1
|
Lichtfouse J, Lécluse L, Demelier A, Giannoni P. Brine shrimp Artemia salina to evaluate the impact of environmental concentrations of BMAA and isomers, DAB and AEG, via mortality (nauplii) and behavioural (adult) tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177521. [PMID: 39551205 DOI: 10.1016/j.scitotenv.2024.177521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
BMAA and its isomers, DAB and AEG, are toxins mainly produced by cyanobacterial blooms and represent an emerging risk worldwide. Anthropization and climate changes are expanding blooms and the presence of these toxins has been evidenced in different environments including water and air. Investigated since decades, BMAA is a recognized danger in cases of bioaccumulation or when directly exposed to relatively high doses (μg/L). However, little is known about its isomers, DAB and AEG, and in general about toxicity at environmental doses (ng/L). With the present study we investigated the effect of environmental concentrations of BMAA, AEG and DAB on a model representative of aquatic organisms, the crustacean Artemia salina. Toxicological effects of these molecules were tested at two different developmental stages. Mortality experiments were developed on artemia nauplii while behavioural tests were performed on adult artemia. BMAA was evidenced as the most toxic compound in mortality essays showing a statistically significant impact already after 24 h of exposure. DAB and AEG reached a statistically significant effect only following 48 h of exposure, a result that was of reduced intensity when compared to BMAA. Furthermore, all tested molecules altered the behavioural tests performed on adult artemia 1 h after exposure. Male artemia demonstrated to be more impacted than females thus suggesting possible sex differences in the involved toxicological pathways.
Collapse
Affiliation(s)
- J Lichtfouse
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France
| | - L Lécluse
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France
| | - A Demelier
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France
| | - P Giannoni
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France.
| |
Collapse
|
2
|
Kim SY, Kim M, Lim YK, Baek SH, Kim JY, An KG, Hong S. First investigation of the temporal distribution of neurotoxin β-N-methylamino-L-alanine (BMAA) and the candidate causative microalgae along the South Sea Coast of Korea. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135486. [PMID: 39151364 DOI: 10.1016/j.jhazmat.2024.135486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA), produced by cyanobacteria and diatoms, has been implicated as an environmental risk factor for neurodegenerative diseases. This study first investigated the occurrence and monthly distributions of BMAA and its isomers, 2,4-diaminobutyric acid (DAB) and N-2-aminoethylglycine (AEG), in phytoplankton and mussels from 11 sites along the South Sea Coast of Korea throughout 2021. These toxins were quantified using LC-MS/MS, revealing elevated BMAA concentrations from late autumn to spring, with phase lags observed between phytoplankton and mussels. The highest concentration of BMAA in phytoplankton was detected in November (mean: 1490 ng g-1 dry weight (dw)), while in mussels, it peaked in December (mean: 1240 ng g-1 dw). DAB was detected in phytoplankton but was absent in mussels, indicating limited bioaccumulation potential. In February, the peak mean DAB concentration in phytoplankton was 89 ng g-1 dw. AEG was not detected in any samples. Chlorophyll-a concentrations consistently showed an inverse correlation with BMAA concentrations in mussels throughout the year. Through correlation analysis, four diatom genera, Bacillaria, Hemiaulus, Odontella, and Pleurosigma, were identified as potential causative microalgae of BMAA. This study offers insights into identifying the causative microalgae for BMAA and informs future regulatory efforts regarding unmanaged biotoxins.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young Kyun Lim
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Seung Ho Baek
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Ji Yoon Kim
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kwang-Guk An
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
3
|
Kim SY, Kim M, Park K, Hong S. A systematic review on analytical methods of the neurotoxin β-N-methylamino-L-alanine (BMAA), and its causative microalgae and distribution in the environment. CHEMOSPHERE 2024; 366:143487. [PMID: 39395475 DOI: 10.1016/j.chemosphere.2024.143487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
β-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by various microalgal groups, is associated with neurodegenerative diseases and is considered a major environmental factor potentially linked to sporadic amyotrophic lateral sclerosis. This study systematically reviews the analytical methods used to study BMAA in publications from 2019 to the present. It also investigates the causative microalgae of BMAA and its geographical distributions in aquatic ecosystems based on studies conducted since 2003. A comprehensive search using the Web of Science database revealed that hydrolysis for extraction (67%), followed by quantification using LC-MS/MS (LC: 84%; MS/MS: 88%), is the most commonly employed method in BMAA analysis. Among analytical methods, RPLC-MS/MS had the highest percentage (88%) of BMAA-positive results and included a high number of quality control (QC) assessments. Various genera of cyanobacteria and diatoms have been reported to produce BMAA. The widespread geographical distribution of BMAA across diverse ecosystems highlights significant environmental and public health concerns. Notably, BMAA accumulation and biomagnification are likely more potent in marine or brackish water ecosystems than in freshwater ecosystems, potentially amplifying its ecological impacts. Future research should prioritize advanced, sensitive methods, particularly LC-MS/MS with as many QC assessments as possible, and should expand investigations to identify novel microalgal producers and previously uncharted geographical areas, with a special focus on marine or brackish water ecosystems. This effort will enhance our understanding of the environmental distribution and impacts of BMAA.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mungi Kim
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kiho Park
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea; Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Bujak JP, Pereira AL, Azevedo J, Bujak AA, Leshyk V, Pham Gia M, Stadtlander T, Vasconcelos V, Winstead DJ. Azolla as a Safe Food: Suppression of Cyanotoxin-Related Genes and Cyanotoxin Production in Its Symbiont, Nostoc azollae. PLANTS (BASEL, SWITZERLAND) 2024; 13:2707. [PMID: 39409577 PMCID: PMC11479175 DOI: 10.3390/plants13192707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
The floating freshwater fern Azolla is the only plant that retains an endocyanobiont, Nostoc azollae (aka Anabaena azollae), during its sexual and asexual reproduction. The increased interest in Azolla as a potential source of food and its unique evolutionary history have raised questions about its cyanotoxin content and genome. Cyanotoxins are potent toxins synthesized by cyanobacteria which have an anti-herbivore effect but have also been linked to neurodegenerative disorders including Alzheimer's and Parkinson's diseases, liver and kidney failure, muscle paralysis, and other severe health issues. In this study, we investigated 48 accessions of Azolla-Nostoc symbiosis for the presence of genes coding microcystin, nodularin, cylindrospermopsin and saxitoxin, and BLAST analysis for anatoxin-a. We also investigated the presence of the neurotoxin β-N-methylamino-L-alanine (BMAA) in Azolla and N. azollae through LC-MS/MS. The PCR amplification of saxitoxin, cylindrospermospin, microcystin, and nodularin genes showed that Azolla and its cyanobiont N. azollae do not have the genes to synthesize these cyanotoxins. Additionally, the matching of the anatoxin-a gene to the sequenced N. azollae genome does not indicate the presence of the anatoxin-a gene. The LC-MS/MS analysis showed that BMAA and its isomers AEG and DAB are absent from Azolla and Nostoc azollae. Azolla therefore has the potential to safely feed millions of people due to its rapid growth while free-floating on shallow fresh water without the need for nitrogen fertilizers.
