1
|
Cordisco E, Serra DO. Moonlighting antibiotics: the extra job of modulating biofilm formation. Trends Microbiol 2025; 33:459-471. [PMID: 39828459 DOI: 10.1016/j.tim.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
The widespread use of antibiotics to treat bacterial infections has led to the common perception that their only function is to inhibit growth or kill bacteria. However, it has become clear that when antibiotics reach susceptible bacteria at non-lethal concentrations, they perform additional functions that significantly impact bacterial physiology, shaping both individual and collective behaviors. A key bacterial behavior influenced by sub-lethal antibiotic doses is biofilm formation, a multicellular, surface-associated mode of growth. This review explores different contexts in which natural and clinical antibiotics act as modulators of bacterial biofilm formation. We discuss cases that provide mechanistic insights into antibiotic modes of action, highlighting emerging common patterns and novel findings that pave the way for future research.
Collapse
Affiliation(s)
- Estefanía Cordisco
- Laboratorio de Estructura y Fisiología de Biofilms Microbianos, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, Ocampo y Esmeralda, (2000) Rosario, Argentina
| | - Diego Omar Serra
- Laboratorio de Estructura y Fisiología de Biofilms Microbianos, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, Ocampo y Esmeralda, (2000) Rosario, Argentina.
| |
Collapse
|
2
|
Carević T, Kolarević S, Kolarević MK, Nestorović N, Novović K, Nikolić B, Ivanov M. Citrus flavonoids diosmin, myricetin and neohesperidin as inhibitors of Pseudomonas aeruginosa: Evidence from antibiofilm, gene expression and in vivo analysis. Biomed Pharmacother 2024; 181:117642. [PMID: 39486364 DOI: 10.1016/j.biopha.2024.117642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Citrus flavonoids are group of bioactive polyphenols. Here, we investigated the potential of diosmin, myricetin and neohesperidin as possible inhibitors of Pseudomonas aeruginosa. This bacterium is a major clinical challenge due to its propensity to form resistant biofilm. The aims of this study were to examine flavonoids antibacterial activity using the microdilution method, assays intended to determine several antibiofilm mechanisms (crystal violet, congo red binding, extracellular DNA (eDNA) test and confocal laser scanning microscopy (CLSM) live/dead cell imaging), followed by virulence genes RT-qPCR analysis. Furthermore, we aimed to examine in vivo toxicity of the compounds as well as their efficacy in P. aeruginosa zebrafish embryo infection model. Minimal inhibitory concentrations of tested flavonoids towards P. aeruginosa were in range 0.05 - 0.4 mg/mL. A high potential of the compounds to disturb both the formation of the bacterial biofilm and its eradication was recorded, including significant reduction in biofilm biomass, exopolysaccharide and eDNA production. Biofilm treatment with diosmin resulted in the lowest percentage of live microbial cells as observed in the CLSM live/dead cell imaging. The lasI, pvdS, and rhlC genes were found to be downregulated in the presence of diosmin and myricetin. Only diosmin stood out as non-embryotoxic. Consequently, in vivo analysis using a zebrafish model of P. aeruginosa infection showed an antivirulence effect of diosmin. Our findings suggest that diosmin could be potential candidate for the development of new agent that target P. aeruginosa infections by reducing its virulence mechanisms.
Collapse
Affiliation(s)
- Tamara Carević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Stoimir Kolarević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Margareta Kračun Kolarević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Nataša Nestorović
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 11042, Serbia
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade 11000, Serbia
| | - Marija Ivanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia.
| |
Collapse
|
3
|
David A, Tahrioui A, Duchesne R, Tareau AS, Maillot O, Barreau M, Feuilloley MGJ, Lesouhaitier O, Cornelis P, Bouffartigues E, Chevalier S. Membrane fluidity homeostasis is required for tobramycin-enhanced biofilm in Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0230323. [PMID: 38411953 PMCID: PMC10986583 DOI: 10.1128/spectrum.02303-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, which causes chronic infections, especially in cystic fibrosis (CF) patients where it colonizes the lungs via the build-up of biofilms. Tobramycin, an aminoglycoside, is often used to treat P. aeruginosa infections in CF patients. Tobramycin at sub-minimal inhibitory concentrations enhances both biofilm biomass and thickness in vitro; however, the mechanism(s) involved are still unknown. Herein, we show that tobramycin increases the expression and activity of SigX, an extracytoplasmic sigma factor known to be involved in the biosynthesis of membrane lipids and membrane fluidity homeostasis. The biofilm enhancement by tobramycin is not observed in a sigX mutant, and the sigX mutant displays increased membrane stiffness. Remarkably, the addition of polysorbate 80 increases membrane fluidity of sigX-mutant cells in biofilm, restoring the tobramycin-enhanced biofilm formation. Our results suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.IMPORTANCEPrevious studies have shown that sub-lethal concentrations of tobramycin led to an increase biofilm formation in the case of infections with the opportunistic pathogen Pseudomonas aeruginosa. We show that the mechanism involved in this phenotype relies on the cell envelope stress response, triggered by the extracytoplasmic sigma factor SigX. This phenotype was abolished in a sigX-mutant strain. Remarkably, we show that increasing the membrane fluidity of the mutant strain is sufficient to restore the effect of tobramycin. Altogether, our data suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.
Collapse
Affiliation(s)
- Audrey David
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Ali Tahrioui
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Rachel Duchesne
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Anne-Sophie Tareau
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Olivier Maillot
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Magalie Barreau
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Marc G. J. Feuilloley
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Olivier Lesouhaitier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Pierre Cornelis
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Emeline Bouffartigues
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Sylvie Chevalier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| |
Collapse
|
4
|
Tomić N, Stevanović MM, Filipović N, Ganić T, Nikolić B, Gajić I, Ćulafić DM. Resveratrol/Selenium Nanocomposite with Antioxidative and Antibacterial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:368. [PMID: 38392741 PMCID: PMC10892210 DOI: 10.3390/nano14040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
In this work, we synthesized a new composite material comprised of previously formulated resveratrol nanobelt-like particles (ResNPs) and selenium nanoparticles (SeNPs), namely ResSeNPs. Characterization was provided by FESEM and optical microscopy, as well as by UV-Vis and FTIR spectroscopy, the last showing hydrogen bonds between ResNPs and SeNPs. DPPH, TBA, and FRAP assays showed excellent antioxidative abilities with ResNPs and SeNPs contributing mainly to lipid peroxidation inhibition and reducing/scavenging activity, respectively. The antibacterial effect against common medicinal implant colonizers pointed to notably higher activity against Staphylococcus isolates (minimal inhibitory concentrations 0.75-1.5%) compared to tested gram-negative species (Escherichia coli and Pseudomonas aeruginosa). Antibiofilm activity against S. aureus, S. epidermidis, and P. aeruginosa determined in a crystal violet assay was promising (up to 69%), but monitoring of selected biofilm-related gene expression (pelA and algD) indicated the necessity of the involvement of a larger number of genes in the analysis in order to further establish the underlying mechanism. Although biocompatibility screening showed some cytotoxicity and genotoxicity in MTT and alkaline comet assays, respectively, it is important to note that active antioxidative and antibacterial/antibiofilm concentrations were non-cytotoxic and non-genotoxic in normal MRC-5 cells. These results encourage further composite improvements and investigation in order to adapt it for specific biomedical purposes.
