1
|
Zhang HY, Li KY, Wang YL, Wei CJ, Gao YX, Ren-Zhou, Zhong YB, Yin ZJ, Ren DL. ROS regulates circadian rhythms by modulating Ezh2 interactions with clock proteins. Redox Biol 2025; 81:103526. [PMID: 39952198 PMCID: PMC11875201 DOI: 10.1016/j.redox.2025.103526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025] Open
Abstract
Redox imbalance induced by the accumulation of reactive oxygen species (ROS) accelerates age-related processes, often accompanied by a decrease in circadian rhythm amplitude. However, the underlying mechanisms by which ROS modulate circadian rhythms remain poorly understood. In this study, we found that ROS disrupt circadian rhythms in both zebrafish, as indicated by changes in diurnal behavior and clock gene expression, and in a human cell model. Using weighted gene co-expression network analysis (WGCNA) and machine learning approaches (RF, LASSO, SVM), EZH2 was identified as a key gene involved in regulating circadian rhythms under oxidative stress conditions. To further investigate the role of EZH2, we employed ezh2-/- mutants, Morpholino injection, and overexpression treatment and discovered that EZH2 is crucial in mediating the effect of ROS on circadian rhythms. Furthermore, EZH2 interacts with the CLOCK-BMAL1 complex to regulate the transcription of clock genes, as demonstrated through co-immunoprecipitation (co-IP), chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays. Our study revealed that ROS disrupt circadian rhythms by regulating the interaction between EZH2 and the CLOCK-BMAL1 complex, shedding light on the molecular mechanisms of circadian rhythm disruption under oxidative stress and suggesting potential targets for age-related and circadian disorders.
Collapse
Affiliation(s)
- Hao-Yi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ke-Yun Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yi-Li Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chun-Jiao Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yu-Xuan Gao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ren-Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ying-Bin Zhong
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zong-Jun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
Zhao B, Nepovimova E, Wu Q. The role of circadian rhythm regulator PERs in oxidative stress, immunity, and cancer development. Cell Commun Signal 2025; 23:30. [PMID: 39825442 PMCID: PMC11740368 DOI: 10.1186/s12964-025-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025] Open
Abstract
The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates. PERs in innate immune cells modulate the temporal patterns of NF-κB and TNF-α activities, as well as the response to LPS-induced toxic shock, initiating inflammatory responses that escalate into chronic inflammatory conditions. Crucially, PERs modulate cancer cell behaviors including proliferation, apoptosis, and migration by influencing the levels of cell cycle proteins and stimulating the expression of oncogenes c-Myc and MDM2. PER2/3, as antagonists in cancer stem cell biology, play important roles in differentiating cancer stem cells and in maintaining their stemness. Importantly, the expression of Pers serve as a significant factor for early cancer diagnosis and prognosis. This review delves into the link between circadian rhythm regulator PERs, disruptions in circadian rhythm, and oncogenesis. We examine the evidence that highlights how dysfunctions in PERs activities initiate cancer development, aid tumor growth, and modify cancer cell metabolism through pathways involved in oxidative stress and immune system. Comprehending these connections opens new pathways for the development of circadian rhythm-based therapeutic strategies, with the aims of boosting immune responses and enhancing cancer treatments.
Collapse
Affiliation(s)
- Baimei Zhao
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové , 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
3
|
Wang Z, Wang S, Bi Y, Boiti A, Zhang S, Vallone D, Lan X, Foulkes NS, Zhao H. Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock. PLoS Genet 2025; 21:e1011545. [PMID: 39777894 PMCID: PMC11750094 DOI: 10.1371/journal.pgen.1011545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways. Our previous work has revealed that light-induced gene transcription is a key step in the entrainment of the circadian clock as well as enabling the more general adaptation of zebrafish cells to sunlight exposure. However, considerable evidence points to post-transcriptional regulatory mechanisms, notably microRNAs (miRNAs), playing an essential role in shaping dynamic changes in mRNA levels. Therefore, does light directly impact the function of miRNAs? Are there light-regulated miRNAs and if so, which classes of mRNA do they target? To address these questions, we performed a complete sequencing analysis of light-induced changes in the zebrafish transcriptome, encompassing small non-coding RNAs as well as mRNAs. Importantly, we identified sets of light-regulated miRNAs, with many regulatory targets representing light-inducible mRNAs including circadian clock genes and genes involved in redox homeostasis. We subsequently focused on the light-responsive miR-204-3-3p and miR-430a-3p which are predicted to regulate the expression of cryptochrome genes (cry1a and cry1b). Luciferase reporter assays validated the target binding of miR-204-3-3p and miR-430a-3p to the 3'UTRs of cry1a and cry1b, respectively. Furthermore, treatment with mimics and inhibitors of these two miRNAs significantly affected the dynamic expression of their target genes but also other core clock components (clock1a, bmal1b, per1b, per2, per3), as well as the rhythmic locomotor activity of zebrafish larvae. Thus, our identification of light-responsive miRNAs reveals new intricacy in the multi-level regulation of the circadian clockwork by light.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Yi Bi
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Alessandra Boiti
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Daniela Vallone
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Morales Fénero C, Sacksteder RE, Diamos AG, Kimmey JM. Heat-inactivated Streptococcus pneumoniae augments circadian clock gene expression in zebrafish cells. Sci Rep 2024; 14:27805. [PMID: 39537820 PMCID: PMC11561096 DOI: 10.1038/s41598-024-78888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The circadian clock is a cell-autonomous process that regulates daily internal rhythms by interacting with environmental signals. Reports across species show that infection can alter the expression of circadian genes; however, in teleosts, these effects are influenced by light exposure. Currently, no reports analyze the direct effects of bacterial exposure on the zebrafish clock. Using zebrafish Z3 cells, we demonstrate that exposure to heat-killed Streptococcus pneumoniae (HK-Spn) augments the expression of core repressive factors in a light- and time-dependent manner. In constant darkness, HK-Spn highly upregulated cry1a, per3, and per1b expression. In the presence of light, HK-Spn exposure rapidly and strongly upregulated per2 and cry1a, and this was proportionally increased with light intensity. The combinatorial effect of light and HK-Spn on per2 and cry1a was not duplicated with H2O2, a known byproduct of light exposure. However, the ROS inhibitor N-acetyl cysteine was sufficient to block HK-Spn augmentation of per2, cry1a, and per3. These findings demonstrate that exposure to an inactive bacteria influences the expression of zebrafish clock genes under different light conditions.
Collapse
Affiliation(s)
- Camila Morales Fénero
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA
| | - Raina E Sacksteder
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA
| | - Andrew G Diamos
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA
| | - Jacqueline M Kimmey
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA.
| |
Collapse
|
5
|
Latha Laxmi IP, Tamizhselvi R. Epigenetic events influencing the biological clock: Panacea for neurodegeneration. Heliyon 2024; 10:e38836. [PMID: 39430507 PMCID: PMC11489350 DOI: 10.1016/j.heliyon.2024.e38836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
The human biological clock is the 24-h internal molecular network of circadian genes in synchronization with other cells in response to external stimuli. The rhythmicity of the clock genes is maintained by positive and negative transcriptional feedback loops coordinating the 24-h oscillation in different tissues. The superchiasmatic nucleus, the central pacemaker of the biological clock diminishes with aging causing alterations in the clock rhythmicity leading to the onset of neurodegenerative diseases mainly Alzheimer's disease, Parkinson's disease, and Huntington's disease. Studies have shown that brain and muscle Arnt -like 1 (Bmal1) and Circadian Locomotor Output Cycles Kaput (Clock) gene expression is altered in the onset of neurodegeneration. One of the major symptoms of neurodegeneration is changes in the sleep/wake cycle. Moreover, variations in circadian clock oscillations can happen due to lifestyle changes, addiction to alcohol, cocaine, drugs, smoking, food habits and most importantly eating and sleep/awake cycle patterns which can significantly impact the expression of circadian genes. Recent studies have focused on the molecular function of clock genes affected due to environmental cues. Epigenetic modifications are influenced by the external environmental factors. This review aims to focus on the principal mechanism of epigenetics influencing circadian rhythm disruption leading to neurodegeneration and as well as targeting the epigenetic modulators could be a novel therapeutic approach to combat neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Ramasamy Tamizhselvi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Cho Y, Sukhan ZP, Lee WK, Kho KH. Structural and functional characterization of Hdh-HSBP1 and its involvement in heat stress and early development in Pacific abalone, Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109660. [PMID: 38830519 DOI: 10.1016/j.fsi.2024.109660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Heat shock factor binding protein 1 (HSBP1) is known to regulate the activity of heat shock factor 1 (HSF1) and the early development of organisms. To understand the involvement of HSBP1 in the heat shock response and embryonic and larval development of Pacific abalone (Haliotis discus hannai), the Hdh-HSBP1 gene was sequenced from the digestive gland (DG) tissue. The full-length sequence of Hdh-HSBP1 encompassed 738 nucleotides, encoding an 8.42 kDa protein consisting of 75 deduced amino acids. The protein contains an HSBP1 domain and a coiled-coil domain, which are conserved features in the HSBP1 protein family. Protein-protein molecular docking revealed that the coiled-coil region of Hdh-HSBP1 binds to the coiled-coil region of Hdh-HSF1. Tissue expression analysis demonstrated that the highest Hdh-HSBP1 expression occurred in the DG, whereas seasonal expression analysis revealed that this gene was most highly expressed in summer. In heat-stressed abalone, the highest expression of Hdh-HSBP1 occurred at 30 °C. Moreover, time-series analysis revealed that the expression of this gene began to increase significantly at 6 h post-heat stress, with higher expression observed at 12 h and 24 h post-heat stress. Furthermore, Hdh-HSBP1 mRNA expression showed a link to ROS production. Additionally, the expression of Hdh-HSBP1 showed significantly higher expression in the early stages of embryonic development in Pacific abalone. These results suggest that Hdh-HSBP1 plays a crucial role in the stress physiology of Pacific abalone by interacting with Hdh-HSF1, as well as its embryonic development.