Collapse
Affiliation(s)
- Jonathan P. Bujak
- The Azolla Foundation, Burbage Lodge, 200 Queens Promenade, Blackpool FY2 9JS, UK;
| | - Ana L. Pereira
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR, University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (A.L.P.); (J.A.); (V.V.)
| | - Joana Azevedo
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR, University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (A.L.P.); (J.A.); (V.V.)
| | - Alexandra A. Bujak
- The Azolla Foundation, Burbage Lodge, 200 Queens Promenade, Blackpool FY2 9JS, UK;
| | - Victor Leshyk
- Azolla Biodesign, 65 Vista Lane, Sedona, AZ 86351, USA;
| | - Minh Pham Gia
- Independent Researcher, E4 Building, app.12A07, Hanoi 100000, Vietnam;
| | - Timo Stadtlander
- The Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, CH-5070 Frick, Switzerland;
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR, University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (A.L.P.); (J.A.); (V.V.)
- Department of Biology, FCUP-Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daniel J. Winstead
- Department of Ecosystem Science and Management, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
5
|
Li M, Qiu J, Yan G, Zheng X, Li A. How does the neurotoxin β-N-methylamino-L-alanine exist in biological matrices and cause toxicity? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171255. [PMID: 38417517 DOI: 10.1016/j.scitotenv.2024.171255] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) has been deemed as a risk factor for some neurodegenerative diseases such as amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC). This possible link has been proved in some primate models and cell cultures with the appearance that BMAA exposure can cause excitotoxicity, formation of protein aggregates, and/or oxidative stress. The neurotoxin BMAA extensively exists in the environment and can be transferred through the food web to human beings. In this review, the occurrence, toxicological mechanisms, and characteristics of BMAA were comprehensively summarized, and proteins and peptides were speculated as its possible binding substances in biological matrices. It is difficult to compare the published data from previous studies due to the inconsistent analytical methods and components of BMAA. The binding characteristics of BMAA should be focused on to improve our understanding of its health risk to human health in the future.
Collapse
Affiliation(s)
- Min Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
6
|
Pinilla-González V, Montecinos-Barrientos B, Martin-Kommer C, Chichiarelli S, Saso L, Rodrigo R. Exploring antioxidant strategies in the pathogenesis of ALS. Open Life Sci 2024; 19:20220842. [PMID: 38585631 PMCID: PMC10997151 DOI: 10.1515/biol-2022-0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
The central nervous system is essential for maintaining homeostasis and controlling the body's physiological functions. However, its biochemical characteristics make it highly vulnerable to oxidative damage, which is a common factor in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). ALS is a leading cause of motor neuron disease, characterized by a rapidly progressing and incurable condition. ALS often results in death from respiratory failure within 3-5 years from the onset of the first symptoms, underscoring the urgent need to address this medical challenge. The aim of this study is to present available data supporting the role of oxidative stress in the mechanisms underlying ALS and to discuss potential antioxidant therapies currently in development. These therapies aim to improve the quality of life and life expectancy for patients affected by this devastating disease.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | | | - Clemente Martin-Kommer
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185Rome, Italy
| | - Ramón Rodrigo
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| |
Collapse
|
7
|
Weeks RD, Banack SA, Howell S, Thunga P, Metcalf JS, Green AJ, Cox PA, Planchart A. The Effects of Long-term, Low-dose β-N-methylamino-L-alanine (BMAA) Exposures in Adult SOD G93R Transgenic Zebrafish. Neurotox Res 2023; 41:481-495. [PMID: 37552461 PMCID: PMC11216512 DOI: 10.1007/s12640-023-00658-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/07/2023] [Accepted: 07/01/2023] [Indexed: 08/09/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria, which has been implicated in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). It is postulated that chronic exposure to BMAA can lead to formation of protein aggregates, oxidative stress, and/or excitotoxicity, which are mechanisms involved in the etiology of ALS. While specific genetic mutations are identified in some instances of ALS, it is likely that a combination of genetic and environmental factors, such as exposure to the neurotoxin BMAA, contributes to disease. We used a transgenic zebrafish with an ALS-associated mutation, compared with wild-type fish to explore the potential neurotoxic effects of BMAA through chronic long-term exposures. While our results revealed low concentrations of BMAA in the brains of exposed fish, we found no evidence of decreased swim performance or behavioral differences that might be reflective of neurodegenerative disease. Further research is needed to determine if chronic BMAA exposure in adult zebrafish is a suitable model to study neurodegenerative disease initiation and/or progression.
Collapse
Affiliation(s)
- Ryan D. Weeks
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Program in Toxicology, North Carolina State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Sandra A. Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY 83001, USA
| | - Shaunacee Howell
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Preethi Thunga
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - James S. Metcalf
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY 83001, USA
| | - Adrian J. Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Program in Toxicology, North Carolina State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Paul A. Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY 83001, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Program in Toxicology, North Carolina State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Borghero G, Sechi MM, Vasta R, Pierri V, Pili F, Pateri I, Pilotto S, Ercoli T, Muroni A, Chiò A, Defazio G. Spatial clustering of amyotrophic lateral sclerosis in Sardinia, Italy: The contribution of age, sex, and genetic factors. Muscle Nerve 2023; 68:323-328. [PMID: 37466098 DOI: 10.1002/mus.27939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION/AIMS Several microgeographic clusters of higher/lower incidence of amyotrophic lateral sclerosis (ALS) have been identified worldwide. Differences in the distribution of local factors were proposed to explain the excess ALS risk, whereas the contribution of known genetic/epigenetic factors remains unclear. The aim is to identify restricted areas of higher risk in Sardinia and to assess whether age, sex, and the most common causative genetic mutations in Sardinia (C9orf72 and TARDBP mutations) contributed to the variation in the ALS risk. METHODS We performed an ad hoc analysis of the 10-y population-based incident cohort of ALS cases from a recent study of a large Sardinian area. Cluster analysis was performed by age- and sex-adjusted Kulldorff's spatial scan statistic. RESULTS We identified a statistically significant cluster of higher ALS incidence in a relatively large area including 34 municipalities and >100,000 individuals. The investigated genetic mutations were more frequent in the cluster area than outside. Regardless of the genetic mutations, the excess of ALS risk was significantly associated with either sex or with age ≥ 65 y. Finally, an additive interaction between older age and male sex contributed to the excess of ALS risk in the cluster area but not outside. DISCUSSION Our analysis demonstrated that known genetic factors, age, and sex may contribute to microgeographic variation in ALS incidence. The significant additive interaction between older age and male sex we found in the high-incidence cluster could suggest the presence of a third factor connecting the analyzed risk factors.
