1
|
Castillo SR, Simone BW, Clark KJ, Devaux P, Ekker SC. Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs. Hum Gene Ther 2024; 35:798-813. [PMID: 39212664 PMCID: PMC11511777 DOI: 10.1089/hum.2024.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs work in pairs, with each arm composed of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants. Nonetheless, given the intrinsic properties of TALE proteins, several target sites in human mtDNA are predicted to remain out of reach to DdCBEs and other TALE-based technologies. Specifically, due to the conventional requirement for a thymine immediately upstream of the TALE target sequences (i.e., the 5'-T constraint), over 150 loci in the human mitochondrial genome are presumed to be inaccessible to DdCBEs. Previous attempts at circumventing this requirement, either by developing monomeric DdCBEs or utilizing DNA-binding domains alternative to TALEs, have resulted in suboptimal specificity profiles with reduced therapeutic potential. Here, aiming to challenge and elucidate the relevance of the 5'-T constraint in the context of DdCBE-mediated mtDNA editing, and to expand the range of motifs that are editable by this technology, we generated DdCBEs containing TALE proteins engineered to recognize all 5' bases. These modified DdCBEs are herein referred to as αDdCBEs. Notably, 5'-T-noncompliant canonical DdCBEs efficiently edited mtDNA at diverse loci. However, they were frequently outperformed by αDdCBEs, which exhibited significant improvements in activity and specificity, regardless of the most 5' bases of their TALE binding sites. Furthermore, we showed that αDdCBEs are compatible with the enhanced DddAtox variants DddA6 and DddA11, and we validated TALE shifting with αDdCBEs as an effective approach to optimize base editing outcomes. Overall, αDdCBEs enable efficient, specific, and unconstrained mitochondrial base editing.
Collapse
Affiliation(s)
- Santiago R. Castillo
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Brandon W. Simone
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricia Devaux
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pediatrics and Department of Molecular Biosciences, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Roeschlin RA, Azad SM, Grove RP, Chuan A, García L, Niñoles R, Uviedo F, Villalobos L, Massimino ME, Marano MR, Boch J, Gadea J. Designer TALEs enable discovery of cell death-inducer genes. PLANT PHYSIOLOGY 2024; 195:2985-2996. [PMID: 38723194 PMCID: PMC11288752 DOI: 10.1093/plphys/kiae230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 08/02/2024]
Abstract
Transcription activator-like effectors (TALEs) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harboring only 7.5 repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.
Collapse
Affiliation(s)
- Roxana A Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Sepideh M Azad
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - René P Grove
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Ana Chuan
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Lucila García
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Regina Niñoles
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Facundo Uviedo
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Liara Villalobos
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Maria E Massimino
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - María R Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - José Gadea
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| |
Collapse
|
3
|
Danila F, Schreiber T, Ermakova M, Hua L, Vlad D, Lo S, Chen Y, Lambret‐Frotte J, Hermanns AS, Athmer B, von Caemmerer S, Yu S, Hibberd JM, Tissier A, Furbank RT, Kelly S, Langdale JA. A single promoter-TALE system for tissue-specific and tuneable expression of multiple genes in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1786-1806. [PMID: 35639605 PMCID: PMC9398400 DOI: 10.1111/pbi.13864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In biological discovery and engineering research, there is a need to spatially and/or temporally regulate transgene expression. However, the limited availability of promoter sequences that are uniquely active in specific tissue-types and/or at specific times often precludes co-expression of multiple transgenes in precisely controlled developmental contexts. Here, we developed a system for use in rice that comprises synthetic designer transcription activator-like effectors (dTALEs) and cognate synthetic TALE-activated promoters (STAPs). The system allows multiple transgenes to be expressed from different STAPs, with the spatial and temporal context determined by a single promoter that drives expression of the dTALE. We show that two different systems-dTALE1-STAP1 and dTALE2-STAP2-can activate STAP-driven reporter gene expression in stable transgenic rice lines, with transgene transcript levels dependent on both dTALE and STAP sequence identities. The relative strength of individual STAP sequences is consistent between dTALE1 and dTALE2 systems but differs between cell-types, requiring empirical evaluation in each case. dTALE expression leads to off-target activation of endogenous genes but the number of genes affected is substantially less than the number impacted by the somaclonal variation that occurs during the regeneration of transformed plants. With the potential to design fully orthogonal dTALEs for any genome of interest, the dTALE-STAP system thus provides a powerful approach to fine-tune the expression of multiple transgenes, and to simultaneously introduce different synthetic circuits into distinct developmental contexts.
Collapse
Affiliation(s)
- Florence Danila
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Tom Schreiber
- Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalleGermany
| | - Maria Ermakova
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Lei Hua
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Daniela Vlad
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Shuen‐Fang Lo
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Yi‐Shih Chen
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | - Anna S. Hermanns
- Department of Plant SciencesUniversity of OxfordOxfordUK
- Present address:
Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Benedikt Athmer
- Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalleGermany
| | - Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Su‐May Yu
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | - Alain Tissier
- Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalleGermany
| | - Robert T. Furbank
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Steven Kelly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | | |
Collapse
|
4
|
Doucouré H, Auguy F, Blanvillain-Baufumé S, Fabre S, Gabriel M, Thomas E, Dambreville F, Sciallano C, Szurek B, Koita O, Verdier V, Cunnac S. The Rice ILI2 Locus Is a Bidirectional Target of the African Xanthomonas oryzae pv. oryzae Major Transcription Activator-like Effector TalC but Does Not Contribute to Disease Susceptibility. Int J Mol Sci 2022; 23:ijms23105559. [PMID: 35628368 PMCID: PMC9142087 DOI: 10.3390/ijms23105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) strains that cause bacterial leaf blight (BLB) limit rice (Oryza sativa) production and require breeding more resistant varieties. Transcription activator-like effectors (TALEs) activate transcription to promote leaf colonization by binding to specific plant host DNA sequences termed effector binding elements (EBEs). Xoo major TALEs universally target susceptibility genes of the SWEET transporter family. TALE-unresponsive alleles of clade III OsSWEET susceptibility gene promoter created with genome editing confer broad resistance on Asian Xoo strains. African Xoo strains rely primarily on the major TALE TalC, which targets OsSWEET14. Although the virulence of a talC mutant strain is severely impaired, abrogating OsSWEET14 induction with genome editing does not confer equivalent resistance on African Xoo. To address this contradiction, we postulated the existence of a TalC target susceptibility gene redundant with OsSWEET14. Bioinformatics analysis identified a rice locus named ATAC composed of the INCREASED LEAF INCLINATION 2 (ILI2) gene and a putative lncRNA that are shown to be bidirectionally upregulated in a TalC-dependent fashion. Gain-of-function approaches with designer TALEs inducing ATAC sequences did not complement the virulence of a Xoo strain defective for SWEET gene activation. While editing the TalC EBE at the ATAC loci compromised TalC-mediated induction, multiplex edited lines with mutations at the OsSWEET14 and ATAC loci remained essentially susceptible to African Xoo strains. Overall, this work indicates that ATAC is a probable TalC off-target locus but nonetheless documents the first example of divergent transcription activation by a native TALE during infection.
