1
|
Sanchez-Lopez I, Orantos-Aguilera Y, Pozo-Guisado E, Alvarez-Barrientos A, Lilla S, Zanivan S, Lachaud C, Martin-Romero FJ. STIM1 translocation to the nucleus protects cells from DNA damage. Nucleic Acids Res 2024; 52:2389-2415. [PMID: 38224453 PMCID: PMC10954485 DOI: 10.1093/nar/gkae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/30/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024] Open
Abstract
DNA damage represents a challenge for cells, as this damage must be eliminated to preserve cell viability and the transmission of genetic information. To reduce or eliminate unscheduled chemical modifications in genomic DNA, an extensive signaling network, known as the DNA damage response (DDR) pathway, ensures this repair. In this work, and by means of a proteomic analysis aimed at studying the STIM1 protein interactome, we have found that STIM1 is closely related to the protection from endogenous DNA damage, replicative stress, as well as to the response to interstrand crosslinks (ICLs). Here we show that STIM1 has a nuclear localization signal that mediates its translocation to the nucleus, and that this translocation and the association of STIM1 to chromatin increases in response to mitomycin-C (MMC), an ICL-inducing agent. Consequently, STIM1-deficient cell lines show higher levels of basal DNA damage, replicative stress, and increased sensitivity to MMC. We show that STIM1 normalizes FANCD2 protein levels in the nucleus, which explains the increased sensitivity of STIM1-KO cells to MMC. This study not only unveils a previously unknown nuclear function for the endoplasmic reticulum protein STIM1 but also expands our understanding of the genes involved in DNA repair.
Collapse
Affiliation(s)
- Irene Sanchez-Lopez
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Universidad de Extremadura, Badajoz 06006, Spain
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Badajoz 06006, Spain
| | - Yolanda Orantos-Aguilera
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Universidad de Extremadura, Badajoz 06006, Spain
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Badajoz 06006, Spain
| | - Eulalia Pozo-Guisado
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Badajoz 06006, Spain
- Department of Cell Biology, School of Medicine, Universidad de Extremadura, Badajoz 06006, Spain
| | | | - Sergio Lilla
- CRUK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Sara Zanivan
- CRUK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Christophe Lachaud
- Cancer Research Centre of Marseille, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli Calmettes, CRCM, Marseille, France
- OPALE Carnot Institute, Paris, France
| | - Francisco Javier Martin-Romero
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Universidad de Extremadura, Badajoz 06006, Spain
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Badajoz 06006, Spain
| |
Collapse
|
2
|
Wu HL, Yang ZR, Yan LJ, Su YD, Ma R, Li Y. NPM2 in malignant peritoneal mesothelioma: from basic tumor biology to clinical medicine. World J Surg Oncol 2022; 20:141. [PMID: 35490253 PMCID: PMC9055711 DOI: 10.1186/s12957-022-02604-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/14/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND This review systematically summarizes gene biology features and protein structure of nucleoplasmin2 (NPM2) and the relationship between NPM2 and malignant peritoneal mesothelioma (MPM), in order to explore the molecular pathological mechanism of MPM and explore new therapeutic targets. METHODS NCBI PubMed database was used for the literature search. NCBI Gene and Protein databases, Ensembl Genome Browser, UniProt, and RCSB PDB database were used for gene and protein review. Three online tools (Consurf, DoGSiteScorer, and ZdockServer), the GEPIA database, and the Cancer Genome Atlas were used to analyze bioinformatics characteristics for NPM2 protein. RESULTS The main structural domains of NPM2 protein include the N-terminal core region, acidic region, and motif and disordered region. The N-terminal core region, involved in histone binding, is the most conserved domain in the nucleoplasmin (NPM) family. NPM2 with a large acidic tract in its C-terminal tail (NPM2-A2) is able to bind histones and form large complexes. Bioinformatics results indicated that NPM2 expression was correlated with the pathology of multiple tumors. Among mesothelioma patients, 5-year survival of patients with low-NPM2-expression was significantly higher than that of the high-NPM2-expression patients. NPM2 can facilitate the formation of histone deacetylation. NPM2 may promote histone deacetylation and inhibit the related-gene transcription, thus leading to abnormal proliferation, invasion, and metastasis of MPM. CONCLUSION NPM2 may play a key role in the development and progression of MPM.
