1
|
Franco R, Garrigós C, Capó T, Serrano-Marín J, Rivas-Santisteban R, Lillo J. Olfactory receptors in neural regeneration in the central nervous system. Neural Regen Res 2025; 20:2480-2494. [PMID: 39503417 PMCID: PMC11801295 DOI: 10.4103/nrr.nrr-d-24-00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 02/08/2025] Open
Abstract
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell, influencing behaviors from food choices to emotional memories. These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring. The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration, a phenomenon largely absent in the central nervous system. Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system, where damage often results in permanent deficits. Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal cord injuries and neurodegenerative diseases like Alzheimer's disease. Olfactory receptors are found in almost any cell of every organ/tissue of the mammalian body. This ectopic expression provides insights into the chemical structures that can activate olfactory receptors. In addition to odors, olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota. The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms. This review explores the ectopic expression of olfactory receptors and the role they may play in neural regeneration within the central nervous system, with particular attention to compounds that can activate these receptors to initiate regenerative processes. Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Toni Capó
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Rivas-Santisteban
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, Barcelona, Spain
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CiberNed Network Center for Biomedical Research in Neurodegenerative Diseases, Spanish National Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Xu J, Shepard BD, Pluznick JL. Roles of sensory receptors in non-sensory organs: the kidney and beyond. Nat Rev Nephrol 2025; 21:253-263. [PMID: 39753689 PMCID: PMC11929601 DOI: 10.1038/s41581-024-00917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 02/02/2025]
Abstract
Olfactory receptors (ORs), taste receptors and opsins are well-known for their pivotal roles in mediating the senses of smell, taste and sight, respectively. However, in the past two decades, research has shown that these sensory receptors also regulate physiological processes in a variety of non-sensory tissues. Although ORs, taste receptors and opsins have all been shown to have physiological roles beyond their traditional locations, most work in the kidney has focused on ORs. To date, renal ORs have been shown to have roles in blood pressure regulation (OLFR78 and OLFR558) and glucose homeostasis (OLFR1393). However, sensory receptors remain drastically understudied outside of traditional sensory systems, in part because of inherent challenges in studying these receptors. Increased knowledge of the physiological and pathophysiological roles of sensory receptors has the potential to substantially improve understanding of the function of numerous organs and systems, including the kidney. In addition, most sensory receptors are G protein-coupled receptors, which are considered to be the most druggable class of proteins, and thus could potentially be exploited as future therapeutic targets.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, DC, USA
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Ahmed KS, Christensen MA, Bonde A, Wei WQ, Khan A, Pacheco J, Roy-Puckelwartz M, McCarthy RJ, Alam HB, Sillesen M. Genomic analysis of surgical patients to identify patients at risk for postoperative sepsis and surgical site infection. J Trauma Acute Care Surg 2025; 98:385-392. [PMID: 39760666 DOI: 10.1097/ta.0000000000004530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
BACKGROUND Early and accurate diagnosis of sepsis and the ensuing organ dysfunction remain a challenge in the postoperative setting. Susceptibility to infections, as well as the subsequent immunological response, are driven to some extent by the genetic predisposition of the patient. The purpose of this study was to identify novel genetic variants associated with postoperative sepsis (POS) and surgical site infections (SSIs). METHODS We conducted genome-wide association studies for POS and SSIs in the Electronic Medical Records and Genomics Network database. All patients with surgical and genomic information in Electronic Medical Records and Genomics were identified. Patients with a new diagnosis of sepsis/SSIs after surgery were classified as cases, and those without as controls. Analyses were performed using PLINK 2.0's logistic regression function. A p value of <5 × 10 -8 was considered statistically significant. RESULTS A total of 59,755 participants were included in the analysis. Genetic regions on chromosomes 9 and 14 reached statistical significance for POS ( p < 5 × 10 -8 ). The most significant single-nucleotide polymorphisms (SNPs) were rs9413988 ( p = 5.59 × 10 -12 ) on chromosome 9 and rs35407594 ( p = 1.43 × 10 -10 ) on chromosome 14. The rs9413988 region is downstream to the phosphoglucomutase 5 pseudogene ( PGM5P2 ) and Zn-regulated GTPase metalloprotein activator 1F ( ZNGF1 ) and likely plays a role in transcription regulation, while rs35407594 corresponds to the olfactory receptor gene family, OR11 . Similar SNPs were also associated with SSIs. CONCLUSION We have identified two genetic regions containing SNPs associated with POS and SSIs. These findings provide new avenues for investigation, which may help identify and guide point-of-care management for at-risk patients. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level III.
Collapse
Affiliation(s)
- Kaleem S Ahmed
- From the Division of Trauma and Critical Care, Department of Surgery (K.S.A.), Feinberg School of Medicine, Northwestern University, Illinois; Department of Surgery (K.S.A.), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; Department of Organ Surgery and Transplantation (M.A.C.) and Department of Organ Surgery and Transplantation (A.B.), University of Copenhagen, Copenhagen, Denmark; Department of Surgery (W.-Q.W.), Vanderbilt University Medical Center, Tennessee, Nashville; Department of Surgery (A.K.), Columbia University Medical Center, New York; Center for Genetic Medicine (J.P., M.R.-P.), Feinberg School of Medicine, Northwestern University; Department of Anesthesiology (R.J.M.), Rush University Medical Center; Division of Trauma and Critical Care, Department of Surgery (H.B.A.), Feinberg School of Medicine, Northwestern University, Chicago, IL; and Department of Organ Surgery and Transplantation (M.H.S.), University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hoeferlin GF, Grabinski SE, Druschel LN, Duncan JL, Burkhart G, Weagraff GR, Lee AH, Hong C, Bambroo M, Olivares H, Bajwa T, Coleman J, Li L, Memberg W, Sweet J, Hamedani HA, Acharya AP, Hernandez-Reynoso AG, Donskey C, Jaskiw G, Ricky Chan E, Shoffstall AJ, Bolu Ajiboye A, von Recum HA, Zhang L, Capadona JR. Bacteria invade the brain following intracortical microelectrode implantation, inducing gut-brain axis disruption and contributing to reduced microelectrode performance. Nat Commun 2025; 16:1829. [PMID: 39979293 PMCID: PMC11842729 DOI: 10.1038/s41467-025-56979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Brain-machine interface performance can be affected by neuroinflammatory responses due to blood-brain barrier (BBB) damage following intracortical microelectrode implantation. Recent findings suggest that certain gut bacterial constituents might enter the brain through damaged BBB. Therefore, we hypothesized that damage to the BBB caused by microelectrode implantation could facilitate microbiome entry into the brain. In our study, we found bacterial sequences, including gut-related ones, in the brains of mice with implanted microelectrodes. These sequences changed over time. Mice treated with antibiotics showed a reduced presence of these bacteria and had a different inflammatory response, which temporarily improved microelectrode recording performance. However, long-term antibiotic use worsened performance and disrupted neurodegenerative pathways. Many bacterial sequences found were not present in the gut or in unimplanted brains. Together, the current study established a paradigm-shifting mechanism that may contribute to chronic intracortical microelectrode recording performance and affect overall brain health following intracortical microelectrode implantation.
Collapse
Grants
- R01 NS131502 NINDS NIH HHS
- R25 CA221718 NCI NIH HHS
- T32 EB004314 NIBIB NIH HHS
- This study was supported in part by Merit Review Award GRANT12418820 (Capadona), Biomedical Science and Engineering Summer Program for Rehabilitation Interventions GRANT14089804 (Capadona/Hess-Dunning), and Senior Research Career Scientist Award # GRANT12635707 (Capadona) from the United States (US) Department of Veterans Affairs Rehabilitation Research and Development Service. Additionally, this work was also supported in part by the National Institute of Health, National Institute of Neurological Disorders and Stroke GRANT12635723 (Capadona/Pancrazio and diversity supplement Hernandez-Reynoso) and NS131502 (Ware/Pancrazio/Capadona), the National Cancer Institute NCI R25 CA221718 (Berger) provided support for Weagraff, the Congressionally Directed Medical Research Program (CDMRP) – Spinal Cord Injury Research Program (SCIRP), administered through the Department of Defense Award # SC180308 (Ajiboye) and the National Institute for Biomedical Imaging and Bioengineering, T32EB004314, provided support for both Hoeferlin and Burkhart (Capadona/Kirsch). Microbiome analyses were partially supported by the junior faculty’s startup funding from the CWRU School of Medicine, BGT630267 (Zhang). Finally, partial funding was provided from discretionary funding from the Donnell Institute Professorship endowment (Capadona) and the Case School of Engineering Research Incentive Program (Capadona).