Collapse
Affiliation(s)
- Giuseppe Borghero
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Maria Margherita Sechi
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosario Vasta
- Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Vincenzo Pierri
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesca Pili
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Ida Pateri
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Silvy Pilotto
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Tommaso Ercoli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonella Muroni
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Adriano Chiò
- Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Giovanni Defazio
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Amyotrophic Lateral Sclerosis Center, University of Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
Amzil Z, Derrien A, Terre Terrillon A, Savar V, Bertin T, Peyrat M, Duval A, Lhaute K, Arnich N, Hort V, Nicolas M. Five Years Monitoring the Emergence of Unregulated Toxins in Shellfish in France (EMERGTOX 2018-2022). Mar Drugs 2023; 21:435. [PMID: 37623716 PMCID: PMC10456248 DOI: 10.3390/md21080435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Shellfish accumulate microalgal toxins, which can make them unsafe for human consumption. In France, in accordance with EU regulations, three groups of marine toxins are currently under official monitoring: lipophilic toxins, saxitoxins, and domoic acid. Other unregulated toxin groups are also present in European shellfish, including emerging lipophilic and hydrophilic marine toxins (e.g., pinnatoxins, brevetoxins) and the neurotoxin β-N-methylamino-L-alanine (BMAA). To acquire data on emerging toxins in France, the monitoring program EMERGTOX was set up along the French coasts in 2018. Three new broad-spectrum LC-MS/MS methods were developed to quantify regulated and unregulated lipophilic and hydrophilic toxins and the BMAA group in shellfish (bivalve mollusks and gastropods). A single-laboratory validation of each of these methods was performed. Additionally, these specific, reliable, and sensitive operating procedures allowed the detection of groups of EU unregulated toxins in shellfish samples from French coasts: spirolides (SPX-13-DesMeC, SPX-DesMeD), pinnatoxins (PnTX-G, PnTX-A), gymnodimines (GYM-A), brevetoxins (BTX-2, BTX-3), microcystins (dmMC-RR, MC-RR), anatoxin, cylindrospermopsin and BMAA/DAB. Here, we present essentially the results of the unregulated toxins obtained from the French EMERGTOX monitoring plan during the past five years (2018-2022). Based on our findings, we outline future needs for monitoring to protect consumers from emerging unregulated toxins.
Collapse
Affiliation(s)
- Zouher Amzil
- IFREMER (French Research Institute for Exploitation of the Sea)/PHYTOX/METALG, F-44311 Nantes, France; (V.S.); (K.L.)
| | - Amélie Derrien
- IFREMER/LITTORAL/LER-BO, F-29900 Concarneau, France; (A.D.); (A.T.T.); (A.D.)
| | | | - Véronique Savar
- IFREMER (French Research Institute for Exploitation of the Sea)/PHYTOX/METALG, F-44311 Nantes, France; (V.S.); (K.L.)
| | - Thomas Bertin
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| | - Marion Peyrat
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| | - Audrey Duval
- IFREMER/LITTORAL/LER-BO, F-29900 Concarneau, France; (A.D.); (A.T.T.); (A.D.)
| | - Korian Lhaute
- IFREMER (French Research Institute for Exploitation of the Sea)/PHYTOX/METALG, F-44311 Nantes, France; (V.S.); (K.L.)
| | - Nathalie Arnich
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France;
| | - Vincent Hort
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| | - Marina Nicolas
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| |
Collapse
|
10
|
Stipa G, Ancidoni A, Vanacore N, Bellomo G. Raw Water and ALS: A Unifying Hypothesis for the Environmental Agents Involved in ALS. Ann Neurosci 2023; 30:124-132. [PMID: 37706096 PMCID: PMC10496797 DOI: 10.1177/09727531221120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 09/15/2023] Open
Abstract
Different studies identified the presence of several altered genes in familial and sporadic amyotrophic lateral sclerosis (ALS) forms. The experimental data, together with the epidemiological data, would seem to suggest the existence of molecular mechanisms (e.g., axonal transport) related to these genes, together with a susceptibility of the same genes to certain environmental factors that would therefore suggest an impact of the environment on the etiopathogenesis of ALS. In our review, we considered the most relevant environmental clusters around the world, collecting different hypotheses and underlining common environmental factors among the different clusters. Moreover, further epidemiological data identified a higher risk of ALS in professional athletes and, in particular, in soccer and football players. Despite this increased risk of ALS highlighted by the epidemiological evidence in aforementioned sports, the mechanisms remain unclear. At last, the use of raw water has been associated with ALS risk. The aim of the present review is to characterize a possible relationship between these clusters, to be explored in the context of the interaction between genetic and environmental factors on the etiopathogenesis of ALS.
Collapse
Affiliation(s)
- Giuseppe Stipa
- Clinical Neurophysiology Division, Neuroscience Department, S. Maria University Hospital, Terni, Italy
| | - Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| | - Guido Bellomo
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| |
Collapse
|
11
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
12
|
Oliveira NAS, Pinho BR, Oliveira JMA. Swimming against ALS: How to model disease in zebrafish for pathophysiological and behavioral studies. Neurosci Biobehav Rev 2023; 148:105138. [PMID: 36933816 DOI: 10.1016/j.neubiorev.2023.105138] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that leads to progressive disability and motor impairment. Existing therapies provide modest improvements in patient survival, raising a need for new treatments for ALS. Zebrafish is a promising model animal for translational and fundamental research in ALS - it is an experimentally tractable vertebrate, with high homology to humans and an ample experimental toolbox. These advantages allow high-throughput study of behavioral and pathophysiological phenotypes. The last decade saw an increased interest in modelling ALS in zebrafish, leading to the current abundance and variety of available methods and models. Additionally, the rise of gene editing techniques and toxin combination studies has created novel opportunities for ALS studies in zebrafish. In this review, we address the relevance of zebrafish as a model animal for ALS studies, the strategies for model induction and key phenotypical evaluation. Furthermore, we discuss established and emerging zebrafish models of ALS, analyzing their validity, including their potential for drug testing, and highlighting research opportunities in this area.
Collapse
Affiliation(s)
- Nuno A S Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Brígida R Pinho
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Jorge M A Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Arnold FJ, Burns M, Chiu Y, Carvalho J, Nguyen AD, Ralph PC, La Spada AR, Bennett CL. Chronic BMAA exposure combined with TDP-43 mutation elicits motor neuron dysfunction phenotypes in mice. Neurobiol Aging 2023; 126:44-57. [PMID: 36931113 DOI: 10.1016/j.neurobiolaging.2023.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with an average age-of-onset of ∼60 years and is usually fatal within 2-5 years of diagnosis. Mouse models based upon single gene mutations do not recapitulate all ALS pathological features. Environmental insults may also contribute to ALS, and β-N-methylamino-L-alanine (BMAA) is an environmental toxin linked with an increased risk of developing ALS. BMAA, along with cycasin, are hypothesized to be the cause of the Guam-ALS epicenter of the 1950s. We developed a multihit model based on low expression of a dominant familial ALS TDP-43 mutation (Q331K) and chronic low-dose BMAA exposure. Our two-hit mouse model displayed a motor phenotype absent from either lesion alone. By LC/MS analysis, free BMAA was confirmed at trace levels in brain, and were as high as 405 ng/mL (free) and 208 ng/mL (protein-bound) in liver. Elevated BMAA levels in liver were associated with dysregulation of the unfolded protein response (UPR) pathway. Our data represent initial steps towards an ALS mouse model resulting from combined genetic and environmental insult.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - M Burns
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Y Chiu
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, NC, USA
| | - J Carvalho
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - P C Ralph
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA.