Collapse
Affiliation(s)
- He-Liang Wu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing, 100038, China
| | - Zhi-Ran Yang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Li-Jun Yan
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan-Dong Su
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ru Ma
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing, 100038, China. .,Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Kreutmair S, Erlacher M, Andrieux G, Istvanffy R, Mueller-Rudorf A, Zwick M, Rückert T, Pantic M, Poggio T, Shoumariyeh K, Mueller TA, Kawaguchi H, Follo M, Klingeberg C, Wlodarski M, Baumann I, Pfeifer D, Kulinski M, Rudelius M, Lemeer S, Kuster B, Dierks C, Peschel C, Cabezas-Wallscheid N, Duque-Afonso J, Zeiser R, Cleary ML, Schindler D, Schmitt-Graeff A, Boerries M, Niemeyer CM, Oostendorp RA, Duyster J, Illert AL. Loss of the Fanconi anemia-associated protein NIPA causes bone marrow failure. J Clin Invest 2020; 130:2827-2844. [PMID: 32338640 PMCID: PMC7260023 DOI: 10.1172/jci126215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are a heterogeneous group of disorders characterized by defective hematopoiesis, impaired stem cell function, and cancer susceptibility. Diagnosis of IBMFS presents a major challenge due to the large variety of associated phenotypes, and novel, clinically relevant biomarkers are urgently needed. Our study identified nuclear interaction partner of ALK (NIPA) as an IBMFS gene, as it is significantly downregulated in a distinct subset of myelodysplastic syndrome-type (MDS-type) refractory cytopenia in children. Mechanistically, we showed that NIPA is major player in the Fanconi anemia (FA) pathway, which binds FANCD2 and regulates its nuclear abundance, making it essential for a functional DNA repair/FA/BRCA pathway. In a knockout mouse model, Nipa deficiency led to major cell-intrinsic defects, including a premature aging phenotype, with accumulation of DNA damage in hematopoietic stem cells (HSCs). Induction of replication stress triggered a reduction in and functional decline of murine HSCs, resulting in complete bone marrow failure and death of the knockout mice with 100% penetrance. Taken together, the results of our study add NIPA to the short list of FA-associated proteins, thereby highlighting its potential as a diagnostic marker and/or possible target in diseases characterized by hematopoietic failure.
Collapse
Affiliation(s)
- Stefanie Kreutmair
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Erlacher
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, and
| | - Geoffroy Andrieux
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center — University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Rouzanna Istvanffy
- Department of Internal Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alina Mueller-Rudorf
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melissa Zwick
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tamina Rückert
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Milena Pantic
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Teresa Poggio
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tony A. Mueller
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hiroyuki Kawaguchi
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Marie Follo
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cathrin Klingeberg
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcin Wlodarski
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, and
| | - Irith Baumann
- Institute of Pathology, Health Center Böblingen, Böblingen, Germany
| | - Dietmar Pfeifer
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Martina Rudelius
- Institute of Pathology, Ludwig Maximilian University Munich, Munich, Germany
| | - Simone Lemeer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Christine Dierks
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Peschel
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Jesus Duque-Afonso
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael L. Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Detlev Schindler
- Department of Human Genetics, Institute of Human Genetics, Biozentrum, University of Würzburg, Würzburg, Germany
| | | | - Melanie Boerries
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center — University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Charlotte M. Niemeyer
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, and
| | - Robert A.J. Oostendorp
- Department of Internal Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Lena Illert
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Subcellular localization of FANCD2 is associated with survival in ovarian carcinoma. Oncotarget 2020; 11:775-783. [PMID: 32165999 PMCID: PMC7055545 DOI: 10.18632/oncotarget.27437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/21/2019] [Indexed: 01/23/2023] Open
Abstract
Objective: Ovarian cancer is a leading cause of death from gynecological cancers. Late diagnosis and resistance to therapy results in mortality and effective screening is required for early diagnosis and better treatments. Expression of the Fanconi Anemia complementation group D2 protein (FANCD2) is reduced in ovarian surface epithelial cells (OSE) in patients with ovarian cancer. FANCD2 has been studied for its role in DNA repair; however multiple studies have suggested that FANCD2 has a role outside the nucleus. We sought to determine whether subcellular localization of FANCD2 correlates with patient outcome in ovarian cancer. Methods: We examined the subcellular localization of FANCD2 in primary OSE cells from consenting patients with ovarian cancer or a normal ovary. Ovarian tissue microarray was stained with anti-FANCD2 antibody by immunohistochemistry and the correlation of FANCD2 localization with patient outcomes was assessed. FANCD2 binding partners were identified by immunoprecipitation of cytoplasmic FANCD2. Results: Nuclear and cytoplasmic localization of FANCD2 was observed in OSEs from both normal and ovarian cancer patients. Patients with cytoplasmic localization of FANCD2 (cFANCD2) experienced significantly longer median survival time (50 months), versus patients without cytoplasmic localization of FANCD2 (38 months; p < 0.05). Cytoplasmic FANCD2 was found to bind proteins involved in the innate immune system, cellular response to heat stress, amyloid fiber formation and estrogen mediated signaling. Conclusions: Our results suggest that the presence of cytoplasmic FANCD2 modulates FANCD2 activity resulting in better survival outcome in ovarian cancer patients.