Collapse
Affiliation(s)
- Nina Tomić
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (N.T.); (N.F.)
| | - Magdalena M. Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (N.T.); (N.F.)
| | - Nenad Filipović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (N.T.); (N.F.)
| | - Tea Ganić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.G.); (B.N.)
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.G.); (B.N.)
| | - Ina Gajić
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dragana Mitić Ćulafić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.G.); (B.N.)
| |
Collapse
|
5
|
Jiang X, Li H, Ma J, Li H, Ma X, Tang Y, Li J, Chi X, Deng Y, Zeng S, Liu Z. Role of Type VI secretion system in pathogenic remodeling of host gut microbiota during Aeromonas veronii infection. THE ISME JOURNAL 2024; 18:wrae053. [PMID: 38531781 PMCID: PMC11014884 DOI: 10.1093/ismejo/wrae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Intestinal microbial disturbance is a direct cause of host disease. The bacterial Type VI secretion system (T6SS) often plays a crucial role in the fitness of pathogenic bacteria by delivering toxic effectors into target cells. However, its impact on the gut microbiota and host pathogenesis is poorly understood. To address this question, we characterized a new T6SS in the pathogenic Aeromonas veronii C4. First, we validated the secretion function of the core machinery of A. veronii C4 T6SS. Second, we found that the pathogenesis and colonization of A. veronii C4 is largely dependent on its T6SS. The effector secretion activity of A. veronii C4 T6SS not only provides an advantage in competition among bacteria in vitro, but also contributes to occupation of an ecological niche in the nutritionally deficient and anaerobic environment of the host intestine. Metagenomic analysis showed that the T6SS directly inhibits or eliminates symbiotic strains from the intestine, resulting in dysregulated gut microbiome homeostasis. In addition, we identified three unknown effectors, Tse1, Tse2, and Tse3, in the T6SS, which contribute to T6SS-mediated bacterial competition and pathogenesis by impairing targeted cell integrity. Our findings highlight that T6SS can remodel the host gut microbiota by intricate interplay between T6SS-mediated bacterial competition and altered host immune responses, which synergistically promote pathogenesis of A. veronii C4. Therefore, this newly characterized T6SS could represent a general interaction mechanism between the host and pathogen, and may offer a potential therapeutic target for controlling bacterial pathogens.
Collapse
Affiliation(s)
- Xiaoli Jiang
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Hanzeng Li
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Jiayue Ma
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Hong Li
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Xiang Ma
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yanqiong Tang
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Juanjuan Li
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Xue Chi
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yong Deng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng Zeng
- Susheng Biotech (Hainan) Co., Ltd, Haikou 570228, China
| | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Goodyear MC, Seidel L, Krieger JR, Geddes-McAlister J, Levesque RC, Khursigara CM. Quantitative proteomics reveals unique responses to antimicrobial treatments in clinical Pseudomonas aeruginosa isolates. mSystems 2023; 8:e0049123. [PMID: 37623324 PMCID: PMC10654054 DOI: 10.1128/msystems.00491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
IMPORTANCE Pseudomonas aeruginosa is an important pathogen often associated with hospital-acquired infections and chronic lung infections in people with cystic fibrosis. P. aeruginosa possesses a wide array of intrinsic and adaptive mechanisms of antibiotic resistance, and the regulation of these mechanisms is complex. Label-free quantitative proteomics is a powerful tool to compare susceptible and resistant strains of bacteria and their responses to antibiotic treatments. Here we compare the proteomes of three isolates of P. aeruginosa with different antibiotic resistance profiles in response to five challenge conditions. We uncover unique and shared proteome changes for the widely used laboratory strain PAO1 and two isolates of the Liverpool epidemic strain of P. aeruginosa, LESlike1 and LESB58. Our data set provides insight into antibiotic resistance in clinically relevant Pseudomonas isolates and highlights proteins, including those with uncharacterized functions, which can be further investigated for their role in adaptive responses to antibiotic treatments.
Collapse
Affiliation(s)
- Mara C. Goodyear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura Seidel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Roger C. Levesque
- Institut de biologie integrative et des systems (IBIS), Département de microbiologie-infectiologie et d'immunologie, Université Laval, Laval, Quebec, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Yang D, Zhao L, Li Q, Huang L, Qin Y, Wang P, Zhu C, Yan Q. The involvement of the T6SS vgrG gene in the pathogenicity of Pseudomonas plecoglossicida. JOURNAL OF FISH DISEASES 2023; 46:1097-1108. [PMID: 37401135 DOI: 10.1111/jfd.13829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Pseudomonas plecoglossicida, the causative agent of white spot disease of large yellow croaker, has caused serious economic losses to the aquaculture industry. The type VI secretion system (T6SS) is a significant virulence system widely distributed among Gram-negative bacteria. VgrG, a structural and core component of T6SS, is crucial to the function of T6SS. To explore the biological profiles mediated by vgrG gene and its effects on the pathogenicity of P. plecoglossicida, the vgrG gene deletion (ΔvgrG) strain and complementary (C-ΔvgrG) strain were constructed and the differences in pathogenicity and virulence-related characteristics between different strains were analysed. The results showed that vgrG gene deletion significantly affected the virulence-related characteristics of P. plecoglossicida, including chemotaxis, adhesion, and biofilm formation. In addition, the LD50 of ΔvgrG strain was nearly 50-fold higher than that of the NZBD9 strain. Transcriptome data analysis suggested that the vgrG gene may affect the virulence of P. plecoglossicida by regulating the quorum sensing pathway to inhibit the secretion of virulence factors and affect biofilm formation. Besides, deletion of the vgrG gene may reduce bacterial pathogenicity by affecting bacterial signal transduction processes and the ability to adapt to chemotactic substances.
Collapse
Affiliation(s)
- Dou Yang
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Pan Wang
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd, Zhangzhou, China
| | - Chuanzhong Zhu
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd, Zhangzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
8
|
Hespanhol JT, Nóbrega-Silva L, Bayer-Santos E. Regulation of type VI secretion systems at the transcriptional, posttranscriptional and posttranslational level. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001376. [PMID: 37552221 PMCID: PMC10482370 DOI: 10.1099/mic.0.001376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Bacteria live in complex polymicrobial communities and are constantly competing for resources. The type VI secretion system (T6SS) is a widespread antagonistic mechanism used by Gram-negative bacteria to gain an advantage over competitors. T6SSs translocate toxic effector proteins inside target prokaryotic cells in a contact-dependent manner. In addition, some T6SS effectors can be secreted extracellularly and contribute to the scavenging scarce metal ions. Bacteria deploy their T6SSs in different situations, categorizing these systems into offensive, defensive and exploitative. The great variety of bacterial species and environments occupied by such species reflect the complexity of regulatory signals and networks that control the expression and activation of the T6SSs. Such regulation is tightly controlled at the transcriptional, posttranscriptional and posttranslational level by abiotic (e.g. pH, iron) or biotic (e.g. quorum-sensing) cues. In this review, we provide an update on the current knowledge about the regulatory networks that modulate the expression and activity of T6SSs across several species, focusing on systems used for interbacterial competition.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Luize Nóbrega-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Ethel Bayer-Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
9
|
Impact of fluoroquinolones and aminoglycosides on P. aeruginosa virulence factor production and cytotoxicity. Biochem J 2022; 479:2511-2527. [PMID: 36504127 DOI: 10.1042/bcj20220527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of leading causes of disability and mortality worldwide and the world health organisation has listed it with the highest priority for the need of new antimicrobial therapies. P. aeruginosa strains responsible for the poorest clinical outcomes express either ExoS or ExoU, which are injected into target host cells via the type III secretion system (T3SS). ExoS is a bifunctional cytotoxin that promotes intracellular survival of invasive P. aeruginosa by preventing targeting of the bacteria to acidified intracellular compartments. ExoU is a phospholipase which causes destruction of host cell plasma membranes, leading to acute tissue damage and bacterial dissemination. Fluoroquinolones are usually employed as a first line of therapy as they have been shown to be more active against P. aeruginosa in vitrothan other antimicrobial classes. Their overuse over the past decade, however, has resulted in the emergence of antibiotic resistance. In certain clinical situations, aminoglycosides have been shown to be more effective then fluoroquinolones, despite their reduced potency towards P. aeruginosa in vitro. In this study, we evaluated the effects of fluoroquinolones (moxifloxacin and ciprofloxacin) and aminoglycosides (tobramycin and gentamycin) on T3SS expression and toxicity, in corneal epithelial cell infection models. We discovered that tobramycin disrupted T3SS expression and reduced both ExoS and ExoU mediated cytotoxicity, protecting infected HCE-t cells at concentrations below the minimal inhibitory concentration (MIC). The fluoroquinolones moxifloxacin and ciprofloxacin, however, up-regulated the T3SS and did not inhibit and may have increased the cytotoxic effects of ExoS and ExoU.
