we summarize recent findings in podocyte biology and advances in experimental approaches that have opened the possibility of precision medicine in GN treatment. We provide an integrative basic science and clinical overview of new developments in GN research and the discovery of potential candidates for targeted therapies in GN. Findings: Advances in podocyte biology have identified many candidates for therapeutic targets and potential biomarkers of glomerular disease. The goal of precision medicine in GN is now being pursued with recent technological improvements in genetics, accessibility of biologic and clinical information with tissue biobanks, high-throughput analysis of large-scale data sets, and new human model systems such as kidney organoids. Conclusion: With advances in data collection, technologies, and experimental model systems, we now have vast tools available to pursue precision medicine in GN. We anticipate a growing number of studies integrating data from high-throughput analysis with the development of diagnostic tools and targeted therapies for GN in the near future.
Collapse
Affiliation(s)
- Yulu Cherry Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Justin Chun
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Division of Nephrology, Department of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
26
|
Horvei KD, Pedersen HL, Fismen S, Thiyagarajan D, Schneider A, Rekvig OP, Winkler TH, Seredkina N. Lupus nephritis progression in FcγRIIB-/-yaa mice is associated with early development of glomerular electron dense deposits and loss of renal DNase I in severe disease. PLoS One 2017; 12:e0188863. [PMID: 29190833 PMCID: PMC5708736 DOI: 10.1371/journal.pone.0188863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
FcγRIIB-/-yaa mice develop severe lupus glomerulonephritis due to lack of an inhibitory immune cell receptor combined with a Y-chromosome linked autoimmune accelerator mutation. In the present study, we have investigated nephritis development and progression in FcγRIIB-/-yaa mice to find shared features with NZB/NZW F1 lupus prone mice and human disease. We sacrificed 25 male FcγRIIB-/-yaa mice at various disease stages, and grouped them according to activity and chronicity indices for lupus nephritis. Glomerular morphology and localization of electron dense deposits containing IgG were further determined by immune electron microscopy. Renal DNase I and pro-inflammatory cytokine mRNA levels were measured by real-time quantitative PCR. DNase I protein levels was assessed by immunohistochemistry and zymography. Our results demonstrate early development of electron dense deposits containing IgG in FcγRIIB-/-yaa mice, before detectable levels of serum anti-dsDNA antibodies. Similar to NZB/NZW F1, electron dense deposits in FcγRIIB-/-yaa progressed from being confined to the mesangium in the early stage of lupus nephritis to be present also in capillary glomerular basement membranes. In the advanced stage of lupus nephritis, renal DNase I was lost on both transcriptional and protein levels, which has previously been shown in NZB/NZW F1 mice and in human disease. Although lupus nephritis appears on different genetic backgrounds, our findings suggest similar processes when comparing different murine models and human lupus nephritis.
Collapse
Affiliation(s)
- Kjersti Daae Horvei
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Silje Fismen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Andrea Schneider
- Department of Biology, Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ole Petter Rekvig
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Thomas H Winkler
- Department of Biology, Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Natalya Seredkina
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
27
|
Baghdadi M, Endo H, Tanaka Y, Wada H, Seino KI. Interleukin 34, from pathogenesis to clinical applications. Cytokine 2017; 99:139-147. [PMID: 28886491 DOI: 10.1016/j.cyto.2017.08.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023]
Abstract
Interleukin-34 (IL-34) is a hematopoietic cytokine that was described for the first time in 2008 as a second ligand of CSF1R in addition to M-CSF. IL-34 and M-CSF share no sequence homology, but have similar functions, affecting the biology of myeloid cell lineage. In contrast to M-CSF, IL-34 shows unique signaling and expression patterns. Physiologically, IL-34 expression is restricted to epidermis and CNS, acting as a regulator of Langerhans cells and microglia, respectively. However, IL-34 expression can be induced and regulated by NF-κB under pathological conditions. Importantly, growing evidence indicates a correlation between IL-34 and disease severity, chronicity and progression. In addition to its promising roles as a novel diagnostic and prognostic biomarker of disease, IL-34 may also serve as a powerful target for therapeutic intervention. Here, we review the current knowledge regarding the emerging roles of IL-34 in disease, and focus on the clinical applications of IL-34 in medicine.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Japan.
| | - Hiraku Endo
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Japan
| | - Yoshino Tanaka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Japan.
| |
Collapse
|
28
|
Dysregulated Lymphoid Cell Populations in Mouse Models of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2017; 53:181-197. [DOI: 10.1007/s12016-017-8605-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Abstract
SLE is a chronic inflammatory disease that affects the kidneys in about 50% of patients. Lupus nephritis is a major risk factor for overall morbidity and mortality in SLE, and despite potent anti-inflammatory and immunosuppressive therapies still ends in CKD or ESRD for too many patients. This review highlights recent updates in our understanding of disease epidemiology, genetics, pathogenesis, and treatment in an effort to establish a framework for lupus nephritis management that is patient-specific and oriented toward maintaining long-term kidney function in patients with lupus.