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
14
|
Méresse S, Larrigaldie V, Oummadi A, de Concini V, Morisset-Lopez S, Reverchon F, Menuet A, Montécot-Dubourg C, Mortaud S. β-N-Methyl-Amino-L-Alanine cyanotoxin promotes modification of undifferentiated cells population and disrupts the inflammatory status in primary cultures of neural stem cells. Toxicology 2022; 482:153358. [DOI: 10.1016/j.tox.2022.153358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
15
|
Boumédiene F, Marin B, Luna J, Bonneterre V, Camu W, Lagrange E, Besson G, Esselin F, De La Cruz E, Lautrette G, Preux PM, Couratier P. Spatio-temporal clustering of amyotrophic lateral sclerosis in France: A population-based study. Eur J Epidemiol 2022; 37:1181-1193. [PMID: 36098945 DOI: 10.1007/s10654-022-00904-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess spatial aggregates of amyotrophic lateral sclerosis (ALS) incident cases, using a solid geo-epidemiological statistical method, in France. METHODS This population-based study (2003-2011) investigated 47.1 million person-years of follow-up (PYFU). Case ascertainment of incident ALS cases was based on multiple sources (ALS referral centers, hospital centres and health insurance data). Neurologists confirmed all ALS diagnoses. Exhaustiveness was estimated through capture-recapture. Aggregates were investigated in four steps: (a) geographical modelling (standardized incidence ratio (SIR) calculation), (b) analysis of the spatial distribution of incidence (Phothoff-Winttinghill's test, Global Moran's Index, Kulldorf's spatial scan statistic, Local Moran's Index), (c) classification of the level of certainty of spatial aggregates (i.e. definite cluster; probable over-incidence area; possible over-incidence area) and (d) evaluation of the robustness of the results. RESULTS The standardized incidence of ALS was 2.46/100,000 PYFU (95% CI 2.31-2.63, European population as reference) based on 1199 incident cases. We identified 13 areas of spatial aggregates: one cluster (stable in robustness analysis), five probable over-incidence areas (2 stable in robustness analysis) and seven possible over-incidence areas (including 4 stable areas in robustness analysis). A cluster was identified in the Rhône-Alpes region: 100 observed vs 54.07 expected cases for 2,411,514 PYFU, SIR: 1.85 (95% CI 1.50-2.25). CONCLUSION We report here one of the largest investigations of incidence and spatial aggregation of ALS ever performed in a western country. Using a solid methodology framework for case ascertainment and cluster analysis, we identified 13 areas that warrant further investigation.
Collapse
Affiliation(s)
- Farid Boumédiene
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Benoît Marin
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Jaime Luna
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France.,Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France
| | - Vincent Bonneterre
- University Grenoble Alpes, CNRS, Grenoble INP, TIMC, 38000, Grenoble, France
| | - William Camu
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Emmeline Lagrange
- Department of Neurology, CHU Grenoble-Alpes (Grenoble Teaching Hospital), Grenoble, France
| | - Gérard Besson
- Department of Neurology, CHU Grenoble-Alpes (Grenoble Teaching Hospital), Grenoble, France
| | - Florence Esselin
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Elisa De La Cruz
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Géraldine Lautrette
- Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France
| | - Pierre Marie Preux
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France.,CEBIMER, Centre d'Epidémiologie, de Biostatistique et de Méthodologie de la Recherche, CHU Limoges, Limoges, France
| | - Philippe Couratier
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France. .,Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France.
| | | |
Collapse
|
16
|
Koksharova OA, Safronova NA. Non-Proteinogenic Amino Acid β-N-Methylamino-L-Alanine (BMAA): Bioactivity and Ecological Significance. Toxins (Basel) 2022; 14:539. [PMID: 36006201 PMCID: PMC9414260 DOI: 10.3390/toxins14080539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Research interest in a non-protein amino acid β-N-methylamino-L-alanine (BMAA) arose due to the discovery of a connection between exposure to BMAA and the occurrence of neurodegenerative diseases. Previous reviews on this topic either considered BMAA as a risk factor for neurodegenerative diseases or focused on the problems of detecting BMAA in various environmental samples. Our review is devoted to a wide range of fundamental biological problems related to BMAA, including the molecular mechanisms of biological activity of BMAA and the complex relationships between producers of BMAA and the environment in various natural ecosystems. At the beginning, we briefly recall the most important facts about the producers of BMAA (cyanobacteria, microalgae, and bacteria), the pathways of BMAA biosynthesis, and reliable methods of identification of BMAA. The main distinctive feature of our review is a detailed examination of the molecular mechanisms underlying the toxicity of BMAA to living cells. A brand new aspect, not previously discussed in any reviews, is the effect of BMAA on cyanobacterial cells. These recent studies, conducted using transcriptomics and proteomics, revealed potent regulatory effects of BMAA on the basic metabolism and cell development of these ancient photoautotrophic prokaryotes. Exogenous BMAA strongly influences cell differentiation and primary metabolic processes in cyanobacteria, such as nitrogen fixation, photosynthesis, carbon fixation, and various biosynthetic processes involving 2-oxoglutarate and glutamate. Cyanobacteria were found to be more sensitive to exogenous BMAA under nitrogen-limited growth conditions. We suggest a hypothesis that this toxic diaminoacid can be used by phytoplankton organisms as a possible allelopathic tool for controlling the population of cyanobacterial cells during a period of intense competition for nitrogen and other resources in various ecosystems.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Nina A. Safronova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
17
|
Courtier A, Potheret D, Giannoni P. Environmental bacteria as triggers to brain disease: Possible mechanisms of toxicity and associated human risk. Life Sci 2022; 304:120689. [DOI: 10.1016/j.lfs.2022.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
|
18
|
Newell ME, Adhikari S, Halden RU. Systematic and state-of the science review of the role of environmental factors in Amyotrophic Lateral Sclerosis (ALS) or Lou Gehrig's Disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152504. [PMID: 34971691 DOI: 10.1016/j.scitotenv.2021.152504] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The etiology of sporadic amyotrophic lateral sclerosis (ALS) is still unclear. We evaluate environmental factors suspected to be associated with ALS for their potential linkage to disease causality and to model geographic distributions of susceptible populations and expected cases worldwide. A PRISMA systematic literature review was performed 2021. Bradford Hill criteria were used to identify and rank environmental factors and a secondary review of ALS diagnoses in population studies and ALS case or cohort studies was conducted. Prevalence rate projection informed estimates of impacted regions and populations. Among 1710 papers identified, 258 met the inclusion criteria, of which 173 responded to at least one of nine Bradford Hill criteria among 83 literature-identified ALS environmental factors. Environmental determinants of ALS in order of decreasing significance were β-N-methylamino-L-alanine (BMAA), formaldehyde, selenium, and heavy metals including manganese, mercury, zinc, and copper. Murine animal models were the most common methodology for exploring environmental factors. Another line of investigation of 62 population exposure studies implicated the same group of environmental agents (mean odds ratios): BMAA (2.32), formaldehyde (1.54), heavy metals (2.99), manganese (3.85), mercury (2.74), and zinc (2.78). An age-adjusted incidence model estimated current total ALS cases globally at ~85,000 people compared to only ~1600 cases projected from the reported ALS incidence in the literature. Modeling with the prevalence microscope equation forecasted an increase in U.S. ALS cases from 16,707 confirmed in 2015 to ~22,650 projected for 2040. Two orthogonal methods employed implicate BMAA, formaldehyde, manganese, mercury, and zinc as environmental factors with strong ALS associations. ALS cases likely are significantly underreported globally, and high vulnerability exists in regions with large aging populations. Recent studies on other diseases with environmental determinants suggest the need to consider additional potential triggers and mechanisms, including exposures to microbial agents and epigenetic modifications.