Collapse
Affiliation(s)
- George F Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Sarah E Grabinski
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jonathan L Duncan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Grace Burkhart
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Gwendolyn R Weagraff
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Alice H Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Christopher Hong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Meera Bambroo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Hannah Olivares
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Tejas Bajwa
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jennifer Coleman
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - William Memberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jennifer Sweet
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Neurological Surgery, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Hoda Amani Hamedani
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Abhinav P Acharya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ana G Hernandez-Reynoso
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Curtis Donskey
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Division of Infectious Diseases & HIV Medicine in the Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - George Jaskiw
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - A Bolu Ajiboye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Liangliang Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
5
|
Shahbaz S, Rezaeifar M, Syed H, Redmond D, Terveart JWC, Osman M, Elahi S. Upregulation of olfactory receptors and neuronal-associated genes highlights complex immune and neuronal dysregulation in Long COVID patients. Brain Behav Immun 2025; 124:97-114. [PMID: 39615603 DOI: 10.1016/j.bbi.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 01/20/2025] Open
Abstract
A substantial portion of patients infected with SARS-CoV-2 experience prolonged complications, known as Long COVID (LC). A subset of these patients exhibits the most debilitating symptoms, similar to those defined in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We performed bulk RNA sequencing (RNAseq) on the whole blood of LC with ME/CFS, at least 12 months post-onset of the acute disease, and compared them with controls. We found that LC patients had a distinct transcriptional profile compared to controls. Key findings include the upregulation of genes involved in immune dysregulation and neuronal development, such as Fezf2, BRINP2, HOXC12, MEIS2, ZFHX3, and RELN. These genes are linked to neuroinflammatory responses, cognitive impairments, and hematopoietic disturbances, suggesting ongoing neurological and immune disturbances in LC patients. RELN, encoding the Reelin protein, was notably elevated in LC patients, potentially serving as a biomarker for LC pathogenesis due to its role in inflammation and neuronal function. Immune cell analysis showed altered profiles in LC patients, with increased activated memory CD4 + T cells and neutrophils, and decreased regulatory T cells and NK cells, reflecting immune dysregulation. Changes in cytokine and chemokine expression further underscore the chronic inflammatory state in LC patients. Notably, a unique upregulation of olfactory receptors (ORs) suggest alternative roles for ORs in non-olfactory tissues. Pathway analysis revealed upregulation in ribosomal RNA processing, amino acid metabolism, protein synthesis, cell proliferation, DNA repair, and mitochondrial pathways, indicating heightened metabolic and immune demands. Conversely, downregulated pathways, such as VEGF signaling and TP53 activity, point to impaired tissue repair and cellular stress responses. Overall, our study underscores the complex interplay between immune and neuronal dysfunction in LC patients, providing insights into potential diagnostic biomarkers and therapeutic targets. Future research is needed to fully understand the roles and interactions of these genes in LC pathophysiology.
Collapse
Affiliation(s)
- Shima Shahbaz
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Maryam Rezaeifar
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Hussein Syed
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Jan Willem Cohen Terveart
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Shokrollah Elahi
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2E1, AB, Canada; Glycomics Institute of Alberta, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|
6
|
Armstrong Suthahar SS, Nettersheim FS, Alimadadi A, Wang E, Billitti M, Resto-Trujillo N, Roy P, Hedrick CC, Ley K, Orecchioni M. Olfr2-positive macrophages originate from monocytes proliferate in situ and present a pro-inflammatory foamy-like phenotype. Cardiovasc Res 2024; 120:1577-1589. [PMID: 39229899 DOI: 10.1093/cvr/cvae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 09/05/2024] Open
Abstract
AIMS Olfactory receptor 2 (Olfr2) has been identified in a minimum of 30% of vascular macrophages, and its depletion was shown to reduce atherosclerosis progression. Mononuclear phagocytes, including monocytes and macrophages within the vessel wall, are major players in atherosclerosis. Single-cell RNA sequencing studies revealed that atherosclerotic artery walls encompass several monocytes and vascular macrophages, defining at least nine distinct subsets potentially serving diverse functions in disease progression. This study investigates the functional phenotype and ontogeny of Olfr2-expressing vascular macrophages in atherosclerosis. METHODS AND RESULTS Olfr2+ macrophages rapidly increase in Apoe-/- mice's aorta when fed a Western diet (WD). Mass cytometry showed that Olfr2+ cells are clustered within the CD64 high population and enriched for CD11c and Ccr2 markers. Olfr2+ macrophages express many pro-inflammatory cytokines, including Il1b, Il6, Il12, and Il23, and chemokines, including Ccl5, Cx3cl1, Cxcl9, and Ccl22. By extracting differentially expressed genes from bulk RNA sequencing (RNA-seq) of Olfr2+ vs. Olfr2- macrophages, we defined a signature that significantly mapped to single-cell data of plaque myeloid cells, including monocytes, subendothelial MacAir, and Trem2Gpnmb foamy macrophages. By adoptive transfer experiments, we identified that Olfr2 competent monocytes from CD45.1Apoe-/-Olfr2+/+ mice transferred into CD45.2Apoe-/-Olfr2-/- recipient mice fed WD for 12 weeks, accumulate in the atherosclerotic aorta wall already at 72 h, and differentiate in macrophages. Olfr2+ macrophages showed significantly increased BrdU incorporation compared to Olfr2- macrophages. Flow cytometry confirmed that at least 50% of aortic Olfr2+ macrophages are positive for BODIPY staining and have increased expression of both tumour necrosis factor and interleukin 6 compared to Olfr2- macrophages. Gene set enrichment analysis of the Olfr2+ macrophage signature revealed a similar enrichment pattern in human atherosclerotic plaques, particularly within foamy/TREM2hi-Mφ and monocytes. CONCLUSIONS In summary, we conclude that Olfr2+ macrophages in the aorta originate from monocytes and can accumulate at the early stages of disease progression. These cells can undergo differentiation into MacAir and Trem2Gpnmb foamy macrophages, exhibiting proliferative and pro-inflammatory potentials. This dynamic behaviour positions them as key influencers in shaping the myeloid landscape within the atherosclerotic plaque.