Collapse
Affiliation(s)
- Salem Almaani
- Department of Internal Medicine, The Ohio State Wexner Medical Center, Columbus, Ohio
| | | | | |
Collapse
|
30
|
Wang H, Cao J, Lai X. Serum Interleukin-34 Levels Are Elevated in Patients with Systemic Lupus Erythematosus. Molecules 2016; 22:molecules22010035. [PMID: 28036035 PMCID: PMC6155597 DOI: 10.3390/molecules22010035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
Interleukin-34 (IL-34) was initially identified as an alternative ligand for the colony-stimulating factor-1 receptor (CSF-1R) to mediate the biology of mononuclear phagocytic cells. Recently, IL-34 was found to be associated with chronic inflammation, such as in rheumatoid arthritis (RA). Both RA and systemic lupus erythematosus (SLE) are multifactorial autoimmune diseases and are characterized by excessive immune and inflammatory responses. Thus, we investigated whether IL-34 is involved in the pathogenesis of SLE. In all, 78 SLE patients and 53 healthy controls were enrolled in the research. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the concentrations of serological IL-34. Then serum IL-34 levels between the SLE group and healthy controls were analyzed by the Mann-Whitney U test. Meanwhile, the correlations between the serum IL-34 levels and disease activity indexes and other established serum markers were assessed. Furthermore, the serum IL-34 levels of 20 active SLE patients were reevaluated when diseases were in the remission stage from corticosteroids or immunosuppressive drugs. Serum IL-34 levels were significantly higher in SLE patients compared to healthy controls. Their levels were remarkably associated with accumulation of the clinical features of SLE. Additionally, IL-34 titers were positively correlated with the SLE disease activity indexes, anti-double-stranded DNA antibody (anti-dsDNA) titers and C-reactive protein (CRP) levels, and inversely with complement3 (C3) levels. Moreover, serum IL-34 levels were significantly decreased after successful treatment of SLE. Serum IL-34 could be a candidate biomarker for SLE as there are elevated serum levels in treatment-naive SLE patients and we saw a significant decrease after effective treatment.
Collapse
Affiliation(s)
- Hongxu Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Xiaofei Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
31
|
Abstract
Since its incorporation into clinical practice in the 1950s, the percutaneous kidney biopsy has played an important role in advancing our understanding of lupus nephritis (LN). The biopsy findings have been used to classify and subgroup LN in order to obtain an accurate diagnosis and also to inform treatment decisions and predict prognosis. Several classifications schemes have been applied clinically however despite this evolution in histopathologic classification, our ability to predict treatment response and determine prognosis remains limited. In this review we will examine the evolving role of the kidney biopsy in the management of LN, including the potentially larger role the biopsy could play in the future.
Collapse
Affiliation(s)
- Samir V Parikh
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Anthony Alvarado
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ana Malvar
- Nephrology Unit, Hospital Fernandez, Buenos Aires, Argentina
| | - Brad H Rovin
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
32
|
Berthier CC, Kretzler M, Davidson A. A systems approach to renal inflammation in SLE. Clin Immunol 2016; 185:109-118. [PMID: 27534926 DOI: 10.1016/j.clim.2016.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Lupus disease and its complications including lupus nephritis (LN) are very disabling and significantly impact the quality of life and longevity of patients. Broadly immunosuppressive treatments do not always provide the expected clinical benefits and have significant side effects that contribute to patient morbidity. In the era of systems biology, new strategies are being deployed integrating diverse sources of information (molecular and clinical) so as to identify individual disease specificities and select less aggressive treatments. In this review, we summarize integrative approaches linking molecular disease profiles (mainly tissue transcriptomics) and clinical phenotypes. The main goals are to better understand the pathogenesis of lupus nephritis, to identify the risk factors for renal flare and to find the predictors of both short and long-term clinical outcome. Identification of common key drivers and additional patient-specific key drivers can open the door to improved and individualized therapy to prevent and treat LN.