Collapse
Affiliation(s)
- Yusin Cho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Won-Kyo Lee
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
7
|
Wagner T, Priyanka P, Micheletti R, Friedman MJ, Nair SJ, Gamliel A, Taylor H, Song X, Cho M, Oh S, Li W, Han J, Ohgi KA, Abrass M, D'Antonio-Chronowska A, D'Antonio M, Hazuda H, Duggirala R, Blangero J, Ding S, Guzmann C, Frazer KA, Aggarwal AK, Zemljic-Harpf AE, Rosenfeld MG, Suh Y. Recruitment of CTCF to the SIRT1 promoter after Oxidative Stress mediates Cardioprotective Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594600. [PMID: 38798402 PMCID: PMC11118446 DOI: 10.1101/2024.05.17.594600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Because most DNA-binding transcription factors (dbTFs), including the architectural regulator CTCF, bind RNA and exhibit di-/multimerization, a central conundrum is whether these distinct properties are regulated post-transcriptionally to modulate transcriptional programs. Here, investigating stress-dependent activation of SIRT1, encoding an evolutionarily-conserved protein deacetylase, we show that induced phosphorylation of CTCF acts as a rheostat to permit CTCF occupancy of low-affinity promoter DNA sites to precisely the levels necessary. This CTCF recruitment to the SIRT1 promoter is eliciting a cardioprotective cardiomyocyte transcriptional activation program and provides resilience against the stress of the beating heart in vivo . Mice harboring a mutation in the conserved low-affinity CTCF promoter binding site exhibit an altered, cardiomyocyte-specific transcriptional program and a systolic heart failure phenotype. This transcriptional role for CTCF reveals that a covalent dbTF modification regulating signal-dependent transcription serves as a previously unsuspected component of the oxidative stress response.
Collapse
|
8
|
El-Hennamy RE, Elmasry HA. Alterations in Per2, Bcl2 gene expression, and oxidative status in aged rats liver after light pulse at night. Sleep Biol Rhythms 2024; 22:181-190. [PMID: 38524161 PMCID: PMC10959914 DOI: 10.1007/s41105-023-00495-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/06/2023] [Indexed: 03/26/2024]
Abstract
The aging process is characterized by circadian rhythm disruption, in physiology and behavior, which could result from weak entrainment. Light is the most potent cue that entrains the central circadian clock, which in turn synchronizes peripheral clocks in animal tissues. Period 2 (Per2) is one of the clock genes that respond to light. Moreover, oxidative stress could entrain the clock. Therefore, the present work aimed to investigate the role of light when applied late at night on the Per2, B cell lymphoma 2 (Bcl2) gene expression, and oxidative status in aged rats. Aged rats were divided into a control group and a group exposed to a 30-min light pulse applied daily during the subjective night at 5 am (ZT 22) for 4 weeks. Per2 and Bcl2 gene expression were quantified in liver tissue. To evaluate oxidative status, Glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA) were estimated. The light pulse reduced the expression levels of Per2 and Bcl2 mRNA. Although it diminished the levels of malondialdehyde (MDA), nitric oxide (NO) levels were elevated and the glutathione (GSH) levels were declined. In conclusion, the light pulse late at night abolished Per2 mRNA circadian rhythm and reduced its expression in the liver of the aged rat. Similarly, it diminished the anti-apoptotic gene expression, Bcl2. Moreover, it might attenuate oxidative stress through the reduction in MDA levels.
Collapse
Affiliation(s)
- Rehab E. El-Hennamy
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Heba A. Elmasry
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
9
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Smith BS, Hewitt T, Bakovic M, Lu R. ER stress-associated transcription factor CREB3 is essential for normal Ca 2+, ATP, and ROS homeostasis. Mitochondrion 2023; 69:10-17. [PMID: 36627030 DOI: 10.1016/j.mito.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
In mammalian cells, mitochondrial respiration produces reactive oxygen species (ROS) such as superoxide (O2-), which is then converted by the SOD1 enzyme into hydrogen peroxide (H2O2), the predominant form of cytosolic ROS. ROS at high levels can be toxic, but below this threshold are important for physiological processes acting as a second messenger similar to Ca2+. Mitochondrial Ca2+ influx from the ER increases ATP and ROS production, while ATP and ROS can regulate Ca2+ homeostasis, leading to an intricate interplay between Ca2+, ROS, and ATP synthesis. The Unfolded Protein Response (UPR) proteins ATF6α and XBP1 contribute to protection from oxidative stress through upregulation of Sod1 and Catalase genes. Here, UPR-associated protein CREB3 is shown to play a role in balancing Ca2+, ROS, and ATP homeostasis. Creb3-deficient mouse embryonic fibroblast cells (MEF-/-) were susceptible to H2O2-induced oxidative stress while having a functioning antioxidant gene expression response compared to MEF+/+. MEF-/- cells also contained elevated basal cytosolic ROS levels, which was attributed to drastically increased basal mitochondrial respiration and spare respiratory capacity relative to MEF+/+. MEF-/- cells also showed an increase in endoplasmic reticulum Ca2+ release and mitochondrial Ca2+ levels hinting at a potential cause for MEF-/- cell mitochondrial dysfunction. These results suggest that CREB3 is essential for maintaining proper Ca2+, ATP, and ROS homeostasis in mammalian cells.
Collapse
Affiliation(s)
- Brandon S Smith
- University of Guelph, Department of Molecular and Cellular Biology, Canada
| | - Tristen Hewitt
- University of Guelph, Department of Molecular and Cellular Biology, Canada
| | - Marica Bakovic
- University of Guelph, Department of Human Health & Nutritional Sciences, Canada.
| | - Ray Lu
- University of Guelph, Department of Molecular and Cellular Biology, Canada.
| |
Collapse
|
11
|
Mezhnina V, Ebeigbe OP, Poe A, Kondratov RV. Circadian Control of Mitochondria in Reactive Oxygen Species Homeostasis. Antioxid Redox Signal 2022; 37:647-663. [PMID: 35072523 PMCID: PMC9587791 DOI: 10.1089/ars.2021.0274] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
Significance: Mitochondria produce most of the cellular ATP through the process of oxidative phosphorylation. Energy metabolism in the mitochondria is associated with the production of reactive oxygen species (ROS). Excessive ROS production leads to oxidative stress and compromises cellular physiology. Energy metabolism in the mitochondria depends on nutrient flux and cellular metabolic needs, which are in turn connected with the feeding/fasting cycle. In animals, the feeding/fasting cycle is controlled by the circadian clock that generates 24-h rhythms in behavior, metabolism, and signaling. Recent Advances: Here, we discuss the role of the circadian clock and rhythms in mitochondria on ROS homeostasis. The circadian clock is involved in mitochondrial ROS production and detoxification through the control of nutrient flux and oxidation, uncoupling, antioxidant defense, and mitochondrial dynamics. Critical Issues: Little is known on the molecular mechanisms of circadian control of mitochondrial functions. The circadian clock regulates the expression and activity of mitochondrial metabolic and antioxidant enzymes. The regulation involves a direct transcriptional control by Circadian Locomotor Output Cycles Kaput/brain and muscle ARNT-like 1(CLOCK/BMAL1), nuclear factor erythroid-2-related factor 2 (NRF2) transcriptional network, and sirtuin-dependent posttranslational protein modifications. Future Perspectives: We hypothesize that the circadian clock orchestrates mitochondrial physiology to synchronize it with the feeding/fasting cycle. Circadian coordination of mitochondrial function couples energy metabolism with diets and contributes to antioxidant defense to prevent metabolic diseases and delay aging. Antioxid. Redox Signal. 37, 647-663.
Collapse
Affiliation(s)
- Volha Mezhnina
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Oghogho P. Ebeigbe
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Allan Poe
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Roman V. Kondratov
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Pariollaud M, Ibrahim LH, Irizarry E, Mello RM, Chan AB, Altman BJ, Shaw RJ, Bollong MJ, Wiseman RL, Lamia KA. Circadian disruption enhances HSF1 signaling and tumorigenesis in Kras-driven lung cancer. SCIENCE ADVANCES 2022; 8:eabo1123. [PMID: 36170373 PMCID: PMC9519049 DOI: 10.1126/sciadv.abo1123] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/12/2022] [Indexed: 05/04/2023]
Abstract
Disrupted circadian rhythmicity is a prominent feature of modern society and has been designated as a probable carcinogen by the World Health Organization. However, the biological mechanisms that connect circadian disruption and cancer risk remain largely undefined. We demonstrate that exposure to chronic circadian disruption [chronic jetlag (CJL)] increases tumor burden in a mouse model of KRAS-driven lung cancer. Molecular characterization of tumors and tumor-bearing lung tissues revealed that CJL enhances the expression of heat shock factor 1 (HSF1) target genes. Consistently, exposure to CJL disrupted the highly rhythmic nuclear trafficking of HSF1 in the lung, resulting in an enhanced accumulation of HSF1 in the nucleus. HSF1 has been shown to promote tumorigenesis in other systems, and we find that pharmacological or genetic inhibition of HSF1 reduces the growth of KRAS-mutant human lung cancer cells. These findings implicate HSF1 as a molecular link between circadian disruption and enhanced tumorigenesis.
Collapse
Affiliation(s)
- Marie Pariollaud
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lara H. Ibrahim
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Emanuel Irizarry
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rebecca M. Mello
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alanna B. Chan
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian J. Altman
- Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael J. Bollong
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katja A. Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Pohjoismäki JLO, Goffart S. Adaptive and Pathological Outcomes of Radiation Stress-Induced Redox Signaling. Antioxid Redox Signal 2022; 37:336-348. [PMID: 35044250 DOI: 10.1089/ars.2021.0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Ionizing radiation can damage cells either directly or through oxidative damage caused by ionization. Although radiation exposure from natural sources is very limited, ionizing radiation in nuclear disaster zones and long spaceflights causes inconspicuous, yet measurable physiological effects in men and animals, whose significance remains poorly known. Understanding the physiological impacts of ionizing radiation has a wide importance due to the increased use of medical imaging and radiotherapy. Recent Advances: Radiation exposure has been traditionally investigated from the perspective of DNA damage and its consequences. However, recent studies from Chernobyl as well as spaceflights have provided interesting insights into oxidative stress-induced metabolic alterations and disturbances in the circadian regulation. Critical Issues: In this review, we discuss the physiological consequences of radiation exposure in the light of oxidative stress signaling. Radiation exposure likely triggers many converging or interconnecting signaling pathways, some of which mimic mitochondrial dysfunction and might explain the observed metabolic changes. Future Directions: Better understanding of the different radiation-induced signaling pathways might help to devise strategies for mitigation of the long-term effects of radiation exposure. The utility of fibroblast growth factor 21 (FGF21) as a radiation exposure biomarker and the use of radiation hormesis as a method to protect astronauts on a prolonged spaceflight, such as a mission to Mars, should be investigated. Antioxid. Redox Signal. 37, 336-348.