Collapse
|
10
|
Investigation of Cinnamaldehyde Derivatives as Potential Organic UV Filters. J CHEM-NY 2022. [DOI: 10.1155/2022/7010428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Long-term exposure to ultraviolet (UV) rays has been attributed to irreversible health defects at the cellular level. Most importantly, damage to DNA by UVA and UVB rays can result in uncontrolled cellular growth, leading to skin cancer. As a result, topical treatments have been developed over time to protect the skin from UVA and UVB rays. The active ingredients in sunscreens or sun creams are sometimes unsaturated, aromatic organic compounds capable of absorbing harmful UV photons at a great range of wavelengths. Absorption capabilities of these species depend on their degree of conjugation and their molar absorptivity. With this knowledge, two cinnamaldehyde derivatives were synthesized into five potential organic UV filters by the aldol condensation reaction. The products were identified using nuclear magnetic resonance (NMR) and attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopies, and ultraviolet-visible (UV-vis) spectroscopy was used to determine the UV absorption range and intensity of absorption for each compound. Since the compounds would hypothetically be utilized in topical ointments to aide in skin protection, these compounds were assessed in the presence of Pseudomonas aeruginosa, a representative bacterium of the skin’s natural flora. A time-course assay was conducted to detect growth effects of P. aeruginosa in the presence of the organic compounds. According to the spectroscopic and bacterial analyses of these UV-blocking compounds, three compounds were determined to be potential UV filters that cover UVA region while demonstrating no apparent harm to the natural skin bacteria P. aeruginosa, while the other two likely diminished bacterial growth by simple niche inhibition.
Collapse
|
11
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
12
|
Mathieu-Denoncourt A, Duperthuy M. Secretome analysis reveals a role of subinhibitory concentrations of polymyxin B in the survival of Vibrio cholerae mediated by the type VI secretion system. Environ Microbiol 2021; 24:1133-1149. [PMID: 34490971 DOI: 10.1111/1462-2920.15762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Antimicrobials are commonly used in prevention of infections including in aquaculture, agriculture and medicine. Subinhibitory concentrations of antimicrobial peptides can modulate resistance, virulence and persistence effectors in Gram-negative pathogens. In this study, we investigated the effect of subinhibitory concentrations of polymyxin B (PmB) on the secretome of Vibrio cholerae, a natural inhabitant of aquatic environments and the pathogen responsible for the cholera disease. Our proteomic approach revealed that the abundance of many extracellular proteins is affected by PmB and some of them are detected only either in the presence or in the absence of PmB. The type VI secretion system (T6SS) secreted hemolysin-coregulated protein (Hcp) displayed an increased abundance in the presence of PmB. Hcp is also more abundant in the bacterial cells in the presence of PmB and hcp expression is upregulated upon PmB supplementation. No effect of the T6SS on antimicrobial resistance was observed. Conversely, PmB increases the T6SS-dependent cytotoxicity of V. cholerae towards the amoeba Dictyostelium discoideum and its ability to compete with Escherichia coli.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Marylise Duperthuy
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
13
|
Pazoki M, Darvish Alipour Astaneh S, Ramezanalizadeh F, Jahangiri A, Rasooli I. Immunoprotectivity of Valine-glycine repeat protein G, a potent mediator of pathogenicity, against Acinetobacter baumannii. Mol Immunol 2021; 135:276-284. [PMID: 33940514 DOI: 10.1016/j.molimm.2021.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Type VI Secretion System (T6SS) contributes to both virulence and antimicrobial resistance in Acinetobacter baumannii. Valine-glycine repeat protein G (VgrG) is the core component of T6SS that exists in many bacterial pathogens that have emerged as a potent mediator of pathogenicity in A. baumannii. Two conserved sequences of vgrG 1263-2295 and vgrG1263-1608 were identified antigenic in various strains of Acinetobacter baumannii. The vgrg1263-1608 sequence was implanted in the Loopless C lobe (LCL) from N. meningitidis for surface display and exposure to functional epitopes. The VgrG and LCL-VgrG were expressed and purified. Groups of BALB/c mice were immunized with these proteins and challenged with A. baumannii. Specific IgG titers, whole-cell ELISA, animal survival rates in active and passive immunizations, the bacterial burden in mice tissues, and cytotoxicity of the proteins were determined. The specific IgG suppressed bacterial burdens in the organs, and increased survival rates were noted in the immunized mice. LCL-VgrG immunization provided better protection against A. baumannii infection than the VgrG immunization. The conserved region of VgrG is probably a safe immunogen to effective vaccine development or an antiserum to control A. baumannii infections.
Collapse
Affiliation(s)
| | - Shakiba Darvish Alipour Astaneh
- Department of Biotechnology, Semnan University, Central Administration of Semnan University, Campus 1, P.O. Box 35131 -19111, I. R. of Iran Semnan, Semnan, Iran
| | | | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| |
Collapse
|
14
|
Grobas I, Polin M, Asally M. Swarming bacteria undergo localized dynamic phase transition to form stress-induced biofilms. eLife 2021; 10:62632. [PMID: 33722344 PMCID: PMC7963483 DOI: 10.7554/elife.62632] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Self-organized multicellular behaviors enable cells to adapt and tolerate stressors to a greater degree than isolated cells. However, whether and how cellular communities alter their collective behaviors adaptively upon exposure to stress is largely unclear. Here, we investigate this question using Bacillus subtilis, a model system for bacterial multicellularity. We discover that, upon exposure to a spatial gradient of kanamycin, swarming bacteria activate matrix genes and transit to biofilms. The initial stage of this transition is underpinned by a stress-induced multilayer formation, emerging from a biophysical mechanism reminiscent of motility-induced phase separation (MIPS). The physical nature of the process suggests that stressors which suppress the expansion of swarms would induce biofilm formation. Indeed, a simple physical barrier also induces a swarm-to-biofilm transition. Based on the gained insight, we propose a strategy of antibiotic treatment to inhibit the transition from swarms to biofilms by targeting the localized phase transition.