Collapse
Affiliation(s)
- Hinda Doucouré
- LBMA, Faculté des Sciences et Techniques, University des Sciences Techniques et Technologiques, Bamako E 3206, Mali; (H.D.); (O.K.)
| | - Florence Auguy
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; (F.A.); (S.B.-B.); (S.F.); (M.G.); (E.T.); (F.D.); (C.S.); (B.S.); (V.V.)
| | - Servane Blanvillain-Baufumé
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; (F.A.); (S.B.-B.); (S.F.); (M.G.); (E.T.); (F.D.); (C.S.); (B.S.); (V.V.)
| | - Sandrine Fabre
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; (F.A.); (S.B.-B.); (S.F.); (M.G.); (E.T.); (F.D.); (C.S.); (B.S.); (V.V.)
| | - Marc Gabriel
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; (F.A.); (S.B.-B.); (S.F.); (M.G.); (E.T.); (F.D.); (C.S.); (B.S.); (V.V.)
| | - Emilie Thomas
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; (F.A.); (S.B.-B.); (S.F.); (M.G.); (E.T.); (F.D.); (C.S.); (B.S.); (V.V.)
| | - Fleur Dambreville
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; (F.A.); (S.B.-B.); (S.F.); (M.G.); (E.T.); (F.D.); (C.S.); (B.S.); (V.V.)
| | - Coline Sciallano
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; (F.A.); (S.B.-B.); (S.F.); (M.G.); (E.T.); (F.D.); (C.S.); (B.S.); (V.V.)
| | - Boris Szurek
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; (F.A.); (S.B.-B.); (S.F.); (M.G.); (E.T.); (F.D.); (C.S.); (B.S.); (V.V.)
| | - Ousmane Koita
- LBMA, Faculté des Sciences et Techniques, University des Sciences Techniques et Technologiques, Bamako E 3206, Mali; (H.D.); (O.K.)
| | - Valérie Verdier
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; (F.A.); (S.B.-B.); (S.F.); (M.G.); (E.T.); (F.D.); (C.S.); (B.S.); (V.V.)
| | - Sébastien Cunnac
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France; (F.A.); (S.B.-B.); (S.F.); (M.G.); (E.T.); (F.D.); (C.S.); (B.S.); (V.V.)
- Correspondence:
| |
Collapse
|
5
|
Cuculis L, Zhao C, Abil Z, Zhao H, Shukla D, Schroeder CM. Divalent cations promote TALE DNA-binding specificity. Nucleic Acids Res 2020; 48:1406-1422. [PMID: 31863586 PMCID: PMC7026652 DOI: 10.1093/nar/gkz1174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in gene editing have been enabled by programmable nucleases such as transcription activator-like effector nucleases (TALENs) and CRISPR–Cas9. However, several open questions remain regarding the molecular machinery in these systems, including fundamental search and binding behavior as well as role of off-target binding and specificity. In order to achieve efficient and specific cleavage at target sites, a high degree of target site discrimination must be demonstrated for gene editing applications. In this work, we studied the binding affinity and specificity for a series of TALE proteins under a variety of solution conditions using in vitro fluorescence methods and molecular dynamics (MD) simulations. Remarkably, we identified that TALEs demonstrate high sequence specificity only upon addition of small amounts of certain divalent cations (Mg2+, Ca2+). However, under purely monovalent salt conditions (K+, Na+), TALEs bind to specific and non-specific DNA with nearly equal affinity. Divalent cations preferentially bind to DNA over monovalent cations, which attenuates non-specific interactions between TALEs and DNA and further stabilizes specific interactions. Overall, these results uncover new mechanistic insights into the binding action of TALEs and further provide potential avenues for engineering and application of TALE- or TALEN-based systems for genome editing and regulation.
Collapse
Affiliation(s)
| | - Chuankai Zhao
- Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA
| | - Zhanar Abil
- Department of Biochemistry, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemistry, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA.,Department of Biochemistry, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, Urbana, IL 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, Urbana, IL 61801, USA.,National Center for Supercomputing Applications, Urbana, IL 61801, USA.,NIH Center for Macromolecular Modeling and Bioinformatics, Urbana, IL 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Charles M Schroeder
- Department of Chemistry, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, Urbana, IL 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
'Off-the-shelf' allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov 2020; 19:185-199. [PMID: 31900462 DOI: 10.1038/s41573-019-0051-2] [Citation(s) in RCA: 744] [Impact Index Per Article: 148.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Autologous chimeric antigen receptor (CAR) T cells have changed the therapeutic landscape in haematological malignancies. Nevertheless, the use of allogeneic CAR T cells from donors has many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches for patient treatment, possible standardization of the CAR-T cell product, time for multiple cell modifications, redosing or combination of CAR T cells directed against different targets, and decreased cost using an industrialized process. However, allogeneic CAR T cells may cause life-threatening graft-versus-host disease and may be rapidly eliminated by the host immune system. The development of next-generation allogeneic CAR T cells to address these issues is an active area of research. In this Review, we analyse the different sources of T cells for optimal allogeneic CAR-T cell therapy and describe the different technological approaches, mainly based on gene editing, to produce allogeneic CAR T cells with limited potential for graft-versus-host disease. These improved allogeneic CAR-T cell products will pave the way for further breakthroughs in the treatment of cancer.