Collapse
Affiliation(s)
- Melanie Engstrom Newell
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; OneWaterOneHealth, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
19
|
Martin RM, Bereman MS, Marsden KC. The Cyanotoxin 2,4-DAB Reduces Viability and Causes Behavioral and Molecular Dysfunctions Associated with Neurodegeneration in Larval Zebrafish. Neurotox Res 2022; 40:347-364. [PMID: 35029765 PMCID: PMC9035002 DOI: 10.1007/s12640-021-00465-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Exposure to cyanotoxins has been linked to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. While the cyanotoxin β-methylamino-L-alanine (BMAA) has received much attention, cyanobacteria produce many cyanotoxic compounds, several of which have been detected in nature alongside BMAA, including 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG). Thus, the question of whether 2,4-DAB and AEG also cause neurotoxic effects in vivo is of great interest, as is the question of whether they interact to enhance toxicity. Here, we evaluate the toxic and neurotoxic effects of these cyanotoxins alone or in combination by measuring zebrafish larval viability and behavior after exposure. 2,4-DAB was the most potent cyanotoxin as it decreased larval viability by approximately 50% at 6 days post fertilization, while BMAA and AEG decreased viability by just 16% and 8%, respectively. Although we only observed minor neurotoxic effects on spontaneous locomotion, BMAA and AEG enhanced acoustic startle sensitivity, and they interacted in an additive manner to exert their effects. 2,4-DAB; however, only modulated startle kinematics, an indication of motor dysfunction. To investigate the mechanisms of 2,4-DAB's effects, we analyzed the protein profile of larval zebrafish exposed to 500 µM 2,4-DAB at two time points and identified molecular signatures consistent with neurodegeneration, including disruption of metabolic pathways and downregulation of the ALS-associated genes SOD1 and UBQLN4. Together, our data demonstrate that BMAA and its isomers AEG and 2,4-DAB cause neurotoxic effects in vivo, with 2,4-DAB as the most potent of the three in the zebrafish model.
Collapse
Affiliation(s)
- Rubia M Martin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Michael S Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kurt C Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
20
|
No β-N-Methylamino-L-alanine (BMAA) Was Detected in Stranded Cetaceans from Galicia (North-West Spain). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA), a non-proteinogenic amino acid produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms) microorganisms, has been proposed to be associated with the development of neurodegenerative diseases. At first, BMAA appeared to be ubiquitously present worldwide in various organisms, from aquatic and terrestrial food webs. However, recent studies, using detection methods based on mass spectrometry, instead of fluorescence detection, suggest that the trophic transfer of BMAA is debatable. This study evaluated BMAA in 22 cetaceans of three different species (Phocoena phocoena, n = 8, Delphinus delphis, n = 8, and Tursiops truncatus, n = 6), found stranded in North-West Spain. BMAA analysis of the liver, kidney, or muscle tissues via sensitive liquid chromatography with tandem mass spectrometry did not reveal the presence of this compound or its isomers. The absence recorded in this study highlights the need to better understand the trophic transfer of BMAA and its anatomical distribution in marine mammals.
Collapse
|
21
|
Borghero G, Pierri V, Vasta R, Ercoli T, Primicerio G, Pili F, Gigante AF, Rocchi L, Chiò A, Defazio G. Incidence of amyotrophic lateral sclerosis in Sardinia, Italy: age-sex interaction and spatial-temporal variability. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:585-591. [PMID: 35188026 DOI: 10.1080/21678421.2022.2041670] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: This study assessed amyotrophic lateral sclerosis (ALS) incidence in Sardinia, Italy, and the combined contribution of age and gender to disease risk. We also checked disease incidence for spatial-temporal variability. Methods: ALS patients from all neurological centers of the study area who had onset during 2010-2019 and fulfilled El Escorial revised diagnostic criteria were included. Incidence was calculated for the overall study area and each province separately. Additive interaction between age and sex on ALS incidence was assessed. Results: The average crude annual incidence rate was 3.6/100,000 person-years (95% CI, 3.2-4.1), 3.1/100,000 person-years (95% CI, 2.7-3.5) when age-adjusted. Incidence was greater among people aged ≥65 years and men, with the two variables undergoing significant additive interaction. Incidence increased yearly over the study period, with annual incidence correlating with the increasing yearly frequency of people aged ≥65 years, but not with the proportion of incident cases carrying genetic mutations. Stratifying by province, the rates from Oristano and South Sardinia were higher than the rate from Cagliari. ALS patients from areas at different risk were comparable for frequency of clinical/genetic features. Conclusion: ALS incidence in Sardinia was in the upper part of the European range of variability. We also provided new information about age and sex as risk factors for ALS, showing male sex as a modifier of the effect of aging on ALS incidence. Spatial-temporal variations in ALS incidence correlated to changes in the proportion of the aging population rather than to the distribution of genetic factors.
