1
|
Ding K, Li H, Tai F, Duan J, Wang Q, Zhai R, Fu H, Ge C, Zheng X. Unraveling the Role of RNase L Knockout in Alleviating Immune Response Activation in Mice Bone Marrow after Irradiation. Int J Mol Sci 2024; 25:2722. [PMID: 38473966 PMCID: PMC10932110 DOI: 10.3390/ijms25052722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ionizing radiation (IR) induces severe hematopoietic injury by causing DNA and RNA damage as well as activating the immune responses, necessitating the development of effective therapeutic strategies. Ribonuclease L (RNase L) as an innate immune response pathway is triggered by exogenous and endogenous abnormal dsRNA under viral infection and dyshomeostasis, thereby activating the immune responses. Thus, we investigated the effect of RNase L on irradiation-induced bone marrow damage using RNase L knockout (RNase L-/-) mice. Phenotypic analysis revealed that RNase L knockout mitigates irradiation-induced injury in the bone marrow. Further investigation into the mechanism of RNase L by RNA-seq, qRT-PCR, and CBA analysis demonstrated that RNase L deficiency counteracts the upregulation of genes related to immune responses induced by irradiation, including cytokines and interferon-stimulated genes. Moreover, RNase L deficiency inhibits the increased levels of immunoglobulins in serum induced by irradiation. These findings indicate that RNase L plays a role in the immune response induced by irradiation in the bone marrow. This study further enhances our understanding of the biological functions of RNase L in the immune response induced by irradiation and offers a novel approach for managing irradiation-induced bone marrow injury through the regulation of RNase L activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changhui Ge
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China; (K.D.); (H.L.); (F.T.); (J.D.); (Q.W.); (R.Z.); (H.F.)
| | - Xiaofei Zheng
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China; (K.D.); (H.L.); (F.T.); (J.D.); (Q.W.); (R.Z.); (H.F.)
| |
Collapse
|
2
|
Zhao Q, Zhang R, Qiao C, Miao Y, Yuan Y, Zheng H. Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur J Immunol 2023; 53:e2350384. [PMID: 37194705 DOI: 10.1002/eji.202350384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.
Collapse
Affiliation(s)
- Qian Zhao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Chen G, Zhao X, Dankovskyy M, Ansah-Zame A, Alghamdi U, Liu D, Wei R, Zhao J, Zhou A. A novel role of RNase L in the development of nonalcoholic steatohepatitis. FASEB J 2023; 37:e23158. [PMID: 37615181 PMCID: PMC10715709 DOI: 10.1096/fj.202300621r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and affects about 25% of the population globally. NAFLD has the potential to cause significant liver damage in many patients because it can progress to nonalcoholic steatohepatitis (NASH) and cirrhosis, which substantially increases disease morbidity and mortality. Despite the key role of innate immunity in the disease progression, the underlying molecular and pathogenic mechanisms remain to be elucidated. RNase L is a key enzyme in interferon action against viral infection and displays pleiotropic biological functions such as control of cell proliferation, apoptosis, and autophagy. Recent studies have demonstrated that RNase L is involved in innate immunity. In this study, we revealed that RNase L contributed to the development of NAFLD, which further progressed to NASH in a time-dependent fashion after RNase L wild-type (WT) and knockout mice were fed with a high-fat and high-cholesterol diet. RNase L WT mice showed significantly more severe NASH, evidenced by widespread macro-vesicular steatosis, hepatocyte ballooning degeneration, inflammation, and fibrosis, although physiological and biochemical data indicated that both types of mice developed obesity, hyperglycemia, hypercholesterolemia, dysfunction of the liver, and systemic inflammation at different extents. Further investigation demonstrated that RNase L was responsible for the expression of some key genes in lipid metabolism, inflammation, and fibrosis signaling. Taken together, our results suggest that a novel therapeutic intervention for NAFLD may be developed based on regulating the expression and activity of RNase L.