Collapse
Affiliation(s)
- Iago Grobas
- Warwick Medical School, Universityof Warwick, Coventry, United Kingdom
| | - Marco Polin
- Warwick Medical School, Universityof Warwick, Coventry, United Kingdom.,Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, United Kingdom.,Physics Department, University of Warwick, Coventry, United Kingdom.,Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), C/ Miquel Marqués, Balearic Islands, Spain
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
15
|
Hug S, Liu Y, Heiniger B, Bailly A, Ahrens CH, Eberl L, Pessi G. Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:699590. [PMID: 34394152 PMCID: PMC8356804 DOI: 10.3389/fpls.2021.699590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 05/06/2023]
Abstract
Paraburkholderia phymatum STM815, a rhizobial strain of the Burkholderiaceae family, is able to nodulate a broad range of legumes including the agriculturally important Phaseolus vulgaris (common bean). P. phymatum harbors two type VI Secretion Systems (T6SS-b and T6SS-3) in its genome that contribute to its high interbacterial competitiveness in vitro and in infecting the roots of several legumes. In this study, we show that P. phymatum T6SS-b is found in the genomes of several soil-dwelling plant symbionts and that its expression is induced by the presence of citrate and is higher at 20/28°C compared to 37°C. Conversely, T6SS-3 shows homologies to T6SS clusters found in several pathogenic Burkholderia strains, is more prominently expressed with succinate during stationary phase and at 37°C. In addition, T6SS-b expression was activated in the presence of germinated seeds as well as in P. vulgaris and Mimosa pudica root nodules. Phenotypic analysis of selected deletion mutant strains suggested a role of T6SS-b in motility but not at later stages of the interaction with legumes. In contrast, the T6SS-3 mutant was not affected in any of the free-living and symbiotic phenotypes examined. Thus, P. phymatum T6SS-b is potentially important for the early infection step in the symbiosis with legumes.
Collapse
Affiliation(s)
- Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- *Correspondence: Gabriella Pessi,
| |
Collapse
|
16
|
Maunders EA, Triniman RC, Western J, Rahman T, Welch M. Global reprogramming of virulence and antibiotic resistance in Pseudomonas aeruginosa by a single nucleotide polymorphism in elongation factor, fusA1. J Biol Chem 2020; 295:16411-16426. [PMID: 32943550 DOI: 10.1074/jbc.ra119.012102] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 09/11/2020] [Indexed: 11/06/2022] Open
Abstract
Clinical isolates of the opportunistic pathogen Pseudomonas aeruginosa from patients with cystic fibrosis (CF) frequently contain mutations in the gene encoding an elongation factor, FusA1. Recent work has shown that fusA1 mutants often display elevated aminoglycoside resistance due to increased expression of the efflux pump, MexXY. However, we wondered whether these mutants might also be affected in other virulence-associated phenotypes. Here, we isolated a spontaneous gentamicin-resistant fusA1 mutant (FusA1P443L) in which mexXY expression was increased. Proteomic and transcriptomic analyses revealed that the fusA1 mutant also exhibited discrete changes in the expression of key pathogenicity-associated genes. Most notably, the fusA1 mutant displayed greatly increased expression of the Type III secretion system (T3SS), widely considered to be the most potent virulence factor in the P. aeruginosa arsenal, and also elevated expression of the Type VI (T6) secretion machinery. This was unexpected because expression of the T3SS is usually reciprocally coordinated with T6 secretion system expression. The fusA1 mutant also displayed elevated exopolysaccharide production, dysregulated siderophore production, elevated ribosome synthesis, and transcriptomic signatures indicative of translational stress. Each of these phenotypes (and almost all of the transcriptomic and proteomic changes associated with the fusA1 mutation) were restored to levels comparable with that in the progenitor strain by expression of the WT fusA1 gene in trans, indicating that the mutant gene is recessive. Our data show that in addition to elevating antibiotic resistance through mexXY expression (and also additional contributory resistance mechanisms), mutations in fusA1 can lead to highly selective dysregulation of virulence gene expression.
Collapse
Affiliation(s)
- Eve A Maunders
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rory C Triniman
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom; Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Joshua Western
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
17
|
Goneau LW, Delport J, Langlois L, Poutanen SM, Razvi H, Reid G, Burton JP. Issues beyond resistance: inadequate antibiotic therapy and bacterial hypervirulence. FEMS MICROBES 2020; 1:xtaa004. [PMID: 37333955 PMCID: PMC10117437 DOI: 10.1093/femsmc/xtaa004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/15/2020] [Indexed: 10/15/2023] Open
Abstract
The administration of antibiotics while critical for treatment, can be accompanied by potentially severe complications. These include toxicities associated with the drugs themselves, the selection of resistant organisms and depletion of endogenous host microbiota. In addition, antibiotics may be associated with less well-recognized complications arising through changes in the pathogens themselves. Growing evidence suggests that organisms exposed to antibiotics can respond by altering the expression of toxins, invasins and adhesins, as well as biofilm, resistance and persistence factors. The clinical significance of these changes continues to be explored; however, it is possible that treatment with antibiotics may inadvertently precipitate a worsening of the clinical course of disease. Efforts are needed to adjust or augment antibiotic therapy to prevent the transition of pathogens to hypervirulent states. Better understanding the role of antibiotic-microbe interactions and how these can influence disease course is critical given the implications on prescription guidelines and antimicrobial stewardship policies.
Collapse
Affiliation(s)
- Lee W Goneau
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto,1 King's College Cir, Toronto, ON M5S 1A8 Ontario, Canada
| | - Johannes Delport
- Department of Pathology, London Health Sciences Center - Victoria Hospital, 800 Commissioners Rd E, London, Ontario, Canada N6A 5W9
| | - Luana Langlois
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Susan M Poutanen
- Department of Laboratory Medicine and Pathobiology, University of Toronto,1 King's College Cir, Toronto, ON M5S 1A8 Ontario, Canada
- Department of Medicine, University of Toronto, 1 King's College Cir, Toronto, ON M5S 1A8 Toronto, Ontario, Canada
- Department of Microbiology, University Health Network and Sinai Health, 190 Elizabeth St. Toronto, ON M5G 2C4, Ontario, Canada
| | - Hassan Razvi
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Division of Urology, Department of Surgery, Western University, 1151 Richmond St, London, Ontario, N6A 3K7 Canada
| | - Gregor Reid
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Division of Urology, Department of Surgery, Western University, 1151 Richmond St, London, Ontario, N6A 3K7 Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Division of Urology, Department of Surgery, Western University, 1151 Richmond St, London, Ontario, N6A 3K7 Canada
| |
Collapse
|
18
|
Reis SVD, Ribeiro NS, Rocha DA, Fortes IS, Trentin DDS, Andrade SFD, Macedo AJ. N 4 -benzyl-N 2 -phenylquinazoline-2,4-diamine compound presents antibacterial and antibiofilm effect against Staphylococcus aureus and Staphylococcus epidermidis. Chem Biol Drug Des 2020; 96:1372-1379. [PMID: 32542979 DOI: 10.1111/cbdd.13745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/16/2020] [Accepted: 05/31/2020] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the main agents involved with implant-related infections. Their ability to adhere to medical devices with subsequent biofilm formation is crucial to the development of these infections. Herein, we described the antibacterial and antibiofilm activities of a quinazoline-based compound, N4 -benzyl-N2 -phenylquinazoline-2,4-diamine, against both biofilm-forming pathogens. The minimum inhibitory concentrations (MIC) were determined as 25 µM for S. aureus and 15 µM for S. epidermidis. At sub-MIC concentrations (20 µM for S. aureus and 10 µM for S. epidermidis), the compound was able to inhibit biofilm formation without interfere with bacterial growth, confirmed by scanning electron microscopy. Moreover, surfaces coated with the quinazoline-based compound were able to prevent bacterial adherence. In addition, this compound presented no toxicity to human red blood cells at highest MIC 25 µM and in vivo toxicity assay using Galleria mellonella larvae resulted in 82% survival with a high dose of 500 mg/kg body weight. These features evidence quinazoline-based compound as interesting entities to promising applications in biomedical fields, such as antimicrobial and in anti-infective approaches.