Collapse
Affiliation(s)
- Celine C Berthier
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Anne Davidson
- Feinstein Institute, Center for Autoimmunity and Musculoskeletal Diseases, Manhasset, NY, USA 11030.
| |
Collapse
|
33
|
Zeid SA, Khalifa G, Nabil M. IL10 in Lupus Nephritis: Detection and relationship with disease activity. Electron Physician 2015; 7:1680-5. [PMID: 26816594 PMCID: PMC4725424 DOI: 10.19082/1680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/20/2015] [Indexed: 01/07/2023] Open
Abstract
Introduction Glomerulonephritis is a major determinant of the course and prognosis of systemic lupus erythematosus (SLE) and is evident in 40%–85% of patients. IL10, a cytokine produced by monocytes and-to a lesser extent-lymphocytes, has pleiotropic effects in immune regulation and inflammation. It enhances B cell survival, proliferation, differentiation, and antibody production; these effects play a role in autoimmune diseases. Among identified polymorphisms in the IL10 promoter, three linked single nucleotide polymorphisms (SNPs) of −1082 G/A, 819 T/C, and −592 A/C have been shown to influence the IL10 gene expression. Compared with the −592 C allele, the 592 A is associated with lower IL10 production in vitro. The objectives of this study were to investigate the −592 A/C polymorphism in patients with and without lupus nephritis and to assess its influence on IL10 secretion in vivo and its role in pathogenesis and clinicopathological characteristics of lupus nephritis. Methods This case control study was conducted on 40 SLE patients recruited for the study from those attending the nephrology department of the Theodor Bilharz Research Institute (outpatient clinic and inpatient ward) in 2013. Patients were divided into two groups, group I (SLE patients without evidence of nephritis) and group II (SLE patients with lupus nephritis). Data were analyzed using SPSS (version 12), a t-test, Chi square, ANOVA, and the Pearson product–moment correlation coefficient. Results Our study found an increase in IL10 serum in lupus nephritis patients compared to those without renal involvement (without statistical significance). No significant differences emerged in the level of IL10 serum among different pathological classes. Conclusion The IL10 gene (−592 A/C) polymorphism, though not associated with lupus nephritis’s susceptibility in the present study, does play a role.
Collapse
Affiliation(s)
- Sameh Abou Zeid
- Lecturer, Nephrology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Ghada Khalifa
- Lecturer, Nephrology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Malak Nabil
- Assistant Professor, Nephrology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| |
Collapse
|
34
|
Abstract
Despite marked improvements in the survival of patients with severe lupus nephritis over the past 50 years, the rate of complete clinical remission after immune suppression therapy is <50% and renal impairment still occurs in 40% of affected patients. An appreciation of the factors that lead to the development of chronic kidney disease following acute or subacute renal injury in patients with systemic lupus erythematosus is beginning to emerge. Processes that contribute to end-stage renal injury include continuing inflammation, activation of intrinsic renal cells, cell stress and hypoxia, metabolic abnormalities, aberrant tissue repair and tissue fibrosis. A deeper understanding of these processes is leading to the development of novel or adjunctive therapies that could protect the kidney from the secondary non-immune consequences of acute injury. Approaches based on a molecular-proteomic-lipidomic classification of disease should yield new information about the functional basis of disease heterogeneity so that the most effective and least toxic treatment regimens can be formulated for individual patients.
Collapse
|
35
|
Krasoudaki E, Banos A, Stagakis E, Loupasakis K, Drakos E, Sinatkas V, Zampoulaki A, Papagianni A, Iliopoulos D, Boumpas DT, Bertsias GK. Micro-RNA analysis of renal biopsies in human lupus nephritis demonstrates up-regulated miR-422a driving reduction of kallikrein-related peptidase 4. Nephrol Dial Transplant 2015; 31:1676-86. [DOI: 10.1093/ndt/gfv374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
|
36
|
|
37
|
Clark MR, Trotter K, Chang A. The Pathogenesis and Therapeutic Implications of Tubulointerstitial Inflammation in Human Lupus Nephritis. Semin Nephrol 2015; 35:455-64. [PMID: 26573548 PMCID: PMC4653081 DOI: 10.1016/j.semnephrol.2015.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nephritis is a common complication of systemic lupus erythematosus for which current therapies often prove inadequate. Current lupus nephritis classification systems emphasize glomerular acuity and scarring. However, tubulointerstitial inflammation (TII) and scarring are much better predictors of progression to renal failure. It now is becoming clear that the immunologic features, and probable underlying mechanisms, are very different in lupus glomerulonephritis and TII at the time of biopsy. Although glomerulonephritis is a manifestation of systemic autoimmunity, TII is associated with local in situ adaptive immune cell networks predicted to amplify local inflammation and tissue damage. In addition, poorly defined networks of innate immune cells and effectors likely contribute to the severity of local inflammation. Defining these in situ immune mechanisms should lead to a better understanding of prognostically meaningful lupus nephritis subsets and show novel therapeutic opportunities.
