1
|
Lydick VN, Mass S, Pepin R, Podicheti R, Klempic E, Rusch DB, Ushijima B, Brown LC, Salomon D, van Kessel JC. Quorum sensing regulates virulence factors in the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol 2025; 91:e0114324. [PMID: 39812412 PMCID: PMC11837519 DOI: 10.1128/aem.01143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
The bacterial pathogen Vibrio coralliilyticus causes disease in coral species worldwide. The mechanisms of V. coralliilyticus coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model Vibrio species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS). Comparative genomics indicated that V. coralliilyticus genomes share high sequence identity for most of the QS signaling and regulatory components identified in other Vibrio species. Here, we identify an active QS signaling pathway in two V. coralliilyticus strains with distinct infection etiologies: type strain BAA-450 and coral isolate OCN008. In V. coralliilyticus, the inter-species AI-2 autoinducer signaling pathway in both strains controls expression of the master QS transcription factor and LuxR/HapR homolog VcpR to regulate >300 genes, including protease production, biofilm formation, and two conserved type VI secretion systems (T6SSs). Activation of T6SS1 by QS results in the secretion of effectors and enables interbacterial competition and killing of prey bacteria. We conclude that the QS system in V. coralliilyticus is functional and controls the expression of genes involved in relevant bacterial behaviors typically associated with host infection.IMPORTANCEVibrio coralliilyticus infects many marine organisms, including multiple species of corals, and is a primary causative agent of tissue loss diseases and bacterial-induced bleaching. Here, we investigated a common cell-cell communication mechanism called quorum sensing, which is known to be intimately connected to virulence in other Vibrio species. Our genetic and chemical studies of V. coralliilyticus quorum sensing uncovered an active pathway that directly regulates the following key virulence factors: proteases, biofilms, and secretion systems. These findings connect bacterial signaling in communities to the infection of corals, which may lead to novel treatments and earlier diagnoses of coral diseases in reefs.
Collapse
Affiliation(s)
| | - Shir Mass
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Robert Pepin
- Mass Spectrometry Facility, Indiana University, Bloomington, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Emra Klempic
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Laura C. Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
2
|
Miller TC, Bentlage B. Seasonal dynamics and environmental drivers of tissue and mucus microbiomes in the staghorn coral Acropora pulchra. PeerJ 2024; 12:e17421. [PMID: 38827308 PMCID: PMC11144401 DOI: 10.7717/peerj.17421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Background Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia. Methods Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition. Results Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.
Collapse
Affiliation(s)
- Therese C. Miller
- Marine Laboratory, University of Guam, Mangilao, Guam, USA
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
- Cawthron Institute, Nelson, New Zealand
| | | |
Collapse
|
3
|
Doni L, Oliveri C, Lasa A, Di Cesare A, Petrin S, Martinez-Urtaza J, Coman F, Richardson A, Vezzulli L. Large-scale impact of the 2016 Marine Heatwave on the plankton-associated microbial communities of the Great Barrier Reef (Australia). MARINE POLLUTION BULLETIN 2023; 188:114685. [PMID: 36739716 DOI: 10.1016/j.marpolbul.2023.114685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The Great Barrier Reef (GBR) is the world's largest coral ecosystem and is threatened by climate change. This study investigated the impact of the 2016 Marine Heatwave (MHW) on plankton associated microbial communities along a ∼800 km transect in the GBR. 16S rRNA gene metabarcoding of archived plankton samples collected from November 2014 to August 2016 in this region showed a significant increase in Planctomycetes and bacteria belonging to the genus Vibrio and Synechococcus during and after the heatwave. Notably, Droplet Digital PCR and targeted metagenomic analysis applied on samples collected four months after the MHW event revealed the presence of several potential pathogenic Vibrio species previously associated with diseases in aquatic animals. Overall, the 2016 MHW significantly impacted the surface picoplankton community and fostered the spread of potentially pathogenic bacteria across the GBR providing an additional threat for marine biodiversity in this area.
Collapse
Affiliation(s)
- Lapo Doni
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Aide Lasa
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy; Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Departamento de Ecología y Biología Animal, Universidade de Vigo, 36310 Vigo, Spain
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Verbania 28922, Italy
| | - Sara Petrin
- Laboratory of Microbial ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro 35020, Italy
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Facultat de Biociéncies, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Frank Coman
- CSIRO Oceans and Atmosphere, EcoSciences Precinct, 41 Boggo Road, Dutton Park, Brisbane 4102, QLD, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, BioSciences Precinct (QBP), St Lucia, QLD, Australia
| | - Anthony Richardson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, BioSciences Precinct (QBP), St Lucia, QLD, Australia; Centre for Applications in Natural Resource Mathematics, School of Mathematics and Physics, University of Queensland, Saint Lucia 4072, QLD, Australia
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy.
| |
Collapse
|
4
|
Al-Karablieh N, Al-Horani FA, Alnaimat S, Abu Zarga M. Prevalence of Vibrio coralliilyticus in stony coral Porites sp. in the Gulf of Aqaba, Jordan. Lett Appl Microbiol 2022; 75:460-469. [PMID: 35639047 DOI: 10.1111/lam.13753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to assess the health of stony coral Porites sp. based on the presence of bacterial pathogens, specifically Vibrio coralliilyticus, in the Gulf of Aqaba, and to assess the impact of anthropogenic activities on Porites sp. Porites sp. specimens were collected from the Marine Science Station (MSS) and a public beach (Yamanyeh) in Jordan. Mucus, water, and sediment samples were collected throughout the year. The Vibrio-like population was higher in diseased samples than in healthy samples and was slightly higher in Yamanyeh than in MSS in all samples. In samples from both sites, there was a seasonal variation in the Vibrio-like population, with a decline in population as the temperature reduced. All samples contained virulent isolates clustered with V. coralliilyticus strains. Inoculation of healthy Porites sp. fragments with virulent isolates and V. coralliilyticus strain caused bleaching of the coral after 48 h. Therefore, V. coralliilyticus represents a pathogenic agent which may contribute to bleaching in Porites sp. in the Gulf of Aqaba and may not be affected considerably by anthropogenic activities. This is the first report of a bacterial pathogen of corals in Jordan; future studies should identify other coral pathogens in this region.