Collapse
|
7
|
Tsuji S, Imanishi M. Modified nucleobase-specific gene regulation using engineered transcription activator-like effectors. Adv Drug Deliv Rev 2019; 147:59-65. [PMID: 31513826 DOI: 10.1016/j.addr.2019.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Epigenetic modification, as typified by cytosine methylation, is a key aspect of gene regulation that affects many biological processes. However, the biological roles of individual methylated cytosines are poorly understood. Sequence-specific DNA recognition tools can be used to investigate the roles of individual instances of DNA methylation. Transcription activator-like effectors (TALEs), which are DNA-binding proteins, are promising candidate tools with designable sequence specificity and sensitivity to DNA methylation. In this review, we describe the bases of DNA recognition of TALEs, including methylated cytosine recognition, and the applications of TALEs for the study of methylated DNA. In addition, we discuss TALE-based epigenome editing and oxidized methylated cytosine recognition.
Collapse
|
8
|
Nakano C, Kitabatake Y, Takeyari S, Ohata Y, Kubota T, Taketani K, Kogo M, Ozono K. Genetic correction of induced pluripotent stem cells mediated by transcription activator-like effector nucleases targeting ALPL recovers enzyme activity and calcification in vitro. Mol Genet Metab 2019; 127:158-165. [PMID: 31178256 DOI: 10.1016/j.ymgme.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 01/22/2023]
Abstract
Hypophosphatasia (HPP) is an inheritable disease affecting both skeletal systems and extra-skeletal organs due to mutations of the gene ALPL, which encodes tissue-nonspecific alkaline phosphatase. Recently, an enzyme replacement therapy using asfotase alfa was developed to ameliorate the complications of HPP. However, it requires frequent injections and is expensive to maintain. As an alternative, cell and gene therapy using human induced pluripotent stem cells (iPSCs) after precise correction of the mutation is feasible due to advances in genome-editing technology. In the study, we examined the alkaline phosphatase (ALP) activity and calcification in vitro of two childhood HPP patient-derived iPSCs after the correction of the c.1559delT mutation, which is the most frequent mutation in Japanese patients with HPP, using transcription activator-like effector nucleases (TALENs). The gene correction targeting vector was designed for site-directed mutagenesis using TALEN. After selection with antibiotics, some clones with the selection cassette were obtained. Gene correction was confirmed by Sanger sequencing. The mutation was corrected in one allele of ALPL in homozygous patients and compound heterozygous patients. The correction of ALPL did not result in an increase in ALP when the selection cassette remained. Conversely, iPSCs exhibited ALP activity after the elimination of the cassette using Cre/LoxP. The quantitative analysis showed the half ALP activity in corrected iPSCs of that of control iPSCs, corresponding to heterozygous correction of the mutation. In addition, osteoblasts differentiated from the corrected iPSCs exhibited high ALP activity and some calcification in vitro. Moreover, the osteoblast-like phenotype was confirmed by increased expression of osteoblast-specific genes such as COL1A1 and osteocalcin. These results suggest that gene correction in iPSCs may be a candidate treatment for HPP patients.
Collapse
Affiliation(s)
- Chiho Nakano
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan; Unit of Dentistry, Osaka University Hospital, Osaka, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ken Taketani
- Department of Pediatrics, Shimane University, Osaka, Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
9
|
Abstract
Genetic robustness, or the ability of an organism to maintain fitness in the presence of mutations, can be achieved via protein feedback loops. Recent evidence suggests that organisms may also respond to mutations by upregulating related gene(s) independently of protein feedback loops, a phenomenon called transcriptional adaptation. However, the prevalence of transcriptional adaptation and its underlying molecular mechanisms are unknown. Here, by analyzing several models of transcriptional adaptation in zebrafish and mouse, we show a requirement for mRNA degradation. Alleles that fail to transcribe the mutated gene do not display transcriptional adaptation and exhibit more severe phenotypes than alleles displaying mutant mRNA decay. Transcriptome analysis reveals the upregulation of a substantial proportion of the genes that exhibit sequence similarity with the mutated gene’s mRNA, suggesting a sequence dependent mechanism. Besides implications for our understanding of disease-causing mutations, these findings will help design mutant alleles with minimal transcriptional adaptation-derived compensation.
Collapse
|
10
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
11
|
Schreiber T, Prange A, Hoppe T, Tissier A. Split-TALE: A TALE-Based Two-Component System for Synthetic Biology Applications in Planta. PLANT PHYSIOLOGY 2019; 179:1001-1012. [PMID: 30643014 PMCID: PMC6393785 DOI: 10.1104/pp.18.01218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
Transcription activator-like effectors (TALEs) are bacterial Type-III effector proteins from phytopathogenic Xanthomonas species that act as transcription factors in plants. The modular DNA-binding domain of TALEs can be reprogrammed to target nearly any DNA sequence. Here, we designed and optimized a two-component AND-gate system for synthetic circuits in plants based on TALEs. In this system, named split-TALE (sTALE), the TALE DNA binding domain and the transcription activation domain are separated and each fused to protein interacting domains. Physical interaction of interacting domains leads to TALE-reconstitution and can be monitored by reporter gene induction. This setup was used for optimization of the sTALE scaffolds, which result in an AND-gate system with an improved signal-to-noise ratio. We also provide a toolkit of ready-to-use vectors and single modules compatible with Golden Gate cloning and MoClo syntax. In addition to its implementation in synthetic regulatory circuits, the sTALE system allows the analysis of protein-protein interactions in planta.
Collapse
Affiliation(s)
- Tom Schreiber
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Anja Prange
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Tina Hoppe
- Department of Genetics, Institute for Biology, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Saha SK, Saikot FK, Rahman MS, Jamal MAHM, Rahman SMK, Islam SMR, Kim KH. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:212-238. [PMID: 30641475 PMCID: PMC6330515 DOI: 10.1016/j.omtn.2018.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023]
Abstract
Targeted genome editing is an advanced technique that enables precise modification of the nucleic acid sequences in a genome. Genome editing is typically performed using tools, such as molecular scissors, to cut a defined location in a specific gene. Genome editing has impacted various fields of biotechnology, such as agriculture; biopharmaceutical production; studies on the structure, regulation, and function of the genome; and the creation of transgenic organisms and cell lines. Although genome editing is used frequently, it has several limitations. Here, we provide an overview of well-studied genome-editing nucleases, including single-stranded oligodeoxynucleotides (ssODNs), transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and CRISPR-Cas9 RNA-guided nucleases (CRISPR-Cas9). To this end, we describe the progress toward editable nuclease-based therapies and discuss the minimization of off-target mutagenesis. Future prospects of this challenging scientific field are also discussed.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-Ro, Seoul 05029, Republic of Korea.