Collapse
Affiliation(s)
- Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
14
|
Lin C, Xu L, Tang X, Li X, Lu C, Cheng Q, Jiang J, Shen Y, Yan D, Qian R, Fu W, Guo D. Clock Gene Bmal1 Disruption in Vascular Smooth Muscle Cells Worsens Carotid Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 2022; 42:565-579. [PMID: 35236106 DOI: 10.1161/atvbaha.121.316480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Clock system disruptions are associated with cardiovascular diseases. We previously demonstrated Bmal1 (brain muscle aryl nuclear translocase like-1) expression is significantly attenuated in plaque-derived vascular smooth muscle cells (VSMCs). However, the influence of Bmal1 disruption in VSMCs and its molecular targets are still unclear. Here, we aim to define how Bmal1 disruption in VSMCs influences the atherosclerosis lesions. METHODS The relationship among Bmal1, neurological symptoms, and plaque stability was investigated. VSMC Bmal1-/- and VSMC Bmal1+/+mice were generated and injected with adeno associated virus encoding mutant proprotein convertase subtilisin/kexin type 9 to induce atherosclerosis. Carotid artery ligation and cuff placement were performed in these mice to confirm the role of Bmal1 in atherosclerosis progression. The relevant molecular mechanisms were then explored. RESULTS Bmal1 expression in the carotid plague was significantly lower in symptomatic patients as well as in unstable plaques. Moreover, Bmal1 reduction is an independent risk factor for neurological symptoms and plaque instability. Besides, VSMC Bmal1-/- mice exhibit aggravated atherosclerotic lesions. Further study demonstrated that Bmal1 downregulation in VSMCs increased VSMC migration, monocyte transmigration, reactive oxygen species levels, and VSMCs apoptosis. As for the mechanism, we revealed that Bmal1 suppresses VSMCs migration by inhibiting RAC1 activity in 2 ways: by activating the transcription of RhoGDIα and by interacting with RAC1. Besides, Bmal1 was shown to preserve antioxidant function in VSMCs by activating Nrf2 (nuclear factor erythroid 2-related factor 2) and Bcl-2 transcription. CONCLUSIONS Bmal1 disruption in VSMCs worsens atherosclerosis by promoting VSMC migration and monocyte transmigration and impairing antioxidant function. Therefore, Bmal1 may be a potential therapeutic target and biomarker of atherosclerosis in the future.
Collapse
Affiliation(s)
- Changpo Lin
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Lirong Xu
- National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Xiaobo Li
- Department of Pathology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, China (L.X.).,Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Chao Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Qianyun Cheng
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Junhao Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Dong Yan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| |
Collapse
|
15
|
Anghel L, Baroiu L, Popazu CR, Pătraș D, Fotea S, Nechifor A, Ciubara A, Nechita L, Mușat CL, Stefanopol IA, Tatu AL, Ciubara AB. Benefits and adverse events of melatonin use in the elderly (Review). Exp Ther Med 2022; 23:219. [PMID: 35126722 PMCID: PMC8796282 DOI: 10.3892/etm.2022.11142] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a hormone secreted by the pineal gland in accordance with the circadian rhythm when the light level decreases. Reduction of melatonin secretion with age may be associated with physiological aging in neurodegenerative diseases by affecting the suprachiasmatic nucleus or of the neuronal pathways of transmission to the pineal gland. A significant decrease in melatonin synthesis has been reported in various disorders and diseases, including cardiovascular diseases, metabolic disorders (particularly diabetes type 2), cancer and endocrine diseases. In addition to the fact, that melatonin is a sleep inducer, it also exerts cytoprotective properties as an antioxidant and free radical scavenger. The therapeutic role of melatonin has been demonstrated in sleep disorders, eye damage and cardiovascular disease. The association between melatonin and β-blockers has had a positive impact on sleep disorders in clinical trials. Previous studies have reported the anti-inflammatory effect of melatonin by adjusting levels of pro-inflammatory cytokines, including interleukin (IL)-6, IL-1β and tumor necrosis factor-α. Melatonin treatment has been demonstrated to decrease IL-6 and IL-10 expression levels and efficiently attenuate T-cell proliferation. Currently, there is an inconsistency of scientific data regarding the lowest optimal dose and safety of melatonin for long-term use. The aim of the present review was to summarize the evidence on the role of melatonin in various clinical conditions and highlight the future research in this area.
Collapse
Affiliation(s)
- Lucreția Anghel
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| | - Liliana Baroiu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| | - Corina Rișcă Popazu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| | - Diana Pătraș
- Internal Medicine Department, St. Andrew The Apostle Clinical Emergency County Hospital, 800578 Galați, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| | - Alexandru Nechifor
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800008 Galați, Romania
- Multidisciplinary Integrated Center of Dermatological Interface Research, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| | - Anamaria Ciubara
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| | - Luiza Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| | - Carmina Liana Mușat
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| | - Ioana Anca Stefanopol
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| | - Alin Laurențiu Tatu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800008 Galați, Romania
- Multidisciplinary Integrated Center of Dermatological Interface Research, ‘Dunărea de Jos’ University, 800008 Galați, Romania
- Research Center in The Field of Medical and Pharmaceutical Sciences, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| | - Alexandru Bogdan Ciubara
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800008 Galați, Romania
| |
Collapse
|
16
|
Bevinakoppamath S, Ramachandra SC, Yadav AK, Basavaraj V, Vishwanath P, Prashant A. Understanding the Emerging Link Between Circadian Rhythm, Nrf2 Pathway, and Breast Cancer to Overcome Drug Resistance. Front Pharmacol 2022; 12:719631. [PMID: 35126099 PMCID: PMC8807567 DOI: 10.3389/fphar.2021.719631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The levels of different molecules in the cell are rhythmically cycled by the molecular clock present at the cellular level. The circadian rhythm is closely linked to the metabolic processes in the cells by an underlying mechanism whose intricacies need to be thoroughly investigated. Nevertheless, Nrf2 has been identified as an essential bridge between the circadian clock and cellular metabolism and is activated by the by-product of cellular metabolism like hydrogen peroxide. Once activated it binds to the specific DNA segments and increases the transcription of several genes that play a crucial role in the normal functioning of the cell. The central clock located in the suprachiasmatic nucleus of the anterior hypothalamus synchronizes the timekeeping in the peripheral tissues by integrating the light-dark input from the environment. Several studies have demonstrated the role of circadian rhythm as an effective tumor suppressor. Tumor development is triggered by the stimulation or disruption of signaling pathways at the cellular level as a result of the interaction between cells and environmental stimuli. Oxidative stress is one such external stimulus that disturbs the prooxidant/antioxidant equilibrium due to the loss of control over signaling pathways which destroy the bio-molecules. Altered Nrf2 expression and impaired redox balance are associated with various cancers suggesting that Nrf2 targeting may be used as a novel therapeutic approach for treating cancers. On the other hand, Nrf2 has also been shown to enhance the resistance of cancer cells to chemotherapeutic agents. We believe that maximum efficacy with minimum side effects for any particular therapy can be achieved if the treatment strategy regulates the circadian rhythm. In this review, we discuss the various molecular mechanisms interlinking the circadian rhythm with the Nrf2 pathway and contributing to breast cancer pathogenesis, we also talk about how these two pathways work in close association with the cell cycle which is another oscillatory system, and whether this interplay can be exploited to overcome drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Supriya Bevinakoppamath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Shobha Chikkavaddaragudi Ramachandra
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Anshu Kumar Yadav
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Vijaya Basavaraj
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
- Special Interest Group-Human Genomics and Rare Disorders, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Akila Prashant,
| |
Collapse
|
17
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
18
|
Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:732243. [PMID: 35156088 PMCID: PMC8830366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022]
Abstract
The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-h periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that cause further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.
Collapse
Affiliation(s)
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
19
|
Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:732243. [PMID: 35156088 PMCID: PMC8830366 DOI: 10.3389/fnetp.2021.732243] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 08/01/2023]
Abstract
The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-h periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that cause further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.