Collapse
Affiliation(s)
- Giuseppe Borghero
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Vincenzo Pierri
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosario Vasta
- Rita Levi Montalcini Department of Neurosciences, ALS Center, University of Turin, Turin, Italy
| | - Tommaso Ercoli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giulia Primicerio
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesca Pili
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | | | - Lorenzo Rocchi
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neurosciences, ALS Center, University of Turin, Turin, Italy
| | - Giovanni Defazio
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Amyotrophic Lateral Sclerosis Center, University of Cagliari, Cagliari, Italy
| |
Collapse
|
22
|
Yadav RK, Mehan S, Sahu R, Kumar S, Khan A, Makeen HA, Al Bratty M. Protective effects of apigenin on methylmercury-induced behavioral/neurochemical abnormalities and neurotoxicity in rats. Hum Exp Toxicol 2022; 41:9603271221084276. [PMID: 35373622 DOI: 10.1177/09603271221084276] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Methylmercury (MeHg) is a neurotoxin that induces neurotoxicity and cell death in neurons. MeHg increases oligodendrocyte death, glial cell activation, and motor neuron demyelination in the motor cortex and spinal cord. As a result, MeHg plays an important role in developing neurocomplications similar to amyotrophic lateral sclerosis (ALS). Recent research has implicated c-JNK and p38MAPK overactivation in the pathogenesis of ALS. Apigenin (APG) is a flavonoid having anti-inflammatory, antioxidant, and c-JNK/p38MAPK inhibitory activities. The purpose of this study is to determine whether APG possesses neuroprotective effects in MeHg-induced neurotoxicity in adult rats associated with ALS-like neuropathological alterations. In the current study, the neurotoxin MeHg causes an ALS-like phenotype in Wistar rats after 21 days of oral administration at a dose of 5 mg/kg. Prolonged administration of APG (40 and 80 mg/kg) improved neurobehavioral parameters such as learning memory, cognition, motor coordination, and grip strength. This is mainly associated with the downregulation of c-JNK and p38MAPK signaling as well as the restoration of myelin basic protein within the brain. Furthermore, APG inhibited neuronal apoptotic markers (Bax, Bcl-2, and caspase-3), restored neurotransmitter imbalance, decreased inflammatory markers (TNF- and IL-1), and alleviated oxidative damage. As a result, the current study shows that APG has neuroprotective potential as a c-JNK and p38MAPK signaling inhibitor against MeHg-induced neurotoxicity in adult rats. Based on these promising findings, we suggested that APG could be a potential new therapeutic approach over other conventional therapeutic approaches for MeHg-induced neurotoxicity in neurobehavioral, molecular, and neurochemical abnormalities.
Collapse
Affiliation(s)
- Rajeshwar Kumar Yadav
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Sumit Kumar
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| | - Hafiz Antar Makeen
- Department of Clinical Pharmacy, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
23
|
Marine Neurotoxins' Effects on Environmental and Human Health: An OMICS Overview. Mar Drugs 2021; 20:md20010018. [PMID: 35049872 PMCID: PMC8778346 DOI: 10.3390/md20010018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Harmful algal blooms (HAB), and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks. Marine wildlife can accumulate these toxins throughout the food chain, which presents a threat to consumers’ health. Some of these toxins, such as saxitoxin (STX), domoic acid (DA), ciguatoxin (CTX), brevetoxin (BTX), tetrodotoxin (TTX), and β-N-methylamino-L-alanine (BMAA), cause severe neurological symptoms in humans. Considerable information is missing, however, notably the consequences of toxin exposures on changes in gene expression, protein profile, and metabolic pathways. This information could lead to understanding the consequence of marine neurotoxin exposure in aquatic organisms and humans. Nevertheless, recent contributions to the knowledge of neurotoxins arise from OMICS-based research, such as genomics, transcriptomics, proteomics, and metabolomics. This review presents a comprehensive overview of the most recent research and of the available solutions to explore OMICS datasets in order to identify new features in terms of ecotoxicology, food safety, and human health. In addition, future perspectives in OMICS studies are discussed.
Collapse
|
24
|
D’Antona S, Caramenti M, Porro D, Castiglioni I, Cava C. Amyotrophic Lateral Sclerosis: A Diet Review. Foods 2021; 10:foods10123128. [PMID: 34945679 PMCID: PMC8702143 DOI: 10.3390/foods10123128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease related to upper and lower motor neurons degeneration. Although the environmental and genetic causes of this disease are still unclear, some factors involved in ALS onset such as oxidative stress may be influenced by diet. A higher risk of ALS has been correlated with a high fat and glutamate intake and β-methylamino-L-alanine. On the contrary, a diet based on antioxidant and anti-inflammatory compounds, such as curcumin, creatine, coenzyme Q10, vitamin E, vitamin A, vitamin C, and phytochemicals could reduce the risk of ALS. However, data are controversial as there is a discrepancy among different studies due to a limited number of samples and the many variables that are involved. In addition, an improper diet could lead to an altered microbiota and consequently to an altered metabolism that could predispose to the ALS onset. In this review we summarized some research that involve aspects related to ALS such as the epidemiology, the diet, the eating behaviour, the microbiota, and the metabolic diseases. Further research is needed to better comprehend the role of diet and the metabolic diseases in the mechanisms leading to ALS onset and progression.
Collapse
Affiliation(s)
- Salvatore D’Antona
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Martina Caramenti
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Danilo Porro
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Isabella Castiglioni
- Department of Physics “G. Occhialini”, University of Milan-Bicocca, Piazza della Scienza 3, 20126 Milan, Italy;
| | - Claudia Cava
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
- Correspondence:
| |
Collapse
|
25
|
Davis DA, Garamszegi SP, Banack SA, Dooley PD, Coyne TM, McLean DW, Rotstein DS, Mash DC, Cox PA. BMAA, Methylmercury, and Mechanisms of Neurodegeneration in Dolphins: A Natural Model of Toxin Exposure. Toxins (Basel) 2021; 13:toxins13100697. [PMID: 34678990 PMCID: PMC8540894 DOI: 10.3390/toxins13100697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 01/15/2023] Open
Abstract
Dolphins are well-regarded sentinels for toxin exposure and can bioaccumulate a cyanotoxin called β-N-methylamino-l-alanine (BMAA) that has been linked to human neurodegenerative disease. The same dolphins also possessed hallmarks of Alzheimer’s disease (AD), suggesting a possible association between toxin exposure and neuropathology. However, the mechanisms of neurodegeneration in dolphins and the impact cyanotoxins have on these processes are unknown. Here, we evaluate BMAA exposure by investigating transcription signatures using PCR for dolphin genes homologous to those implicated in AD and related dementias: APP, PSEN1, PSEN2, MAPT, GRN, TARDBP, and C9orf72. Immunohistochemistry and Sevier Münger silver staining were used to validate neuropathology. Methylmercury (MeHg), a synergistic neurotoxicant with BMAA, was also measured using PT-GC-AFS. We report that dolphins have up to a three-fold increase in gene transcription related to Aβ+ plaques, neurofibrillary tangles, neuritic plaques, and TDP-43+ intracytoplasmic inclusions. The upregulation of gene transcription in our dolphin cohort paralleled increasing BMAA concentration. In addition, dolphins with BMAA exposures equivalent to those reported in AD patients displayed up to a 14-fold increase in AD-type neuropathology. MeHg was detected (0.16–0.41 μg/g) and toxicity associated with exposure was also observed in the brain. These results demonstrate that dolphins develop neuropathology associated with AD and exposure to BMAA and MeHg may augment these processes.