| | - Forhad Karim Saikot
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | | - S M Khaledur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
13
|
Bogdanove AJ, Bohm A, Miller JC, Morgan RD, Stoddard BL. Engineering altered protein-DNA recognition specificity. Nucleic Acids Res 2018; 46:4845-4871. [PMID: 29718463 PMCID: PMC6007267 DOI: 10.1093/nar/gky289] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein engineering is used to generate novel protein folds and assemblages, to impart new properties and functions onto existing proteins, and to enhance our understanding of principles that govern protein structure. While such approaches can be employed to reprogram protein-protein interactions, modifying protein-DNA interactions is more difficult. This may be related to the structural features of protein-DNA interfaces, which display more charged groups, directional hydrogen bonds, ordered solvent molecules and counterions than comparable protein interfaces. Nevertheless, progress has been made in the redesign of protein-DNA specificity, much of it driven by the development of engineered enzymes for genome modification. Here, we summarize the creation of novel DNA specificities for zinc finger proteins, meganucleases, TAL effectors, recombinases and restriction endonucleases. The ease of re-engineering each system is related both to the modularity of the protein and the extent to which the proteins have evolved to be capable of readily modifying their recognition specificities in response to natural selection. The development of engineered DNA binding proteins that display an ideal combination of activity, specificity, deliverability, and outcomes is not a fully solved problem, however each of the current platforms offers unique advantages, offset by behaviors and properties requiring further study and development.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Bohm
- Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Jeffrey C Miller
- Sangamo Therapeutics Inc. 501 Canal Blvd., Richmond, CA 94804, USA
| | - Richard D Morgan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98019, USA
| |
Collapse
|
14
|
Guha TK, Edgell DR. Applications of Alternative Nucleases in the Age of CRISPR/Cas9. Int J Mol Sci 2017; 18:ijms18122565. [PMID: 29186020 PMCID: PMC5751168 DOI: 10.3390/ijms18122565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 01/10/2023] Open
Abstract
Breakthroughs in the development of programmable site-specific nucleases, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), meganucleases (MNs), and most recently, the clustered regularly interspaced short palindromic repeats (CRISPR) associated proteins (including Cas9) have greatly enabled and accelerated genome editing. By targeting double-strand breaks to user-defined locations, the rates of DNA repair events are greatly enhanced relative to un-catalyzed events at the same sites. However, the underlying biology of each genome-editing nuclease influences the targeting potential, the spectrum of off-target cleavages, the ease-of-use, and the types of recombination events at targeted double-strand breaks. No single genome-editing nuclease is optimized for all possible applications. Here, we focus on the diversity of nuclease domains available for genome editing, highlighting biochemical properties and the potential applications that are best suited to each domain.
Collapse
Affiliation(s)
- Tuhin K Guha
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
15
|
Rinaldi FC, Doyle LA, Stoddard BL, Bogdanove AJ. The effect of increasing numbers of repeats on TAL effector DNA binding specificity. Nucleic Acids Res 2017; 45:6960-6970. [PMID: 28460076 PMCID: PMC5499867 DOI: 10.1093/nar/gkx342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
Transcription activator-like effectors (TALEs) recognize their DNA targets via tandem repeats, each specifying a single nucleotide base in a one-to-one sequential arrangement. Due to this modularity and their ability to bind long DNA sequences with high specificity, TALEs have been used in many applications. Contributions of individual repeat-nucleotide associations to affinity and specificity have been characterized. Here, using in vitro binding assays, we examined the relationship between the number of repeats in a TALE and its affinity, for both target and non-target DNA. Each additional repeat provides extra binding energy for the target DNA, with the gain decaying exponentially such that binding energy saturates. Affinity for non-target DNA also increases non-linearly with the number of repeats, but with a slower decay of gain. The difference between the effect of length on affinity for target versus non-target DNA manifests in specificity increasing then diminishing with increasing TALE length, peaking between 15 and 19 repeats. Modeling across different hypothetical saturation levels and rates of gain decay, reflecting different repeat compositions, yielded a similar range of specificity optima. This range encompasses the mean and median length of native TALEs, suggesting that these proteins as a group have evolved for maximum specificity.
Collapse
Affiliation(s)
- Fabio C Rinaldi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Lindsey A Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research, Seattle, WA 98019, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research, Seattle, WA 98019, USA
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Generation of dTALEs and Libraries of Synthetic TALE-Activated Promoters for Engineering of Gene Regulatory Networks in Plants. Methods Mol Biol 2017. [PMID: 28623587 DOI: 10.1007/978-1-4939-7125-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Transcription factors with programmable DNA-binding specificity constitute valuable tools for the design of orthogonal gene regulatory networks for synthetic biology. Transcription activator-like effectors (TALEs), as natural transcription regulators, were used to design, build, and test libraries of synthetic TALE-activated promoters (STAPs) that show a broad range of expression levels in plants. In this chapter, we present protocols for the construction of artificial TALEs and corresponding STAPs.
Collapse
|
17
|
Perycz M, Krwawicz J, Bochtler M. A TALE-inspired computational screen for proteins that contain approximate tandem repeats. PLoS One 2017; 12:e0179173. [PMID: 28617832 PMCID: PMC5472282 DOI: 10.1371/journal.pone.0179173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2017] [Indexed: 11/18/2022] Open
Abstract
TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.
Collapse
Affiliation(s)
- Malgorzata Perycz
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Joanna Krwawicz
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Matthias Bochtler
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Poland
- * E-mail:
| |
Collapse
|
18
|
Cox KL, Meng F, Wilkins KE, Li F, Wang P, Booher NJ, Carpenter SCD, Chen LQ, Zheng H, Gao X, Zheng Y, Fei Z, Yu JZ, Isakeit T, Wheeler T, Frommer WB, He P, Bogdanove AJ, Shan L. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat Commun 2017; 8:15588. [PMID: 28537271 PMCID: PMC5458083 DOI: 10.1038/ncomms15588] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/11/2017] [Indexed: 12/22/2022] Open
Abstract
Transcription activator-like (TAL) effectors from Xanthomonas citri subsp. malvacearum (Xcm) are essential for bacterial blight of cotton (BBC). Here, by combining transcriptome profiling with TAL effector-binding element (EBE) prediction, we show that GhSWEET10, encoding a functional sucrose transporter, is induced by Avrb6, a TAL effector determining Xcm pathogenicity. Activation of GhSWEET10 by designer TAL effectors (dTALEs) restores virulence of Xcm avrb6 deletion strains, whereas silencing of GhSWEET10 compromises cotton susceptibility to infections. A BBC-resistant line carrying an unknown recessive b6 gene bears the same EBE as the susceptible line, but Avrb6-mediated induction of GhSWEET10 is reduced, suggesting a unique mechanism underlying b6-mediated resistance. We show via an extensive survey of GhSWEET transcriptional responsiveness to different Xcm field isolates that additional GhSWEETs may also be involved in BBC. These findings advance our understanding of the disease and resistance in cotton and may facilitate the development cotton with improved resistance to BBC. Transcription activator-like effectors contribute to virulence of the Xanthomonas strain responsible for bacterial blight in cotton. Here Cox et al. show that the Xanthomonas Avrb6 effector induces expression of the cotton SWEET10 sugar transporter and that this induction promotes disease.