Collapse
Affiliation(s)
- Nehaya Al-Karablieh
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan.,Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, Jordan
| | - Fuad A Al-Horani
- School of Marine Sciences, The University of Jordan, Aqaba, Jordan.,Marine Science Station, Aqaba, Jordan
| | | | - Musa Abu Zarga
- Chemistry Department, The University of Jordan, Amman, Jordan
| |
Collapse
|
5
|
Lasa A, Auguste M, Lema A, Oliveri C, Borello A, Taviani E, Bonello G, Doni L, Millard AD, Bruto M, Romalde JL, Yakimov M, Balbi T, Pruzzo C, Canesi L, Vezzulli L. A deep-sea bacterium related to coastal marine pathogens. Environ Microbiol 2021; 23:5349-5363. [PMID: 34097814 PMCID: PMC8519021 DOI: 10.1111/1462-2920.15629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
Evolution of virulence traits from adaptation to environmental niches other than the host is probably a common feature of marine microbial pathogens, whose knowledge might be crucial to understand their emergence and pathogenetic potential. Here, we report genome sequence analysis of a novel marine bacterial species, Vibrio bathopelagicus sp. nov., isolated from warm bathypelagic waters (3309 m depth) of the Mediterranean Sea. Interestingly, V. bathopelagicus sp. nov. is closely related to coastal Vibrio strains pathogenic to marine bivalves. V. bathopelagicus sp. nov. genome encodes genes involved in environmental adaptation to the deep-sea but also in virulence, such as the R5.7 element, MARTX toxin cluster, Type VI secretion system and zinc-metalloprotease, previously associated with Vibrio infections in farmed oysters. The results of functional in vitro assays on immunocytes (haemocytes) of the Mediterranean mussel Mytilus galloprovincialis and the Pacific oyster Crassostrea gigas, and of the early larval development assay in Mytilus support strong toxicity of V. bathopelagicus sp. nov. towards bivalves. V. bathopelagicus sp. nov., isolated from a remote Mediterranean bathypelagic site, is an example of a planktonic marine bacterium with genotypic and phenotypic traits associated with animal pathogenicity, which might have played an evolutionary role in the origin of coastal marine pathogens.
Collapse
Affiliation(s)
- Aide Lasa
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
- Department of Microbiology and ParasitologyCIBUS‐Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Alberto Lema
- Department of Microbiology and ParasitologyCIBUS‐Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Alessio Borello
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Elisa Taviani
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Guido Bonello
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Lapo Doni
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Andrew D. Millard
- Department of Genetics and Genome BiologyUniversity of LeicesterUniversity Road, LeicesterUK
| | - Maxime Bruto
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff CS 90074Roscoff CedexF‐29688France
| | - Jesus L. Romalde
- Department of Microbiology and ParasitologyCIBUS‐Facultade de Bioloxía & Institute CRETUS, Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Michail Yakimov
- Institute of Biological Resources and Marine Biotechnology, National Research Council (IRBIM‐CNR)Messina98122Italy
| | - Teresa Balbi
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaCorso Europa 26, 16132Italy
| |
Collapse
|
6
|
Bacteriophages against Vibrio coralliilyticus and Vibrio tubiashii: Isolation, Characterization, and Remediation of Larval Oyster Mortalities. Appl Environ Microbiol 2021; 87:AEM.00008-21. [PMID: 33674441 DOI: 10.1128/aem.00008-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Vibrio coralliilyticus and Vibrio tubiashii are pathogens responsible for high larval oyster mortality rates in shellfish hatcheries. Bacteriophage therapy was evaluated to determine its potential to remediate these mortalities. Sixteen phages against V. coralliilyticus and V. tubiashii were isolated and characterized from Hawaiian seawater. Fourteen isolates were members of the Myoviridae family, and two were members of the Siphoviridae In proof-of-principle trials, a cocktail of five phages reduced mortalities of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) by up to 91% 6 days after challenge with lethal doses of V. coralliilyticus Larval survival depended on the oyster species, the quantities of phages and vibrios applied, and the species and strain of Vibrio A later-generation cocktail, designated VCP300, was formulated with three lytic phages subsequently named Vibrio phages vB_VcorM-GR7B, vB_VcorM-GR11A, and vB_VcorM-GR28A (abbreviated 7B, 11A, and 28A, respectively). Together, these three phages displayed host specificity toward eight V. coralliilyticus strains and a V. tubiashii strain. Larval C. gigas mortalities from V. coralliilyticus strains RE98 and OCN008 were significantly reduced by >90% (P < 0.0001) over 6 days with phage treatment compared to those of untreated controls. Genomic sequencing of phages 7B, 11A, and 28A revealed 207,758-, 194,800-, and 154,046-bp linear DNA genomes, respectively, with the latter showing 92% similarity to V. coralliilyticus phage YC, a strain from the Great Barrier Reef, Australia. Phage 7B and 11A genomes showed little similarity to phages in the NCBI database. This study demonstrates the promising potential for phage therapy to reduce larval oyster mortalities in oyster hatcheries.IMPORTANCE Shellfish hatcheries encounter episodic outbreaks of larval oyster mortalities, jeopardizing the economic stability of hatcheries and the commercial shellfish industry. Shellfish pathogens like Vibrio coralliilyticus and Vibrio tubiashii have been recognized as major contributors of larval oyster mortalities in U.S. East and West Coast hatcheries for many years. This study isolated, identified, and characterized bacteriophages against these Vibrio species and demonstrated their ability to reduce mortalities from V. coralliilyticus in larval Pacific oysters and from both V. coralliilyticus and V. tubiashii in larval Eastern oysters. Phage therapy offers a promising approach for stimulating hatchery production to ensure the well-being of hatcheries and the commercial oyster trade.
Collapse
|
7
|
Ushijima B, Meyer JL, Thompson S, Pitts K, Marusich MF, Tittl J, Weatherup E, Reu J, Wetzell R, Aeby GS, Häse CC, Paul VJ. Disease Diagnostics and Potential Coinfections by Vibrio coralliilyticus During an Ongoing Coral Disease Outbreak in Florida. Front Microbiol 2020; 11:569354. [PMID: 33193161 PMCID: PMC7649382 DOI: 10.3389/fmicb.2020.569354] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/06/2020] [Indexed: 01/24/2023] Open
Abstract
A deadly coral disease outbreak has been devastating the Florida Reef Tract since 2014. This disease, stony coral tissue loss disease (SCTLD), affects at least 22 coral species causing the progressive destruction of tissue. The etiological agents responsible for SCTLD are unidentified, but pathogenic bacteria are suspected. Virulence screens of 400 isolates identified four potentially pathogenic strains of Vibrio spp. subsequently identified as V. coralliilyticus. Strains of this species are known coral pathogens; however, cultures were unable to consistently elicit tissue loss, suggesting an opportunistic role. Using an improved immunoassay, the VcpA RapidTest, a toxic zinc-metalloprotease produced by V. coralliilyticus was detected on 22.3% of diseased Montastraea cavernosa (n = 67) and 23.5% of diseased Orbicella faveolata (n = 24). VcpA+ corals had significantly higher mortality rates and faster disease progression. For VcpA- fragments, 21.6% and 33.3% of M. cavernosa and O. faveolata, respectively, died within 21 d of observation, while 100% of similarly sized VcpA+ fragments of both species died during the same period. Further physiological and genomic analysis found no apparent differences between the Atlantic V. coralliilyticus strains cultured here and pathogens from the Indo-Pacific but highlighted the diversity among strains and their immense genetic potential. In all, V. coralliilyticus may be causing coinfections that exacerbate existing SCTLD lesions, which could contribute to the intraspecific differences observed between colonies. This study describes potential coinfections contributing to SCTLD virulence as well as diagnostic tools capable of tracking the pathogen involved, which are important contributions to the management and understanding of SCTLD.