Collapse
Affiliation(s)
- Guanmin Chen
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Xiaotong Zhao
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Maksym Dankovskyy
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Abigail Ansah-Zame
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Uthman Alghamdi
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Danting Liu
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Ruhan Wei
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Aimin Zhou
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
- Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
4
|
Wei R, Chen G, Algehainy N, Zeng C, Liu C, Liu H, Liu W, Stacey D, Zhou A. RNase L Is Involved in Liposaccharide-Induced Lung Inflammation. Viruses 2020; 12:v12010073. [PMID: 31936150 PMCID: PMC7019736 DOI: 10.3390/v12010073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 01/11/2023] Open
Abstract
RNase L mediates interferon (IFN) function during viral infection and cell proliferation. Furthermore, the role of RNase L in the regulation of gene expression, cell apoptosis, autophagy, and innate immunity has been well established in the last decade. Tissue distribution reveals that RNase L is highly expressed in the lung and other organs. However, the physiological roles of RNase L in the lung are largely unknown. In this study, we found that polysaccharide (LPS)-induced acute lung injury (ALI) was remarkably intensified in mice deficient in RNase L compared to wild type mice under the same condition. Furthermore, we found that RNase L mediated the TLR4 signaling pathway, and regulated the expression of various pro- and anti-inflammatory genes in the lung tissue and blood. Most importantly, RNase L function in macrophages during LPS stimulation may be independent of the 2-5A system. These findings demonstrate a novel role of RNase L in the immune response via an atypical molecular mechanism.
Collapse
Affiliation(s)
- Ruhan Wei
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (R.W.); (G.C.); (N.A.); (C.Z.); (H.L.)
| | - Guanmin Chen
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (R.W.); (G.C.); (N.A.); (C.Z.); (H.L.)
| | - Naseh Algehainy
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (R.W.); (G.C.); (N.A.); (C.Z.); (H.L.)
| | - Chun Zeng
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (R.W.); (G.C.); (N.A.); (C.Z.); (H.L.)
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Hongli Liu
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (R.W.); (G.C.); (N.A.); (C.Z.); (H.L.)
| | - Wendy Liu
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44115, USA;
| | - Dennis Stacey
- Department of BGES, Cleveland State University, Cleveland, OH 44115, USA;
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (R.W.); (G.C.); (N.A.); (C.Z.); (H.L.)
- Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
- Correspondence: ; Tel.: +1-216-687-2416; Fax: +1-216-687-9298
| |
Collapse
|
5
|
Kim SC. RNase-L Deficiency-Associated Intractable Indeterminate Colitis in Children. Inflamm Bowel Dis 2019; 25:e106-e107. [PMID: 31077295 DOI: 10.1093/ibd/izz096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Soon Chul Kim
- Department of Pediatrics, Chonbuk National University Medical School and Hospital, Research Institute of Clinical Medicine of Chonbuk National University - Biomedical research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|
6
|
Wohnhaas CT, Leparc GG, Fernandez-Albert F, Kind D, Gantner F, Viollet C, Hildebrandt T, Baum P. DMSO cryopreservation is the method of choice to preserve cells for droplet-based single-cell RNA sequencing. Sci Rep 2019; 9:10699. [PMID: 31337793 PMCID: PMC6650608 DOI: 10.1038/s41598-019-46932-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/04/2019] [Indexed: 11/15/2022] Open
Abstract
Combining single-cell RNA sequencing (scRNA-seq) with upstream cell preservation procedures such as cryopreservation or methanol fixation has recently become more common. By separating cell handling and preparation, from downstream library generation, scRNA-seq workflows are more flexible and manageable. However, the inherent transcriptomic changes associated with cell preservation and how they may bias further downstream analysis remain unknown. Here, we present a side-by-side droplet-based scRNA-seq analysis, comparing the gold standard - fresh cells - to three different cell preservation workflows: dimethyl sulfoxide based cryopreservation, methanol fixation and CellCover reagent. Cryopreservation proved to be the most robust protocol, maximizing both cell integrity and low background ambient RNA. Importantly, gene expression profiles from fresh cells correlated most with those of cryopreserved cells. Such similarities were consistently observed across the tested cell lines (R ≥ 0.97), monocyte-derived macrophages (R = 0.97) and immune cells (R = 0.99). In contrast, both methanol fixation and CellCover preservation showed an increased ambient RNA background and an overall lower gene expression correlation to fresh cells. Thus, our results demonstrate the superiority of cryopreservation over other cell preservation methods. We expect our comparative study to provide single-cell omics researchers invaluable support when integrating cell preservation into their scRNA-seq studies.