Collapse
|
20
|
Shilovsky GA, Putyatina TS, Morgunova GV, Seliverstov AV, Ashapkin VV, Sorokina EV, Markov AV, Skulachev VP. A Crosstalk between the Biorhythms and Gatekeepers of Longevity: Dual Role of Glycogen Synthase Kinase-3. BIOCHEMISTRY (MOSCOW) 2021; 86:433-448. [PMID: 33941065 PMCID: PMC8033555 DOI: 10.1134/s0006297921040052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review discusses genetic and molecular pathways that link circadian timing with metabolism, resulting in the emergence of positive and negative regulatory feedback loops. The Nrf2 pathway is believed to be a component of the anti-aging program responsible for the healthspan and longevity. Nrf2 enables stress adaptation by activating cell antioxidant defense and other metabolic processes via control of expression of over 200 target genes in response to various types of stress. The GSK3 system represents a “regulating valve” that controls fine oscillations in the Nrf2 level, unlike Keap1, which prevents significant changes in the Nrf2 content in the absence of oxidative stress and which is inactivated by the oxidative stress. Furthermore, GSK3 modifies core circadian clock proteins (Bmal1, Clock, Per, Cry, and Rev-erbα). Phosphorylation by GSK3 leads to the inactivation and degradation of circadian rhythm-activating proteins (Bmal1 and Clock) and vice versa to the activation and nuclear translocation of proteins suppressing circadian rhythms (Per and Rev-erbα) with the exception of Cry protein, which is likely to be implicated in the fine tuning of biological clock. Functionally, GSK3 appears to be one of the hubs in the cross-regulation of circadian rhythms and antioxidant defense. Here, we present the data on the crosstalk between the most powerful cell antioxidant mechanism, the Nrf2 system, and the biorhythm-regulating system in mammals, including the impact of GSK3 overexpression and knockout on the Nrf2 signaling. Understanding the interactions between the regulatory cascades linking homeostasis maintenance and cell response to oxidative stress will help in elucidating molecular mechanisms that underlie aging and longevity.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Galina V Morgunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Seliverstov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Vasily V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Sorokina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
21
|
Photobiomodulation of mineralisation in mesenchymal stem cells. Photochem Photobiol Sci 2021; 20:699-714. [PMID: 33945145 DOI: 10.1007/s43630-021-00047-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) and photobiomodulation (PBM) both offer significant therapeutic potential in regenerative medicine. MSCs have the ability to self-renew and differentiate; giving rise to multiple cellular and tissue lineages that are utilised in repair and regeneration of damaged tissues. PBM utilises light energy delivered at a range of wavelengths to promote wound healing. The positive effects of light on MSC proliferation are well documented; and recently, several studies have determined the outcomes of PBM on mineralised tissue differentiation in MSC populations. As PBM effects are biphasic, it is important to understand the underlying cellular regulatory mechanisms, as well as, provide accurate details of the irradiation conditions, to optimise and standardise outcomes. This review article focuses on the use of red, near-infra-red (R/NIR) and blue wavelengths to promote the mineralisation potential of MSCs; and also reports on the possible molecular mechanisms which underpin transduction of these effects. A variety of potential photon absorbers have been identified which are reported to mediate the signalling mechanisms, including respiratory chain enzymes, flavins, and cryptochromes. Studies report that R/NIR and blue light stimulate MSC differentiation by enhancing respiratory chain activity and increasing reactive oxygen species levels; however, currently, there are considerable variations between irradiation parameters reported. We conclude that due to its non-invasive properties, PBM may, following optimisation, provide an efficient therapeutic approach to clinically support MSC-mediated hard tissue repair. However, to optimise application, further studies are required to identify appropriate light delivery parameters, as well as elucidate the photo-signalling mechanisms involved.
Collapse
|
22
|
The Circadian Clock Regulates the Expression of the Nuclear Factor Erythroid 2-Related Factor 2 in Acute Kidney Injury following Myocardial Ischemia-Reperfusion in Diabetic Rat. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6683779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cardiac surgery-associated acute kidney injury (AKI) is a serious and frequent complication with poor prognosis, and disruption in circadian rhythm shall adversely influence cardiovascular and renal functions via oxidative stress mechanisms. However, the role of circadian clock genes (circadian locomotor output cycle kaput (CLOCK) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 (BMAL1)) and its interaction with nuclear factor erythroid 2-related factor 2 (Nrf2) in AKI following myocardial ischemia-reperfusion (MIR) in the diabetic rat has not yet been explored. In this study, rats were divided into the sham (S) group, MIR (M) group, diabetic (D) group, and diabetic+MIR (DM) group. At light (zeitgeber time (ZT) 0) and dark time points (ZT12), rat MIR model was established by occlusion of the left anterior descending coronary artery for 30 min followed by 2 -hour reperfusion, and then renal injury was evaluated. The renal histological changes in the DM group were significantly high compared to other groups; serum creatinine, blood urea nitrogen, and neutrophil gelatinase-associated lipocalin levels, as well as malondialdehyde and 8-iso-prostaglandin-F2α levels in renal tissues of M ZT12 and DM ZT12 subgroups, were significantly higher than those of M ZT0 and DM ZT0 subgroups, individually indicating increased oxidative stress at a dark cycle. Further, Nrf2 protein accumulated in a circadian manner with decreasing levels at night in the DM and M groups. In conclusion, renal injury following MIR was exacerbated in the diabetic rat at night through molecular mechanisms involving transcriptional control of the circadian clock on light-dark activation of Nrf2.
Collapse
|
23
|
Chan F, Liu J. Molecular regulation of brain metabolism underlying circadian epilepsy. Epilepsia 2021; 62 Suppl 1:S32-S48. [PMID: 33395505 PMCID: PMC8744084 DOI: 10.1111/epi.16796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Extensive study has demonstrated that epilepsy occurs with greater frequency at certain times in the 24-h cycle. Although these findings implicate an overlap between the circadian rhythm and epilepsy, the molecular and cellular mechanisms underlying this circadian regulation are poorly understood. Because the 24-h rhythm is generated by the circadian molecular system, it is not surprising that this system comprised of many circadian genes is implicated in epilepsy. We summarized evidence in the literature implicating various circadian genes such as Clock, Bmal1, Per1, Rev-erb⍺, and Ror⍺ in epilepsy. In various animal models of epilepsy, the circadian oscillation and the steady-state level of these genes are disrupted. The downstream pathway of these genes involves a large number of metabolic pathways associated with epilepsy. These pathways include pyridoxal metabolism, the mammalian target of rapamycin pathway, and the regulation of redox state. We propose that disruption of these metabolic pathways could mediate the circadian regulation of epilepsy. A greater understanding of the cellular and molecular mechanism of circadian regulation of epilepsy would enable us to precisely target the circadian disruption in epilepsy for a novel therapeutic approach.
Collapse
Affiliation(s)
- Felix Chan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Judy Liu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Department of Neurology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
24
|
Ahmed R, Nakahata Y, Shinohara K, Bessho Y. Cellular Senescence Triggers Altered Circadian Clocks With a Prolonged Period and Delayed Phases. Front Neurosci 2021; 15:638122. [PMID: 33568972 PMCID: PMC7868379 DOI: 10.3389/fnins.2021.638122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Senescent cells, which show the permanent growth arrest in response to various forms of stress, accumulate in the body with the progression of age, and are associated with aging and age-associated diseases. Although the senescent cells are growth arrested, they still demonstrate high metabolic rate and altered gene expressions, indicating that senescent cells are still active. We recently showed that the circadian clock properties, namely phase and period of the cells, are altered with the establishment of replicative senescence. However, whether cellular senescence triggers the alteration of circadian clock properties in the cells is still unknown. In this study we show that the oxidative stress-induced premature senescence induces the alterations of the circadian clock, similar to the phenotypes of the replicative senescent cells. We found that the oxidative stress-induced premature senescent cells display the prolonged period and delayed phases. In addition, the magnitude of these changes intensified over time, indicating that cellular senescence changes the circadian clock properties. Our current results corroborate with our previous findings and further confirm that cellular senescence induces altered circadian clock properties, irrespective of the replicative senescence or the stress-induced premature senescence.
Collapse
Affiliation(s)
- Rezwana Ahmed
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.,Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.,Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
25
|
Gol L, Haraldsson EB, von Korff M. Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:122-136. [PMID: 32459309 PMCID: PMC7816852 DOI: 10.1093/jxb/eraa261] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 05/10/2023]
Abstract
Drought impairs growth and spike development, and is therefore a major cause of yield losses in the temperate cereals barley and wheat. Here, we show that the photoperiod response gene PHOTOPERIOD-H1 (Ppd-H1) interacts with drought stress signals to modulate spike development. We tested the effects of a continuous mild and a transient severe drought stress on developmental timing and spike development in spring barley cultivars with a natural mutation in ppd-H1 and derived introgression lines carrying the wild-type Ppd-H1 allele from wild barley. Mild drought reduced the spikelet number and delayed floral development in spring cultivars but not in the introgression lines with a wild-type Ppd-H1 allele. Similarly, drought-triggered reductions in plant height, and tiller and spike number were more pronounced in the parental lines compared with the introgression lines. Transient severe stress halted growth and floral development; upon rewatering, introgression lines, but not the spring cultivars, accelerated development so that control and stressed plants flowered almost simultaneously. These genetic differences in development were correlated with a differential down-regulation of the flowering promotors FLOWERING LOCUS T1 and the BARLEY MADS-box genes BM3 and BM8. Our findings therefore demonstrate that Ppd-H1 affects developmental plasticity in response to drought in barley.
Collapse
Affiliation(s)
- Leonard Gol
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Einar B Haraldsson
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrows Needs’, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
26
|
Sun Q, Zeng C, Du L, Dong C. Mechanism of circadian regulation of the NRF2/ARE pathway in renal ischemia-reperfusion. Exp Ther Med 2021; 21:190. [PMID: 33488799 PMCID: PMC7812573 DOI: 10.3892/etm.2021.9622] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The nuclear erythroid 2-related factor 2 (NRF2)/antioxidant response element (ARE) pathway has been shown to provide strong protection against oxidative stress injury induced by renal ischemia-reperfusion (IR). However, the endogenous regulatory mechanism of the NRF2/ARE pathway in renal IR injury is incompletely understood. A rat model of renal IR was established by occlusion of the bilateral renal pedicle for 45 min, followed by reperfusion for 24 h. Renal injury was assessed by light microscopy and levels of serum creatinine, blood urea nitrogen and neutrophil gelatinase-associated lipocalin was measured using enzyme-linked immunosorbent assay. Renal oxidative stress was also evaluated by measuring superoxide dismutase and malondialdehyde in renal tissues. Protein expression levels of brain and muscle ARNT-like 1 (BMAL1), nuclear factor erythroid 2-related factor 2 (NRF2), NAD(P)H dehydrogenase [quinone] 1 (NQO1), glutamate-cysteine ligase modifier (GCLM) and heme oxygenase 1 (HO1) in the kidney were determined by western blotting and immunohistochemistry. Reverse transcription-quantitative PCR was used to evaluate rhythmic transcription of the core clock genes (CLOCK and BMAL1) and the NRF2 gene. The nature of the binding of BMAL1 to the promoter regions in the NRF2 gene was assessed by chromatin immunoprecipitation assays in rat kidneys. BMAL1 was found to bind to the promoter of the NRF2 gene through an E-BOX element associated with strongly rhythmic activation of NRF2 in both the normal kidney and those exposed to IR. The ARE-regulated anti-oxidative stress protein was affected by the circadian rhythm of the NRF2 gene. As the NRF2 level was at a circadian nadir, the expression of the proteins NQO1, GCLM and HO1 was weakened, resulting in more serious renal oxidative stress injury and pathological and functional impairment induced by IR. It can be concluded that the circadian rhythm of the NRF2/ARE pathway controlled by the circadian clock is essential for regulating antioxidant stress in renal IR injury, which might prompt new therapeutic strategies associated with the diurnal variability of human kidney disease, including renal transplantation.