Collapse
Affiliation(s)
- Marcus R Clark
- Department of Medicine, University of Chicago, Chicago, IL; Department of Pathology, University of Chicago, Chicago, IL; Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL.
| | | | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
38
|
Baek JH, Zeng R, Weinmann-Menke J, Valerius MT, Wada Y, Ajay AK, Colonna M, Kelley VR. IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease. J Clin Invest 2015; 125:3198-214. [PMID: 26121749 DOI: 10.1172/jci81166] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/14/2015] [Indexed: 12/12/2022] Open
Abstract
Macrophages (Mø) are integral in ischemia/reperfusion injury-incited (I/R-incited) acute kidney injury (AKI) that leads to fibrosis and chronic kidney disease (CKD). IL-34 and CSF-1 share a receptor (c-FMS), and both cytokines mediate Mø survival and proliferation but also have distinct features. CSF-1 is central to kidney repair and destruction. We tested the hypothesis that IL-34-dependent, Mø-mediated mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD. In renal I/R, the time-related magnitude of Mø-mediated AKI and subsequent CKD were markedly reduced in IL-34-deficient mice compared with controls. IL-34, c-FMS, and a second IL-34 receptor, protein-tyrosine phosphatase ζ (PTP-ζ) were upregulated in the kidney after I/R. IL-34 was generated by tubular epithelial cells (TECs) and promoted Mø-mediated TEC destruction during AKI that worsened subsequent CKD via 2 distinct mechanisms: enhanced intrarenal Mø proliferation and elevated BM myeloid cell proliferation, which increases circulating monocytes that are drawn into the kidney by chemokines. CSF-1 expression in TECs did not compensate for IL-34 deficiency. In patients, kidney transplants subject to I/R expressed IL-34, c-FMS, and PTP-ζ in TECs during AKI that increased with advancing injury. Moreover, IL-34 expression increased, along with more enduring ischemia in donor kidneys. In conclusion, IL-34-dependent, Mø-mediated, CSF-1 nonredundant mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD.
Collapse
|
39
|
Galligan J, Martinez-Noël G, Arndt V, Hayes S, Chittenden TW, Harper JW, Howley PM. Proteomic analysis and identification of cellular interactors of the giant ubiquitin ligase HERC2. J Proteome Res 2015; 14:953-66. [PMID: 25476789 PMCID: PMC4324439 DOI: 10.1021/pr501005v] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 01/10/2023]
Abstract
HERC2 is a large E3 ubiquitin ligase with multiple structural domains that has been implicated in an array of cellular processes. Mutations in HERC2 are linked to developmental delays and impairment caused by nervous system dysfunction, such as Angelman Syndrome and autism-spectrum disorders. However, HERC2 cellular activity and regulation remain poorly understood. We used a broad proteomic approach to survey the landscape of cellular proteins that interact with HERC2. We identified nearly 300 potential interactors, a subset of which we validated binding to HERC2. The potential HERC2 interactors included the eukaryotic translation initiation factor 3 complex, the intracellular transport COPI coatomer complex, the glycogen regulator phosphorylase kinase, beta-catenin, PI3 kinase, and proteins involved in fatty acid transport and iron homeostasis. Through a complex bioinformatic analysis of potential interactors, we linked HERC2 to cellular processes including intracellular protein trafficking and transport, metabolism of cellular energy, and protein translation. Given its size, multidomain structure, and association with various cellular activities, HERC2 may function as a scaffold to integrate protein complexes and bridge critical cellular pathways. This work provides a significant resource with which to interrogate HERC2 function more deeply and evaluate its contributions to mechanisms governing cellular homeostasis and disease.