Collapse
Affiliation(s)
- David A. Davis
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.P.G.); (P.D.D.); (D.W.M.); (D.C.M.)
- Correspondence:
| | - Susanna P. Garamszegi
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.P.G.); (P.D.D.); (D.W.M.); (D.C.M.)
| | - Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA; (S.A.B.); (P.A.C.)
| | - Patrick D. Dooley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.P.G.); (P.D.D.); (D.W.M.); (D.C.M.)
| | - Thomas M. Coyne
- Office of the District 21 Medical Examiner, Fort Myers, FL 33907, USA;
| | - Dylan W. McLean
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.P.G.); (P.D.D.); (D.W.M.); (D.C.M.)
| | | | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.P.G.); (P.D.D.); (D.W.M.); (D.C.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA; (S.A.B.); (P.A.C.)
| |
Collapse
|
26
|
Longinetti E, Pupillo E, Belometti C, Bianchi E, Poloni M, Fang F, Beghi E. Geographical clusters of amyotrophic lateral sclerosis and the Bradford Hill criteria. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:329-343. [PMID: 34565247 DOI: 10.1080/21678421.2021.1980891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
With the aim of shedding further light on the role of environmental factors in amyotrophic lateral sclerosis (ALS) etiology, we hereby conducted a historical narrative review to critically appraise the published reports on ALS geographical clusters using the modern interpretation of the Bradford Hill criteria for causation. Our research hypothesis was that the more criteria were met, the greater was the evidence supporting a causal association. We found that cluster studies that met the greatest number of Bradford's Hill criteria regarded the non-protein amino acid β-N-methylamino-L-alanine (L-BMAA) and exposure to metals and minerals, but the evidence for causation was at best moderate and was poor for other environmental factors. This defective picture might be attributed not only to the methodological approach adopted by published studies, but also to the inherent difficulties in the application of Bradford Hill criteria, due to the complexity of the disease phenotype and the underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Elisa Longinetti
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elisabetta Pupillo
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy, and
| | - Chiara Belometti
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy, and
| | - Elisa Bianchi
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy, and
| | - Marco Poloni
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy, and
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ettore Beghi
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy, and
| |
Collapse
|
27
|
Brown CA, Lally C, Kupelian V, Flanders WD. Estimated Prevalence and Incidence of Amyotrophic Lateral Sclerosis and SOD1 and C9orf72 Genetic Variants. Neuroepidemiology 2021; 55:342-353. [PMID: 34247168 DOI: 10.1159/000516752] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rare neurological disorder characterized by progressive deterioration of motor neurons. Assessment of the size/geographic distribution of the ALS population, including ALS with genetic origin, is needed to understand the burden of the disease and the need for clinical intervention and therapy. OBJECTIVES The main objective of this study was to estimate the number of prevalent and incident ALS cases overall and superoxide dismutase 1 (SOD1) and chromosome 9 open reading frame 72 (C9orf72) ALS in 22 countries across Europe (Belgium, France, Germany, Ireland, Italy, Netherlands, Norway, Russia, Spain, Sweden, and UK), North America (USA and Canada), Latin America (Argentina, Brazil, Colombia, Mexico, and Uruguay), and Asia (China, Japan, South Korea, and Taiwan). METHODS A comprehensive literature search was conducted to identify population-based studies reporting ALS prevalence and/or incidence rates. Pooled prevalence and incidence rates were obtained using a meta-analysis approach at the country and regional geographic level. A country-level pooled estimate was used when ≥2 studies were available per country and geographic regional pooled estimates were used otherwise. The proportion of cases with a SOD1 or C9orf72 mutation among sporadic (sALS) and familial (fALS) cases were obtained from a previous systematic review and meta-analysis. RESULTS Pooled prevalence rates (per 100,000 persons) and incidence rates (per 100,000 person-years) were 6.22 and 2.31 for Europe, 5.20 and 2.35 for North America, 3.41 and 1.25 for Latin America, 3.01 and 0.93 for Asian countries excluding Japan, and 7.96 and 1.76 for Japan, respectively. Significant heterogeneity in reported incidence and prevalence was observed within and between countries/geographic regions. The estimated number of 2020 ALS cases across the 22 countries is 121,028 prevalent and 41,128 incident cases. The total estimated number of prevalent SOD1 cases is 2,876 cases, of which, 1,342 (47%) were fALS and 1,534 (53%) were sALS, and the number of incident SOD1 cases is 946 (434 [46%] fALS and 512 [54%] sALS). The total estimated number of prevalent C9orf72 cases is 4,545 (1,198 [26%] fALS, 3,347 [74%] sALS), and the number of incident C9orf72 cases is 1,706 (450 [26%] fALS and 1,256 [74%] sALS). DISCUSSION The estimated number of patients with SOD1 and C9orf72 ALS suggests that although the proportions of SOD1 and C9orf72 are higher among those with fALS, the majority of SOD1 and C9orf72 ALS cases may be found among those with sALS (about 53 and 74%, respectively). These results suggest that classification of fALS based on reported family history does not capture the full picture of ALS of genetic origin.
Collapse
Affiliation(s)
- Carolyn A Brown
- Epidemiologic Research and Methods LLC, Atlanta, Georgia, USA.,Department of Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Cathy Lally
- Epidemiologic Research and Methods LLC, Atlanta, Georgia, USA
| | | | - W Dana Flanders
- Epidemiologic Research and Methods LLC, Atlanta, Georgia, USA.,Department of Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Andrew AS, Pioro EP, Li M, Shi X, Gui J, Stommel EW, Butt TH, Peipert D, Henegan P, Tischbein M, Cazzolli P, Novak J, Quick A, Pugar KD, Sawlani K, Katirji B, Hayes TA, Horton DK, Mehta P, Bradley WG. The Incidence of Amyotrophic Lateral Sclerosis in Ohio 2016-2018: The Ohio Population-Based ALS Registry. Neuroepidemiology 2021; 55:196-205. [PMID: 33902051 DOI: 10.1159/000515103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/05/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal, neuromuscular disease with no cure. ALS incidence rates have not been assessed specifically in Ohio, yet the state contains both metropolitan and rural areas with a variety of environmental factors that could contribute to disease etiology. We report the incidence of ALS in Ohio residents diagnosed from October 2016 through September 2018. METHODS We engaged practitioners from 9 Ohio sites to identify newly diagnosed ALS patients and to complete case report forms with demographic and clinical information. ALS was diagnosed according to the Awaji criteria and classified as either definite, probable, or possible. We developed a method to estimate missing cases using a Poisson regression model to impute cases in counties with evidence of undercounting. RESULTS We identified 333 newly diagnosed ALS patients residing in Ohio during the 2-year index period and found incidence rates varied in the 88 state counties. After incorporating the estimated 27% of missing cases, the corrected crude annual incidence was 1.96/100,000 person-years, and the age- and gender-standardized incidence was 1.71/100,000 person-years (standardized to the 2010 US census). DISCUSSION/CONCLUSION The estimated Ohio incidence of ALS is overall similar to that reported in other states in the USA. This study reveals a geospatial variation in incidence within the state, and areas with higher rates warrant future investigation.