Collapse
Affiliation(s)
| | - Felix Sebastian Nettersheim
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Ahmad Alimadadi
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Erpei Wang
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Monica Billitti
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Natalya Resto-Trujillo
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Catherine C Hedrick
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
- Department of Medicine, Augusta University, 1120 15th St BA 8412, Augusta, GA 30912, USA
| | - Klaus Ley
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
- Department of Physiology, Augusta University, 1462 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Marco Orecchioni
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
- Department of Pharmacology & Toxicology, Augusta University, 1459 Laney Walker Blvd, Augusta, GA 30901, USA
| |
Collapse
|
7
|
Ren H, Zhang R, Zhang H, Bian C. Ecnomotopic olfactory receptors in metabolic regulation. Biomed Pharmacother 2024; 179:117403. [PMID: 39241572 DOI: 10.1016/j.biopha.2024.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Olfactory receptors are seven-transmembrane G-protein-coupled receptors on the cell surface. Over the past few decades, evidence has been mounting that olfactory receptors are not unique to the nose and that their ectopic existence plays an integral role in extranasal diseases. Coupled with the discovery of many natural or synthetic odor-compound ligands, new roles of ecnomotopic olfactory receptors regulating blood glucose, obesity, blood pressure, and other metabolism-related diseases are emerging. Many well-known scientific journals have called for attention to extranasal functions of ecnomotopic olfactory receptors. Thus, the prospect of ecnomotopic olfactory receptors in drug target research has been greatly underestimated. Here, we have provided an overview for the role of ecnomotopic olfactory receptors in metabolic diseases, focusing on their effects on various metabolic tissues, and discussed the possible molecular biological and pathophysiological mechanisms, which provide the basis for drug development and clinical application targeting the function of ecnomotopic olfactory receptors via literature machine learning and screening.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haibo Zhang
- Departments of Infectious Disease, the Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Che Bian
- Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
8
|
Shi K, Jiao Y, Yang L, Yuan G, Jia J. New insights into the roles of olfactory receptors in cardiovascular disease. Mol Cell Biochem 2024; 479:1615-1626. [PMID: 38761351 DOI: 10.1007/s11010-024-05024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Olfactory receptors (ORs) are G protein coupled receptors (GPCRs) with seven transmembrane domains that bind to specific exogenous chemical ligands and transduce intracellular signals. They constitute the largest gene family in the human genome. They are expressed in the epithelial cells of the olfactory organs and in the non-olfactory tissues such as the liver, kidney, heart, lung, pancreas, intestines, muscle, testis, placenta, cerebral cortex, and skin. They play important roles in the normal physiological and pathophysiological mechanisms. Recent evidence has highlighted a close association between ORs and several metabolic diseases. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality globally. Furthermore, ORs play an essential role in the development and functional regulation of the cardiovascular system and are implicated in the pathophysiological mechanisms of CVDs, including atherosclerosis (AS), heart failure (HF), aneurysms, and hypertension (HTN). This review describes the specific mechanistic roles of ORs in the CVDs, and highlights the future clinical application prospects of ORs in the diagnosis, treatment, and prevention of the CVDs.
Collapse
Affiliation(s)
- Kangru Shi
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Jiao
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jue Jia
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
9
|
Hashoul D, Saliba W, Broza YY, Haick H. Non-contact immunological signaling for highly-efficient regulation of the transcriptional map of human monocytes. Bioeng Transl Med 2024; 9:e10519. [PMID: 38818125 PMCID: PMC11135151 DOI: 10.1002/btm2.10519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 06/01/2024] Open
Abstract
The different immune system cells communicate and coordinate a response using a complex and evolved language of cytokines and chemokines. These cellular interactions carry out multiple functions in distinct cell types with numerous developmental outcomes. Despite the plethora of different cytokines and their cognate receptors, there is a restricted number of signal transducers and activators to control immune responses. Herein, we report on a new class of immunomodulatory signaling molecules based on volatile molecules (VMs, namely, volatile organic compounds [VOCs]), by which they can affect and/or control immune cell behavior and transcriptomic profile without any physical contact with other cells. The study demonstrates the role of VMs by analyzing non-contact cell communication between normal and cancerous lung cells and U937 monocytes, which are key players in the tumor microenvironment. Integrated transcriptome and proteome analyses showed the suggested regulatory role of VMs released from normal and cancer cells on neighboring monocytes in several molecular pathways, including PI3K/AKT, PPAR, and HIF-1. Presented data provide an initial platform for a new class of immunomodulatory molecules that can potentially mirror the genomic and proteomic profile of cells, thereby paving the way toward non-invasive immunomonitoring.
Collapse
Affiliation(s)
- Dina Hashoul
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Walaa Saliba
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
10
|
Beito MR, Ashraf S, Odogwu D, Harmancey R. Role of Ectopic Olfactory Receptors in the Regulation of the Cardiovascular-Kidney-Metabolic Axis. Life (Basel) 2024; 14:548. [PMID: 38792570 PMCID: PMC11122380 DOI: 10.3390/life14050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Olfactory receptors (ORs) represent one of the largest yet least investigated families of G protein-coupled receptors in mammals. While initially believed to be functionally restricted to the detection and integration of odors at the olfactory epithelium, accumulating evidence points to a critical role for ectopically expressed ORs in the regulation of cellular homeostasis in extranasal tissues. This review aims to summarize the current state of knowledge on the expression and physiological functions of ectopic ORs in the cardiovascular system, kidneys, and primary metabolic organs and emphasizes how altered ectopic OR signaling in those tissues may impact cardiovascular-kidney-metabolic health.
Collapse
Affiliation(s)
| | | | | | - Romain Harmancey
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.R.B.); (S.A.); (D.O.)
| |
Collapse
|
11
|
Terry J. Patterns of Interferon γ Expression and C4d Deposition in Chronic Intervillositis of Unknown Etiology. Pediatr Dev Pathol 2023; 26:52-58. [PMID: 36571293 DOI: 10.1177/10935266221144083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pathogenesis of chronic intervillositis of unknown etiology (CIUE) may involve IFNγ overexpression. This study assesses the extent of IFNγ expression in CIUE by immunohistochemistry and compares it to spontaneous pregnancy losses. C4d deposition is also assessed to see whether IFNγ and C4d might represent separate diagnostic categories. Placenta from first to early second trimester with high grade CIUE (CHG; 17 cases) and low grade CIUE (CLG; 12 cases) is compared to euploid (SPLN; 18 cases), aneuploid spontaneous pregnancy losses (SPLA, 17 cases), normal placenta (NP, 13 cases). Protein level expression of IFNγ and C4d is assessed on whole tissue sections by immunohistochemistry. 35% of CHG and 42% of CLG show some level of IFNγ expression localized to the luminal surface of syncytiotrophoblast. 12% of SPLA and no SPLN or NP cases are IFNγ positive. C4d deposition is seen in 100% of CIUE, 88% of SPLA, 83% of SPLN, and 46% of NP samples. IFNγ overexpression occurs in approximately 40% of CIUE-related pregnancy losses. IFNγ expression restricted to a subgroup of CIUE implies that IFNγ may define a distinct disease process. The non-discriminatory pattern of C4d deposition suggests it is a non-specific phenomenon possibly related to placental damage.
Collapse
Affiliation(s)
- Jefferson Terry
- Department of Pathology, British Columbia Children's and Women's Hospitals, Vancouver, BC, Canada
| |
Collapse
|
12
|
Orecchioni M, Matsunami H, Ley K. Olfactory receptors in macrophages and inflammation. Front Immunol 2022; 13:1029244. [PMID: 36311776 PMCID: PMC9606742 DOI: 10.3389/fimmu.2022.1029244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022] Open
Abstract
Olfactory receptors (ORs) that bind odorous ligands are the largest family of G-protein-coupled receptors. In the olfactory epithelium, approximately 400 and 1,100 members are expressed in humans and mice, respectively. Growing evidence suggests the extranasal functions of ORs. Here, we review OR expression and function in macrophages, specialized innate immune cells involved in the detection, phagocytosis, and destruction of cellular debris and pathogens as well as the initiation of inflammatory responses. RNA sequencing data in mice suggest that up to 580 ORs may be expressed in macrophages. Macrophage OR expression is increased after treatment with the Toll-like receptor 4 ligand lipopolysaccharide, which also induces the transcription of inflammasome components. Triggering human OR6A2 or its mouse orthologue Olfr2 with their cognate ligand octanal induces inflammasome assembly and the secretion of IL-1β, which exacerbates atherosclerosis. Octanal is positively correlated with blood lipids like low-density lipoprotein -cholesterol in humans. Another OR, Olfr78, is activated by lactate, which promotes the generation of tumor-associated macrophages that dampen the immune response and promote tumor progression. Olfactory receptors in macrophages are a rich source of untapped opportunity for modulating inflammation. It is not known which of the many ORs expressed in macrophages promote or modulate inflammation. Progress in this area also requires deorphanizing more ORs and determining the sources of their ligands.