Collapse
Affiliation(s)
- Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Du
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chong Dong
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin 300192, P.R. China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin 300192, P.R. China
| |
Collapse
|
27
|
Javeed N, Brown MR, Rakshit K, Her T, Sen SK, Matveyenko AV. Proinflammatory Cytokine Interleukin 1β Disrupts β-cell Circadian Clock Function and Regulation of Insulin Secretion. Endocrinology 2021; 162:bqaa084. [PMID: 32455427 PMCID: PMC7692023 DOI: 10.1210/endocr/bqaa084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Intrinsic β-cell circadian clocks are important regulators of insulin secretion and overall glucose homeostasis. Whether the circadian clock in β-cells is perturbed following exposure to prodiabetogenic stressors such as proinflammatory cytokines, and whether these perturbations are featured during the development of diabetes, remains unknown. To address this, we examined the effects of cytokine-mediated inflammation common to the pathophysiology of diabetes, on the physiological and molecular regulation of the β-cell circadian clock. Specifically, we provide evidence that the key diabetogenic cytokine IL-1β disrupts functionality of the β-cell circadian clock and impairs circadian regulation of glucose-stimulated insulin secretion. The deleterious effects of IL-1β on the circadian clock were attributed to impaired expression of key circadian transcription factor Bmal1, and its regulator, the NAD-dependent deacetylase, Sirtuin 1 (SIRT1). Moreover, we also identified that Type 2 diabetes in humans is associated with reduced immunoreactivity of β-cell BMAL1 and SIRT1, suggestive of a potential causative link between islet inflammation, circadian clock disruption, and β-cell failure. These data suggest that the circadian clock in β-cells is perturbed following exposure to proinflammatory stressors and highlights the potential for therapeutic targeting of the circadian system for treatment for β-cell failure in diabetes.
Collapse
Affiliation(s)
- Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Matthew R Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Tracy Her
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Satish K Sen
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Department of Medicine, Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
28
|
Nicu C, Wikramanayake TC, Paus R. Clues that mitochondria are involved in the hair cycle clock: MPZL3 regulates entry into and progression of murine hair follicle cycling. Exp Dermatol 2020; 29:1243-1249. [PMID: 33040410 DOI: 10.1111/exd.14213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
The molecular nature of the hair cycle clock (HCC), the intrinsic oscillator system that drives hair follicle (HF) cycling, remains incompletely understood; therefore, all relevant key players need to be identified. Here, we present evidence that implicates myelin protein zero-like 3 (MPZL3), a multifunctional nuclear-encoded mitochondrial protein known to be involved in epidermal differentiation, in HCC regulation. By analysing global Mpzl3 knockout (-/-) mice, we show that in the absence of functional MPZL3, mice commence HF cycling with retarded first catagen-telogen transition after normal postnatal HF morphogenesis. However, Mpzl3 -/- mice subsequently display strikingly accelerated HF cycling, i.e. a precocious telogen-to-anagen transition during the second hair cycle, compared to controls, suggesting that MPZL3 inhibits anagen entry. We also show that intrafollicular MPZL3 protein expression fluctuates in a hair cycle-dependent manner. In telogen HFs, MPZL3 is localized to the secondary hair germ, an epicentre of hair cycle regulation, where it partially co-localizes with P-cadherin. In early anagen HF, MPZL3 is localized immediately distal to the proximal hair matrix. These findings introduce the novel concept that mitochondria are more actively involved in hair cycle control than previously recognized and that MPZL3 plays a central role in the HCC.
Collapse
Affiliation(s)
- Carina Nicu
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tongyu C Wikramanayake
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
29
|
Chhunchha B, Kubo E, Singh DP. Clock Protein Bmal1 and Nrf2 Cooperatively Control Aging or Oxidative Response and Redox Homeostasis by Regulating Rhythmic Expression of Prdx6. Cells 2020; 9:E1861. [PMID: 32784474 PMCID: PMC7463585 DOI: 10.3390/cells9081861] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Many disorders of aging, including blinding-diseases, are associated with deficiency of brain and muscle arnt-like protein 1 (Bmal1) and, thereby, dysregulation of antioxidant-defense pathway. However, knowledge is limited regarding the role of Bmal1 regulation of antioxidant-pathway in the eye lens/lens epithelial cells (LECs) at the molecular level. We found that, in aging human (h)LECs, a progressive decline of nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE (antioxidant response element)-mediated antioxidant genes was connected to Bmal1-deficiency, leading to accumulation of reactive oxygen species (ROS) and cell-death. Bmal1-depletion disrupted Nrf2 and expression of its target antioxidant genes, like Peroxiredoxin 6 (Prdx6). DNA binding and transcription assays showed that Bmal1 controlled expression by direct binding to E-Box in Prdx6 promoter to regulate its transcription. Mutation at E-Box or ARE reduced promoter activity, while disruption of both sites diminished the activity, suggesting that both sites were required for peak Prdx6-transcription. As in aging hLECs, ROS accumulation was increased in Bmal1-deficient cells and the cells were vulnerable to death. Intriguingly, Bmal1/Nrf2/Prdx6 and PhaseII antioxidants showed rhythmic expression in mouse lenses in vivo and were reciprocally linked to ROS levels. We propose that Bmal1 is pivotal for regulating oxidative responses. Findings also reveal a circadian control of antioxidant-pathway, which is important in combating lens/LECs damage induced by aging or oxidative stress.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan;
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
30
|
Borowiec BG, Scott GR. Hypoxia acclimation alters reactive oxygen species homeostasis and oxidative status in estuarine killifish ( Fundulus heteroclitus). J Exp Biol 2020; 223:jeb222877. [PMID: 32457064 DOI: 10.1242/jeb.222877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
Hypoxia is common in aquatic environments, and exposure to hypoxia followed by re-oxygenation is often believed to induce oxidative stress. However, there have been relatively few studies of reactive oxygen species (ROS) homeostasis and oxidative status in fish that experience natural hypoxia-re-oxygenation cycles. We examined how exposure to acute hypoxia (2 kPa O2) and subsequent re-oxygenation (to 20 kPa O2) affects redox status, oxidative damage and anti-oxidant defenses in estuarine killifish (Fundulus heteroclitus), and whether these effects were ameliorated or potentiated by prolonged (28 days) acclimation to either constant hypoxia or intermittent cycles of nocturnal hypoxia (12 h:12 h normoxia:hypoxia). Acute hypoxia and re-oxygenation led to some modest and transient changes in redox status, increases in oxidized glutathione, depletion of scavenging capacity and oxidative damage to lipids in skeletal muscle. The liver had greater scavenging capacity, total glutathione concentrations and activities of anti-oxidant enzymes (catalase, glutathione peroxidase) than muscle, and generally experienced less variation in glutathiones and lipid peroxidation. Unexpectedly, acclimation to constant hypoxia or intermittent hypoxia led to a more oxidizing redox status (muscle and liver) and it increased oxidized glutathione (muscle). However, hypoxia-acclimated fish exhibited little to no oxidative damage (as reflected by lipid peroxidation and aconitase activity), in association with improvements in scavenging capacity and catalase activity in muscle. We conclude that hypoxia acclimation leads to adjustments in ROS homeostasis and oxidative status that do not reflect oxidative stress, but may instead be part of the suite of responses that killifish use to cope with chronic hypoxia.
Collapse
Affiliation(s)
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4L8
| |
Collapse
|
31
|
Circadian Clock and OxInflammation: Functional Crosstalk in Cutaneous Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2309437. [PMID: 32377292 PMCID: PMC7195654 DOI: 10.1155/2020/2309437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Circadian rhythms are biological oscillations that occur with an approximately 24 h period and optimize cellular homeostasis and responses to environmental stimuli. A growing collection of data suggests that chronic circadian disruption caused by novel lifestyle risk factors such as shift work, travel across time zones, or irregular sleep-wake cycles has long-term consequences for human health. Among the multiplicity of physiological systems hypothesized to have a role in the onset of pathologies in case of circadian disruption, there are redox-sensitive defensive pathways and inflammatory machinery. Due to its location and barrier physiological role, the skin is a prototypical tissue to study the influence of environmental insults induced OxInflammation disturbance and circadian system alteration. To better investigate the link among outdoor stressors, OxInflammation, and circadian system, we tested the differential responses of keratinocytes clock synchronized or desynchronized, in an in vitro inflammatory model exposed to O3. Being both NRF2 and NF-κB two key redox-sensitive transcription factors involved in cellular redox homeostasis and inflammation, we analyzed their activation and expression in challenged keratinocytes by O3. Our results suggest that a synchronized circadian clock not only facilitates the protective role of NRF2 in terms of a faster and more efficient defensive response against environmental insults but also moderates the cellular damage resulting from a condition of chronic inflammation. Our results bring new insights on the role of circadian clock in regulating the redox-inflammatory crosstalk influenced by O3 and possibly can be extrapolated to other pollutants able to affect the oxinflammatory cellular processes.
Collapse
|
32
|
Swafford AJM, Oakley TH. Light-induced stress as a primary evolutionary driver of eye origins. Integr Comp Biol 2020; 59:739-750. [PMID: 31539028 DOI: 10.1093/icb/icz064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eyes are quintessential complex traits and our understanding of their evolution guides models of trait evolution in general. A long-standing account of eye evolution argues natural selection favors morphological variations that allow increased functionality for sensing light. While certainly true in part, this focus on visual performance does not entirely explain why diffuse photosensitivity persists even after eyes evolve, or why eyes evolved many times, each time using similar building blocks. Here, we briefly review a vast literature indicating most genetic components of eyes historically responded to stress caused directly by light, including ultraviolet damage of DNA, oxidative stress, and production of aldehydes. We propose light-induced stress had a direct and prominent role in the evolution of eyes by bringing together genes to repair and prevent damage from light-stress, both before and during the evolution of eyes themselves. Stress-repair and stress-prevention genes were perhaps originally deployed as plastic responses to light and/or as beneficial mutations genetically driving expression where light was prominent. These stress-response genes sense, shield, and refract light but only as reactions to ongoing light stress. Once under regulatory-genetic control, they could be expressed before light stress appeared, evolve as a module, and be influenced by natural selection to increase functionality for sensing light, ultimately leading to complex eyes and behaviors. Recognizing the potentially prominent role of stress in eye evolution invites discussions of plasticity and assimilation and provides a hypothesis for why similar genes are repeatedly used in convergent eyes. Broadening the drivers of eye evolution encourages consideration of multi-faceted mechanisms of plasticity/assimilation and mutation/selection for complex novelties and innovations in general.