Collapse
Affiliation(s)
- Sharon Vieira Dos Reis
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nicole Sartori Ribeiro
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Danielle da Silva Trentin
- Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | | | - Alexandre José Macedo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104:1955-1976. [DOI: 10.1007/s00253-020-10360-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
|
20
|
Thiostrepton Hijacks Pyoverdine Receptors To Inhibit Growth of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.00472-19. [PMID: 31262758 DOI: 10.1128/aac.00472-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/23/2019] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a biofilm-forming opportunistic pathogen and is intrinsically resistant to many antibiotics. In a high-throughput screen for molecules that modulate biofilm formation, we discovered that the thiopeptide antibiotic thiostrepton (TS), which is considered to be inactive against Gram-negative bacteria, stimulated P. aeruginosa biofilm formation in a dose-dependent manner. This phenotype is characteristic of exposure to antimicrobial compounds at subinhibitory concentrations, suggesting that TS was active against P. aeruginosa Supporting this observation, TS inhibited the growth of a panel of 96 multidrug-resistant (MDR) P. aeruginosa clinical isolates at low-micromolar concentrations. TS also had activity against Acinetobacter baumannii clinical isolates. The expression of Tsr, a 23S rRNA-modifying methyltransferase from TS producer Streptomyces azureus, in trans conferred TS resistance, confirming that the drug acted via its canonical mode of action, inhibition of ribosome function. The deletion of oligopeptide permease systems used by other peptide antibiotics for uptake failed to confer TS resistance. TS susceptibility was inversely proportional to iron availability, suggesting that TS exploits uptake pathways whose expression is increased under iron starvation. Consistent with this finding, TS activity against P. aeruginosa and A. baumannii was potentiated by the FDA-approved iron chelators deferiprone and deferasirox and by heat-inactivated serum. Screening of P. aeruginosa mutants for TS resistance revealed that it exploits pyoverdine receptors FpvA and FpvB to cross the outer membrane. We show that the biofilm stimulation phenotype can reveal cryptic subinhibitory antibiotic activity, and that TS has activity against select multidrug-resistant Gram-negative pathogens under iron-limited growth conditions, similar to those encountered at sites of infection.
Collapse
|
21
|
Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation. NPJ Biofilms Microbiomes 2019; 5:15. [PMID: 31149345 PMCID: PMC6533273 DOI: 10.1038/s41522-019-0088-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Biofilms are structured microbial communities that are the leading cause of numerous chronic infections which are difficult to eradicate. Within the lungs of individuals with cystic fibrosis (CF), Pseudomonas aeruginosa causes persistent biofilm infection that is commonly treated with aminoglycoside antibiotics such as tobramycin. However, sublethal concentrations of this aminoglycoside were previously shown to increase biofilm formation by P. aeruginosa, but the underlying adaptive mechanisms still remain elusive. Herein, we combined confocal laser scanning microscope analyses, proteomics profiling, gene expression assays and phenotypic studies to unravel P. aeruginosa potential adaptive mechanisms in response to tobramycin exposure during biofilm growth. Under this condition, we show that the modified biofilm architecture is related at least in part to increased extracellular DNA (eDNA) release, most likely as a result of biofilm cell death. Furthermore, the activity of quorum sensing (QS) systems was increased, leading to higher production of QS signaling molecules. We also demonstrate upon tobramycin exposure an increase in expression of the PrrF small regulatory RNAs, as well as expression of iron uptake systems. Remarkably, biofilm biovolumes and eDNA relative abundances in pqs and prrF mutant strains decrease in the presence of tobramycin. Overall, our findings offer experimental evidences for a potential adaptive mechanism linking PrrF sRNAs, QS signaling, biofilm cell death, eDNA release, and tobramycin-enhanced biofilm formation in P. aeruginosa. These specific adaptive mechanisms should be considered to improve treatment strategies against P. aeruginosa biofilm establishment in CF patients’ lungs.
Collapse
|
22
|
Joshi C, Patel P, Palep H, Kothari V. Validation of the anti-infective potential of a polyherbal 'Panchvalkal' preparation, and elucidation of the molecular basis underlining its efficacy against Pseudomonas aeruginosa. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:19. [PMID: 30654785 PMCID: PMC6335721 DOI: 10.1186/s12906-019-2428-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/02/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND A Panchvalkal formulation (Pentaphyte P-5®) mentioned in ancient texts of Indian traditional medicine was investigated for its anti-infective potential against Pseudomonas aeruginosa. METHODS Effect of the test formulation on bacterial growth and pigment production was evaluated by broth dilution assay. In vivo efficacy was evaluated using Caenorhabditis elegans as the model host. Whole transcriptome approach was taken to study the effect of test formulation on bacterial gene expression. RESULTS This formulation in vitro was found to be capable of affecting quorum sensing (QS)-regulated traits (pyocyanin, pyoverdine, biofilm) of Pseudomonas aeruginosa. In combination with antibiotics, it enhanced susceptibility of the test bacterium to antibiotics like cephalexin and tetracycline. Effect of Panchvalkal formulation (PF) on QS-regulated traits of P. aeruginosa was not reversed even after repeated exposure of the bacterium to PF. In vivo efficacy of PF was demonstrated employing Caenorhabditis elegans as the model host, wherein PF-treated bacteria were able to kill lesser worms than their extract-unexposed counterparts. Whole transcriptome study revealed that approximately 14% of the P. aeruginosa genome was expressed differently under the influence of PF. CONCLUSIONS Major mechanisms through which Panchvalkal seems to exert its anti-virulence effect are generation of nitrosative and oxidative stress, and disturbing iron and molybdenum homeostasis, besides interfering with QS machinery. This study is a good demonstration of the therapeutic utility of the 'polyherbalism' concept, so common in ayurved. It also demonstrates utility of the modern 'omics' tools for validating the traditional medicine i.e. ayuromics.
Collapse
Affiliation(s)
- Chinmayi Joshi
- Institute of Science, Nirma University, Ahmedabad, 382481 India
| | - Pooja Patel
- Institute of Science, Nirma University, Ahmedabad, 382481 India
| | | | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad, 382481 India
| |
Collapse
|
23
|
Sundberg LR, Karvonen A. Minor environmental concentrations of antibiotics can modify bacterial virulence in co-infection with a non-targeted parasite. Biol Lett 2018; 14:20180663. [PMID: 30958249 PMCID: PMC6303518 DOI: 10.1098/rsbl.2018.0663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
Leakage of medical residues into the environment can significantly impact natural communities. For example, antibiotic contamination from agriculture and aquaculture can directly influence targeted pathogens, but also other non-targeted taxa of commensals and parasites that regularly co-occur and co-infect the same host. Consequently, antibiotics could significantly alter interspecific interactions and epidemiology of the co-infecting parasite community. We studied how minor environmental concentrations of antibiotic affects the co-infection of two parasites, the bacterium Flavobacterium columnare and the fluke Diplostomum pseudospathaceum, in their fish host. We found that antibiotic in feed, and particularly the minute concentration in water, significantly decreased bacterial virulence and changed the infection success of the flukes. These effects depended on the level of antibiotic resistance of the bacterial strains. Antibiotic, however, did not compensate for the higher virulence of co-infections. Our results demonstrate that even very low environmental concentrations of antibiotic can influence ecology and epidemiology of diseases in co-infection with non-targeted parasites. Leakage of antibiotics into the environment may thus have more complex effects on disease ecology than previously anticipated.