Collapse
Affiliation(s)
- Kevin L Cox
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA
| | - Fanhong Meng
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA
| | - Katherine E Wilkins
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Fangjun Li
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA
| | - Ping Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA
| | - Nicholas J Booher
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Sara C D Carpenter
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Li-Qing Chen
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Hui Zheng
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Xiquan Gao
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, Texas 77845, USA
| | - Thomas Isakeit
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| | - Terry Wheeler
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.,Texas Agricultural Experiment Station, Lubbock, Texas 79403, USA
| | - Wolf B Frommer
- Carnegie Science, Department of Plant Biology, 260 Panama Street, Stanford, California 94305, USA
| | - Ping He
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
19
|
Wang L, Rinaldi FC, Singh P, Doyle EL, Dubrow ZE, Tran TT, Pérez-Quintero AL, Szurek B, Bogdanove AJ. TAL Effectors Drive Transcription Bidirectionally in Plants. MOLECULAR PLANT 2017; 10:285-296. [PMID: 27965000 DOI: 10.1016/j.molp.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
TAL effectors delivered by phytopathogenic Xanthomonas species are DNA-sequence-specific transcriptional activators of host susceptibility genes and sometimes resistance genes. The modularity of DNA recognition by TAL effectors makes them important also as tools for gene targeting and genome editing. Effector binding elements (EBEs) recognized by native TAL effectors in plants have been identified only on the forward strand of target promoters. Here, we demonstrate that TAL effectors can drive plant transcription from EBEs on either strand and in both directions. Furthermore, we show that a native TAL effector from Xanthomonas oryzae pv. oryzicola drives expression of a target with an EBE on each strand of its promoter. By inserting that promoter and derivatives between two reporter genes oriented head to head, we show that the TAL effector drives expression from either EBE in the respective orientations, and that activity at the reverse-strand EBE also potentiates forward transcription driven by activity at the forward-strand EBE. Our results reveal new modes of action for TAL effectors, suggesting the possibility of yet unrecognized targets important in plant disease, expanding the search space for off-targets of custom TAL effectors, and highlighting the potential of TAL effectors for probing fundamental aspects of plant transcription.
Collapse
Affiliation(s)
- Li Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Fabio C Rinaldi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Pallavi Singh
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Erin L Doyle
- Department of Biology, Doane University, 1014 Boswell Avenue, Crete, NE 68333, USA
| | - Zoe E Dubrow
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Tuan Tu Tran
- UMR Interactions-Plantes-Microorganismes-Environnement, IRD-Cirad-Université Montpellier, Montpellier, France
| | - Alvaro L Pérez-Quintero
- UMR Interactions-Plantes-Microorganismes-Environnement, IRD-Cirad-Université Montpellier, Montpellier, France
| | - Boris Szurek
- UMR Interactions-Plantes-Microorganismes-Environnement, IRD-Cirad-Université Montpellier, Montpellier, France
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
A Novel Zebrafish ret Heterozygous Model of Hirschsprung Disease Identifies a Functional Role for mapk10 as a Modifier of Enteric Nervous System Phenotype Severity. PLoS Genet 2016; 12:e1006439. [PMID: 27902697 PMCID: PMC5130169 DOI: 10.1371/journal.pgen.1006439] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Hirschsprung disease (HSCR) is characterized by absence of enteric neurons from the distal colon and severe intestinal dysmotility. To understand the pathophysiology and genetics of HSCR we developed a unique zebrafish model that allows combined genetic, developmental and in vivo physiological studies. We show that ret mutant zebrafish exhibit cellular, physiological and genetic features of HSCR, including absence of intestinal neurons, reduced peristalsis, and varying phenotype expressivity in the heterozygous state. We perform live imaging experiments using a UAS-GAL4 binary genetic system to drive fluorescent protein expression in ENS progenitors. We demonstrate that ENS progenitors migrate at reduced speed in ret heterozygous embryos, without changes in proliferation or survival, establishing this as a principal pathogenic mechanism for distal aganglionosis. We show, using live imaging of actual intestinal movements, that intestinal motility is severely compromised in ret mutants, and partially impaired in ret heterozygous larvae, and establish a clear correlation between neuron position and organised intestinal motility. We exploited the partially penetrant ret heterozygous phenotype as a sensitised background to test the influence of a candidate modifier gene. We generated mapk10 loss-of-function mutants, which show reduced numbers of enteric neurons. Significantly, we show that introduction of mapk10 mutations into ret heterozygotes enhanced the ENS deficit, supporting MAPK10 as a HSCR susceptibility locus. Our studies demonstrate that ret heterozygous zebrafish is a sensitized model, with many significant advantages over existing murine models, to explore the pathophysiology and complex genetics of HSCR. Hirschsprung Disease (HSCR) is a common congenital intestinal motility disorder diagnosed at birth by absence of enteric neurons in the distal gut, leading to intestinal obstruction that requires life-saving surgery. HSCR exhibits complex inheritance patterns and its genetic basis is not fully understood. Although well studied by human geneticists, and modelled using mouse, significant questions remain about the cellular and genetic causes of the disease and the relationship between neuron loss and defective intestinal motility. Here we use accessible, transparent zebrafish to address these outstanding questions. We establish that ret mutant zebrafish display key features of HSCR, including absence of intestinal neurons, reduced gut motility and varying phenotype expressivity. Using live imaging, possible in zebrafish but not in mouse, we demonstrate that decreased migration speed of enteric neuron progenitors colonising the gut is the principal defect leading to neuron deficits. By direct examination of gut motility in zebrafish larvae, we establish a clear correlation between neurons and motility patterns. Finally, we show that mapk10 mutations worsen the enteric neuron deficit of ret mutants, indicating that mutations in MAPK10 may increase susceptibility to HSCR. We show many benefits of modelling human genetic diseases in zebrafish and advance our understanding of HSCR.