Collapse
Affiliation(s)
- Marco Orecchioni
- Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States,*Correspondence: Marco Orecchioni, ; Klaus Ley,
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Klaus Ley
- Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States,Immunology Center of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Marco Orecchioni, ; Klaus Ley,
| |
Collapse
|
13
|
Senna MM, Peterson E, Jozic I, Chéret J, Paus R. Frontiers in Lichen Planopilaris and Frontal Fibrosing Alopecia Research: Pathobiology Progress and Translational Horizons. JID INNOVATIONS 2022; 2:100113. [PMID: 35521043 PMCID: PMC9062486 DOI: 10.1016/j.xjidi.2022.100113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Lichen planopilaris (LPP) and frontal fibrosing alopecia (FFA) are primary, lymphocytic cicatricial hair loss disorders. These model epithelial stem cell (SC) diseases are thought to result from a CD8+ T-cell‒dominated immune attack on the hair follicle (HF) SC niche (bulge) after the latter has lost its immune privilege (IP) for as yet unknown reasons. This induces both apoptosis and pathological epithelial‒mesenchymal transition in epithelial SCs, thus depletes the bulge, causes fibrosis, and ultimately abrogates the HFs' capacity to regenerate. In this paper, we synthesize recent progress in LPP and FFA pathobiology research, integrate our limited current understanding of the roles that genetic, hormonal, environmental, and other factors may play, and define major open questions. We propose that LPP and FFA share a common initial pathobiology, which then bifurcates into two distinct clinical phenotypes, with macrophages possibly playing a key role in phenotype determination. As particularly promising translational research avenues toward direly needed progress in the management of these disfiguring, deeply distressful cicatricial alopecia variants, we advocate to focus on the development of bulge IP and epithelial SC protectants such as, for example, topically effective, HF‒penetrating and immunoinhibitory preparations that contain tacrolimus, peroxisome proliferator-activated receptor-γ, and/or CB1 agonists.
Collapse
Key Words
- 5ARI, 5α-reductase inhibitor
- AA, alopecia areata
- AGA, androgenetic alopecia
- CRH, corticotropin-releasing hormone
- EMT, epithelial‒mesenchymal transition
- FFA, frontal fibrosing alopecia
- HF, hair follicle
- IP, immune privilege
- K, keratin
- KC, keratinocyte
- LPP, lichen planopilaris
- MAC, macrophage
- MHC, major histocompatibility complex
- PCA, primary cicatricial alopecia
- PCP, personal care product
- PPAR-γ, peroxisome proliferator–activated receptor-γ
- SC, stem cell
- SP, substance P
- eHFSC, epithelial hair follicle stem cell
- α-MSH, α-melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Maryanne Makredes Senna
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Erik Peterson
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ivan Jozic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,CUTANEON, Hamburg, Germany
| |
Collapse
|
14
|
Olfactory receptors contribute to progression of kidney fibrosis. NPJ Syst Biol Appl 2022; 8:8. [PMID: 35181660 PMCID: PMC8857310 DOI: 10.1038/s41540-022-00217-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/21/2022] [Indexed: 11/08/2022] Open
Abstract
Olfactory receptors (ORs) which are mainly known as odor-sensors in the olfactory epithelium are shown to be expressed in several non-sensory tissues. Despite the specified role of some of these receptors in normal physiology of the kidney, little is known about their potential effect in renal disorders. In this study, using the holistic view of systems biology, it was determined that ORs are significantly changed during the progression of kidney fibrosis. For further validation, common differentially expressed ORs resulted from reanalysis of two time-course microarray datasets were selected for experimental evaluation in a validated murine model of unilateral ureteral obstruction (UUO). Transcriptional analysis by real-time quantitative polymerase chain reaction demonstrated considerable changes in the expression pattern of Olfr433, Olfr129, Olfr1393, Olfr161, and Olfr622 during the progression of kidney fibrosis. For localization of these ORs, single-cell RNA-sequencing datasets of normal and UUO mice were reanalyzed. Results showed that Olfr433 is highly expressed in macrophages in day-2 and 7 post-injury in UUO mice and not in normal subgroups. Besides, like previous findings, Olfr1393 was shown to be expressed prominently in the proximal tubular cells of the kidney. In conclusion, our combinatorial temporal approach to the underlying mechanisms of chronic kidney disease highlighted the potential role of ORs in progression of fibrosis. The expression of Olfr433 in the macrophages provides some clue about its relation to molecular mechanisms promoted in the fibrotic kidney. The proposed ORs in this study could be the subject of further functional assessments in the future.
Collapse
|
15
|
Orecchioni M, Kobiyama K, Winkels H, Ghosheh Y, McArdle S, Mikulski Z, Kiosses WB, Fan Z, Wen L, Jung Y, Roy P, Ali AJ, Miyamoto Y, Mangan M, Makings J, Wang Z, Denn A, Vallejo J, Owens M, Durant CP, Braumann S, Mader N, Li L, Matsunami H, Eckmann L, Latz E, Wang Z, Hazen SL, Ley K. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science 2022; 375:214-221. [PMID: 35025664 PMCID: PMC9744443 DOI: 10.1126/science.abg3067] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is an inflammatory disease of the artery walls and involves immune cells such as macrophages. Olfactory receptors (OLFRs) are G protein–coupled chemoreceptors that have a central role in detecting odorants and the sense of smell. We found that mouse vascular macrophages express the olfactory receptor Olfr2 and all associated trafficking and signaling molecules. Olfr2 detects the compound octanal, which activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome and induces interleukin-1β secretion in human and mouse macrophages. We found that human and mouse blood plasma contains octanal, a product of lipid peroxidation, at concentrations sufficient to activate Olfr2 and the human ortholog olfactory receptor 6A2 (OR6A2). Boosting octanal levels exacerbated atherosclerosis, whereas genetic targeting of Olfr2 in mice significantly reduced atherosclerotic plaques. Our findings suggest that inhibiting OR6A2 may provide a promising strategy to prevent and treat atherosclerosis.
Collapse
Affiliation(s)
| | - Kouji Kobiyama
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Holger Winkels
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Internal Medicine III, Division of Cardiology, Heart Center, University Hospital of Cologne, 50937 Cologne, Germany
| | - Yanal Ghosheh
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sara McArdle
- Histology and Microscopy Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zbigniew Mikulski
- Histology and Microscopy Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - William B. Kiosses
- Histology and Microscopy Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zhichao Fan
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Immunology, School of Medicine, UConn Health, University of Connecticut, Farmington, CT 06030, USA
| | - Lai Wen
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Yunmin Jung
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Payel Roy
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Amal J. Ali
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Mangan
- Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Zhihao Wang
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Angela Denn
- Histology and Microscopy Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | - Michaela Owens
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | - Simon Braumann
- Department of Internal Medicine III, Division of Cardiology, Heart Center, University Hospital of Cologne, 50937 Cologne, Germany
| | - Navid Mader
- Department of Cardiothoracic Surgery, Heart Center, University Hospital of Cologne, 50937 Cologne, Germany
| | - Lin Li
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27708, USA
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Zeneng Wang
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stanley L. Hazen
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
The macrophage odorant receptor Olfr78 mediates the lactate-induced M2 phenotype of tumor-associated macrophages. Proc Natl Acad Sci U S A 2021; 118:2102434118. [PMID: 34504016 DOI: 10.1073/pnas.2102434118] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Expression and function of odorant receptors (ORs), which account for more than 50% of G protein-coupled receptors, are being increasingly reported in nonolfactory sites. However, ORs that can be targeted by drugs to treat diseases remain poorly identified. Tumor-derived lactate plays a crucial role in multiple signaling pathways leading to generation of tumor-associated macrophages (TAMs). In this study, we hypothesized that the macrophage OR Olfr78 functions as a lactate sensor and shapes the macrophage-tumor axis. Using Olfr78 +/+ and Olfr78 -/- bone marrow-derived macrophages with or without exogenous Olfr78 expression, we demonstrated that Olfr78 sensed tumor-derived lactate, which was the main factor in tumor-conditioned media responsible for generation of protumoral M2-TAMs. Olfr78 functioned together with Gpr132 to mediate lactate-induced generation of protumoral M2-TAMs. In addition, syngeneic Olfr78-deficient mice exhibited reduced tumor progression and metastasis together with an increased anti- versus protumoral immune cell population. We propose that the Olfr78-lactate interaction is a therapeutic target to reduce and prevent tumor progression and metastasis.