Collapse
Affiliation(s)
- Lotta-Riina Sundberg
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland
- Centre of Excellence of Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland
| |
Collapse
|
24
|
Losada L, Shea AA, DeShazer D. A MarR family transcriptional regulator and subinhibitory antibiotics regulate type VI secretion gene clusters in Burkholderia pseudomallei. MICROBIOLOGY-SGM 2018; 164:1196-1211. [PMID: 30052173 DOI: 10.1099/mic.0.000697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Burkholderia pseudomallei, the aetiological agent of melioidosis, is an inhabitant of soil and water in many tropical and subtropical regions worldwide. It possesses six distinct type VI secretion systems (T6SS-1 to T6SS-6), but little is known about most of them, as they are poorly expressed in laboratory culture media. A genetic screen was devised to locate a putative repressor of the T6SS-2 gene cluster and a MarR family transcriptional regulator, termed TctR, was identified. The inactivation of tctR resulted in a 50-fold increase in the expression of an hcp2-lacZ transcriptional fusion, indicating that TctR is a negative regulator of the T6SS-2 gene cluster. Surprisingly, the tctR mutation resulted in a significant decrease in the expression of an hcp6-lacZ transcriptional fusion. B. pseudomallei K96243 and a tctR mutant were grown to logarithmic phase in rich culture medium and RNA was isolated and sequenced in order to identify other genes regulated by TctR. The results identified seven gene clusters that were repressed by TctR, including T6SS-2, and three gene clusters that were significantly activated. A small molecule library consisting of 1120 structurally defined compounds was screened to identify a putative ligand (or ligands) that might bind TctR and derepress transcription of the T6SS-2 gene cluster. Seven compounds, six fluoroquinolones and one quinolone, activated the expression of hcp2-lacZ. Subinhibitory ciprofloxacin also increased the expression of the T6SS-3, T6SS-4 and T6SS-6 gene clusters. This study highlights the complex layers of regulatory control that B. pseudomallei utilizes to ensure that T6SS expression only occurs under very defined environmental conditions.
Collapse
Affiliation(s)
- Liliana Losada
- 1J. Craig Venter Institute, Rockville, MD, USA.,†Present address: Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - April A Shea
- 2Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA.,‡Present address: National Strategic Research Institute, Annapolis Junction, MD, USA
| | - David DeShazer
- 3Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| |
Collapse
|
25
|
Contribution of Cyclic di-GMP in the Control of Type III and Type VI Secretion in Pseudomonas aeruginosa. Methods Mol Biol 2018; 1657:213-224. [PMID: 28889297 DOI: 10.1007/978-1-4939-7240-1_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacteria produce toxins to enhance their competitiveness in the colonization of an environment as well as during an infection. The delivery of toxins into target cells is mediated by several types of secretion systems, among them our focus is Type III and Type VI Secretion Systems (T3SS and T6SS, respectively). A thorough methodology is provided detailing how to identify if cyclic di-GMP signaling plays a role in the P. aeruginosa toxin delivery mediated by T3SS or T6SS. This includes in vitro preparation of the samples for Western blot analysis aiming at detecting possible c-di-GMP-dependent T3SS/T6SS switch, as well as in vivo analysis using the model organism Galleria mellonella to demonstrate the ecological and pathogenic consequence of the switch between these two secretion systems.
Collapse
|
26
|
Analysis of two quorum sensing-deficient isolates of Pseudomonas aeruginosa. Microb Pathog 2018; 119:162-169. [PMID: 29635051 DOI: 10.1016/j.micpath.2018.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/23/2023]
Abstract
Three strains of Pseudomonas aeruginosa were isolated: wild-type (WT, NO4) showed normal quorum sensing (QS), whereas QSD3 and QSD7 were QS-deficient (QSD) containing limited N-butyryl homoserine lactone (C4-HSL). The autoinducer activity produced by NO4 was found to be at least 50-fold higher than those by the QSD3 and the QSD7 strains. The QSDs produced lower levels of phenazine compounds (pyocyanin), siderophores (pyoverdine) and biosurfactants (rhamnolipids) than NO4. Therefore, the swarming motility and the swimming motility of the QSD3 and the QSD7 strains also decreased. Treatment with exogenous C4-HSL completely restored rhamnolipid production in both QSDs, suggesting that the biosynthesis of C4-HSL is defective. However, the biofilm production of the QSDs reached much higher levels than those of wild-types (NO4 and P. aeruginosa PAO1). And both QSD strains were more resistant than wild-type cell (NO4) against kanamycin and tobramycin. The RpoS gene, which function is related with QS, is point-nonsense mutated in QSD3 strain. But eleven QS-related genes in QSD3 were not mutated, compared to those of PAO1, which carries intact QS genes and is used as a positive control. This study is helpful in the development of novel approaches in the treatment of P. aeruginosa infections.
Collapse
|
27
|
Venegas MA, Bollaert MD, Jafari A, Bondoc JMG, Twilley J, Thompson W, Movahedzadeh F. Nanoparticles against resistant Pseudomonas spp. Microb Pathog 2018; 118:115-117. [PMID: 29548697 DOI: 10.1016/j.micpath.2018.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/24/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Pseudomonas spp. collected from areas where human regularly comes into contact with were tested for their susceptibility to antibiotics. Twenty-nine samples were collected and screened for Pseudomonas spp. Of the nine isolated strains Pseudomonas spp. six were resistant to antibiotics. A few were used for an antimicrobial study on the interaction with silver and zinc oxide nanoparticles individually and as a mixture. A mixture of silver and zinc oxide nanoparticles showed synergy against resistant Pseudomonas spp.