Collapse
Affiliation(s)
- Blake Ushijima
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Julie L Meyer
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| | | | - Kelly Pitts
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | | | - Jessica Tittl
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| | | | - Jacqueline Reu
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Raquel Wetzell
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Greta S Aeby
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Claudia C Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Fort Pierce, FL, United States
| |
Collapse
|
8
|
Destoumieux-Garzón D, Canesi L, Oyanedel D, Travers MA, Charrière GM, Pruzzo C, Vezzulli L. Vibrio-bivalve interactions in health and disease. Environ Microbiol 2020; 22:4323-4341. [PMID: 32363732 DOI: 10.1111/1462-2920.15055] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
In the marine environment, bivalve mollusks constitute habitats for bacteria of the Vibrionaceae family. Vibrios belong to the microbiota of healthy oysters and mussels, which have the ability to concentrate bacteria in their tissues and body fluids, including the hemolymph. Remarkably, these important aquaculture species respond differently to infectious diseases. While oysters are the subject of recurrent mass mortalities at different life stages, mussels appear rather resistant to infections. Thus, Vibrio species are associated with the main diseases affecting the worldwide oyster production. Here, we review the current knowledge on Vibrio-bivalve interaction in oysters (Crassostrea sp.) and mussels (Mytilus sp.). We discuss the transient versus stable associations of vibrios with their bivalve hosts as well as technical issues limiting the monitoring of these bacteria in bivalve health and disease. Based on the current knowledge of oyster/mussel immunity and their interactions with Vibrio species pathogenic for oyster, we discuss how differences in immune effectors could contribute to the higher resistance of mussels to infections. Finally, we review the multiple strategies evolved by pathogenic vibrios to circumvent the potent immune defences of bivalves and how key virulence mechanisms could have been positively or negatively selected in the marine environment through interactions with predators.
Collapse
Affiliation(s)
| | - Laura Canesi
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Daniel Oyanedel
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Marie-Agnès Travers
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Guillaume M Charrière
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Carla Pruzzo
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Luigi Vezzulli
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
9
|
Kitamura R, Miura N, Okada K, Motone K, Takagi T, Ueda M, Kataoka M. Design of novel primer sets for easy detection of Ruegeria species from seawater. Biosci Biotechnol Biochem 2019; 84:854-864. [PMID: 31814534 DOI: 10.1080/09168451.2019.1700776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Some coral-associated bacteria show protective roles for corals against pathogens. However, the distribution of coral-protecting bacteria in seawater is not well known. In addition, compared with the methods for investigating coral pathogens, few methods have been developed to detect coral-protecting bacteria. Here we prepared a simple method for detecting Ruegeria spp., some strains of which inhibit growth of the coral pathogen Vibrio coralliilyticus. We successfully obtained two Ruegeria-targeting primer sets through in silico and in vitro screening. The primer sets r38F-r30R and r445F-r446R, in addition to the newly designed universal primer set U357'F-U515'R, were evaluated in vitro using environmental DNA extracted from seawater collected in Osaka. These methods and primers should contribute to revealing the distribution of Ruegeria spp. in marine environments.
Collapse
Affiliation(s)
- Ruriko Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Keiko Okada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Keisuke Motone
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science, Kyoto, Japan
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Michihiko Kataoka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
10
|
Kim HJ, Jun JW, Giri SS, Chi C, Yun S, Kim SG, Kim SW, Kang JW, Han SJ, Kwon J, Oh WT, Park SC. Application of the bacteriophage pVco-14 to prevent Vibrio coralliilyticus infection in Pacific oyster (Crassostrea gigas) larvae. J Invertebr Pathol 2019; 167:107244. [PMID: 31520593 DOI: 10.1016/j.jip.2019.107244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
Abstract
Vibrio coralliilyticus infects a variety of shellfish larvae, including Pacific oyster (Crassostrea gigas) larvae worldwide, and remains a major constraint in marine bivalve aquaculture practice, especially in artificial seed production facilities. In this study, we isolated and characterized the bacteriophage (phage) that specifically infects V. coralliilyticus. The phage was designated pVco-14 and classified as Siphoviridae. We also investigated the potential efficacy of the isolated phage against V. coralliilyticus infection. We conducted a survey to replace the overuse of antibiotics, which generate multi-antibiotic-resistant strains and causes environmental pollution. The latent period of pVco-14 was estimated to be approximately 30 min, whereas the burst size was 13.3 PFU/cell. The phage was found to infect four strains of tested V. coralliilyticus. pVco-14 was stable at wide temperature (4-37 °C) and pH (5.0-9.0) ranges. Eighty-one percent of oyster larvae died in an immersion challenge at a dose 1.32 × 105 CFU/ml of virulent V. coralliilyticus (strain 58) within 24 h. When oyster larvae were pre-treated with the phage before the bacterial challenge (bacterial conc.: 1.32 × 104 and 1.32 × 105 CFU/ml), mortality of the phage-treated oyster larvae was lower than that of the untreated control. These results suggest that pVco-14 has potential to be used as a prophylactic agent for preventing V. coralliilyticus infection in marine bivalve hatcheries and can reduce the overuse of antibiotics.
Collapse
Affiliation(s)
- Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheng Chi
- Laboratory of Aquatic Nutrition and Ecology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Woo Kang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Jin Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo Taek Oh
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
11
|
Rojas R, Miranda CD, Romero J, Barja JL, Dubert J. Isolation and Pathogenic Characterization of Vibrio bivalvicida Associated With a Massive Larval Mortality Event in a Commercial Hatchery of Scallop Argopecten purpuratus in Chile. Front Microbiol 2019; 10:855. [PMID: 31133994 PMCID: PMC6524457 DOI: 10.3389/fmicb.2019.00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022] Open
Abstract
The VPAP30 strain was isolated as the highly predominant bacteria from an episode of massive larval mortality occurring in a commercial culture of the Chilean scallop Argopecten purpuratus. The main aims of this study were, to characterize and identify the pathogenic strain using biochemical and molecular methods, to demonstrate its pathogenic activity on scallop larvae, to characterize its pathogenic properties and to describe the chronology of the pathology. The pathogenic strain was identified as Vibrio bivalvicida based on its phenotypic properties, the multilocus sequence analysis (MLSA) of eight housekeeping genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) and different in silico genome-to-genome comparisons. When triplicate cultures of healthy 10 days old scallop larvae were challenged with 1 × 105 colony forming units (CFU) mL-1 of the VPAP30 strain, percentages of larval survival of 78.9 ± 3.3%, 34.3 ± 4.9%, and 0% were observed at 12, 2,4 and 36 h, respectively, whereas uninfected larval cultures showed survival rates of 97.4 ± 1.2% after of 48 h. Clinical symptoms exhibited by the scallop larvae infected with the VPAP30 strain include the accumulation of bacteria around the scallop larvae, velum disruption and necrosis of digestive gland. The 50% lethal dose (LD50) of VPAP30 strain at 24 and 48 h was 1.3 × 104 and 1.2 × 103 CFU mL-1, respectively. The invasive pathogenic activity of the VPAP30 strain was investigated with staining of the bacterial pathogen with 5-DTAF and analyzing bacterial invasion using epifluorescence, and a complete bacterial dissemination inside the larvae at 24 h post-infection was observed. When scallop larvae were inoculated with cell-free extracellular products (ECPs) of VPAP30, the larval survival rate was 59.5 ± 1.7%, significantly (P < 0.001) lower than the control group (97.4 ± 1.2%) whereas larvae treated with heat-treated ECPs exhibited a survival rate of 61.6 ± 1.8% after 48 h of exposure. V. bivalvicida VPAP30 exhibits high pathogenic activity on scallop larvae, mediated both by bacterial invasion and the production of toxigenic heat-stable compounds. This report constitutes the first isolation of V. bivalvicida out of Europe and extends the host range of this species, having demonstrated its pathogenic activity on the Chilean scallop larvae (A. purpuratus). These results supporting the pathogenic potential of V. bivalvicida to kill the larvae of a broad range of bivalve species reared in hatcheries located in the Atlantic and the Pacific coasts.