Collapse
|
21
|
Read AC, Rinaldi FC, Hutin M, He YQ, Triplett LR, Bogdanove AJ. Suppression of Xo1-Mediated Disease Resistance in Rice by a Truncated, Non-DNA-Binding TAL Effector of Xanthomonas oryzae. FRONTIERS IN PLANT SCIENCE 2016; 7:1516. [PMID: 27790231 PMCID: PMC5062187 DOI: 10.3389/fpls.2016.01516] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/26/2016] [Indexed: 05/19/2023]
Abstract
Delivered into plant cells by type III secretion from pathogenic Xanthomonas species, TAL (transcription activator-like) effectors are nuclear-localized, DNA-binding proteins that directly activate specific host genes. Targets include genes important for disease, genes that confer resistance, and genes inconsequential to the host-pathogen interaction. TAL effector specificity is encoded by polymorphic repeats of 33-35 amino acids that interact one-to-one with nucleotides in the recognition site. Activity depends also on N-terminal sequences important for DNA binding and C-terminal nuclear localization signals (NLS) and an acidic activation domain (AD). Coding sequences missing much of the N- and C-terminal regions due to conserved, in-frame deletions are present and annotated as pseudogenes in sequenced strains of Xanthomonas oryzae pv. oryzicola (Xoc) and pv. oryzae (Xoo), which cause bacterial leaf streak and bacterial blight of rice, respectively. Here we provide evidence that these sequences encode proteins we call "truncTALEs," for "truncated TAL effectors." We show that truncTALE Tal2h of Xoc strain BLS256, and by correlation truncTALEs in other strains, specifically suppress resistance mediated by the Xo1 locus recently described in the heirloom rice variety Carolina Gold. Xo1-mediated resistance is triggered by different TAL effectors from diverse X. oryzae strains, irrespective of their DNA binding specificity, and does not require the AD. This implies a direct protein-protein rather than protein-DNA interaction. Similarly, truncTALEs exhibit diverse predicted DNA recognition specificities. And, in vitro, Tal2h did not bind any of several potential recognition sites. Further, a single candidate NLS sequence in Tal2h was dispensable for resistance suppression. Many truncTALEs have one 28 aa repeat, a length not observed previously. Tested in an engineered TAL effector, this repeat required a single base pair deletion in the DNA, suggesting that it or a neighbor disengages. The presence of the 28 aa repeat, however, was not required for resistance suppression. TruncTALEs expand the paradigm for TAL effector-mediated effects on plants. We propose that Tal2h and other truncTALEs act as dominant negative ligands for an immune receptor encoded by the Xo1 locus, likely a nucleotide binding, leucine-rich repeat protein. Understanding truncTALE function and distribution will inform strategies for disease control.
Collapse
Affiliation(s)
- Andrew C. Read
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
| | - Fabio C. Rinaldi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
| | - Mathilde Hutin
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
| | - Yong-Qiang He
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi UniversityNanning, China
| | - Lindsay R. Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment StationNew Haven, CT, USA
| | - Adam J. Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
22
|
Cohn M, Morbitzer R, Lahaye T, Staskawicz BJ. Comparison of gene activation by two TAL effectors from Xanthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava. MOLECULAR PLANT PATHOLOGY 2016; 17:875-89. [PMID: 26575863 PMCID: PMC6638523 DOI: 10.1111/mpp.12337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/23/2015] [Accepted: 10/13/2015] [Indexed: 05/10/2023]
Abstract
Xanthomonas axonopodis pv. manihotis (Xam) employs transcription activator-like (TAL) effectors to promote bacterial growth and symptom formation during infection of cassava. TAL effectors are secreted via the bacterial type III secretion system into plant cells, where they are directed to the nucleus, bind DNA in plant promoters and activate the expression of downstream genes. The DNA-binding activity of TAL effectors is carried out by a central domain which contains a series of repeat variable diresidues (RVDs) that dictate the sequence of bound nucleotides. TAL14Xam668 promotes virulence in Xam strain Xam668 and has been shown to activate multiple cassava genes. In this study, we used RNA sequencing to identify the full target repertoire of TAL14Xam668 in cassava, which includes over 50 genes. A subset of highly up-regulated genes was tested for activation by TAL14CIO151 from Xam strain CIO151. Although TAL14CIO151 and TAL14Xam668 differ by only a single RVD, they display differential activation of gene targets. TAL14CIO151 complements the TAL14Xam668 mutant defect, implying that shared target genes are important for TAL14Xam668 -mediated disease susceptibility. Complementation with closely related TAL effectors is a novel approach to the narrowing down of biologically relevant susceptibility genes of TAL effectors with multiple targets. This study provides an example of how TAL effector target activation by two strains within a single species of Xanthomonas can be dramatically affected by a small change in RVD-nucleotide affinity at a single site, and reflects the parameters of RVD-nucleotide interaction determined using designer TAL effectors in transient systems.
Collapse
Affiliation(s)
- Megan Cohn
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3120, USA
| | - Robert Morbitzer
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP) University of Tübingen, D-72076, Tübingen, Germany
| | - Thomas Lahaye
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP) University of Tübingen, D-72076, Tübingen, Germany
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3120, USA
| |
Collapse
|
23
|
Stella S, Montoya G. The genome editing revolution: A CRISPR-Cas TALE off-target story. Bioessays 2016; 38 Suppl 1:S4-S13. [DOI: 10.1002/bies.201670903] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Stefano Stella
- Novo Nordisk Foundation Center for Protein Research, Protein Structure and Function Programme, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research, Protein Structure and Function Programme, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
24
|
Chugunova AA, Dontsova OA, Sergiev PV. Methods of genome engineering: a new era of molecular biology. BIOCHEMISTRY (MOSCOW) 2016; 81:662-77. [DOI: 10.1134/s0006297916070038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Kubik G, Summerer D. TALEored Epigenetics: A DNA-Binding Scaffold for Programmable Epigenome Editing and Analysis. Chembiochem 2016; 17:975-80. [DOI: 10.1002/cbic.201600072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Grzegorz Kubik
- Technische Universität Dortmund; Fakultät für Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Daniel Summerer
- Technische Universität Dortmund; Fakultät für Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
26
|
Schreiber T, Tissier A. Libraries of Synthetic TALE-Activated Promoters: Methods and Applications. Methods Enzymol 2016; 576:361-78. [PMID: 27480693 DOI: 10.1016/bs.mie.2016.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The discovery of proteins with programmable DNA-binding specificities triggered a whole array of applications in synthetic biology, including genome editing, regulation of transcription, and epigenetic modifications. Among those, transcription activator-like effectors (TALEs) due to their natural function as transcription regulators, are especially well-suited for the development of orthogonal systems for the control of gene expression. We describe here the construction and testing of libraries of synthetic TALE-activated promoters which are under the control of a single TALE with a given DNA-binding specificity. These libraries consist of a fixed DNA-binding element for the TALE, a TATA box, and variable sequences of 19 bases upstream and 43 bases downstream of the DNA-binding element. These libraries were cloned using a Golden Gate cloning strategy making them usable as standard parts in a modular cloning system. The broad range of promoter activities detected and the versatility of these promoter libraries make them valuable tools for applications in the fine-tuning of expression in metabolic engineering projects or in the design and implementation of regulatory circuits.