Collapse
Affiliation(s)
- Mia A Venegas
- Biology Department, Harold Washington College, Chicago, IL, United States
| | - Matthew D Bollaert
- Biology Department, Harold Washington College, Chicago, IL, United States
| | - Alireza Jafari
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States; Inflammatory Lung Disease Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Jasper Marc G Bondoc
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Jennafer Twilley
- Biology Department, Harold Washington College, Chicago, IL, United States
| | - William Thompson
- Biology Department, Harold Washington College, Chicago, IL, United States
| | - Farahnaz Movahedzadeh
- Biology Department, Harold Washington College, Chicago, IL, United States; Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
28
|
Antibiotic Stimulation of a Bacillus subtilis Migratory Response. mSphere 2018; 3:mSphere00586-17. [PMID: 29507890 PMCID: PMC5821984 DOI: 10.1128/msphere.00586-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/31/2018] [Indexed: 11/20/2022] Open
Abstract
Competitive interactions between bacteria reveal physiological adaptations that benefit fitness. Bacillus subtilis is a Gram-positive species with several adaptive mechanisms for competition and environmental stress. Biofilm formation, sporulation, and motility are the outcomes of widespread changes in a population of B. subtilis. These changes emerge from complex, regulated pathways for adapting to external stresses, including competition from other species. To identify competition-specific functions, we cultured B. subtilis with multiple species of Streptomyces and observed altered patterns of growth for each organism. In particular, when plated on agar medium near Streptomyces venezuelae, B. subtilis initiates a robust and reproducible mobile response. To investigate the mechanistic basis for the interaction, we determined the type of motility used by B. subtilis and isolated inducing metabolites produced by S. venezuelae. Bacillus subtilis has three defined forms of motility: swimming, swarming, and sliding. Streptomyces venezuelae induced sliding motility specifically in our experiments. The inducing agents produced by S. venezuelae were identified as chloramphenicol and a brominated derivative at subinhibitory concentrations. Upon further characterization of the mobile response, our results demonstrated that subinhibitory concentrations of chloramphenicol, erythromycin, tetracycline, and spectinomycin all activate a sliding motility response by B. subtilis. Our data are consistent with sliding motility initiating under conditions of protein translation stress. This report underscores the importance of hormesis as an early warning system for potential bacterial competitors and antibiotic exposure. IMPORTANCE Antibiotic resistance is a major challenge for the effective treatment of infectious diseases. Identifying adaptive mechanisms that bacteria use to survive low levels of antibiotic stress is important for understanding pathways to antibiotic resistance. Furthermore, little is known about the effects of individual bacterial interactions on multispecies communities. This work demonstrates that subinhibitory amounts of some antibiotics produced by streptomycetes induce active motility in B. subtilis, which may alter species interaction dynamics among species-diverse bacterial communities in natural environments. The use of antibiotics at subinhibitory concentrations results in many changes in bacteria, including changes in biofilm formation, small-colony variants, formation of persisters, and motility. Identifying the mechanistic bases of these adaptations is crucial for understanding how bacterial communities are impacted by antibiotics.
Collapse
|
29
|
Wang J, Zhou Z, He F, Ruan Z, Jiang Y, Hua X, Yu Y. The role of the type VI secretion system vgrG gene in the virulence and antimicrobial resistance of Acinetobacter baumannii ATCC 19606. PLoS One 2018; 13:e0192288. [PMID: 29394284 PMCID: PMC5796710 DOI: 10.1371/journal.pone.0192288] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
The Type VI Secretion System (T6SS) is an important virulence system that exists in many bacterial pathogens, and has emerged as a potent mediator of pathogenicity in Acinetobacter baumannii. In this study, we inactivated one of the T6SS components vgrG (valine–glycine repeat G) gene in A. baumannii ATCC 19606 and constructed a complementation strain. BEAS-2b human alveolar epithelial cells was adopted to assess bacterial adhesion, and wild female BALB/c mice were used for in vivo experiments to assess the bacterial killing ability to host. Upon deletion of the vgrG gene, increased antimicrobial resistance to ampicillin/sulbactam, but reduced resistance to chloramphenicol were observed. The vgrG mutant strain showed lower growth rate, reduced eukaryotic cell adherence and impaired lethality in mice. However, the vgrG mutant strain is not implicated in biofilm formation. Our study suggests that the Type VI Secretion System core component VgrG contributes to both virulence and antimicrobial resistance in A. baumannii ATCC 19606.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Respiratory Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fang He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhi Ruan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
30
|
Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286. Front Cell Infect Microbiol 2017; 7:442. [PMID: 29085808 PMCID: PMC5649205 DOI: 10.3389/fcimb.2017.00442] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/28/2017] [Indexed: 11/25/2022] Open
Abstract
The type VI secretion system (T6SS) is a class of sophisticated cell contact-dependent apparatus with anti-eukaryotic or anti-bacterial function. Klebsiella pneumoniae is one of the most common bacterial pathogens with resistance to the carbapenem antibiotics. However, little is known about the antibacterial T6SS in K. pneumoniae. Using core-component protein searches, we identified a putative T6SS gene cluster on the chromosome of the carbapenemase-producing K. pneumoniae (CRKP) strain HS11286. Intraspecies and interspecies competition assays revealed an antibacterial function of the HS11286 T6SS. The phospholipase Tle1KP was found to be an effector protein that is transferred by T6SS. The overexpression of this effector gene in the periplasm caused severe growth inhibition of Escherichia coli. A sub-inhibitory concentration of β-lactam antibiotics stimulated the expression and secretion of the HS11286 T6SS and enhanced T6SS-dependent killing. It suggested that the antibiotics might be an impact factor for the T6SS secretion and antibacterial activity.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Meiping Ye
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaobin Li
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Westhoff S, van Wezel GP, Rozen DE. Distance-dependent danger responses in bacteria. Curr Opin Microbiol 2017; 36:95-101. [PMID: 28258981 DOI: 10.1016/j.mib.2017.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022]
Abstract
The last decade has seen a resurgence in our understanding of the diverse mechanisms that bacteria use to kill one another. We are also beginning to uncover the responses and countermeasures that bacteria use when faced with specific threats or general cues of potential danger from bacterial competitors. In this Perspective, we propose that diverse offensive and defensive responses in bacteria have evolved to offset dangers detected at different distances. Thus, while volatile organic compounds provide bacterial cells with a warning at the greatest distance, diffusible compounds like antibiotics or contact mediated killing systems, indicate a more pressing danger warranting highly-specific responses. In the competitive environments in which bacteria live, it is crucial that cells are able to detect real or potential dangers from other cells. By utilizing mechanisms of detection that can infer the distance from danger, bacteria can fine-tune aggressive interactions so that they can optimally respond to threats occurring with distinct levels of risk.
Collapse
Affiliation(s)
- Sanne Westhoff
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2300 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2300 BE Leiden, The Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2300 BE Leiden, The Netherlands
| |
Collapse
|
32
|
Abstract
Microbial communities span many orders of magnitude, ranging in scale from hundreds of cells on a single particle of soil to billions of cells within the lumen of the gastrointestinal tract. Bacterial cells in all habitats are members of densely populated local environments that facilitate competition between neighboring cells. Accordingly, bacteria require dynamic systems to respond to the competitive challenges and the fluctuations in environmental circumstances that tax their fitness. The assemblage of bacteria into communities provides an environment where competitive mechanisms are developed into new strategies for survival. In this minireview, we highlight a number of mechanisms used by bacteria to compete between species. We focus on recent discoveries that illustrate the dynamic and multifaceted functions used in bacterial competition and discuss how specific mechanisms provide a foundation for understanding bacterial community development and function.
Collapse
|
33
|
Chanyi RM, Koval SF, Brooke JS. Stenotrophomonas maltophilia biofilm reduction by Bdellovibrio exovorus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:343-351. [PMID: 26929093 DOI: 10.1111/1758-2229.12384] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
Stenotrophomonas maltophilia, a bacterium ubiquitous in the environment, is also an opportunistic, multidrug-resistant human pathogen that colonizes tissues and medical devices via biofilm formation. We investigated the ability of an isolate from sewage of the bacterial predator Bdellovibrio exovorus to disrupt preformed biofilms of 18 strains of S. maltophilia isolated from patients, hospital sink drains and water fountain drains. B. exovorus FFRS-5 preyed on all S. maltophilia strains in liquid co-cultures and was able to significantly disrupt the biofilms of 15 of the S. maltophilia strains tested, decreasing as much as 76.7% of the biofilm mass. The addition of ciprofloxacin and kanamycin in general reduced S. maltophilia biofilms but less than that of B. exovorus alone. Furthermore, when antibiotics and B. exovorus were used together, B. exovorus was still effective in the presence of ciprofloxacin whereas the addition of kanamycin reduced the effectiveness of B. exovorus. Overall, B. exovorus was able to decrease the mass of preformed biofilms of S. maltophilia in the presence of clinically relevant antibiotics demonstrating that the predator may prove to be a beneficial tool to reduce S. maltophilia environmental or clinically associated biofilms.