Collapse
Affiliation(s)
- Christian T Wohnhaas
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Germán G Leparc
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany
| | | | - David Kind
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany
| | - Florian Gantner
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany
| | - Coralie Viollet
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany
| | - Tobias Hildebrandt
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany
| | - Patrick Baum
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany.
| |
Collapse
|
7
|
A galactomannoglucan derived from Agaricus brasiliensis: Purification, characterization and macrophage activation via MAPK and IκB/NFκB pathways. Food Chem 2018; 239:603-611. [DOI: 10.1016/j.foodchem.2017.06.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 11/22/2022]
|
8
|
Loke SY, Wong PTH, Ong WY. Global gene expression changes in the prefrontal cortex of rabbits with hypercholesterolemia and/or hypertension. Neurochem Int 2016; 102:33-56. [PMID: 27890723 DOI: 10.1016/j.neuint.2016.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 02/01/2023]
Abstract
Although many studies have identified a link between hypercholesterolemia or hypertension and cognitive deficits, till date, comprehensive gene expression analyses of the brain under these conditions is still lacking. The present study was carried out to elucidate differential gene expression changes in the prefrontal cortex (PFC) of New Zealand white rabbits exposed to hypercholesterolemia and/or hypertension with a view of identifying gene networks at risk. Microarray analyses of the PFC of hypercholesterolemic rabbits showed 850 differentially expressed genes (DEGs) in the cortex of hypercholesterolemic rabbits compared to controls, but only 5 DEGs in hypertensive rabbits compared to controls. Up-regulated genes in the PFC of hypercholesterolemic rabbits included CIDEC, ODF2, RNASEL, FSHR, CES3 and MAB21L3, and down-regulated genes included FAM184B, CUL3, LOC100351029, TMEM109, LOC100357097 and PFDN5. Comparison with our previous study on the middle cerebral artery (MCA) of the same rabbits showed many differentially expressed genes in common between the PFC and MCA, during hypercholesterolemia. Moreover, these genes tended to fall into the same functional networks, as revealed by IPA analyses, with many identical node molecules. These include: proteasome, insulin, Akt, ERK1/2, histone, IL12, interferon alpha and NFκB. Of these, PSMB4, PSMD4, PSMG1 were chosen as representatives of genes related to the proteasome for verification by quantitative RT-PCR. Results indicate significant downregulation of all three proteasome associated genes in the PFC. Immunostaining showed significantly increased number of Aβ labelled cells in layers III and V of the cortex after hypercholesterolemia and hypertension, which may be due to decreased proteasome activity and/or increased β- or γ-secretase activity. Knowledge of altered gene networks during hypercholesterolemia and/or hypertension could inform our understanding of the link between these conditions and cognitive deficits in vascular dementia or Alzheimer's disease.
Collapse
Affiliation(s)
- Sau-Yeen Loke
- Department of Anatomy, National University of Singapore, 119260, Singapore
| | - Peter Tsun-Hon Wong
- Department of Pharmacology, National University of Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, 119260, Singapore; Neurobiology and Ageing Research Program, Life Sciences Institute, National University of Singapore, 119260, Singapore.