Collapse
Affiliation(s)
- T Schreiber
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - A Tissier
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany.
| |
Collapse
|
27
|
Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 2016; 217:90-7. [PMID: 26603121 DOI: 10.1016/j.jbiotec.2015.11.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
Gene targeting (GT) is of great significance for advancing basic plant research and crop improvement. Both TALENs (transcription activator-like effectors nucleases) and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) systems have been developed for genome editing in eukaryotes, including crop plants. In this work, we present the comparative analysis of these two technologies for two soybean genome editing targets, GmPDS11 and GmPDS18. We found GT in soybean hairy roots with a single targeting efficiency range of 17.5-21.1% by TALENs, 11.7-18.1% by CRISPR/Cas9 using the AtU6-26 promoter, and 43.4-48.1% by CRISPR/Cas9 using the GmU6-16g-1 promoter, suggesting that the CRISPR/Cas9 using the GmU6-16g-1 promoter is probably a much more efficient tool compared to the other technologies. Similarly, our double mutation GT efficiency experiment with these three technologies displayed a targeting efficiency of 6.25% by TALENs, 12.5% by CRISPR/Cas9 using the AtU6-26 promoter, and 43.4-48.1% by CRISPR/Cas9 using the GmU6-16g-1 promoter, suggesting that CRISPR/Cas9 is still a better choice for simultaneous editing of multiple homoeoalleles. Furthermore, we observed albino and dwarf buds (PDS knock-out) by soybean transformation in cotyledon nodes. Our results demonstrated that both TALENs and CRISPR/Cas9 systems are powerful tools for soybean genome editing.
Collapse
Affiliation(s)
- Hongyang Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanrui Zeng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Zhao
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaopei Cui
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
28
|
Abstract
The development of a facile genome engineering technology based on transcription activator-like effector nucleases (TALENs) has led to significant advances in diverse areas of science and medicine. In this review, we provide a broad overview of the development of TALENs and the use of this technology in basic science, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing strategies, and challenges that are specific to various applications of the TALEN technology. We review examples of applying TALENs for studying gene function and regulation, generating disease models, and developing gene therapies. The current status of genome editing and future directions for other uses of these technologies are also discussed.
Collapse
Affiliation(s)
- David G Ousterout
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Box 90281, Durham, NC, 27708-0281, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
29
|
Abstract
Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use.
Collapse
|
30
|
Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, Stainier DYR. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 2015; 524:230-3. [PMID: 26168398 DOI: 10.1038/nature14580] [Citation(s) in RCA: 916] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/22/2015] [Indexed: 01/04/2023]
|
31
|
Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 2015; 4:585-94. [PMID: 25207793 DOI: 10.1021/sb500255k] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
One-step multiple gene disruption in the model organism Saccharomyces cerevisiae is a highly useful tool for both basic and applied research, but it remains a challenge. Here, we report a rapid, efficient, and potentially scalable strategy based on the type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated proteins (Cas) system to generate multiple gene disruptions simultaneously in S. cerevisiae. A 100 bp dsDNA mutagenizing homologous recombination donor is inserted between two direct repeats for each target gene in a CRISPR array consisting of multiple donor and guide sequence pairs. An ultrahigh copy number plasmid carrying iCas9, a variant of wild-type Cas9, trans-encoded RNA (tracrRNA), and a homology-integrated crRNA cassette is designed to greatly increase the gene disruption efficiency. As proof of concept, three genes, CAN1, ADE2, and LYP1, were simultaneously disrupted in 4 days with an efficiency ranging from 27 to 87%. Another three genes involved in an artificial hydrocortisone biosynthetic pathway, ATF2, GCY1, and YPR1, were simultaneously disrupted in 6 days with 100% efficiency. This homology-integrated CRISPR (HI-CRISPR) strategy represents a powerful tool for creating yeast strains with multiple gene knockouts.
Collapse
Affiliation(s)
- Zehua Bao
- Department of Biochemistry, ‡Department of Chemical and Biomolecular
Engineering, §Departments of Chemistry,
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Han Xiao
- Department of Biochemistry, ‡Department of Chemical and Biomolecular
Engineering, §Departments of Chemistry,
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jing Liang
- Department of Biochemistry, ‡Department of Chemical and Biomolecular
Engineering, §Departments of Chemistry,
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lu Zhang
- Department of Biochemistry, ‡Department of Chemical and Biomolecular
Engineering, §Departments of Chemistry,
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Xiong Xiong
- Department of Biochemistry, ‡Department of Chemical and Biomolecular
Engineering, §Departments of Chemistry,
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ning Sun
- Department of Biochemistry, ‡Department of Chemical and Biomolecular
Engineering, §Departments of Chemistry,
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tong Si
- Department of Biochemistry, ‡Department of Chemical and Biomolecular
Engineering, §Departments of Chemistry,
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Biochemistry, ‡Department of Chemical and Biomolecular
Engineering, §Departments of Chemistry,
and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Miller JC, Zhang L, Xia DF, Campo JJ, Ankoudinova IV, Guschin DY, Babiarz JE, Meng X, Hinkley SJ, Lam SC, Paschon DE, Vincent AI, Dulay GP, Barlow KA, Shivak DA, Leung E, Kim JD, Amora R, Urnov FD, Gregory PD, Rebar EJ. Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nat Methods 2015; 12:465-71. [PMID: 25799440 DOI: 10.1038/nmeth.3330] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023]
Abstract
Transcription activator-like effector (TALE) proteins have gained broad appeal as a platform for targeted DNA recognition, largely owing to their simple rules for design. These rules relate the base specified by a single TALE repeat to the identity of two key residues (the repeat variable diresidue, or RVD) and enable design for new sequence targets via modular shuffling of these units. A key limitation of these rules is that their simplicity precludes options for improving designs that are insufficiently active or specific. Here we address this limitation by developing an expanded set of RVDs and applying them to improve the performance of previously described TALEs. As an extreme example, total conversion of a TALE nuclease to new RVDs substantially reduced off-target cleavage in cellular studies. By providing new RVDs and design strategies, these studies establish options for developing improved TALEs for broader application across medicine and biotechnology.