Collapse
|
5
|
FANCD2 Binding to H4K20me2 via a Methyl-Binding Domain Is Essential for Efficient DNA Cross-Link Repair. Mol Cell Biol 2019; 39:MCB.00194-19. [PMID: 31085681 DOI: 10.1128/mcb.00194-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023] Open
Abstract
Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure and increased cancer risk. FA is caused by mutation of any 1 of 22 genes, and the FA proteins function cooperatively to repair DNA interstrand cross-links (ICLs). A central step in the activation of the FA pathway is the monoubiquitination of the FANCD2 and FANCI proteins, which occurs within chromatin. How FANCD2 and FANCI are anchored to chromatin remains unknown. In this study, we identify and characterize a FANCD2 histone-binding domain (HBD) and embedded methyl-lysine-binding domain (MBD) and demonstrate binding specificity for H4K20me2. Disruption of the HBD/MBD compromises FANCD2 chromatin binding and nuclear focus formation and its ability to promote error-free DNA interstrand cross-link repair, leading to increased error-prone repair and genome instability. Our study functionally describes the first FA protein chromatin reader domain and establishes an important link between this human genetic disease and chromatin plasticity.
Collapse
|
6
|
Fragkos M, Barra V, Egger T, Bordignon B, Lemacon D, Naim V, Coquelle A. Dicer prevents genome instability in response to replication stress. Oncotarget 2019; 10:4407-4423. [PMID: 31320994 PMCID: PMC6633883 DOI: 10.18632/oncotarget.27034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/05/2019] [Indexed: 11/25/2022] Open
Abstract
Dicer, an endoribonuclease best-known for its role in microRNA biogenesis and RNA interference pathway, has been shown to play a role in the DNA damage response and repair of double-stranded DNA breaks (DSBs) in mammalian cells. However, it remains unknown whether Dicer is also important to preserve genome integrity upon replication stress. To address this question, we focused our study on common fragile sites (CFSs), which are susceptible to breakage after replication stress. We show that inhibition of the Dicer pathway leads to an increase in CFS expression upon induction of replication stress and to an accumulation of 53BP1 nuclear bodies, indicating transmission of replication-associated damage. We also show that in absence of a functional Dicer or Drosha, the assembly into nuclear foci of the Fanconi anemia (FA) protein FANCD2 and of the replication and checkpoint factor TopBP1 in response to replication stress is impaired, and the activation of the S-phase checkpoint is defective. Based on these results, we propose that Dicer pre-vents genomic instability after replication stress, by allowing the proper recruitment to stalled forks of proteins that are necessary to maintain replication fork stability and activate the S-phase checkpoint, thus limiting cells from proceeding into mitosis with under-replicated DNA.
Collapse
Affiliation(s)
- Michalis Fragkos
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France.,Laboratory of Genetic Instability and Oncogenesis, UMR 8200 CNRS, University Paris-Sud, Gustave Roussy, Villejuif, France.,These authors contributed equally to this work
| | - Viviana Barra
- Laboratory of Genetic Instability and Oncogenesis, UMR 8200 CNRS, University Paris-Sud, Gustave Roussy, Villejuif, France.,These authors contributed equally to this work
| | - Tom Egger
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Benoit Bordignon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Delphine Lemacon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France.,Present address: Department of Biochemistry and Molecular Biology, Doisy Research Center, St. Louis, MO, USA
| | - Valeria Naim
- Laboratory of Genetic Instability and Oncogenesis, UMR 8200 CNRS, University Paris-Sud, Gustave Roussy, Villejuif, France.,These authors contributed equally to this work
| | - Arnaud Coquelle
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
7
|
Abstract
Fanconi anemia (FA) is a disease of DNA repair characterized by bone marrow failure and a reduced ability to remove DNA interstrand cross-links. Here, we provide evidence that the FA protein FANCI also functions in ribosome biogenesis, the process of making ribosomes that initiates in the nucleolus. We show that FANCI localizes to the nucleolus and is functionally and physically tied to the transcription of pre-ribosomal RNA (pre-rRNA) and to large ribosomal subunit (LSU) pre-rRNA processing independent of FANCD2. While FANCI is known to be monoubiquitinated when activated for DNA repair, we find that it is predominantly in the deubiquitinated state in the nucleolus, requiring the nucleoplasmic deubiquitinase (DUB) USP1 and the nucleolar DUB USP36. Our model suggests a possible dual pathophysiology for FA that includes defects in DNA repair and in ribosome biogenesis.