Collapse
|
17
|
Ectopic Odorant Receptor Responding to Flavor Compounds: Versatile Roles in Health and Disease. Pharmaceutics 2021; 13:pharmaceutics13081314. [PMID: 34452275 PMCID: PMC8402194 DOI: 10.3390/pharmaceutics13081314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Prompted by the ground-breaking discovery of the rodent odorant receptor (OR) gene family within the olfactory epithelium nearly 30 years ago, followed by that of OR genes in cells of the mammalian germ line, and potentiated by the identification of ORs throughout the body, our appreciation for ORs as general chemoreceptors responding to odorant compounds in the regulation of physiological or pathophysiological processes continues to expand. Ectopic ORs are now activated by a diversity of flavor compounds and are involved in diverse physiological phenomena varying from adipogenesis to myogenesis to hepatic lipid accumulation to serotonin secretion. In this review, we outline the key biological functions of the ectopic ORs responding to flavor compounds and the underlying molecular mechanisms. We also discuss research opportunities for utilizing ectopic ORs as therapeutic strategies in the treatment of human disease as well as challenges to be overcome in the future. The recognition of the potent function, signaling pathway, and pharmacology of ectopic ORs in diverse tissues and cell types, coupled with the fact that they belong to G protein-coupled receptors, a highly druggable protein family, unequivocally highlight the potential of ectopic ORs responding to flavor compounds, especially food-derived odorant compounds, as a promising therapeutic strategy for various diseases.
Collapse
|
18
|
Gvozdeva OV, Achasova KM, Litvinova NA, Kozhevnikova EN, Litvinova EA. Female Scent Activated Expression of Arginase1 and Inducible NO-Synthetase in Lung of BALB/c Male Mice. Animals (Basel) 2021; 11:1756. [PMID: 34208376 PMCID: PMC8231181 DOI: 10.3390/ani11061756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Scent signals play an important role in the life of rodents. The scent of the opposite sex can modulate immunity. In mice populations with natural specific pathogens, in males, the scent of a female leads to a redistribution of leukocytes between the lung and the blood, resistance to the influenza virus, and a decrease in antibody production, but not in the development of inflammation induced by bacterial endotoxins. This study demonstrates the effect of the scent of soiled bedding of specific pathogen-free (SPF) status female mice on the percentage of different types of leukocytes in the blood, the expression of Nos2, Arg1, and Foxp3 genes, and the presence of M1/M2 macrophages in the lungs of male BALB/c mice. The scent of the female SPF mice caused a redistribution between T- and B-cells in the blood, the increase in the expression of Nos2, Arg1 genes, and the percentage of M1 type macrophages in the lung, but did not affect the different types of T-cells in the periphery or the lungs. Activation of macrophages in the lung is part of mucosal immunity, which is necessary for males as an adaptive mechanism to prevent potential infection during the search for a sexual partner.
Collapse
Affiliation(s)
- Olga V. Gvozdeva
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, P.O. Box 267, 630501 Krasnoobsk, Russia; (O.V.G.); (K.M.A.); (E.N.K.)
| | - Kseniya M. Achasova
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, P.O. Box 267, 630501 Krasnoobsk, Russia; (O.V.G.); (K.M.A.); (E.N.K.)
| | - Nadezhda A. Litvinova
- Faculty of General Medicine, Kemerovo State Medical University, 650001 Kemerovo, Russia;
| | - Elena N. Kozhevnikova
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, P.O. Box 267, 630501 Krasnoobsk, Russia; (O.V.G.); (K.M.A.); (E.N.K.)
- Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Ekaterina A. Litvinova
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, P.O. Box 267, 630501 Krasnoobsk, Russia; (O.V.G.); (K.M.A.); (E.N.K.)
- Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
19
|
Kraus A, Buckley KM, Salinas I. Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. eLife 2021; 10:66706. [PMID: 33900197 PMCID: PMC8075586 DOI: 10.7554/elife.66706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Detecting danger is key to the survival and success of all species. Animal nervous and immune systems cooperate to optimize danger detection. Preceding studies have highlighted the benefits of bringing neurons into the defense game, including regulation of immune responses, wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in neuroimmune communication and assert that neuronal participation in the immune response is deeply beneficial in each step of combating infection, from inception to resolution. Despite the documented tight association between the immune and nervous systems in mammals or invertebrate model organisms, interdependence of these two systems is largely unexplored across metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in the context of danger detection and advocates for the use of non-model organisms to diversify the field of neuroimmunology. We identify key taxa that are ripe for investigation due to the emergence of key evolutionary innovations in their immune and nervous systems. This novel perspective will help define the primordial principles that govern neuroimmune communication across taxa.
Collapse
Affiliation(s)
- Aurora Kraus
- Department of Biology, University of New Mexico, Albuquerque, United States
| | | | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
20
|
The Intestinal Fatty Acid-Enteroendocrine Interplay, Emerging Roles for Olfactory Signaling and Serotonin Conjugates. Molecules 2021; 26:molecules26051416. [PMID: 33807994 PMCID: PMC7961910 DOI: 10.3390/molecules26051416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal enteroendocrine cells (EECs) respond to fatty acids from dietary and microbial origin by releasing neurotransmitters and hormones with various paracrine and endocrine functions. Much has become known about the underlying signaling mechanisms, including the involvement of G-protein coupled receptors (GPCRs), like free fatty acids receptors (FFARs). This review focusses on two more recently emerging research lines: the roles of odorant receptors (ORs), and those of fatty acid conjugates in gut. Odorant receptors belong to a large family of GPCRs with functional roles that only lately have shown to reach beyond the nasal-oral cavity. In the intestinal tract, ORs are expressed on serotonin (5-HT) and glucagon-like-peptide-1 (GLP-1) producing enterochromaffin and enteroendocrine L cells, respectively. There, they appear to function as chemosensors of microbiologically produced short-, and branched-chain fatty acids. Another mechanism of fatty acid signaling in the intestine occurs via their conjugates. Among them, conjugates of unsaturated long chain fatty acids and acetate with 5-HT, N-acyl serotonins have recently emerged as mediators with immune-modulatory effects. In this review, novel findings in mechanisms and molecular players involved in intestinal fatty acid biology are highlighted and their potential relevance for EEC-mediated signaling to the pancreas, immune system, and brain is discussed.
Collapse
|
21
|
Ribon-Demars A, Jochmans-Lemoine A, Ganouna-Cohen G, Boreau A, Marcouiller F, Bairam A, Pialoux V, Joseph V. Lung oxidative stress and transcriptional regulations induced by estradiol and intermittent hypoxia. Free Radic Biol Med 2021; 164:119-129. [PMID: 33385539 DOI: 10.1016/j.freeradbiomed.2020.12.433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022]
Abstract
We determined the effects of chronic intermittent hypoxia (CIH) and estradiol (E2) on oxidative stress and gene expression in the lungs. Female Sprague-Dawley rats were left intact (sham) or ovariectomized (OVX) and implanted with pumps delivering vehicle or E2 (0.5 mg/kg/day). Two weeks following surgery, the rats were exposed to room air (RA) or CIH for 7 days (10% O2, 10 cycles/hour, 8 h/day). Lung samples were used to measure the activities of pro- (NADPH and xanthine oxidases) and antioxidant (superoxide dismutase, catalase and glutathione peroxidase) enzymes, and concentrations of advanced oxidation of protein products (AOPP). We determined gene expression with an RNA microarray and enrichment analysis of differentially expressed genes. In rats exposed to RA, OVX and E2 supplementation increased pro- and antioxidant activities and AOPP concentration. In rats exposed to CIH, AOPP concentration, pro- and antioxidant enzymes activities increased in sham, did not changed in OVX-Veh rats, and were reduced in OVX-E2 rats. In rats exposed to RA, genes involved in extracellular matrix were up-regulated by OVX and down-regulated by E2, while E2 up-regulated genes involved in cell mobility/adherence and leukocytes migration. OVX downregulated expression of roughly 200 olfactory receptor genes without effect of E2. CIH altered gene expression in sham and OVX-E2, but not in OVX-Veh rats. Enrichment analysis confirmed the antioxidant effects of E2 under CIH. There are important interactions between ovarian hormones and CIH that can be relevant to better understand the consequences of sleep apnea (i.e. CIH) on the occurrence of lung pathologies in women.