Collapse
Affiliation(s)
- Andrew J M Swafford
- Ecology, Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
33
|
Silveira EJD, Nascimento Filho CHV, Yujra VQ, Webber LP, Castilho RM, Squarize CH. BMAL1 Modulates Epidermal Healing in a Process Involving the Antioxidative Defense Mechanism. Int J Mol Sci 2020; 21:E901. [PMID: 32019183 PMCID: PMC7038047 DOI: 10.3390/ijms21030901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/03/2023] Open
Abstract
The circadian rhythm regulates the physiology and behavior of living organisms in a time-dependent manner. Clock genes have distinct roles including the control over gene expression mediated by the transcriptional activators CLOCK and BMAL1, and the suppression of gene expression mediated by the transcriptional repressors PER1/2 and CRY1/2. The balance between gene expression and repression is key to the maintenance of tissue homeostasis that is disrupted in the event of an injury. In the skin, a compromised epithelial barrier triggers a cascade of events that culminate in the mobilization of epithelial cells and stem cells. Recruited epithelial cells migrate towards the wound and reestablish the protective epithelial layer of the skin. Although we have recently demonstrated the involvement of BMAL and the PI3K signaling in wound healing, the role of the circadian clock genes in tissue repair remains poorly understood. Here, we sought to understand the role of BMAL1 on skin healing in response to injury. We found that genetic depletion of BMAL1 resulted in delayed healing of the skin as compared to wild-type control mice. Furthermore, we found that loss of Bmal1 was associated with the accumulation of Reactive Oxygen Species Modulator 1 (ROMO1), a protein responsible for inducing the production of intracellular reactive oxygen species (ROS). The slow healing was associated with ROS and superoxide dismutase (SOD) production, and pharmacological inhibition of the oxidative stress signaling (ROS/SOD) led to cellular proliferation, upregulation of Sirtuin 1 (SIRT1), and rescued the skin healing phenotype of Bmal1-/- mice. Overall, our study points to BMAL1 as a key player in tissue regeneration and as a critical regulator of ROMO1 and oxidative stress in the skin.
Collapse
Affiliation(s)
- Ericka J. D. Silveira
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
- Odontology Sciences Postgraduate Program, Dentistry Department, Federal University of Rio Grande do Norte, Natal 59056, RN, Brazil
| | - Carlos H. V. Nascimento Filho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
| | - Veronica Q. Yujra
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
| | - Liana P. Webber
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
- The Michigan Medicine Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (E.J.D.S.); (C.H.V.N.F.); (V.Q.Y.); (L.P.W.); (R.M.C.)
- The Michigan Medicine Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Age Associated Decrease of MT-1 Melatonin Receptor in Human Dermal Skin Fibroblasts Impairs Protection Against UV-Induced DNA Damage. Int J Mol Sci 2020; 21:ijms21010326. [PMID: 31947744 PMCID: PMC6982064 DOI: 10.3390/ijms21010326] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022] Open
Abstract
The human body follows a physiological rhythm in response to the day/night cycle which is synchronized with the circadian rhythm through internal clocks. Most cells in the human body, including skin cells, express autonomous clocks and the genes responsible for running those clocks. Melatonin, a ubiquitous small molecular weight hormone, is critical in regulating the sleep cycle and other functions in the body. Melatonin is present in the skin and, in this study, we showed that it has the ability to dose-dependently stimulate PER1 clock gene expression in normal human dermal fibroblasts and normal human epidermal keratinocytes. Then we further evaluated the role of MT-1 melatonin receptor in mediating melatonin actions on human skin using fibroblasts derived from young and old subjects. Using immunocytochemistry, Western blotting and RT-PCR, we confirmed the expression of MT-1 receptor in human skin fibroblasts and demonstrated a dramatic age-dependent decrease in its level in mature fibroblasts. We used siRNA technology to transiently knockdown MT-1 receptor in fibroblasts. In these MT-1 knockdown cells, UV-dependent oxidative stress (H2O2 production) was enhanced and DNA damage was also increased, suggesting a critical role of MT-1 receptor in protecting skin cells from UV-induced DNA damage. These studies demonstrate that the melatonin pathway plays a pivotal role in skin aging and damage. Moreover, its correlation with skin circadian rhythm may offer new approaches for decelerating skin aging by modulating the expression of melatonin receptors in human skin.
Collapse
|
35
|
Ishikawa M, Kawai K, Kaneko M, Tanaka K, Nakanishi S, Hori K. Extracellular electron transfer mediated by a cytocompatible redox polymer to study the crosstalk among the mammalian circadian clock, cellular metabolism, and cellular redox state. RSC Adv 2020; 10:1648-1657. [PMID: 35494713 PMCID: PMC9047959 DOI: 10.1039/c9ra10023g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/30/2019] [Indexed: 01/11/2023] Open
Abstract
The circadian clock is an endogenous biological timekeeping system that controls various physiological and cellular processes with a 24 h rhythm. The crosstalk among the circadian clock, cellular metabolism, and cellular redox state has attracted much attention. To elucidate this crosstalk, chemical compounds have been used to perturb cellular metabolism and the redox state. However, an electron mediator that facilitates extracellular electron transfer (EET) has not been used to study the mammalian circadian clock due to potential cytotoxic effects of the mediator. Here, we report evidence that a cytocompatible redox polymer pMFc (2-methacryloyloxyethyl phosphorylcholine-co-vinyl ferrocene) can be used as the mediator to study the mammalian circadian clock. EET mediated by oxidized pMFc (ox-pMFc) extracted intracellular electrons from human U2OS cells, resulting in a longer circadian period. Analyses of the metabolome and intracellular redox species imply that ox-pMFc receives an electron from glutathione, thereby inducing pentose phosphate pathway activation. These results suggest novel crosstalk among the circadian clock, metabolism, and redox state. We anticipate that EET mediated by a redox cytocompatible polymer will provide new insights into the mammalian circadian clock system, which may lead to the development of new treatments for circadian clock disorders. Cytocompatible redox polymer pMFc altered the cellular redox state and metabolism, resulting in a longer circadian period.![]()
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Kazuki Kawai
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Masahiro Kaneko
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kenya Tanaka
- Graduate School of Engineering Science
- Osaka University
- Osaka 560-8531
- Japan
| | - Shuji Nakanishi
- Graduate School of Engineering Science
- Osaka University
- Osaka 560-8531
- Japan
- Research Center for Solar Energy Chemistry
| | - Katsutoshi Hori
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
36
|
Ji G, Lv K, Chen H, Wang Y, Zhang Y, Li Y, Qu L. Hydrogen peroxide modulates clock gene expression via PRX2-STAT3-REV-ERBα/β pathway. Free Radic Biol Med 2019; 145:312-320. [PMID: 31585206 DOI: 10.1016/j.freeradbiomed.2019.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
The circadian rhythm is a widespread physiological phenomenon present in almost all forms of life and is constituted by a system of interlocked transcriptional/translational feedback loops (TTFLs). External zeitgebers regulate biological rhythms through the direct or indirect regulation of circadian genes. Oxidative stress is involved in many diseases and injuries, such as ageing, diabetes, Alzheimer's disease, and cancer. Despite an increasing number of studies on circadian rhythm disorders caused by oxidative stress, little is known about the effects of oxidants on clock gene expression and the underlying mechanism. In this study, we found that the protein expression of circadian genes Clock, Bmal1, Per1/2, and Cry1/2 in NIH3T3 cells was upregulated by hydrogen peroxide (H2O2), an important mediator of oxidative stress. In addition, H2O2 modulated the circadian rhythm of Bmal1-luciferase via RORα, REV-ERBα (NR1D1), and REV-ERBβ (NR1D2). Further studies showed that H2O2 regulated biological rhythm by PRX2-STAT3-REV-ERBα/β pathway. These findings provide an accessory loop-related mechanism by which non-transcriptional oscillation interplays with TTFLs.
Collapse
Affiliation(s)
- Guohua Ji
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Hailong Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Yanli Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Yongliang Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China.
| |
Collapse
|
37
|
Kovács D, Sigmond T, Hotzi B, Bohár B, Fazekas D, Deák V, Vellai T, Barna J. HSF1Base: A Comprehensive Database of HSF1 (Heat Shock Factor 1) Target Genes. Int J Mol Sci 2019; 20:ijms20225815. [PMID: 31752429 PMCID: PMC6888953 DOI: 10.3390/ijms20225815] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
HSF1 (heat shock factor 1) is an evolutionarily conserved master transcriptional regulator of the heat shock response (HSR) in eukaryotic cells. In response to high temperatures, HSF1 upregulates genes encoding molecular chaperones, also called heat shock proteins, which assist the refolding or degradation of damaged intracellular proteins. Accumulating evidence reveals however that HSF1 participates in several other physiological and pathological processes such as differentiation, immune response, and multidrug resistance, as well as in ageing, neurodegenerative demise, and cancer. To address how HSF1 controls these processes one should systematically analyze its target genes. Here we present a novel database called HSF1Base (hsf1base.org) that contains a nearly comprehensive list of HSF1 target genes identified so far. The list was obtained by manually curating publications on individual HSF1 targets and analyzing relevant high throughput transcriptomic and chromatin immunoprecipitation data derived from the literature and the Yeastract database. To support the biological relevance of HSF1 targets identified by high throughput methods, we performed an enrichment analysis of (potential) HSF1 targets across different tissues/cell types and organisms. We found that general HSF1 functions (targets are expressed in all tissues/cell types) are mostly related to cellular proteostasis. Furthermore, HSF1 targets that are conserved across various animal taxa operate mostly in cellular stress pathways (e.g., autophagy), chromatin remodeling, ribosome biogenesis, and ageing. Together, these data highlight diverse roles for HSF1, expanding far beyond the HSR.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Tímea Sigmond
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Bernadette Hotzi
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Balázs Bohár
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- Earlham Institute, Norwich NR4 7UZ, UK
- Quadram Institute, Norwich NR4 7UA, UK
| | - Dávid Fazekas
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- Earlham Institute, Norwich NR4 7UZ, UK
- Quadram Institute, Norwich NR4 7UA, UK
| | - Veronika Deák
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, University of Technology, H-1111 Budapest, Hungary;
| | - Tibor Vellai
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, H-1117 Budapest, Hungary
- Correspondence: (T.V.); (J.B.); Tel.: +36-1-372-2500 (ext. 8684) (T.V.); +36-1-372-2500 (ext. 8349) (J.B.); Fax: +36-1-372-2641 (T.V.)