| |
Collapse
|
9
|
Abstract
RNase L is a regulated endoribonuclease that functions in the interferon antiviral response. Activation of RNase L by 2', 5'-oligoadenylates has been linked to apoptosis, autophagy and inflammation. Genetic studies have also suggested the possible involvement of the RNase L gene (RNASEL) on chromosome 1q25.3 in several types of cancer. Here we report that ablation of RNase L in human prostate cancer PC3 cells by CRISPR/Cas9 gene editing technology enhanced cell migration as determined both by transwell assays and scratch wound healing assays. In addition, RNase L knockdown by means of RNAi increased migration of PC3 and DU145 cells in response to either fibronectin or serum stimulation, as did homozygous disruption of the RNase L gene in mouse embryonic fibroblasts. Serum or fibronectin stimulation of focal adhesion kinase (FAK) autophosphorylation on tyrosine-397 was increased by either knockdown or ablation of RNase L. In contrast, a missense mutant RNase L (R667A) lacking catalytic activity failed to suppress cell migration in PC3 cells. However, a nuclease-inactive mutant mouse RNase L (W630A) was able to partially inhibit migration of mouse fibroblasts. Consistent with a role for the catalytic activity of RNase L, transfection of PC3 cells with the RNase L activator, 2', 5'-oligoadenylate, suppressed cell migration. RNase L knockdown in PC3 cells enhanced tumor growth and metastasis following implantation in the mouse prostate. Our results suggest that naturally occurring mutations in the RNase L gene might promote enhanced cell migration and metastasis.
Collapse
|
10
|
Gusho E, Baskar D, Banerjee S. New advances in our understanding of the "unique" RNase L in host pathogen interaction and immune signaling. Cytokine 2016; 133:153847. [PMID: 27595182 PMCID: PMC7128181 DOI: 10.1016/j.cyto.2016.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Ever since the discovery of the existence of an interferon (IFN)-regulated ribonuclease, significant advances have been made in understanding the mechanism and associated regulatory effects of its action. What had been studied initially as a "unique" endoribonuclease is currently known as ribonuclease L (RNase L where "L" stands for latent). Some of the key developments include discovery of the RNase L signaling pathway, its structural characterization, and its molecular cloning. RNase L has been implicated in antiviral and antibacterial defense, as well as in hereditary prostate cancer. RNase L is activated by 2'-5' linked oligoadenylates (2-5A), which are synthesized by the oligoadenylate synthetases (OASs), a family of IFN-regulated pathogen recognition receptors that sense double-stranded RNAs. Activated RNase L cleaves single stranded RNAs, including viral RNAs and cellular RNAs. The catalytic activity of RNase L has been found to lead into the activation of several cellular signaling pathways, including those involved in autophagy, apoptosis, IFN-β production, NLRP3 inflammasome activation leading to IL-1β secretion, inhibition of cell migration, and cell adhesion. In this review, we will highlight the newest advances in our understanding of the catalytic role of RNase L in the context of different cellular pathways and extend the scope of these findings to discussion of potential therapeutic targets for antimicrobial drug development.
Collapse
Affiliation(s)
- Elona Gusho
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA
| | - Danika Baskar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA; Pediatrics Division Office, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA(1)
| | - Shuvojit Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA.
| |
Collapse
|
11
|
The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response. Int J Mol Sci 2016; 17:ijms17010074. [PMID: 26760998 PMCID: PMC4730318 DOI: 10.3390/ijms17010074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.