Collapse
Affiliation(s)
- Alexandra Ribon-Demars
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada; Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Inter-Universitaire de Biologie de La Motricité, Lyon, France
| | - Alexandra Jochmans-Lemoine
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada
| | - Gauthier Ganouna-Cohen
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada
| | - Anaëlle Boreau
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Inter-Universitaire de Biologie de La Motricité, Lyon, France
| | - François Marcouiller
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada
| | - Aida Bairam
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada
| | - Vincent Pialoux
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Inter-Universitaire de Biologie de La Motricité, Lyon, France; Institut Universitaire de France, Paris, France
| | - Vincent Joseph
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie Du Québec, Université Laval, Québec, QC, Canada.
| |
Collapse
|
22
|
Gori A, Leone F, Loffredo L, Cinicola BL, Brindisi G, De Castro G, Spalice A, Duse M, Zicari AM. COVID-19-Related Anosmia: The Olfactory Pathway Hypothesis and Early Intervention. Front Neurol 2020; 11:956. [PMID: 33013637 PMCID: PMC7511833 DOI: 10.3389/fneur.2020.00956] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Anosmia is a well-described symptom of Corona Virus Disease 2019 (COVID-19). Several respiratory viruses are able to cause post-viral olfactory dysfunction, suggesting a sensorineural damage. Since the olfactory bulb is considered an immunological organ contributing to prevent the invasion of viruses, it could have a role in host defense. The inflammatory products locally released in COVID-19, leading to a local damage and causing olfactory loss, simultaneously may interfere with the viral spread into the central nervous system. In this context, olfactory receptors could play a role as an alternative way of SARS-CoV-2 entry into cells locally, in the central nervous system, and systemically. Differences in olfactory bulb due to sex and age may contribute to clarify the different susceptibility to infection and understand the role of age in transmission and disease severity. Finally, evaluation of the degree of functional impairment (grading), central/peripheral anosmia (localization), and the temporal course (evolution) may be useful tools to counteract COVID-19.
Collapse
Affiliation(s)
| | - Fabrizio Leone
- Department of Pediatrics, Sapienza University, Rome, Italy
| | - Lorenzo Loffredo
- Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | | | | | | | - Alberto Spalice
- Child Neurology Division, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Marzia Duse
- Department of Pediatrics, Sapienza University, Rome, Italy
| | | |
Collapse
|
23
|
Heimroth RD, Casadei E, Salinas I. Molecular Drivers of Lymphocyte Organization in Vertebrate Mucosal Surfaces: Revisiting the TNF Superfamily Hypothesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2697-2711. [PMID: 32238457 PMCID: PMC7872792 DOI: 10.4049/jimmunol.1901059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
The adaptive immune system of all jawed vertebrates relies on the presence of B and T cell lymphocytes that aggregate in specific body sites to form primary and secondary lymphoid structures. Secondary lymphoid organs include organized MALT (O-MALT) such as the tonsils and Peyer patches. O-MALT became progressively organized during vertebrate evolution, and the TNF superfamily of genes has been identified as essential for the formation and maintenance of O-MALT and other secondary and tertiary lymphoid structures in mammals. Yet, the molecular drivers of O-MALT structures found in ectotherms and birds remain essentially unknown. In this study, we provide evidence that TNFSFs, such as lymphotoxins, are likely not a universal mechanism to maintain O-MALT structures in adulthood of teleost fish, sarcopterygian fish, or birds. Although a role for TNFSF2 (TNF-α) cannot be ruled out, transcriptomics suggest that maintenance of O-MALT in nonmammalian vertebrates relies on expression of diverse genes with shared biological functions in neuronal signaling. Importantly, we identify that expression of many genes with olfactory function is a unique feature of mammalian Peyer patches but not the O-MALT of birds or ectotherms. These results provide a new view of O-MALT evolution in vertebrates and indicate that different genes with shared biological functions may have driven the formation of these lymphoid structures by a process of convergent evolution.
Collapse
Affiliation(s)
- Ryan D Heimroth
- Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131; and
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Elisa Casadei
- Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131; and
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131; and
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
24
|
Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper(II) Oxide Nanoparticles. NANOMATERIALS 2020; 10:nano10030550. [PMID: 32197515 PMCID: PMC7153614 DOI: 10.3390/nano10030550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
We investigated the transcriptomic response and epigenetic changes in the lungs of mice exposed to inhalation of copper(II) oxide nanoparticles (CuO NPs) (8 × 105 NPs/m3) for periods of 3 days, 2 weeks, 6 weeks, and 3 months. A whole genome transcriptome and miRNA analysis was performed using next generation sequencing. Global DNA methylation was assessed by ELISA. The inhalation resulted in the deregulation of mRNA transcripts: we detected 170, 590, 534, and 1551 differentially expressed transcripts after 3 days, 2 weeks, 6 weeks, and 3 months of inhalation, respectively. Biological processes and pathways affected by inhalation, differed between 3 days exposure (collagen formation) and longer treatments (immune response). Periods of two weeks exposure further induced apoptotic processes, 6 weeks of inhalation affected the cell cycle, and 3 months of treatment impacted the processes related to cell adhesion. The expression of miRNA was not affected by 3 days of inhalation. Prolonged exposure periods modified miRNA levels, although the numbers were relatively low (17, 18, and 38 miRNAs, for periods of 2 weeks, 6 weeks, and 3 months, respectively). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis based on miRNA–mRNA interactions, revealed the deregulation of processes implicated in the immune response and carcinogenesis. Global DNA methylation was not significantly affected in any of the exposure periods. In summary, the inhalation of CuO NPs impacted on both mRNA and miRNA expression. A significant transcriptomic response was already observed after 3 days of exposure. The affected biological processes and pathways indicated the negative impacts on the immune system and potential role in carcinogenesis.
Collapse
|
25
|
Maßberg D, Hatt H. Human Olfactory Receptors: Novel Cellular Functions Outside of the Nose. Physiol Rev 2018; 98:1739-1763. [PMID: 29897292 DOI: 10.1152/physrev.00013.2017] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Olfactory receptors (ORs) are not exclusively expressed in the olfactory sensory neurons; they are also observed outside of the olfactory system in all other human tissues tested to date, including the testis, lung, intestine, skin, heart, and blood. Within these tissues, certain ORs have been determined to be exclusively expressed in only one tissue, whereas other ORs are more widely distributed in many different tissues throughout the human body. For most of the ectopically expressed ORs, limited data are available for their functional roles. They have been shown to be involved in the modulation of cell-cell recognition, migration, proliferation, the apoptotic cycle, exocytosis, and pathfinding processes. Additionally, there is a growing body of evidence that they have the potential to serve as diagnostic and therapeutic tools, as ORs are highly expressed in different cancer tissues. Interestingly, in addition to the canonical signaling pathways activated by ORs in olfactory sensory neurons, alternative pathways have been demonstrated in nonolfactory tissues. In this review, the existing data concerning the expression, as well as the physiological and pathophysiological functions, of ORs outside of the nose are highlighted to provide insights into future lines of research.
Collapse
Affiliation(s)
- Désirée Maßberg
- Ruhr-University Bochum, Department of Cell Physiology , Bochum , Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology , Bochum , Germany
| |
Collapse
|
26
|
Sanz G, Leray I, Grébert D, Antoine S, Acquistapace A, Muscat A, Boukadiri A, Mir LM. Structurally related odorant ligands of the olfactory receptor OR51E2 differentially promote metastasis emergence and tumor growth. Oncotarget 2018; 8:4330-4341. [PMID: 28032594 PMCID: PMC5354835 DOI: 10.18632/oncotarget.13836] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Olfactory receptors are G protein-coupled receptors. Some of them are expressed in tumor cells, such as the OR51E2 receptor overexpressed in LNCaP prostate cancer cells. It is considered a prostate tumor marker. We previously demonstrated that this receptor is able to promote LNCaP cell invasiveness in vitro upon stimulation with its odorant agonist β-ionone, leading to increased generation of metastases in vivo. In the present study, we show that even a relatively short exposure to β-ionone is sufficient to promote metastasis emergence. Moreover, α-ionone, considered an OR51E2 antagonist, in fact promotes prostate tumor growth in vivo. The combination of α-ionone with β-ionone triggers a higher increase in the total tumor burden than each molecule alone. To support the in vivo results, we demonstrate in vitro that α-ionone is a real agonist of OR51E2, mainly sustaining LNCaP cell growth, while β-ionone mainly promotes cell invasiveness. So, while structurally close, α-ionone and β-ionone appear to induce different cellular effects, both leading to increased tumor aggressiveness. This behaviour could be explained by a different coupling to downstream effectors, as it has been reported for the so-called biased ligands of other G protein-coupled receptors.