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, H-1117 Budapest, Hungary
- Correspondence: (T.V.); (J.B.); Tel.: +36-1-372-2500 (ext. 8684) (T.V.); +36-1-372-2500 (ext. 8349) (J.B.); Fax: +36-1-372-2641 (T.V.)
| |
Collapse
|
38
|
de Assis LVM, Moraes MN, Castrucci AMDL. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell Mol Life Sci 2019; 76:3801-3826. [PMID: 31222374 PMCID: PMC11105295 DOI: 10.1007/s00018-019-03183-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
- School of Health Science, University Anhembi Morumbi, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil.
| |
Collapse
|
39
|
Klimina KM, Batotsyrenova EG, Yunes RA, Gilyaeva EH, Poluektova EU, Kostrova TA, Kudryavtseva AV, Odorskaya MV, Kashuro VA, Kasianov AS, Ivanov MB, Danilenko VN. The effects of desynchronosis on the gut microbiota composition and physiological parameters of rats. BMC Microbiol 2019; 19:160. [PMID: 31299889 PMCID: PMC6626387 DOI: 10.1186/s12866-019-1535-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Background All living organisms experience physiological changes regulated by endogenous circadian rhythms. The main factor controlling the circadian clock is the duration of daylight. The aim of this research was to identify the impact of various lighting conditions on physiological parameters and gut microbiota composition in rats. 3 groups of outbred rats were subjected to normal light-dark cycles, darkness and constant lighting. Results After 1 and 3 months we studied urinary catecholamine levels in rats; indicators of lipid peroxidation and antioxidant activity in the blood; protein levels of BMAL1, CLOCK and THRA in the hypothalamus; composition and functional activity of the gut microbiota. Subjecting the rats to conditions promoting desynchronosis for 3 months caused disruptions in homeostasis. Conclusions Changing the lighting conditions led to changes in almost all the physiological parameters that we studied. Catecholamines can be regarded as a synchronization super system of split-level circadian oscillators. We established a correlation between hypothalamic levels of Bmal1 and urinary catecholamine concentrations. The magnitude of changes in the GM taxonomic composition was different for LL/LD and DD/LD but the direction of these changes was similar. As for the predicted functional properties of the GM which characterize its metabolic activity, they didn’t change as dramatically as the taxonomic composition. All differences may be viewed as a compensatory reaction to new environmental conditions and the organism has adapted to those conditions. Electronic supplementary material The online version of this article (10.1186/s12866-019-1535-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ksenia M Klimina
- Department of Genetics and Biotechnology, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, 119991, Russia. .,Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - Ekaterina G Batotsyrenova
- The Laboratory of Biochemical Toxicology and Pharmacology, Institute of Toxicology Federal Medical Biological Agency of Russia, Saint Petersburg, 192019, Russia
| | - Roman A Yunes
- Department of Genetics and Biotechnology, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena H Gilyaeva
- The Laboratory of Biochemical Toxicology and Pharmacology, Institute of Toxicology Federal Medical Biological Agency of Russia, Saint Petersburg, 192019, Russia
| | - Elena U Poluektova
- Department of Genetics and Biotechnology, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, 119991, Russia
| | - Taisia A Kostrova
- The Laboratory of Biochemical Toxicology and Pharmacology, Institute of Toxicology Federal Medical Biological Agency of Russia, Saint Petersburg, 192019, Russia
| | - Anna V Kudryavtseva
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maya V Odorskaya
- Department of Genetics and Biotechnology, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vadim A Kashuro
- The Laboratory of Biochemical Toxicology and Pharmacology, Institute of Toxicology Federal Medical Biological Agency of Russia, Saint Petersburg, 192019, Russia
| | - Artem S Kasianov
- Department of Genetics and Biotechnology, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maksim B Ivanov
- The Laboratory of Biochemical Toxicology and Pharmacology, Institute of Toxicology Federal Medical Biological Agency of Russia, Saint Petersburg, 192019, Russia
| | - Valery N Danilenko
- Department of Genetics and Biotechnology, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
40
|
Xie Y, Tang Q, Chen G, Xie M, Yu S, Zhao J, Chen L. New Insights Into the Circadian Rhythm and Its Related Diseases. Front Physiol 2019; 10:682. [PMID: 31293431 PMCID: PMC6603140 DOI: 10.3389/fphys.2019.00682] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian rhythms (CR) are a series of endogenous autonomous oscillators generated by the molecular circadian clock which acting on coordinating internal time with the external environment in a 24-h daily cycle. The circadian clock system is a major regulatory factor for nearly all physiological activities and its disorder has severe consequences on human health. CR disruption is a common issue in modern society, and researches about people with jet lag or shift works have revealed that CR disruption can cause cognitive impairment, psychiatric illness, metabolic syndrome, dysplasia, and cancer. In this review, we summarized the synchronizers and the synchronization methods used in experimental research, and introduced CR monitoring and detection methods. Moreover, we evaluated conventional CR databases, and analyzed experiments that characterized the underlying causes of CR disorder. Finally, we further discussed the latest developments in understanding of CR disruption, and how it may be relevant to health and disease. Briefly, this review aimed to synthesize previous studies to aid in future studies of CR and CR-related diseases.
Collapse
Affiliation(s)
- Yanling Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Evolution Shapes the Gene Expression Response to Oxidative Stress. Int J Mol Sci 2019; 20:ijms20123040. [PMID: 31234431 PMCID: PMC6627103 DOI: 10.3390/ijms20123040] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play a key role in cell physiology and function. ROS represents a potential source of damage for many macromolecules including DNA. It is thought that daily changes in oxidative stress levels were an important early factor driving evolution of the circadian clock which enables organisms to predict changes in ROS levels before they actually occur and thereby optimally coordinate survival strategies. It is clear that ROS, at relatively low levels, can serve as an important signaling molecule and also serves as a key regulator of gene expression. Therefore, the mechanisms that have evolved to survive or harness these effects of ROS are ancient evolutionary adaptations that are tightly interconnected with most aspects of cellular physiology. Our understanding of these mechanisms has been mainly based on studies using a relatively small group of genetic models. However, we know comparatively little about how these mechanisms are conserved or have adapted during evolution under different environmental conditions. In this review, we describe recent work that has revealed significant species-specific differences in the gene expression response to ROS by exploring diverse organisms. This evidence supports the notion that during evolution, rather than being highly conserved, there is inherent plasticity in the molecular mechanisms responding to oxidative stress.
Collapse
|
42
|
Doktór B, Damulewicz M, Pyza E. Effects of MUL1 and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson's disease models. BMC Neurosci 2019; 20:24. [PMID: 31138137 PMCID: PMC6540415 DOI: 10.1186/s12868-019-0506-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Mutants which carry mutations in genes encoding mitochondrial ligases MUL1 and PARKIN are convenient Drosophila models of Parkinson’s disease (PD). In several studies it has been shown that in Parkinson’s disease sleep disturbance occurs, which may be the result of a disturbed circadian clock. Results We found that the ROS level was higher, while the anti-oxidant enzyme SOD1 level was lower in mul1A6 and park1 mutants than in the white mutant used as a control. Moreover, mutations of both ligases affected circadian rhythms and the clock. The expression of clock genes per, tim and clock and the level of PER protein were changed in the mutants. Moreover, expression of ATG5, an autophagy protein also involved in circadian rhythm regulation, was decreased in the brain and in PDF-immunoreactive large ventral lateral clock neurons. The observed changes in the molecular clock resulted in a longer period of locomotor activity rhythm, increased total activity and shorter sleep at night. Finally, the lack of both ligases led to decreased longevity and climbing ability of the flies. Conclusions All of the changes observed in the brains of these Drosophila models of PD, in which mitochondrial ligases MUL1 and PARKIN do not function, may explain the mechanisms of some neurological and behavioural symptoms of PD. Electronic supplementary material The online version of this article (10.1186/s12868-019-0506-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bartosz Doktór
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
43
|
Spiers JG, Breda C, Robinson S, Giorgini F, Steinert JR. Drosophila Nrf2/Keap1 Mediated Redox Signaling Supports Synaptic Function and Longevity and Impacts on Circadian Activity. Front Mol Neurosci 2019; 12:86. [PMID: 31040766 PMCID: PMC6476960 DOI: 10.3389/fnmol.2019.00086] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022] Open
Abstract
Many neurodegenerative conditions and age-related neuropathologies are associated with increased levels of reactive oxygen species (ROS). The cap "n" collar (CncC) family of transcription factors is one of the major cellular system that fights oxidative insults, becoming activated in response to oxidative stress. This transcription factor signaling is conserved from metazoans to human and has a major developmental and disease-associated relevance. An important mammalian member of the CncC family is nuclear factor erythroid 2-related factor 2 (Nrf2) which has been studied in numerous cellular systems and represents an important target for drug discovery in different diseases. CncC is negatively regulated by Kelch-like ECH associated protein 1 (Keap1) and this interaction provides the basis for a homeostatic control of cellular antioxidant defense. We have utilized the Drosophila model system to investigate the roles of CncC signaling on longevity, neuronal function and circadian rhythm. Furthermore, we assessed the effects of CncC function on larvae and adult flies following exposure to stress. Our data reveal that constitutive overexpression of CncC modifies synaptic mechanisms that positively impact on neuronal function, and suppression of CncC inhibitor, Keap1, shows beneficial phenotypes on synaptic function and longevity. Moreover, supplementation of antioxidants mimics the effects of augmenting CncC signaling. Under stress conditions, lack of CncC signaling worsens survival rates and neuronal function whilst silencing Keap1 protects against stress-induced neuronal decline. Interestingly, overexpression and RNAi-mediated downregulation of CncC have differential effects on sleep patterns possibly via interactions with redox-sensitive circadian cycles. Thus, our data illustrate the important regulatory potential of CncC signaling in neuronal function and synaptic release affecting multiple aspects within the nervous system.