Collapse
|
12
|
Zeng C, Yi X, Zipris D, Liu H, Zhang L, Zheng Q, Krishnamurthy M, Jin G, Zhou A. RNase L contributes to experimentally induced type 1 diabetes onset in mice. J Endocrinol 2014; 223:277-87. [PMID: 25287058 PMCID: PMC4225003 DOI: 10.1530/joe-14-0509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cause of type 1 diabetes continues to be a focus of investigation. Studies have revealed that interferon α (IFNα) in pancreatic islets after viral infection or treatment with double-stranded RNA (dsRNA), a mimic of viral infection, is associated with the onset of type 1 diabetes. However, how IFNα contributes to the onset of type 1 diabetes is obscure. In this study, we found that 2-5A-dependent RNase L (RNase L), an IFNα-inducible enzyme that functions in the antiviral and antiproliferative activities of IFN, played an important role in dsRNA-induced onset of type 1 diabetes. Using RNase L-deficient, rat insulin promoter-B7.1 transgenic mice, which are more vulnerable to harmful environmental factors such as viral infection, we demonstrated that deficiency of RNase L in mice resulted in a significant delay of diabetes onset induced by polyinosinic:polycytidylic acid (poly I:C), a type of synthetic dsRNA, and streptozotocin, a drug which can artificially induce type 1-like diabetes in experimental animals. Immunohistochemical staining results indicated that the population of infiltrated CD8(+)T cells was remarkably reduced in the islets of RNase L-deficient mice, indicating that RNase L may contribute to type 1 diabetes onset through regulating immune responses. Furthermore, RNase L was responsible for the expression of certain proinflammatory genes in the pancreas under induced conditions. Our findings provide new insights into the molecular mechanism underlying β-cell destruction and may indicate novel therapeutic strategies for treatment and prevention of the disease based on the selective regulation and inhibition of RNase L.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Blotting, Western
- Cell Line, Tumor
- Cells, Cultured
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diet, High-Fat/adverse effects
- Endoribonucleases/deficiency
- Endoribonucleases/genetics
- Immunohistochemistry
- Inflammation Mediators/metabolism
- Islets of Langerhans/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- NIH 3T3 Cells
- Obesity/etiology
- Obesity/genetics
- Obesity/metabolism
- Poly I-C
- RNA, Double-Stranded/genetics
- Rats
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Chun Zeng
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - Xin Yi
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - Danny Zipris
- Barbara Davis Center of Childhood Diabetes, University of Colorado Health Science Center, Denver, Colorado 80045
| | - Hongli Liu
- Central Laboratory, the Eighth Hospital of Xi'an, 2 East Zhangba Road, Xi'an 710061, China
| | - Lin Zhang
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - Qiaoyun Zheng
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | | | - Ge Jin
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
- Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH 44195
| |
Collapse
|
13
|
Abstract
The actin cytoskeleton and its network of associated proteins constitute a physical barrier that viruses must circumvent to gain entry into cells for productive infection. The mechanisms by which the physical signals of infection are sensed by the host to activate an innate immune response are not well understood. The antiviral endoribonuclease RNase L is ubiquitously expressed in a latent form and activated upon binding 2-5A, a unique oligoadenylate produced during viral infections. We provide evidence that RNase L in its inactive form interacts with the actin-binding protein Filamin A to modulate the actin cytoskeleton and inhibit virus entry. Cells lacking either RNase L or Filamin A displayed increased virus entry which was exacerbated in cells lacking both proteins. RNase L deletion mutants that reduced Filamin A interaction displayed a compromised ability to restrict virus entry, supporting the idea of an important role for the RNase L-Filamin A complex in barrier function. Remarkably, both the wild type and a catalytically inactive RNase L mutant were competent to reduce virus entry when transfected into RNase L-deficient cells, indicating that this novel function of RNase L is independent of its enzymatic activity. Virus infection and RNase L activation disrupt its association with Filamin A and release RNase L to mediate its canonical nuclease-dependent antiviral activities. The dual functions of RNase L as a constitutive component of the actin cytoskeleton and as an induced mediator of antiviral signaling and effector functions provide insights into its mechanisms of antiviral activity and opportunities for the development of novel antiviral agents. Cells constantly face and sample pathogens on their outer surface. The actin cytoskeleton and interacting proteins associate with the cell membrane and constitute a barrier to infection. Disruption of the actin cytoskeleton allows viruses to enter the cell and induces innate immune responses to clear infections. The molecular mechanisms that link virus-induced physical perturbations to host defense pathways remain unclear. Our studies identified a novel interaction between the antiviral endoribonuclease RNase L and the actin-binding protein Filamin A that enhances host defense by preventing viral entry into naive cells. This role for RNase L is independent of its enzymatic function. Virus infection alters actin dynamics, disrupts the RNase L-Filamin A complex, and releases RNase L to mediate antiviral signaling and effector functions via its established nucleolytic activities. These dual roles for RNase L provide an efficient strategy to protect cells from infection and rapidly respond upon pathogen exposure.