Collapse
Affiliation(s)
- Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile.,Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Centro AquaPacífico, Coquimbo, Chile
| | - Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile.,Centro AquaPacífico, Coquimbo, Chile
| | - Jaime Romero
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Centro AquaPacífico, Coquimbo, Chile
| | - Juan L Barja
- Departamento de Microbiología y Parasitología, CIBUS - Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Dubert
- Departamento de Microbiología y Parasitología, CIBUS - Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Kim HJ, Jun JW, Giri SS, Yun S, Kim SG, Kim SW, Kang JW, Han SJ, Kwon J, Oh WT, Jeon HB, Chi C, Jeong D, Park SC. Mass mortality in Korean bay scallop (Argopecten irradians) associated with Ostreid Herpesvirus-1 μVar. Transbound Emerg Dis 2019; 66:1442-1448. [PMID: 30972971 DOI: 10.1111/tbed.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/16/2019] [Accepted: 04/04/2019] [Indexed: 11/27/2022]
Abstract
Since November 2017, mass mortalities of larvae of bay scallop (Argopecten irradians) were reported in hatcheries located at the southern area of Republic of Korea. Over 90% of larvae aged 5-10 days sank to the bottom of the tank and died. The hatcheries could not produce spat, and thus artificial seed production industry incurred huge losses. We identified Ostreid Herpesvirus-1 μVar (OsHV-1 μVar) associated with mass mortality by PCR, sequencing and transmission electron microscopy (TEM). All the samples were positive for OsHV-1 μVar with 99% sequence identity to previously reported OsHV-1 μVar sequences. Partial sequence of ORF-4 of OsHV-1 detected in this study was more closely related to sequences isolated from Europe. This is the first report to confirm the mortality caused by an OsHV-1 infection in the bay scallop.
Collapse
Affiliation(s)
- Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju, Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Jeong Woo Kang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Se Jin Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Woo Taek Oh
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hyung Bae Jeon
- Department of Life Science, Yeungnam University, Gyeongsan, Korea
| | - Cheng Chi
- Laboratory of Aquatic Nutrition and Ecology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dalsang Jeong
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju, Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
13
|
The Probiotic Bacterium Phaeobacter inhibens Downregulates Virulence Factor Transcription in the Shellfish Pathogen Vibrio coralliilyticus by N-Acyl Homoserine Lactone Production. Appl Environ Microbiol 2019; 85:AEM.01545-18. [PMID: 30389771 DOI: 10.1128/aem.01545-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
Phaeobacter inhibens S4Sm acts as a probiotic bacterium against the oyster pathogen Vibrio coralliilyticus Here, we report that P. inhibens S4Sm secretes three molecules that downregulate the transcription of major virulence factors, metalloprotease genes, in V. coralliilyticus cultures. The effects of the S4Sm culture supernatant on the transcription of three genes involved in protease activity, namely, vcpA, vcpB, and vcpR (encoding metalloproteases A and B and their transcriptional regulator, respectively), were examined by reverse transcriptase quantitative PCR (qRT-PCR). The expression of vcpB and vcpR were reduced to 36% and 6.6%, respectively, compared to that in an untreated control. We constructed a V. coralliilyticus green fluorescent protein (GFP) reporter strain to detect the activity of inhibitory compounds. Using a bioassay-guided approach, the molecules responsible for V. coralliilyticus protease inhibition activity were isolated from S4Sm supernatant and identified as three N-acyl homoserine lactones (AHLs). The three AHLs are N-(3-hydroxydecanoyl)-l-homoserine lactone, N-(dodecanoyl-2,5-diene)-l-homoserine lactone, and N-(3-hydroxytetradecanoyl-7-ene)-l-homoserine lactone, and their half maximal inhibitory concentrations (IC50s) against V. coralliilyticus protease activity were 0.26 μM, 3.7 μM, and 2.9 μM, respectively. Our qRT-PCR data demonstrated that exposures to the individual AHLs reduced the transcription of vcpR and vcpB Combinations of the three AHLs (any two or all three AHLs) on V. coralliilyticus produced additive effects on protease inhibition activity. These AHL compounds may contribute to the host protective effects of S4Sm by disrupting the quorum sensing pathway that activates protease transcription of V. coralliilyticus IMPORTANCE Probiotics represent a promising alternative strategy to control infection and disease caused by marine pathogens of aquaculturally important species. Generally, the beneficial effects of probiotics include improved water quality, control of pathogenic bacteria and their virulence, stimulation of the immune system, and improved animal growth. Previously, we isolated a probiotic bacterium, Phaeobacter inhibens S4Sm, which protects oyster larvae from Vibrio coralliilyticus RE22Sm infection. We also demonstrated that both antibiotic secretion and biofilm formation play important roles in S4Sm probiotic activity. Here, we report that P. inhibens S4Sm, an alphaproteobacterium and member of the Roseobacter clade, also secretes secondary metabolites that hijack the quorum sensing ability of V. coralliilyticus RE22Sm, suppressing virulence gene expression. This finding demonstrates that probiotic bacteria can exert their host protection by using a multipronged array of behaviors that limit the ability of pathogens to become established and cause infection.