Collapse
Affiliation(s)
- Guenhaël Sanz
- NBO, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Isabelle Leray
- Vectorologie et Thérapeutiques Anti-Cancéreuses, UMR8203, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Denise Grébert
- NBO, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | | | - Adeline Muscat
- Vectorologie et Thérapeutiques Anti-Cancéreuses, UMR8203, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Abdelhak Boukadiri
- GABI, AgroParisTech, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Lluis M Mir
- Vectorologie et Thérapeutiques Anti-Cancéreuses, UMR8203, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| |
Collapse
|
27
|
Salas A, Pardo-Seco J, Cebey-López M, Gómez-Carballa A, Obando-Pacheco P, Rivero-Calle I, Currás-Tuala MJ, Amigo J, Gómez-Rial J, Martinón-Torres F. Whole Exome Sequencing reveals new candidate genes in host genomic susceptibility to Respiratory Syncytial Virus Disease. Sci Rep 2017; 7:15888. [PMID: 29162850 PMCID: PMC5698448 DOI: 10.1038/s41598-017-15752-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) is an important cause of serious lower respiratory tract disease in infants. Several studies have shown evidence pointing to the genome of the host as an important factor determining susceptibility to respiratory disease caused by RSV. We sequenced the complete exomes of 54 patients infected by RSV that needed hospitalization due to development of severe bronchiolitis. The Iberian sample (IBS) from The 1000 Genomes Project (1000G) was used as control group; all the association results were pseudo-replicated using other 1000G-European controls and Spanish controls. The study points to SNP rs199665292 in the olfactory receptor (OR) gene OR13C5 as the best candidate variant (P-value = 1.16 × 10-12; OR = 5.56). Genetic variants at HLA genes (HLA-DQA1, HLA-DPB1), and in the mucin 4 gene (MUC4) also emerge as susceptibility candidates. By collapsing rare variants in genes and weighing by pathogenicity, we obtained confirmatory signals of association in the OR gene OR8U1/OR8U8, the taste receptor TAS2R19, and another mucin gene (MUC6). Overall, we identified new predisposition variants and genes related to RSV infection. Of special interest is the association of RSV to olfactory and taste receptors; this finding is in line with recent evidence pointing to their role in viral infectious diseases.
Collapse
Affiliation(s)
- Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela(USC), Galicia, Spain.
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain.
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain.
| | - Jacobo Pardo-Seco
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela(USC), Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Miriam Cebey-López
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela(USC), Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Pablo Obando-Pacheco
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - María-José Currás-Tuala
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela(USC), Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Jorge Amigo
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela(USC), Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - José Gómez-Rial
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| |
Collapse
|
28
|
Sanz G, Leray I, Muscat A, Acquistapace A, Cui T, Rivière J, Vincent-Naulleau S, Giandomenico V, Mir LM. Gallein, a Gβγ subunit signalling inhibitor, inhibits metastatic spread of tumour cells expressing OR51E2 and exposed to its odorant ligand. BMC Res Notes 2017; 10:541. [PMID: 29084601 PMCID: PMC5663063 DOI: 10.1186/s13104-017-2879-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022] Open
Abstract
Objective We previously reported that the olfactory receptor OR51E2, overexpressed in LNCaP prostate cancer cells, promotes cell invasiveness upon stimulation of its agonist β-ionone, and this phenomenon increases metastatic spread. Furthermore, we showed that the induced cell invasiveness involves a PI3 kinase dependent signalling pathway. We report here the results of a new investigation to address whether gallein, a small inhibitor of G protein βγ subunit interaction with PI3 kinase, can inhibit β-ionone effects both in vitro and in vivo. Results We demonstrate that gallein can inhibit the β-ionone-induced cell invasiveness in vitro, as well as the spread of metastases in vivo. LNCaP cell invasiveness, assessed using spheroid cultures in collagen gels in vitro, was increased by β-ionone and the effect was reversed by co-administration of gallein. LNCaP tumour cells, subcutaneously inoculated to immunodeficient mice, generated more metastases in vivo when β-ionone was applied through the skin. Furthermore, the intraperitoneal injection of gallein inhibited this increased metastasis spread. Our results thus support the role of OR51E2 in the β-ionone observed effects, and suggest that gallein could be a potential new agent in personalized medicine of the tumours expressing OR51E2. Electronic supplementary material The online version of this article (10.1186/s13104-017-2879-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guenhaël Sanz
- NBO, INRA, Université Paris Saclay, 78350, Jouy-En-Josas, France. .,Biologie du Développement et Reproduction, INRA, ENVA, Université Paris-Saclay, 78350, Jouy-En-Josas, France.
| | - Isabelle Leray
- Vectorologie et Thérapeutiques Anti-cancéreuses, UMR8203, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Adeline Muscat
- Vectorologie et Thérapeutiques Anti-cancéreuses, UMR8203, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | | | - Tao Cui
- Department of Medical Sciences, Endocrine Tumor Biology, Uppsala University, Uppsala, Sweden
| | - Julie Rivière
- GABI, AgroParisTech, INRA, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Silvia Vincent-Naulleau
- GABI, AgroParisTech, INRA, Université Paris-Saclay, 78350, Jouy-En-Josas, France.,CEA, DRF, Université Paris-Saclay, 92260, Fontenay-Aux-Roses, France
| | - Valeria Giandomenico
- Department of Medical Sciences, Endocrine Tumor Biology, Uppsala University, Uppsala, Sweden
| | - Lluis M Mir
- Vectorologie et Thérapeutiques Anti-cancéreuses, UMR8203, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France.
| |
Collapse
|
29
|
Thiel CS, Huge A, Hauschild S, Tauber S, Lauber BA, Polzer J, Paulsen K, Lier H, Engelmann F, Schmitz B, Schütte A, Layer LE, Ullrich O. Stability of gene expression in human T cells in different gravity environments is clustered in chromosomal region 11p15.4. NPJ Microgravity 2017; 3:22. [PMID: 28868355 PMCID: PMC5579209 DOI: 10.1038/s41526-017-0028-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022] Open
Abstract
In the last decades, a plethora of in vitro studies with living human cells contributed a vast amount of knowledge about cellular and molecular effects of microgravity. Previous studies focused mostly on the identification of gravity-responsive genes, whereas a multi-platform analysis at an integrative level, which specifically evaluates the extent and robustness of transcriptional response to an altered gravity environment was not performed so far. Therefore, we investigated the stability of gene expression response in non-activated human Jurkat T lymphocytic cells in different gravity environments through the combination of parabolic flights with a suborbital ballistic rocket and 2D clinostat and centrifuge experiments, using strict controls for excluding all possible other factors of influence. We revealed an overall high stability of gene expression in microgravity and identified olfactory gene expression in the chromosomal region 11p15.4 as particularly robust to altered gravity. We identified that classical reference genes ABCA5, GAPDH, HPRT1, PLA2G4A, and RPL13A were stably expressed in all tested gravity conditions and platforms, while ABCA5 and GAPDH were also known to be stably expressed in U937 cells in all gravity conditions. In summary, 10-20% of all transcripts remained totally unchanged in any gravitational environment tested (between 10-4 and 9 g), 20-40% remained unchanged in microgravity (between 10-4 and 10-2 g) and 97-99% were not significantly altered in microgravity if strict exclusion criteria were applied. Therefore, we suppose a high stability of gene expression in microgravity. Comparison with other stressors suggests that microgravity alters gene expression homeostasis not stronger than other environmental factors.