Collapse
Affiliation(s)
| | - Lei Zhang
- Sangamo BioSciences Inc., Richmond, California, USA
| | - Danny F Xia
- Sangamo BioSciences Inc., Richmond, California, USA
| | - John J Campo
- Sangamo BioSciences Inc., Richmond, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Elo Leung
- Sangamo BioSciences Inc., Richmond, California, USA
| | - Jinwon D Kim
- Sangamo BioSciences Inc., Richmond, California, USA
| | | | | | | | | |
Collapse
|
33
|
Tsai CS, Kwak S, Turner TL, Jin YS. Yeast synthetic biology toolbox and applications for biofuel production. FEMS Yeast Res 2015; 15:1-15. [PMID: 25195615 DOI: 10.1111/1567-1364.12206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/16/2014] [Accepted: 08/31/2014] [Indexed: 01/04/2023] Open
Abstract
Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains.
Collapse
Affiliation(s)
- Ching-Sung Tsai
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Suryang Kwak
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy L Turner
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA .,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
34
|
Teimourian S, Abdollahzadeh R. Technology developments in biological tools for targeted genome surgery. Biotechnol Lett 2014; 37:29-39. [PMID: 25257583 DOI: 10.1007/s10529-014-1656-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/29/2014] [Indexed: 12/26/2022]
Abstract
Different biological tools for targeted genome engineering have recently appeared and these include tools like meganucleases, zinc-finger nucleases and newer technologies including TALENs and CRISPR/Cas systems. transcription activator-like effector nucleases (TALENs) have greatly improved genome editing efficiency by making site-specific DNA double-strand breaks. Several studies have shown the prominence of TALENs in comparison to the meganucleases and zinc-finger nucleases. The most important feature of TALENs that makes them suitable tools for targeted genome editing is the modularity of central repeat domains, meaning that they can be designed to recognize any desirable DNA sequence. In this review, we present a comprehensive and concise description of TALENs technology developments for targeted genome surgery with to the point description and comparison of other tools.
Collapse
Affiliation(s)
- Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran,
| | | |
Collapse
|
35
|
Bogdanove AJ. Principles and applications of TAL effectors for plant physiology and metabolism. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:99-104. [PMID: 24907530 PMCID: PMC4086460 DOI: 10.1016/j.pbi.2014.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 05/27/2023]
Abstract
Recent advances in DNA targeting allow unprecedented control over gene function and expression. Targeting based on TAL effectors is arguably the most promising for systems biology and metabolic engineering. Multiple, orthogonal TAL-effector reagents of different types can be used in the same cell. Furthermore, variation in base preferences of the individual structural repeats that make up the TAL effector DNA recognition domain makes targeting stringency tunable. Realized applications range from genome editing to epigenome modification to targeted gene regulation to chromatin labeling and capture. The principles that govern TAL effector DNA recognition make TAL effectors well suited for applications relevant to plant physiology and metabolism. TAL effector targeting has merits that are distinct from those of the RNA-based DNA targeting CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology, 334 Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
Schreiber T, Bonas U. Repeat 1 of TAL effectors affects target specificity for the base at position zero. Nucleic Acids Res 2014; 42:7160-9. [PMID: 24792160 PMCID: PMC4066769 DOI: 10.1093/nar/gku341] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AvrBs3, the founding member of the Xanthomonas transcription-activator-like effectors (TALEs), is translocated into the plant cell where it localizes to the nucleus and acts as transcription factor. The DNA-binding domain of AvrBs3 consists of 17.5 nearly-identical 34 amino acid-repeats. Each repeat specifies binding to one base in the target DNA via amino acid residues 12 and 13 termed repeat variable diresidue (RVD). Natural target sequences of TALEs are generally preceded by a thymine (T0), which is coordinated by a tryptophan residue (W232) in a degenerated repeat upstream of the canonical repeats. To investigate the necessity of T0 and the conserved tryptophan for AvrBs3-mediated gene activation we tested TALE mutant derivatives on target sequences preceded by all possible four bases. In addition, we performed domain swaps with TalC from a rice pathogenic Xanthomonas because TalC lacks the tryptophan residue, and the TalC target sequence is preceded by cytosine. We show that T0 works best and that T0 specificity depends on the repeat number and overall RVD-composition. T0 and W232 appear to be particularly important if the RVD of the first repeat is HD ('rep1 effect'). Our findings provide novel insights into the mechanism of T0 recognition by TALE proteins and are important for TALE-based biotechnological applications.
Collapse
Affiliation(s)
- Tom Schreiber
- Department of Genetics, Martin Luther University, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Ulla Bonas
- Department of Genetics, Martin Luther University, Weinbergweg 10, 06120 Halle (Saale), Germany
| |
Collapse
|
37
|
Abstract
Programmable nucleases - including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and RNA-guided engineered nucleases (RGENs) derived from the bacterial clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) system - enable targeted genetic modifications in cultured cells, as well as in whole animals and plants. The value of these enzymes in research, medicine and biotechnology arises from their ability to induce site-specific DNA cleavage in the genome, the repair (through endogenous mechanisms) of which allows high-precision genome editing. However, these nucleases differ in several respects, including their composition, targetable sites, specificities and mutation signatures, among other characteristics. Knowledge of nuclease-specific features, as well as of their pros and cons, is essential for researchers to choose the most appropriate tool for a range of applications.
Collapse
Affiliation(s)
- Hyongbum Kim
- Graduate School of Biomedical Science and Engineering, and College of Medicine, Hanyang University, Wangsimni-ro 222, Sungdong-gu, Seoul 133-791, South Korea
| | - Jin-Soo Kim
- 1] Center for Genome Engineering, Institute for Basic Science, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, South Korea. [2] Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, South Korea
| |
Collapse
|