Collapse
|
8
|
Fu X, Liang C, Li F, Wang L, Wu X, Lu A, Xiao G, Zhang G. The Rules and Functions of Nucleocytoplasmic Shuttling Proteins. Int J Mol Sci 2018; 19:ijms19051445. [PMID: 29757215 PMCID: PMC5983729 DOI: 10.3390/ijms19051445] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Biological macromolecules are the basis of life activities. There is a separation of spatial dimension between DNA replication and RNA biogenesis, and protein synthesis, which is an interesting phenomenon. The former occurs in the cell nucleus, while the latter in the cytoplasm. The separation requires protein to transport across the nuclear envelope to realize a variety of biological functions. Nucleocytoplasmic transport of protein including import to the nucleus and export to the cytoplasm is a complicated process that requires involvement and interaction of many proteins. In recent years, many studies have found that proteins constantly shuttle between the cytoplasm and the nucleus. These shuttling proteins play a crucial role as transport carriers and signal transduction regulators within cells. In this review, we describe the mechanism of nucleocytoplasmic transport of shuttling proteins and summarize some important diseases related shuttling proteins.
Collapse
Affiliation(s)
- Xuekun Fu
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Guozhi Xiao
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| |
Collapse
|
9
|
Thompson EL, Yeo JE, Lee EA, Kan Y, Raghunandan M, Wiek C, Hanenberg H, Schärer OD, Hendrickson EA, Sobeck A. FANCI and FANCD2 have common as well as independent functions during the cellular replication stress response. Nucleic Acids Res 2017; 45:11837-11857. [PMID: 29059323 PMCID: PMC5714191 DOI: 10.1093/nar/gkx847] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/16/2017] [Indexed: 11/18/2022] Open
Abstract
Fanconi anemia (FA) is an inherited cancer predisposition syndrome characterized by cellular hypersensitivity to DNA interstrand crosslinks (ICLs). To repair these lesions, the FA proteins act in a linear hierarchy: following ICL detection on chromatin, the FA core complex monoubiquitinates and recruits the central FANCI and FANCD2 proteins that subsequently coordinate ICL removal and repair of the ensuing DNA double-stranded break by homology-dependent repair (HDR). FANCD2 also functions during the replication stress response by mediating the restart of temporarily stalled replication forks thereby suppressing the firing of new replication origins. To address if FANCI is also involved in these FANCD2-dependent mechanisms, we generated isogenic FANCI-, FANCD2- and FANCI:FANCD2 double-null cells. We show that FANCI and FANCD2 are partially independent regarding their protein stability, nuclear localization and chromatin recruitment and contribute independently to cellular proliferation. Simultaneously, FANCD2—but not FANCI—plays a major role in HDR-mediated replication restart and in suppressing new origin firing. Consistent with this observation, deficiencies in HDR-mediated DNA DSB repair can be overcome by stabilizing RAD51 filament formation in cells lacking functional FANCD2. We propose that FANCI and FANCD2 have partially non-overlapping and possibly even opposing roles during the replication stress response.
Collapse
Affiliation(s)
- Elizabeth L Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jung E Yeo
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Eun-A Lee
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Yinan Kan
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Maya Raghunandan
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Orlando D Schärer
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Niraj J, Caron MC, Drapeau K, Bérubé S, Guitton-Sert L, Coulombe Y, Couturier AM, Masson JY. The identification of FANCD2 DNA binding domains reveals nuclear localization sequences. Nucleic Acids Res 2017; 45:8341-8357. [PMID: 28666371 PMCID: PMC5737651 DOI: 10.1093/nar/gkx543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway.