Collapse
Affiliation(s)
- Jeffrey
T. Galligan
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Gustavo Martinez-Noël
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Verena Arndt
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Sebastian Hayes
- Department
of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Thomas W. Chittenden
- Research
Computing Group, Harvard Medical School, 25 Shattuck Street #500, Boston, Massachusetts 02115, United States
- Complex Biological
Systems Alliance, 17 Peterson Road, North Andover, Massachusetts 01845, United States
| | - J. Wade Harper
- Department
of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Peter M. Howley
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
40
|
Stat3 promotes IL-10 expression in lupus T cells through trans-activation and chromatin remodeling. Proc Natl Acad Sci U S A 2014; 111:13457-62. [PMID: 25187566 DOI: 10.1073/pnas.1408023111] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The immune-regulatory cytokine IL-10 plays a central role during innate and adaptive immune responses. IL-10 is elevated in the serum and tissues of patients with systemic lupus erythematosus (SLE), an autoimmune disorder characterized by autoantibody production, immune-complex formation, and altered cytokine expression. Because of its B cell-promoting effects, IL-10 may contribute to autoantibody production and tissue damage in SLE. We aimed to determine molecular events governing T cell-derived IL-10 expression in health and disease. We link reduced DNA methylation of the IL10 gene with increased recruitment of Stat family transcription factors. Stat3 and Stat5 recruitment to the IL10 promoter and an intronic enhancer regulate gene expression. Both Stat3 and Stat5 mediate trans-activation and epigenetic remodeling of IL10 through their interaction with the histone acetyltransferase p300. In T cells from SLE patients, activation of Stat3 is increased, resulting in enhanced recruitment to regulatory regions and competitive replacement of Stat5, subsequently promoting IL-10 expression. A complete understanding of the molecular events governing cytokine expression will provide new treatment options in autoimmune disorders, including SLE. The observation that altered activation of Stat3 influences IL-10 expression in T cells from SLE patients offers molecular targets in the search for novel target-directed treatment options.
Collapse
|
41
|
Bethunaickan R, Berthier CC, Zhang W, Eksi R, Li HD, Guan Y, Kretzler M, Davidson A. Identification of stage-specific genes associated with lupus nephritis and response to remission induction in (NZB × NZW)F1 and NZM2410 mice. Arthritis Rheumatol 2014; 66:2246-2258. [PMID: 24757019 PMCID: PMC4554534 DOI: 10.1002/art.38679] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/17/2014] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To elucidate the molecular mechanisms involved in renal inflammation during the progression, remission, and relapse of nephritis in murine lupus models using transcriptome analysis. METHODS Kidneys from (NZB × NZW)F1 (NZB/NZW) and NZM2410 mice were harvested at intervals during the disease course or after remission induction. Genome-wide expression profiles were obtained from microarray analysis of perfused kidneys. Real-time polymerase chain reaction (PCR) analysis for selected genes was used to validate the microarray data. Comparisons between groups using SAM, and unbiased analysis of the entire data set using singular value decomposition and self-organizing maps were performed. RESULTS Few changes in the renal molecular profile were detected in prenephritic kidneys, but a significant shift in gene expression, reflecting inflammatory cell infiltration and complement activation, occurred at proteinuria onset. Subsequent changes in gene expression predominantly affected mitochondrial dysfunction and metabolic stress pathways. Endothelial cell activation, tissue remodeling, and tubular damage were the major pathways associated with loss of renal function. Remission induction reversed most, but not all, of the inflammatory changes, and progression toward relapse was associated with recurrence of inflammation, mitochondrial dysfunction, and metabolic stress signatures. CONCLUSION Immune cell infiltration and activation is associated with proteinuria onset and is reversed by immunosuppressive therapy, but disease progression is associated with renal hypoxia and metabolic stress. Optimal therapy for lupus nephritis may therefore need to target both immune and nonimmune disease mechanisms. In addition, the overlap of a substantial subset of molecular markers with those expressed in the kidneys of lupus patients suggests potential new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ramalingam Bethunaickan
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, NY 11030
| | - Celine C. Berthier
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI 48109
| | - Weijia Zhang
- Department of Medicine, Mount Sinai Medical Center, New York, NY 10029
| | | | - Hong-Dong Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Matthias Kretzler
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI 48109
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, NY 11030
| |
Collapse
|
42
|
Masteller EL, Wong BR. Targeting IL-34 in chronic inflammation. Drug Discov Today 2014; 19:1212-6. [PMID: 24906044 DOI: 10.1016/j.drudis.2014.05.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 01/25/2023]
Abstract
A second ligand for colony-stimulating factor-1 receptor (CSF-1R) with distinct biologic activities had long been implicated but not appreciated until the recent discovery of interleukin (IL)-34. IL-34 and CSF-1 signal through this common receptor to mediate the biology of mononuclear phagocytic cells. Aberrant macrophage activation by CSF-1 and/or IL-34 is associated with numerous diseases, and clinical therapies targeting this pathway are being tested. Although IL-34 and CSF-1 have distinct activities under physiologic conditions, they appear functionally redundant in various disease states. Thus, blocking the activity of both might be necessary for maximal efficacy.
Collapse
Affiliation(s)
- Emma L Masteller
- Five Prime Therapeutics, 2 Corporate Drive, South San Francisco, CA 94080, USA.
| | - Brian R Wong
- Five Prime Therapeutics, 2 Corporate Drive, South San Francisco, CA 94080, USA
| |
Collapse
|