Collapse
|
14
|
Environmental Controls of Oyster-Pathogenic Vibrio spp. in Oregon Estuaries and a Shellfish Hatchery. Appl Environ Microbiol 2018; 84:AEM.02156-17. [PMID: 29475863 PMCID: PMC5930336 DOI: 10.1128/aem.02156-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/25/2018] [Indexed: 12/24/2022] Open
Abstract
Vibrio spp. have been a persistent concern for coastal bivalve hatcheries, which are vulnerable to environmental pathogens in the seawater used for rearing larvae, yet the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state are poorly understood. Here, we present data tracking oyster-pathogenic Vibrio bacteria in Netarts Bay and Yaquina Bay in Oregon, USA, as well as in adjacent coastal waters and a local shellfish hatchery, through the 2015 upwelling season. Vibrio populations were quantified using a culture-independent approach of high-throughput Vibrio-specific 16S rRNA gene sequencing paired with droplet digital PCR, and abundances were analyzed in the context of local biogeochemistry. The most abundant putative pathogen in our samples was Vibrio coralliilyticus. Environmental concentrations of total Vibrio spp. and V. coralliilyticus were highest in Netarts Bay sediment samples and higher in seawater from Netarts Bay than from nearshore coastal waters or Yaquina Bay. In Netarts Bay, the highest V. coralliilyticus concentrations were observed during low tide, and abundances increased throughout the summer. We hypothesize that the warm shallow waters in estuarine mudflats facilitate the local growth of the V. coralliilyticus pathogen. Samples from larval oyster tanks in Whiskey Creek Shellfish Hatchery, which uses seawater pumped directly from Netarts Bay, contained significantly lower total Vibrio species concentrations, but roughly similar V. coralliilyticus concentrations, than did the bay water, resulting in a 30-fold increase in the relative abundance of the V. coralliilyticus pathogen in hatchery tanks. This suggests that the V. coralliilyticus pathogen is able to grow or persist under hatchery conditions. IMPORTANCE It has been argued that oyster-pathogenic Vibrio spp. have contributed to recent mortality events in U.S. shellfish hatcheries (R. A. Elston, H. Hasegawa, K. L. Humphrey, I. K. Polyak, and C. Häse, Dis Aquat Organ 82:119–134, 2008, https://doi.org/10.3354/dao01982); however, these events are often sporadic and unpredictable. The success of hatcheries is critically linked to the chemical and biological composition of inflowing seawater resources; thus, it is pertinent to understand the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state. Here, we show that Netarts Bay, the location of a local hatchery, is enriched in oyster-pathogenic V. coralliilyticus compared to coastal seawater, and we hypothesize that conditions in tidal flats promote the local growth of this pathogen. Furthermore, V. coralliilyticus appears to persist in seawater pumped into the local hatchery. These results improve our understanding of the ecology and environmental controls of the V. coralliilyticus pathogen and could be used to improve future aquaculture efforts, as multiple stressors impact hatchery success.
Collapse
|
15
|
Menezes FGR, Barbosa WE, Vasconcelos LS, Rocha RS, Maggioni R, Sousa OV, Hofer E, Vieira RHSF. Genotypic assessment of a dichotomous key to identify Vibrio coralliilyticus, a coral pathogen. DISEASES OF AQUATIC ORGANISMS 2018; 128:87-92. [PMID: 29565257 DOI: 10.3354/dao03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vibrio coralliilyticus is a known pathogen to corals and larvae of bivalves. Its identification is made based on phenotypic and genotypic characters of isolated strains. To evaluate the efficiency of the phenotypic identification, 21 strains identified as V. coralliilyticus using a widely used dichotomous key were analyzed by qualitative PCR and sequencing of the 16S rDNA region. The results obtained by the behavioral test, amino acids usage, allow us to distinguish 3 A/L/O profiles: (1) A+/L-/O+; (2) A+/L+/O+; and (3) A-/L+/O+. In the genotypic tests, all strains tested positive with primers specific for the Vibrio genus. However, when primers were used for species identification, the results did not match those obtained with the dichotomous key chosen. The phenotypic characteristics taken into account to set apart V. coralliilyticus and other species were not proven to be efficient. More information about the morphological diversity of colonies and enzymatic activities should be considered in the formulation of phenotypic keys for V. coralliilyticus and related species.
Collapse
|
16
|
Rubio-Portillo E, Gago JF, Martínez-García M, Vezzulli L, Rosselló-Móra R, Antón J, Ramos-Esplá AA. Vibrio communities in scleractinian corals differ according to health status and geographic location in the Mediterranean Sea. Syst Appl Microbiol 2018; 41:131-138. [DOI: 10.1016/j.syapm.2017.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 01/31/2023]
|
17
|
Vezzulli L, Stagnaro L, Grande C, Tassistro G, Canesi L, Pruzzo C. Comparative 16SrDNA Gene-Based Microbiota Profiles of the Pacific Oyster (Crassostrea gigas) and the Mediterranean Mussel (Mytilus galloprovincialis) from a Shellfish Farm (Ligurian Sea, Italy). MICROBIAL ECOLOGY 2018; 75:495-504. [PMID: 28803409 DOI: 10.1007/s00248-017-1051-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
The pacific oyster Crassostrea gigas and the Mediterranean mussel Mytilus galloprovincialis are two widely farmed bivalve species which show contrasting behaviour in relation to microbial diseases, with C. gigas being more susceptible and M. galloprovincialis being generally resistant. In a recent study, we showed that different susceptibility to infection exhibited by these two bivalve species may depend on their different capability to kill invading pathogens (e.g., Vibrio spp.) through the action of haemolymph components. Specific microbial-host interactions may also impact bivalve microbiome structure and further influence susceptibility/resistance to microbial diseases. To further investigate this concept, a comparative study of haemolymph and digestive gland 16SrDNA gene-based bacterial microbiota profiles in C. gigas and M. galloprovincialis co-cultivated at the same aquaculture site was carried out using pyrosequencing. Bacterial communities associated with bivalve tissues (hemolymph and digestive gland) were significantly different from those of seawater, and were dominated by relatively few genera such as Vibrio and Pseudoalteromonas. In general, Vibrio accounted for a larger fraction of the microbiota in C. gigas (on average 1.7-fold in the haemolymph) compared to M. galloprovincialis, suggesting that C. gigas may provide better conditions for survival for these bacteria, including potential pathogenic species such as V. aestuarianus. Vibrios appeared to be important members of C. gigas and M. galloprovincialis microbiota and might play a contrasting role in health and disease of bivalve species. Accordingly, microbiome analyses performed on bivalve specimens subjected to commercial depuration highlighted the ineffectiveness of such practice in removing Vibrio species from bivalve tissues.