Collapse
Affiliation(s)
- Cora S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Andreas Huge
- Core Facility Genomic, Medical Faculty of Muenster, University of Muenster, Albert-Schweitzer-Campus 1, D3, Domagstrasse 3, D-48149 Muenster, Germany
| | - Swantje Hauschild
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Beatrice A Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hartwin Lier
- KEK GmbH, Kemberger Str. 5, D-06905 Bad Schmiedeberg, Germany
| | - Frank Engelmann
- KEK GmbH, Kemberger Str. 5, D-06905 Bad Schmiedeberg, Germany.,Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, D-07745 Jena, Germany
| | - Burkhard Schmitz
- Airbus Defence and Space, Airbus DS GmbH, D-28199 Bremen, Germany
| | - Andreas Schütte
- Airbus Defence and Space, Airbus DS GmbH, D-28199 Bremen, Germany
| | - Liliana E Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Institute of Space Life Sciences, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081 China
| |
Collapse
|
30
|
Moshkin MP, Gerlinskaya LA. Energetic metabolism, stress, and immunity—development of population physiology. BIOL BULL+ 2017. [DOI: 10.1134/s1062359016110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res 2017; 353:6-15. [PMID: 28238834 DOI: 10.1016/j.yexcr.2017.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/31/2017] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.
Collapse
|
32
|
Ferrer I, Garcia-Esparcia P, Carmona M, Carro E, Aronica E, Kovacs GG, Grison A, Gustincich S. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease. Front Aging Neurosci 2016; 8:163. [PMID: 27458372 PMCID: PMC4932117 DOI: 10.3389/fnagi.2016.00163] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Eva Carro
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Neuroscience Group, Research Institute HospitalMadrid, Spain
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna Vienna, Austria
| | - Alice Grison
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| | - Stefano Gustincich
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| |
Collapse
|
33
|
Clark AA, Nurmukhambetova S, Li X, Munger SD, Lees JR. Odorants specifically modulate chemotaxis and tissue retention of CD4+ T cells via cyclic adenosine monophosphate induction. J Leukoc Biol 2016; 100:699-709. [PMID: 27154353 DOI: 10.1189/jlb.1a0914-425rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/09/2016] [Indexed: 01/23/2023] Open
Abstract
Retention of T cells within affected tissue is a critical component of adaptive immune inflammation. However, the mechanisms involved in T cell retention remain largely undefined. Previous studies revealed the capacity of cAMP signaling to regulate immune cell migration, as well as dynamic regulation of receptors that could induce cAMP production in immune cells. The potential for cAMP to act as a retention signal has been mostly unexplored, partially as a result of this second messenger's well-characterized inhibition of effector function in immune cells. Here, we report that cAMP regulates the tissue retention of mouse T cells at concentrations well below those that inhibited proliferation or decreased acquisition of an effector phenotype. Stimulation of CD4+ T cells with odorants known to be cognate ligands for T cell-expressed olfactory receptors induced cAMP and inhibited chemokine-driven chemotaxis without decreasing T cell proliferation or effector functions. Similar effects were observed following treatment with relatively low concentrations of the cAMP analog Sp-5,6-dichloro-1-β-d-ribofuranosylbenzimidazole-3',5'-monophosphorothioate. Furthermore, pretreatment with odorants or cAMP at concentrations that did not inhibit effector function induced T cell tissue retention in mice by inhibiting chemokine-dependent T cell egress from the footpad to the draining lymph node. Together, these results suggest that odorant receptor-mediated increases in intracellular cAMP can modulate T cell tissue trafficking and may offer new therapeutic targets for controlling T cell tissue accumulation.
Collapse
Affiliation(s)
- Adam A Clark
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Saule Nurmukhambetova
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Xin Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven D Munger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Persuy MA, Sanz G, Tromelin A, Thomas-Danguin T, Gibrat JF, Pajot-Augy E. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 130:1-36. [PMID: 25623335 DOI: 10.1016/bs.pmbts.2014.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter describes the main characteristics of olfactory receptor (OR) genes of vertebrates, including generation of this large multigenic family and pseudogenization. OR genes are compared in relation to evolution and among species. OR gene structure and selection of a given gene for expression in an olfactory sensory neuron (OSN) are tackled. The specificities of OR proteins, their expression, and their function are presented. The expression of OR proteins in locations other than the nasal cavity is regulated by different mechanisms, and ORs display various additional functions. A conventional olfactory signal transduction cascade is observed in OSNs, but individual ORs can also mediate different signaling pathways, through the involvement of other molecular partners and depending on the odorant ligand encountered. ORs are engaged in constitutive dimers. Ligand binding induces conformational changes in the ORs that regulate their level of activity depending on odorant dose. When present, odorant binding proteins induce an allosteric modulation of OR activity. Since no 3D structure of an OR has been yet resolved, modeling has to be performed using the closest G-protein-coupled receptor 3D structures available, to facilitate virtual ligand screening using the models. The study of odorant binding modes and affinities may infer best-bet OR ligands, to be subsequently checked experimentally. The relationship between spatial and steric features of odorants and their activity in terms of perceived odor quality are also fields of research that development of computing tools may enhance.
Collapse
Affiliation(s)
- Marie-Annick Persuy
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France
| | - Guenhaël Sanz
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France
| | - Anne Tromelin
- INRA UMR 1129 Flaveur, Vision et Comportement du Consommateur, Dijon, France
| | | | - Jean-François Gibrat
- INRA UR1077 Mathématique Informatique et Génome, Domaine de Vilvert, Jouy-en-Josas, France
| | - Edith Pajot-Augy
- INRA UR 1197 NeuroBiologie de l'Olfaction, Domaine de Vilvert, Jouy-en-Josas, France.
| |
Collapse
|
35
|
Pascarella G, Lazarevic D, Plessy C, Bertin N, Akalin A, Vlachouli C, Simone R, Faulkner GJ, Zucchelli S, Kawai J, Daub CO, Hayashizaki Y, Lenhard B, Carninci P, Gustincich S. NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements. Front Cell Neurosci 2014; 8:41. [PMID: 24600346 PMCID: PMC3927265 DOI: 10.3389/fncel.2014.00041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/28/2014] [Indexed: 11/13/2022] Open
Abstract
By coupling laser capture microdissection to nanoCAGE technology and next-generation sequencing we have identified the genome-wide collection of active promoters in the mouse Main Olfactory Epithelium (MOE). Transcription start sites (TSSs) for the large majority of Olfactory Receptors (ORs) have been previously mapped increasing our understanding of their promoter architecture. Here we show that in our nanoCAGE libraries of the mouse MOE we detect a large number of tags mapped in loci hosting Type-1 and Type-2 Vomeronasal Receptors genes (V1Rs and V2Rs). These loci also show a massive expression of Long Interspersed Nuclear Elements (LINEs). We have validated the expression of selected receptors detected by nanoCAGE with in situ hybridization, RT-PCR and qRT-PCR. This work extends the repertory of receptors capable of sensing chemical signals in the MOE, suggesting intriguing interplays between MOE and VNO for pheromone processing and positioning transcribed LINEs as candidate regulatory RNAs for VRs expression.
Collapse
Affiliation(s)
- Giovanni Pascarella
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Dejan Lazarevic
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; Cluster in Biomedicine (CBM), AREA Science Park Trieste, Italy
| | - Charles Plessy
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Nicolas Bertin
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Altuna Akalin
- Bergen Center for Computational Science - Computational Biology Unit and Sars Centre for Marine Molecular Biology, University of Bergen Bergen, Norway
| | - Christina Vlachouli
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Roberto Simone
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Geoffrey J Faulkner
- Cancer Biology Program, Mater Medical Research Institute South Brisbane, QLD, Australia ; School of Biomedical Sciences, University of Queensland Brisbane, QLD, Australia
| | - Silvia Zucchelli
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; Department of Health Sciences, University of Eastern Piedmont "A. Avogadro," Novara, Italy
| | - Jun Kawai
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Carsten O Daub
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Yoshihide Hayashizaki
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Boris Lenhard
- Bergen Center for Computational Science - Computational Biology Unit and Sars Centre for Marine Molecular Biology, University of Bergen Bergen, Norway
| | - Piero Carninci
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Stefano Gustincich
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| |
Collapse
|