Collapse
Affiliation(s)
- Jereme G Spiers
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Carlo Breda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sue Robinson
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Joern R Steinert
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
44
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
45
|
Kawamura G, Hattori M, Takamatsu K, Tsukada T, Ninomiya Y, Benjamin I, Sassone-Corsi P, Ozawa T, Tamaru T. Cooperative interaction among BMAL1, HSF1, and p53 protects mammalian cells from UV stress. Commun Biol 2018; 1:204. [PMID: 30480104 PMCID: PMC6250677 DOI: 10.1038/s42003-018-0209-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The circadian clock allows physiological systems to adapt to their changing environment by synchronizing their timings in response to external stimuli. Previously, we reported clock-controlled adaptive responses to heat-shock and oxidative stress and showed how the circadian clock interacts with BMAL1 and HSF1. Here, we present a similar clock-controlled adaptation to UV damage. In response to UV irradiation, HSF1 and tumor suppressor p53 regulate the expression of the clock gene Per2 in a time-dependent manner. UV irradiation first activates the HSF1 pathway, which subsequently activates the p53 pathway. Importantly, BMAL1 regulates both HSF1 and p53 through the BMAL1-HSF1 interaction to synchronize the cellular clock. Based on these findings and transcriptome analysis, we propose that the circadian clock protects cells against the UV stress through sequential and hierarchical interactions between the circadian clock, the heat shock response, and a tumor suppressive mechanism.
Collapse
Affiliation(s)
- Genki Kawamura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Mitsuru Hattori
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Ken Takamatsu
- Department of Physiology & Advanced Research Center for Medical Science, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Teruyo Tsukada
- Nishina Center for Accelerator-Based Science, Riken, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasuharu Ninomiya
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Ivor Benjamin
- Department of Medicine, Froedtert & Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, School of Medicine, University of California Irvine, California, 92697, USA
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan.
| | - Teruya Tamaru
- Department of Physiology & Advanced Research Center for Medical Science, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
46
|
Rong J, Zhu M, Munro J, Cornish J, McCarthy GM, Dalbeth N, Poulsen RC. Altered expression of the core circadian clock component PERIOD2 contributes to osteoarthritis-like changes in chondrocyte activity. Chronobiol Int 2018; 36:319-331. [PMID: 30403881 DOI: 10.1080/07420528.2018.1540493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In osteoarthritis, chondrocytes undergo a phenotype shift characterised by reduced expression of SOX9 (sry-box 9) and increased production of cartilage-degrading enzymes, e.g. MMP13 (matrix metalloproteinase 13) and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5). The chondrocyte clock is also altered. Specifically, the peak level of PER2 is elevated, but peak level of BMAL1 reduced in osteoarthritic chondrocytes. The purpose of this study was to determine whether increased PER2 expression causes disease-associated changes in chondrocyte activity and to identify whether known risk factors for osteoarthritis induce changes in PER2 and BMAL1 expression. Primary human chondrocytes isolated from macroscopically normal cartilage were serum-starved overnight then re-fed with serum-replete media with/without interleukin 1β (IL-1β) (10 ng/mL), hydrogen peroxide (100 µM) or basic calcium phosphate (BCP) crystals (50 µg/mL). Peak level of BMAL1 was lower, whereas PER2 levels remained elevated for longer, in chondrocytes treated with IL-1β, hydrogen peroxide or BCP crystals compared to untreated cells. Levels of SOX9 were lower, whereas levels of ADAMTS5 and MMP13 were higher, in chondrocytes exposed to any of the three treatments compared to untreated cells. Knockdown of PER2 using siRNA partially abrogated the effects of each treatment on chondrocyte phenotype marker expression. Similarly, in chondrocytes isolated from osteoarthritic cartilage PER2 knockdown was associated with increased SOX9, reduced ADAMTS5 and reduced RNA and protein levels of MMP13 indicating partial mitigation of the osteoarthritic phenotype. Conversely, further ablation of BMAL1 expression in osteoarthritic chondrocytes resulted in a further reduction in SOX9 and increase in MMP13 expression. Overexpression of PER2 in the H5 chondrocyte cell line led to increased ADAMTS5 and MMP13 and decreased SOX9 expression. Localised inflammation, oxidative stress and BCP crystal deposition in osteoarthritic joints may contribute to disease pathology by inducing changes in the chondrocyte circadian clock.
Collapse
Affiliation(s)
- Jing Rong
- a Department of Medicine , School of Medicine, University of Auckland , Auckland , New Zealand
| | - Mark Zhu
- a Department of Medicine , School of Medicine, University of Auckland , Auckland , New Zealand.,b Department of Surgery, School of Medicine , University of Auckland , Auckland , New Zealand
| | - Jacob Munro
- b Department of Surgery, School of Medicine , University of Auckland , Auckland , New Zealand
| | - Jillian Cornish
- a Department of Medicine , School of Medicine, University of Auckland , Auckland , New Zealand
| | | | - Nicola Dalbeth
- a Department of Medicine , School of Medicine, University of Auckland , Auckland , New Zealand
| | - Raewyn C Poulsen
- a Department of Medicine , School of Medicine, University of Auckland , Auckland , New Zealand
| |
Collapse
|
47
|
Circadian rhythms, metabolic oscillators, and the target of rapamycin (TOR) pathway: the Neurospora connection. Curr Genet 2018; 65:339-349. [DOI: 10.1007/s00294-018-0897-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/09/2018] [Accepted: 10/20/2018] [Indexed: 01/25/2023]
|
48
|
Evolution shapes the responsiveness of the D-box enhancer element to light and reactive oxygen species in vertebrates. Sci Rep 2018; 8:13180. [PMID: 30181539 PMCID: PMC6123470 DOI: 10.1038/s41598-018-31570-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/26/2018] [Indexed: 12/27/2022] Open
Abstract
The circadian clock is a highly conserved cell-autonomous mechanism that directs daily rhythms in most aspects of biology. Daily entrainment by environmental signals, notably light, is essential for its function. However, our understanding of the mechanisms and the evolution of photic entrainment remains incomplete. Fish represent attractive models for exploring how light regulates the circadian clock due to the direct light sensitivity of their peripheral clocks. Central to this property is the light induced expression of clock genes that is mediated by D-box enhancer elements. Here, using zebrafish cells, we reveal that the light responsive D-box enhancer serves as a nuclear target for reactive oxygen species (ROS). We demonstrate that exposure to short wavelengths of visible light triggers increases in ROS levels via NADPH oxidase activity. Elevated ROS activates the JNK and p38 MAP kinases and in turn, induces clock gene expression via the D-box. In blind cavefish and mammals, where peripheral clocks are no longer entrained by direct illumination, ROS levels are still increased upon light exposure. However, in these species ROS no longer induces D-box driven clock gene transcription. Thus, during evolution, alterations in ROS-responsive signal transduction pathways underlie fundamental changes in peripheral clock photoentrainment.
Collapse
|
49
|
Benedusi M, Frigato E, Beltramello M, Bertolucci C, Valacchi G. Circadian clock as possible protective mechanism to pollution induced keratinocytes damage. Mech Ageing Dev 2018; 172:13-20. [PMID: 28860071 DOI: 10.1016/j.mad.2017.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
Abstract
Ozone is among the most toxic environmental stressors to which we are continuously exposed. Due to its critical location, skin is one of the most susceptible tissues to oxidative stress damaging effect of ozone. An increasing collection of data suggests a significant role of circadian system in regulation of cellular response to oxidative stress. However, the molecular mechanism linking circadian clock and antioxidant pathway it is not completely understood. Here we investigated a possible protective role of entrained circadian clock to ozone induced damage in keratinocytes, the main cellular component of human epidermis. Our results showed that, clock-synchronized keratinocytes compared to arrhythmic ones exhibited a more efficient antioxidant response, attested by a faster activation of the master antioxidant regulatory factor NRF2. Moreover, analysis of clock gene expression profiles reveals a more rapid induction of the cardinal clock gene Bmal1 in entrained cells. Based on these findings, we suppose that an adequate coordination of circadian system and antioxidant pathway might be essential to maintain homeostasis in the skin. Alteration of metabolic pathways occurred in neurological diseases or in irregular schedule of life activity could negatively influence tissue gene expression programs and associated organ physiology via its effect on the circadian system.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, University of Ferrara, I-44121 Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, University of Ferrara, I-44121 Ferrara, Italy
| | - Mattia Beltramello
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, University of Ferrara, I-44121 Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, University of Ferrara, I-44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, University of Ferrara, I-44121 Ferrara, Italy; NC State University, Plants for Human Health Institute, Animal Science Dept., NC Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
50
|
Abstract
Mounting evidence in recent years supports the extensive interaction between the circadian and redox systems. The existence of such a relationship is not surprising because most organisms, be they diurnal or nocturnal, display daily oscillations in energy intake, locomotor activity, and exposure to exogenous and internally generated oxidants. The transcriptional clock controls the levels of many antioxidant proteins and redox-active cofactors, and, conversely, the cellular redox poise has been shown to feed back to the transcriptional oscillator via redox-sensitive transcription factors and enzymes. However, the circadian cycles in the S-sulfinylation of the peroxiredoxin (PRDX) proteins constituted the first example of an autonomous circadian redox oscillation, which occurred independently of the transcriptional clock. Importantly, the high phylogenetic conservation of these rhythms suggests that they might predate the evolution of the transcriptional oscillator, and therefore could be a part of a primordial circadian redox/metabolic oscillator. This discovery forced the reappraisal of the dogmatic transcription-centered view of the clockwork and opened a new avenue of research. Indeed, the investigation into the links between the circadian and redox systems is still in its infancy, and many important questions remain to be addressed.
Collapse
|