Collapse
Affiliation(s)
- Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
| | - L Stagnaro
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - C Grande
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - G Tassistro
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - L Canesi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - C Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
18
|
|
19
|
Chimetto Tonon LA, Thompson JR, Moreira APB, Garcia GD, Penn K, Lim R, Berlinck RGS, Thompson CC, Thompson FL. Quantitative Detection of Active Vibrios Associated with White Plague Disease in Mussismilia braziliensis Corals. Front Microbiol 2017; 8:2272. [PMID: 29204142 PMCID: PMC5698304 DOI: 10.3389/fmicb.2017.02272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022] Open
Abstract
Over recent decades several coral diseases have been reported as a significant threat to coral reef ecosystems causing the decline of corals cover and diversity around the world. The development of techniques that improve the ability to detect and quantify microbial agents involved in coral disease will aid in the elucidation of disease cause, facilitating coral disease detection and diagnosis, identification and pathogen monitoring, pathogen sources, vectors, and reservoirs. The genus Vibrio is known to harbor pathogenic strains to marine organisms. One of the best-characterized coral pathogens is Vibrio coralliilyticus, an aetilogic agent of White Plague Disease (WPD). We used Mussismilia coral tissue (healthy and diseased specimens) to develop a rapid reproducible detection system for vibrios based on RT-QPCR and SYBR chemistry. We were able to detect total vibrios in expressed RNA targeting the 16S rRNA gene at 5.23 × 106 copies/μg RNA and V. coralliilyticus targeting the pyrH gene at 5.10 × 103 copies/μg RNA in coral tissue. Detection of V. coralliilyticus in diseased and in healthy samples suggests that WPD in the Abrolhos Bank may be caused by a consortium of microorganism and not only a single pathogen. We developed a more practical and economic system compared with probe uses for the real-time detection and quantification of vibrios from coral tissues by using the 16S rRNA and pyrH gene. This qPCR assay is a reliable tool for the monitoring of coral pathogens, and can be useful to prevent, control, or reduce impacts in this ecosystem.
Collapse
Affiliation(s)
- Luciane A Chimetto Tonon
- Laboratory of Organic Chemistry of Biological Systems, Chemical Institute of São Carlos, University of São Paulo, São Carlos, Brazil.,Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Laboratory of Microbiology, Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Janelle R Thompson
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ana P B Moreira
- Laboratory of Microbiology, Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gizele D Garcia
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Kevin Penn
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rachelle Lim
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Roberto G S Berlinck
- Laboratory of Organic Chemistry of Biological Systems, Chemical Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Welsh RM, Rosales SM, Zaneveld JR, Payet JP, McMinds R, Hubbs SL, Vega Thurber RL. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 2017; 5:e3315. [PMID: 28584701 PMCID: PMC5455293 DOI: 10.7717/peerj.3315] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/14/2017] [Indexed: 12/26/2022] Open
Abstract
Coral microbiomes are known to play important roles in organismal health, response to environmental stress, and resistance to disease. The coral microbiome contains diverse assemblages of resident bacteria, ranging from defensive and metabolic symbionts to opportunistic bacteria that may turn harmful in compromised hosts. However, little is known about how these bacterial interactions influence the mechanism and controls of overall structure, stability, and function of the microbiome. We sought to test how coral microbiome dynamics were affected by interactions between two bacteria: Vibrio coralliilyticus, a known temperature-dependent pathogen of some corals, and Halobacteriovorax, a unique bacterial predator of Vibrio and other gram-negative bacteria. We challenged reef-building coral with V. coralliilyticus in the presence or absence of Halobacteriovorax predators, and monitored microbial community dynamics with 16S rRNA gene profiling time-series. Vibrio coralliilyticus inoculation increased the mean relative abundance of Vibrios by greater than 35% from the 4 to 8 hour time point, but not in the 24 & 32 hour time points. However, strong secondary effects of the Vibrio challenge were also observed for the rest of the microbiome such as increased richness (observed species), and reduced stability (increased beta-diversity). Moreover, after the transient increase in Vibrios, two lineages of bacteria (Rhodobacterales and Cytophagales) increased in coral tissues, suggesting that V. coralliilyticus challenge opens niche space for these known opportunists. Rhodobacterales increased from 6.99% (±0.05 SEM) to a maximum mean relative abundance of 48.75% (±0.14 SEM) in the final time point and Cytophagales from <0.001% to 3.656%. Halobacteriovorax predators are commonly present at low-abundance on coral surfaces. Based on the keystone role of predators in many ecosystems, we hypothesized that Halobacteriovorax predators might help protect corals by consuming foreign or "alien" gram negative bacteria. Halobacteriovorax inoculation also altered the microbiome but to a lesser degree than V. coralliilyticus, and Halobacteriovorax were never detected after inoculation. Simultaneous challenge with both V. coralliilyticus and predatory Halobacteriovorax eliminated the increase in V. coralliilyticus, ameliorated changes to the rest of the coral microbiome, and prevented the secondary blooms of opportunistic Rhodobacterales and Cytophagales seen in the V. coralliilyticus challenge. These data suggest that, under certain circumstances, host-associated bacterial predators may mitigate the ability of other bacteria to destabilize the microbiome.
Collapse
Affiliation(s)
- Rory M Welsh
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | | | - Jesse R Zaneveld
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.,Department of Biological Sciences, University of Washington Bothell, Bothell, WA, USA
| | - Jérôme P Payet
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Ryan McMinds
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Steven L Hubbs
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
21
|
Dubert J, Barja JL, Romalde JL. New Insights into Pathogenic Vibrios Affecting Bivalves in Hatcheries: Present and Future Prospects. Front Microbiol 2017; 8:762. [PMID: 28515714 PMCID: PMC5413579 DOI: 10.3389/fmicb.2017.00762] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/12/2017] [Indexed: 12/15/2022] Open
Abstract
Hatcheries constitute nowadays the only viable solution to support the husbandry of bivalve molluscs due to the depletion and/or overexploitation of their natural beds. Hatchery activities include the broodstock conditioning and spawning, rearing larvae and spat, and the production of microalgae to feed all stages of the production cycle. However, outbreaks of disease continue to be the main bottleneck for successful larval and spat production, most of them caused by different representatives of the genus Vibrio. Therefore, attention must be paid on preventive and management measures that allow the control of such undesirable bacterial populations. The present review provides an updated picture of the recently characterized Vibrio species associated with disease of bivalve molluscs during early stages of development, including the controversial taxonomic affiliation of some of them and relevant advances in the knowledge of their virulence determinants. The problematic use of antibiotics, as well as its eco-friendly alternatives are also critically discussed.