Collapse
Affiliation(s)
- Joshi Niraj
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Karine Drapeau
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Stéphanie Bérubé
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Laure Guitton-Sert
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Anthony M Couturier
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Chun MJ, Choi H, Jun DW, Kim S, Kim YN, Kim SY, Lee CH. Fanconi anemia protein FANCD2 is activated by AICAR, a modulator of AMPK and cellular energy metabolism. FEBS Open Bio 2017; 7:284-292. [PMID: 28174693 PMCID: PMC5292659 DOI: 10.1002/2211-5463.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/09/2023] Open
Abstract
FANCD2 is a pivotal molecule in the pathogenesis of Fanconi anemia (FA), an autosomal recessive human syndrome with diverse clinical phenotypes, including cancer predisposition, short stature, and hematological abnormalities. In our previous study, we detected the functional association of FANC proteins, whose mutations are responsible for the onset of FA, with AMPK in response to DNA interstrand crosslinking lesions. Because AMPK is well known as a critical sensing molecule for cellular energy levels, we checked whether FANCD2 activation occurs after treatments affecting AMPK and/or cellular energy status. Among the treatments tested, AMPK‐activating 5‐aminoimidazole‐4‐carboxamide‐ribonucleoside (AICAR) induced monoubiquitination and nuclear foci formation of FANCD2, which are biomarkers of FANCD2 activation. FANCD2 activation was abolished by treatments with Compound C, an AMPK inhibitor, or after AMPKα1 knockdown, substantiating the involvement of AMPK in AICAR‐induced FANCD2 activation. Similarly, FANCA protein, which is a component of the FA core complex monoubiquitinating FANCD2, was required for this event. Furthermore, FANCD2 repression enhanced cell death upon AICAR treatments in transformed fibroblasts and cell cycle arrest in the renal cell carcinoma cell line Caki‐1. Overall, this study showed FANCD2 involvement in response to AICAR, a chemical modulating cellular energy metabolism.
Collapse
Affiliation(s)
- Min Jeong Chun
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Korea
| | - Hana Choi
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Korea
| | - Dong Wha Jun
- Precision Medicine Branch Research Institute National Cancer Center Goyang Korea
| | - Sunshin Kim
- Precision Medicine Branch Research Institute National Cancer Center Goyang Korea
| | - Yong-Nyun Kim
- Comparative Biomedicine Research Branch Research Institute National Cancer Center Goyang Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Korea
| | - Chang-Hun Lee
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Korea
| |
Collapse
|
12
|
Abstract
Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions.
Collapse
Key Words
- AML , acute myeloid leukemia
- APC/C, anaphase-promoting complex/cyclosome
- APH, aphidicolin
- ARM, armadillo repeat domain
- AT, ataxia-telangiectasia
- ATM, ataxia-telangiectasia mutated
- ATR, ATM and Rad3-related
- BAC, bacterial-artificial-chromosome
- BS, Bloom syndrome
- CUE, coupling of ubiquitin conjugation to endoplasmic reticulum degradation
- ChIP-seq, CHIP sequencing
- CtBP, C-terminal binding protein
- CtIP, CtBP-interacting protein
- DNA interstrand crosslink repair
- DNA repair
- EPS15, epidermal growth factor receptor pathway substrate 15
- FA, Fanconi anemia
- FAN1, FANCD2-associated nuclease1
- FANCD2
- FANCI
- FISH, fluorescence in situ hybridization
- Fanconi anemia
- HECT, homologous to E6-AP Carboxy Terminus
- HJ, Holliday junction
- HR, homologous recombination
- MCM2-MCM7, minichromosome maintenance 2–7
- MEFs, mouse embryonic fibroblasts
- MMC, mitomycin C
- MRN, MRE11/RAD50/NBS1
- NLS, nuclear localization signal
- PCNA, proliferating cell nuclear antigen
- PIKK, phosphatidylinositol-3-OH-kinase-like family of protein kinases
- PIP-box, PCNA-interacting protein motif
- POL κ, DNA polymerase κ
- RACE, rapid amplification of cDNA ends
- RING, really interesting new gene
- RTK, receptor tyrosine kinase
- SCF, Skp1/Cullin/F-box protein complex
- SCKL1, seckel syndrome
- SILAC, stable isotope labeling with amino acids in cell culture
- SLD1/SLD2, SUMO-like domains
- SLIM, SUMO-like domain interacting motif
- TIP60, 60 kDa Tat-interactive protein
- TLS, Translesion DNA synthesis
- UAF1, USP1-associated factor 1
- UBD, ubiquitin-binding domain
- UBZ, ubiquitin-binding zinc finger
- UFB, ultra-fine DNA bridges
- UIM, ubiquitin-interacting motif
- ULD, ubiquitin-like domain
- USP1, ubiquitin-specific protease 1
- VRR-nuc, virus-type replication repair nuclease
- iPOND, isolation of proteins on nascent DNA
- ubiquitin
Collapse
Affiliation(s)
- Rebecca A Boisvert
- a Department of Cell and Molecular Biology ; University of Rhode Island ; Kingston , RI USA
| | | |
Collapse
|