Collapse
Affiliation(s)
- Ryan M Chanyi
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Susan F Koval
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Joanna S Brooke
- Department of Biological Sciences, College of Science and Health, DePaul University, Chicago, IL, USA
| |
Collapse
|
34
|
Friman VP, Guzman LM, Reuman DC, Bell T. Bacterial adaptation to sublethal antibiotic gradients can change the ecological properties of multitrophic microbial communities. Proc Biol Sci 2016; 282:20142920. [PMID: 25833854 DOI: 10.1098/rspb.2014.2920] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Antibiotics leak constantly into environments due to widespread use in agriculture and human therapy. Although sublethal concentrations are well known to select for antibiotic-resistant bacteria, little is known about how bacterial evolution cascades through food webs, having indirect effect on species not directly affected by antibiotics (e.g. via population dynamics or pleiotropic effects). Here, we used an experimental evolution approach to test how temporal patterns of antibiotic stress, as well as migration within metapopulations, affect the evolution and ecology of microcosms containing one prey bacterium, one phage and two protist predators. We found that environmental variability, autocorrelation and migration had only subtle effects for population and evolutionary dynamics. However, unexpectedly, bacteria evolved greatest fitness increases to both antibiotics and enemies when the sublethal levels of antibiotics were highest, indicating positive pleiotropy. Crucially, bacterial adaptation cascaded through the food web leading to reduced predator-to-prey abundance ratio, lowered predator community diversity and increased instability of populations. Our results show that the presence of natural enemies can modify and even reverse the effects of antibiotics on bacteria, and that antibiotic selection can change the ecological properties of multitrophic microbial communities by having indirect effects on species not directly affected by antibiotics.
Collapse
Affiliation(s)
- Ville-Petri Friman
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Laura Melissa Guzman
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Daniel C Reuman
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, KS 66047, USA Laboratory of Populations, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Bell
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
35
|
Li B, Ge M, Zhang Y, Wang L, Ibrahim M, Wang Y, Sun G, Chen G. New insights into virulence mechanisms of rice pathogen Acidovorax avenae subsp. avenae strain RS-1 following exposure to ß-lactam antibiotics. Sci Rep 2016; 6:22241. [PMID: 26915352 PMCID: PMC4768089 DOI: 10.1038/srep22241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/10/2016] [Indexed: 12/24/2022] Open
Abstract
Recent research has shown that pathogen virulence can be altered by exposure to antibiotics, even when the growth rate is unaffected. Investigating this phenomenon provides new insights into understanding the virulence mechanisms of bacterial pathogens. This study investigates the phenotypic and transcriptomic responses of the rice pathogenic bacterium Acidovorax avenae subsp. avenae (Aaa) strain RS-1 to ß-lactam antibiotics especially Ampicillin (Amp). Our results indicate that exposure to Amp does not influence bacterial growth and biofilm formation, but alters the virulence, colonization capacity, composition of extracellular polymeric substances and secretion of Type VI secretion system (T6SS) effector Hcp. This attenuation in virulence is linked to unique or differential expression of known virulence-associated genes based on genome-wide transcriptomic analysis. The reliability of expression data generated by RNA-Seq was verified with quantitative real-time PCR of 21 selected T6SS genes, where significant down-regulation in expression of hcp gene, corresponding to the reduction in secretion of Hcp, was observed under exposure to Amp. Hcp is highlighted as a potential target for Amp, with similar changes observed in virulence-associated phenotypes between exposure to Amp and mutation of hcp gene. In addition, Hcp secretion is reduced in knockout mutants of 4 differentially expressed T6SS genes.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Mengyu Ge
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Yang Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Li Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Muhammad Ibrahim
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Department of Biosciences, COMSATS Institute of Information technology Sahiwal Campus, Sahiwal, Pakistan
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
36
|
Kondakova T, D'Heygère F, Feuilloley MJ, Orange N, Heipieper HJ, Duclairoir Poc C. Glycerophospholipid synthesis and functions in Pseudomonas. Chem Phys Lipids 2015; 190:27-42. [PMID: 26148574 DOI: 10.1016/j.chemphyslip.2015.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/25/2022]
Abstract
The genus Pseudomonas is one of the most heterogeneous groups of eubacteria, presents in all major natural environments and in wide range of associations with plants and animals. The wide distribution of these bacteria is due to the use of specific mechanisms to adapt to environmental modifications. Generally, bacterial adaptation is only considered under the aspect of genes and protein expression, but lipids also play a pivotal role in bacterial functioning and homeostasis. This review resumes the mechanisms and regulations of pseudomonal glycerophospholipid synthesis, and the roles of glycerophospholipids in bacterial metabolism and homeostasis. Recently discovered specific pathways of P. aeruginosa lipid synthesis indicate the lineage dependent mechanisms of fatty acids homeostasis. Pseudomonas glycerophospholipids ensure structure functions and play important roles in bacterial adaptation to environmental modifications. The lipidome of Pseudomonas contains a typical eukaryotic glycerophospholipid--phosphatidylcholine -, which is involved in bacteria-host interactions. The ability of Pseudomonas to exploit eukaryotic lipids shows specific and original strategies developed by these microorganisms to succeed in their infectious process. All compiled data provide the demonstration of the importance of studying the Pseudomonas lipidome to inhibit the infectious potential of these highly versatile germs.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - François D'Heygère
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45071 Orléans, France
| | - Marc J Feuilloley
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - Nicole Orange
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Cécile Duclairoir Poc
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France.
| |
Collapse
|
37
|
Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 2014; 38:523-68. [PMID: 24923764 DOI: 10.1111/1574-6976.12079] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 12/26/2022] Open
Abstract
Members of the Pseudomonas genus produce diverse secondary metabolites affecting other bacteria, fungi or predating nematodes and protozoa but are also equipped with the capacity to secrete different types of ribosomally encoded toxic peptides and proteins, ranging from small microcins to large tailocins. Studies with the human pathogen Pseudomonas aeruginosa have revealed that effector proteins of type VI secretion systems are part of the antibacterial armamentarium deployed by pseudomonads. A novel class of antibacterial proteins with structural similarity to plant lectins was discovered by studying antagonism among plant-associated Pseudomonas strains. A genomic perspective on pseudomonad bacteriocinogeny shows that the modular architecture of S pyocins of P. aeruginosa is retained in a large diversified group of bacteriocins, most of which target DNA or RNA. Similar modularity is present in as yet poorly characterized Rhs (recombination hot spot) proteins and CDI (contact-dependent inhibition) proteins. Well-delimited domains for receptor recognition or cytotoxicity enable the design of chimeric toxins with novel functionalities, which has been applied successfully for S and R pyocins. Little is known regarding how these antibacterials are released and ultimately reach their targets. Other remaining issues concern the identification of environmental triggers activating these systems and assessment of their ecological impact in niches populated by pseudomonads.
Collapse
|