Collapse
Affiliation(s)
- Javier Dubert
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Juan L Barja
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| |
Collapse
|
22
|
Rojas R, Miranda CD, Santander J, Romero J. First Report of Vibrio tubiashii Associated with a Massive Larval Mortality Event in a Commercial Hatchery of Scallop Argopecten purpuratus in Chile. Front Microbiol 2016; 7:1473. [PMID: 27703450 PMCID: PMC5029309 DOI: 10.3389/fmicb.2016.01473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/05/2016] [Indexed: 01/20/2023] Open
Abstract
The VPAP30 strain was isolated as the highly predominant bacteria from an episode of massive larval mortality occurring in a commercial culture of the Chilean scallop Argopecten purpuratus. The main aims of this study were, to characterize and identify the pathogenic strain using biochemical and molecular methods to demonstrate its pathogenic activity on scallop larvae, to characterize its pathogenic properties and to describe the chronology of this pathology. The pathogenic strain was identified as Vibrio tubiashii based on its phenotypic properties and the sequence analysis of its 16S rRNA and housekeeping genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA). When triplicate cultures of healthy 10–day–old scallop larvae were challenged with 1 × 105 colony forming units (CFU) mL-1 of the VPAP30 strain, percentages of larval survival of 78.87 ± 3.33%, 34.32 ± 4.94%, and 0% were observed at 12, 24, and 36 h, respectively; whereas uninfected larval cultures showed survival rates of 97.4 ± 1.24% after of 48 h. Clinical symptoms exhibited by the scallop larvae infected with the VPAP30 strain include the accumulation of bacteria around the scallop larvae, velum disruption and necrosis of digestive gland. The 50% lethal dose (LD50) of VPAP30 strain at 24 and 48 h was 1.3 × 104 and 1.2 × 103 CFU mL-1, respectively. The invasive pathogenic activity of the VPAP30 strain was investigated with staining of the bacterial pathogen with 5-DTAF and analyzing bacterial invasion using epifluorescence, and a complete bacterial dissemination inside the larvae at 24 h post-infection was observed. When scallop larvae were inoculated with cell-free extracellular products (ECPs) of VPAP30, the larval survival rate was 59.5 ± 1.66%, significantly (P < 0.001) lower than the control group (97.4 ± 1.20%) whereas larvae treated with heat-treated ECPs exhibited a survival rate of 61.6 ± 1.84% after 48 h of exposure. This is the first report of the isolation of V. tubiashii from the diseased larvae of the scallop A. purpuratus, occurring in a commercial culture in Chile, and it was demonstrated that the VPAP30 strain exhibits high pathogenic activity on scallop larvae, mediated both by bacterial invasion and the production of toxigenic heat-stable compounds.
Collapse
Affiliation(s)
- Rodrigo Rojas
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del NorteCoquimbo, Chile; Centro AquapacíficoCoquimbo, Chile
| | - Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del NorteCoquimbo, Chile; Centro AquapacíficoCoquimbo, Chile
| | - Javier Santander
- Laboratorio de Patogénesis Microbiana y Vacunación, Facultad de Ciencias, Universidad Mayor Santiago, Chile
| | - Jaime Romero
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile; Centro AquapacíficoCoquimbo, Chile
| |
Collapse
|
23
|
Draft Genome Sequence of the Marine Pathogen Vibrio coralliilyticus RE22. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01432-15. [PMID: 26634766 PMCID: PMC4669407 DOI: 10.1128/genomea.01432-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vibrio coralliilyticus RE22 is a causative agent of vibriosis in larval bivalves. We report here the draft genome sequence of V. coralliilyticus RE22 and describe additional virulence factors that may provide insight into its mechanism of pathogenicity.
Collapse
|
24
|
Blackall LL, Wilson B, van Oppen MJH. Coral-the world's most diverse symbiotic ecosystem. Mol Ecol 2015; 24:5330-47. [DOI: 10.1111/mec.13400] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Linda L. Blackall
- Department of Chemistry and Biotechnology; Faculty of Science, Engineering & Technology; Swinburne University of Technology; Melbourne Vic. 3122 Australia
| | - Bryan Wilson
- Marine Microbiology Research Group; Department of Biology; University of Bergen; Thormøhlensgate 53B 5020 Bergen Norway
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science; PMB No. 3 Townsville MC Qld. 4810 Australia
- School of BioSciences; The University of Melbourne; Parkville Vic. 3010 Australia
| |
Collapse
|
25
|
Travers MA, Boettcher Miller K, Roque A, Friedman CS. Bacterial diseases in marine bivalves. J Invertebr Pathol 2015. [DOI: 10.1016/j.jip.2015.07.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Mersni-Achour R, Cheikh YB, Pichereau V, Doghri I, Etien C, Dégremont L, Saulnier D, Fruitier-Arnaudin I, Travers MA. Factors other than metalloprotease are required for full virulence of French Vibrio tubiashii isolates in oyster larvae. MICROBIOLOGY-SGM 2015; 161:997-1007. [PMID: 25701736 DOI: 10.1099/mic.0.000058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/11/2015] [Indexed: 12/19/2022]
Abstract
Vibrio tubiashii is a marine pathogen isolated from larval and juvenile bivalve molluscs that causes bacillary necrosis. Recent studies demonstrated the isolation of this species in a French experimental hatchery/nursery affecting Crassostrea gigas spat in 2007. Here, using larvae of C. gigas as an interaction model, we showed that the French V. tubiashii is virulent to larvae and can cause bacillary necrosis symptoms with an LD50 of about 2.3 × 10(3) c.f.u. ml(-1) after 24 h. Moreover, complete or gel permeation HPLC fractionated extracellular products (ECPs) of this strain appeared toxic to larvae. MS-MS analysis of the different ECP fractions revealed the existence of an extracellular metalloprotease and other suspected virulence factors. This observation is also supported by the expression level of some potential virulence factors. The overall results suggest that the pathology caused by the French V. tubiashii in C. gigas oysters is caused by a group of toxic factors and not only the metalloprotease.
Collapse
Affiliation(s)
- Rachida Mersni-Achour
- Fédération de Recherche en Environnement et Développement Durable, FR CNRS 3097, Université de La Rochelle, La Rochelle, France
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins Avenue de Mus de Loup, 17390 La Tremblade, France
- UMR 7266 CNRS-ULR, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Yosra Ben Cheikh
- UMR 7266 CNRS-ULR, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin LEMAR, UMR 6539 CNRS/UBO/IRD/IFREMER, Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, Université Européenne de Bretagne, 29280 Plouzané, France
| | - Ibtissem Doghri
- UMR 7266 CNRS-ULR, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Cédric Etien
- UMR 7266 CNRS-ULR, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Lionel Dégremont
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Denis Saulnier
- IFREMER, Centre Ifremer du Pacifique, UMR 241 Ecosystèmes Insulaires Océaniens, Tahiti, 98719 Taravao, French Polynesia
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Ingrid Fruitier-Arnaudin
- Fédération de Recherche en Environnement et Développement Durable, FR CNRS 3097, Université de La Rochelle, La Rochelle, France
- UMR 7266 CNRS-ULR, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Marie-Agnès Travers
- IFREMER, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins Avenue de Mus de Loup, 17390 La Tremblade, France
| |
Collapse
|
27
|
Complete Genome Sequence for the Shellfish Pathogen Vibrio coralliilyticus RE98 Isolated from a Shellfish Hatchery. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01253-14. [PMID: 25523764 PMCID: PMC4271154 DOI: 10.1128/genomea.01253-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vibrio coralliilyticus is a pathogen of corals and larval shellfish. Publications on strain RE98 list it as a Vibrio tubiashii; however, whole genome sequencing confirms RE98 as V. coralliilyticus containing a total of 6,037,824 bp consisting of two chromosomes (3,420,228 and 1,917,482 bp) and two megaplasmids (380,714 and 319,400 bp).