Collapse
|
14
|
Brennan-Laun SE, Li XL, Ezelle HJ, Venkataraman T, Blackshear PJ, Wilson GM, Hassel BA. RNase L attenuates mitogen-stimulated gene expression via transcriptional and post-transcriptional mechanisms to limit the proliferative response. J Biol Chem 2014; 289:33629-43. [PMID: 25301952 DOI: 10.1074/jbc.m114.589556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular response to mitogens is tightly regulated via transcriptional and post-transcriptional mechanisms to rapidly induce genes that promote proliferation and efficiently attenuate their expression to prevent malignant growth. RNase L is an endoribonuclease that mediates diverse antiproliferative activities, and tristetraprolin (TTP) is a mitogen-induced RNA-binding protein that directs the decay of proliferation-stimulatory mRNAs. In light of their roles as endogenous proliferative constraints, we examined the mechanisms and functional interactions of RNase L and TTP to attenuate a mitogenic response. Mitogen stimulation of RNase L-deficient cells significantly increased TTP transcription and the induction of other mitogen-induced mRNAs. This regulation corresponded with elevated expression of serum-response factor (SRF), a master regulator of mitogen-induced transcription. RNase L destabilized the SRF transcript and formed a complex with SRF mRNA in cells providing a mechanism by which RNase L down-regulates SRF-induced genes. TTP and RNase L proteins interacted in cells suggesting that RNase L is directed to cleave TTP-bound RNAs as a mechanism of substrate specificity. Consistent with their concerted function in RNA turnover, the absence of either RNase L or TTP stabilized SRF mRNA, and a subset of established TTP targets was also regulated by RNase L. RNase L deficiency enhanced mitogen-induced proliferation demonstrating its functional role in limiting the mitogenic response. Our findings support a model of feedback regulation in which RNase L and TTP target SRF mRNA and SRF-induced transcripts. Accordingly, meta-analysis revealed an enrichment of RNase L and TTP targets among SRF-regulated genes suggesting that the RNase L/TTP axis represents a viable target to inhibit SRF-driven proliferation in neoplastic diseases.
Collapse
Affiliation(s)
- Sarah E Brennan-Laun
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and
| | - Xiao-Ling Li
- the Genetics Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Heather J Ezelle
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and the Research Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| | | | - Perry J Blackshear
- the Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Gerald M Wilson
- From the Marlene and Stewart Greenebaum Cancer Center, Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Bret A Hassel
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and the Research Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| |
Collapse
|
15
|
Enteropathogenic Escherichia coli inhibits type I interferon- and RNase L-mediated host defense to disrupt intestinal epithelial cell barrier function. Infect Immun 2014; 82:2802-14. [PMID: 24733098 DOI: 10.1128/iai.00105-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) primarily infects children in developing countries and causes diarrhea that can be deadly. EPEC pathogenesis occurs through type III secretion system (T3SS)-mediated injection of effectors into intestinal epithelial cells (IECs); these effectors alter actin dynamics, modulate the immune response, and disrupt tight junction (TJ) integrity. The resulting compromised barrier function and increased gastrointestinal (GI) permeability may be responsible for the clinical symptoms of infection. Type I interferon (IFN) mediates anti-inflammatory activities and serves essential functions in intestinal immunity and homeostasis; however, its role in the immune response to enteric pathogens, such as EPEC, and its impact on IEC barrier function have not been examined. Here, we report that IFN-β is induced following EPEC infection and regulates IEC TJ proteins to maintain barrier function. The EPEC T3SS effector NleD counteracts this protective activity by inhibiting IFN-β induction and enhancing tumor necrosis factor alpha to promote barrier disruption. The endoribonuclease RNase L is a key mediator of IFN induction and action that promotes TJ protein expression and IEC barrier integrity. EPEC infection inhibits RNase L in a T3SS-dependent manner, providing a mechanism by which EPEC evades IFN-induced antibacterial activities. This work identifies novel roles for IFN-β and RNase L in IEC barrier functions that are targeted by EPEC effectors to escape host defense mechanisms and promote virulence. The IFN-RNase L axis thus represents a potential therapeutic target for enteric infections and GI diseases involving compromised barrier function.
Collapse
|