Collapse
|
28
|
Complete Genome Sequence of the Larval Shellfish Pathogen Vibrio tubiashii Type Strain ATCC 19109. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01252-14. [PMID: 25523763 PMCID: PMC4271153 DOI: 10.1128/genomea.01252-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vibrio tubiashii is a larval shellfish pathogen. Here, we report the first closed genome sequence for this species (ATCC type strain 19109), which consists of two chromosomes (3,294,490 and 1,766,582 bp), two megaplasmids (251,408 and 122,808 bp), and two plasmids (57,076 and 47,973 bp).
Collapse
|
29
|
Mortalities of Eastern and Pacific oyster Larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii. Appl Environ Microbiol 2014; 81:292-7. [PMID: 25344234 DOI: 10.1128/aem.02930-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio coralliilyticus, a well-known coral pathogen, has recently been shown to elicit mortality in fish and shellfish. Several strains of V. coralliilyticus, such as ATCC 19105 and Pacific isolates RE22 and RE98, were misidentified as V. tubiashii until recently. We compared the mortalities caused by two V. tubiashii and four V. coralliilyticus strains in Eastern and Pacific oyster larvae. The 50% lethal dose (LD50) of V. coralliilyticus in Eastern oysters (defined here as the dose required to kill 50% of the population in 6 days) ranged from 1.1 × 10(4) to 3.0 × 10(4) CFU/ml seawater; strains RE98 and RE22 were the most virulent. This study shows that V. coralliilyticus causes mortality in Eastern oyster larvae. Results for Pacific oysters were similar, with LD50s between 1.2 × 10(4) and 4.0 × 10(4) CFU/ml. Vibrio tubiashii ATCC 19106 and ATCC 19109 were highly infectious toward Eastern oyster larvae but were essentially nonpathogenic toward healthy Pacific oyster larvae at dosages of ≥1.1 × 10(4) CFU/ml. These data, coupled with the fact that several isolates originally thought to be V. tubiashii are actually V. coralliilyticus, suggest that V. coralliilyticus has been a more significant pathogen for larval bivalve shellfish than V. tubiashii, particularly on the U.S. West Coast, contributing to substantial hatchery-associated morbidity and mortality in recent years.
Collapse
|
30
|
Feuillassier L, Martinez L, Romans P, Engelmann-Sylvestre I, Masanet P, Barthélémy D, Engelmann F. Survival of tissue balls from the coral Pocillopora damicornis L. exposed to cryoprotectant solutions. Cryobiology 2014; 69:376-85. [PMID: 25238734 DOI: 10.1016/j.cryobiol.2014.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/18/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
Abstract
In this study, the tolerance of tissue balls (TBs, 100-300 μm in diameter) from the coral Pocillopora damicornis produced using mechanical excision to exposure to cryoprotectant (CPA) solutions was tested. TBs were treated for 20 min at room temperature with solutions of ethylene glycol (EG), methanol (Met), glycerol (Gly) or dimethyl sulfoxide (Me2SO) at concentrations between 1.0 and 4.5M. Two parameters were used to evaluate the survival of TBs following CPA treatment. The Undamaged Duration of Tissue Balls (expressed in h) corresponded to the time period during which the membrane surface of TBs remained smooth and their motility was preserved. Tissue Ball Regression (expressed in μm/h) corresponded to the size reduction of TBs over time. TBs tolerated exposure to all CPAs tested at the three lower concentrations employed (1.0 M, 1.5 M and 2.0 M). No survival was achieved following exposure to a 4.5 M CPA solution. At concentrations of 3.0 and 4.0 M, higher Undamaged Duration of Tissue Balls and lower Tissue Ball Regression were obtained following treatment with EG compared to the other three CPAs. Our experiments show that TBs constitute a good experimental material to evaluate CPA toxicity on corals using large numbers of samples. Performing preliminary experiments with TBs may allow reducing the number of tests carried out with less easily available coral forms such as planulae, thereby preserving larval stocks.
Collapse
Affiliation(s)
- Lionel Feuillassier
- Sorbonne Universités, UPMC Univ Paris 06, UMS 2348, Centre de Ressources Biologiques Marines, Observatoire Océanologique de Banyuls sur mer, F-75005 Paris, France; IRD, UMR DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Lucie Martinez
- Sorbonne Universités, UPMC Univ Paris 06, UMS 2348, Centre de Ressources Biologiques Marines, Observatoire Océanologique de Banyuls sur mer, F-75005 Paris, France
| | - Pascal Romans
- Sorbonne Universités, UPMC Univ Paris 06, UMS 2348, Centre de Ressources Biologiques Marines, Observatoire Océanologique de Banyuls sur mer, F-75005 Paris, France
| | | | - Patrick Masanet
- Aquarium de Canet-en-Roussillon, 2 boulevard de la Jetée, 66140 Canet-en-Roussillon, France
| | - Dominique Barthélémy
- Océanopolis, Port de plaisance du Moulin Blanc, BP91039, 29210 Brest Cedex 1, France
| | - Florent Engelmann
- IRD, UMR DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| |
Collapse
|
31
|
16SrDNA Pyrosequencing of the Mediterranean Gorgonian Paramuricea clavata Reveals a Link among Alterations in Bacterial Holobiont Members, Anthropogenic Influence and Disease Outbreaks. PLoS One 2013; 8:e67745. [PMID: 23840768 PMCID: PMC3694090 DOI: 10.1371/journal.pone.0067745] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/21/2013] [Indexed: 01/11/2023] Open
Abstract
Mass mortality events of benthic invertebrates in the Mediterranean Sea are becoming an increasing concern with catastrophic effects on the coastal marine environment. Sea surface temperature anomalies leading to physiological stress, starvation and microbial infections were identified as major factors triggering animal mortality. However the highest occurrence of mortality episodes in particular geographic areas and occasionally in low temperature deep environments suggest that other factors play a role as well. We conducted a comparative analysis of bacterial communities associated with the purple gorgonian Paramuricea clavata, one of the most affected species, collected at different geographic locations and depth, showing contrasting levels of anthropogenic disturbance and health status. Using massive parallel 16SrDNA gene pyrosequencing we showed that the bacterial community associated with healthy P. clavata in pristine locations was dominated by a single genus Endozoicomonas within the order Oceanospirillales which represented ∼90% of the overall bacterial community. P. clavata samples collected in human impacted areas and during disease events had higher bacterial diversity and abundance of disease-related bacteria, such as vibrios, than samples collected in pristine locations whilst showed a reduced dominance of Endozoicomonas spp. In contrast, bacterial symbionts exhibited remarkable stability in P. clavata collected both at euphotic and mesophotic depths in pristine locations suggesting that fluctuations in environmental parameters such as temperature have limited effect in structuring the bacterial holobiont. Interestingly the coral pathogen Vibrio coralliilyticus was not found on diseased corals collected during a deep mortality episode suggesting that neither temperature anomalies nor recognized microbial pathogens are solely sufficient to explain for the events. Overall our data suggest that anthropogenic influence may play a significant role in determining the coral health status by affecting the composition of the associated microbial community. Environmental stressful events and microbial infections may thus be superimposed to compromise immunity and trigger mortality outbreaks.
Collapse
|