Collapse
Affiliation(s)
- Angeline S Andrew
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Erik P Pioro
- Section of ALS and Related Disorders, Cleveland Clinic, Cleveland, Ohio, USA
| | - Meifang Li
- Department of Geography, Dartmouth College, Hanover, New Hampshire, USA
| | - Xun Shi
- Department of Geography, Dartmouth College, Hanover, New Hampshire, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Tanya H Butt
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Daniel Peipert
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Patricia Henegan
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | | | - John Novak
- Ohio Health Physician Group, Westerville, Ohio, USA
| | - Adam Quick
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - K Doug Pugar
- Dayton Center for Neurological Disorders, Dayton, Ohio, USA
| | - Komal Sawlani
- Department of Neurology, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Bashar Katirji
- Department of Neurology, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - D Kevin Horton
- Centers for Disease Control and Prevention (CDC), Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, Georgia, USA
| | - Paul Mehta
- Centers for Disease Control and Prevention (CDC), Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, Georgia, USA
| | - Walter G Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
29
|
Wang C, Yan C, Qiu J, Liu C, Yan Y, Ji Y, Wang G, Chen H, Li Y, Li A. Food web biomagnification of the neurotoxin β-N-methylamino-L-alanine in a diatom-dominated marine ecosystem in China. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124217. [PMID: 33129020 DOI: 10.1016/j.jhazmat.2020.124217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) reported in some cyanobacteria and eukaryote microalgae is a cause of concern due to its potential risk of human neurodegenerative diseases. Here, BMAA distribution in phytoplankton, zooplankton, and other marine organisms was investigated in Jiaozhou Bay, China, a diatom-dominated marine ecosystem, during four seasons in 2019. Results showed that BMAA was biomagnified in the food web from phytoplankton to higher trophic levels. Trophic magnification factors (TMFs) for zooplankton, bivalve mollusks, carnivorous crustaceans and carnivorous gastropod mollusks were ca. 4.58, 30.1, 42.5, and 74.4, respectively. Putative identification of β-amino-N-methylalanine (BAMA), an isomer of BMAA, was frequently detected in phytoplankton samples. A total of 56 diatom strains of the genera Pseudo-nitzschia, Thalassiosira, Chaetoceros, Planktoniella, and Minidiscus isolated from the Chinese coast were cultured in the laboratory, among which 21 strains contained BMAA mainly in precipitated bound form at toxin concentrations ranging from 0.11 to 3.95 µg/g dry weight. Only 2,4-diaminobutyric acid (DAB) but not BMAA or BAMA was detected in seven species of bacteria isolated from the gut of gastropod Neverita didyma, suggesting that this benthic vector of BMAA may have accumulated this compound via trophic transfer.
Collapse
Affiliation(s)
- Chao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Chen Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Chao Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yeju Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Hongju Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
30
|
Ra D, Sa B, Sl B, Js M, Sj M, DA D, Ew S, O K, Eb B, Ad C, Vx T, Gg G, Pa C, Dc M, Wg B. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox Res 2021; 39:81-106. [PMID: 33547590 PMCID: PMC7904546 DOI: 10.1007/s12640-020-00302-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
In a literature survey, Chernoff et al. (2017) dismissed the hypothesis that chronic exposure to β-N-methylamino-L-alanine (BMAA) may be a risk factor for progressive neurodegenerative disease. They question the growing scientific literature that suggests the following: (1) BMAA exposure causes ALS/PDC among the indigenous Chamorro people of Guam; (2) Guamanian ALS/PDC shares clinical and neuropathological features with Alzheimer's disease, Parkinson's disease, and ALS; (3) one possible mechanism for protein misfolds is misincorporation of BMAA into proteins as a substitute for L-serine; and (4) chronic exposure to BMAA through diet or environmental exposures to cyanobacterial blooms can cause neurodegenerative disease. We here identify multiple errors in their critique including the following: (1) their review selectively cites the published literature; (2) the authors reported favorably on HILIC methods of BMAA detection while the literature shows significant matrix effects and peak coelution in HILIC that may prevent detection and quantification of BMAA in cyanobacteria; (3) the authors build alternative arguments to the BMAA hypothesis, rather than explain the published literature which, to date, has been unable to refute the BMAA hypothesis; and (4) the authors erroneously attribute methods to incorrect studies, indicative of a failure to carefully consider all relevant publications. The lack of attention to BMAA research begins with the review's title which incorrectly refers to BMAA as a "non-essential" amino acid. Research regarding chronic exposure to BMAA as a cause of human neurodegenerative diseases is emerging and requires additional resources, validation, and research. Here, we propose strategies for improvement in the execution and reporting of analytical methods and the need for additional and well-executed inter-lab comparisons for BMAA quantitation. We emphasize the need for optimization and validation of analytical methods to ensure that they are fit-for-purpose. Although there remain gaps in the literature, an increasingly large body of data from multiple independent labs using orthogonal methods provides increasing evidence that chronic exposure to BMAA may be a risk factor for neurological illness.
Collapse
Affiliation(s)
- Dunlop Ra
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA.
| | - Banack Sa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Bishop Sl
- Lewis Research Group, Faculty of Science, University of Calgary, Alberta, Canada
| | - Metcalf Js
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Murch Sj
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Davis DA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stommel Ew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Karlsson O
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Brittebo Eb
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Tan Vx
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Guillemin Gg
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Cox Pa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Mash Dc
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bradley Wg
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
31
|
Martin RM, Bereman MS, Marsden KC. BMAA and MCLR Interact to Modulate Behavior and Exacerbate Molecular Changes Related to Neurodegeneration in Larval Zebrafish. Toxicol Sci 2021; 179:251-261. [PMID: 33295630 PMCID: PMC8502428 DOI: 10.1093/toxsci/kfaa178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exposure to toxins produced by cyanobacteria (ie, cyanotoxins) is an emerging health concern due to their increasing prevalence and previous associations with neurodegenerative diseases including amyotrophic lateral sclerosis. The objective of this study was to evaluate the neurotoxic effects of a mixture of two co-occurring cyanotoxins, β-methylamino-l-alanine (BMAA) and microcystin leucine and arginine (MCLR), using the larval zebrafish model. We combined high-throughput behavior-based toxicity assays with discovery proteomic techniques to identify behavioral and molecular changes following 6 days of exposure. Although neither toxin caused mortality, morphological defects, nor altered general locomotor behavior in zebrafish larvae, both toxins increased acoustic startle sensitivity in a dose-dependent manner by at least 40% (p < .0001). Furthermore, startle sensitivity was enhanced by an additional 40% in larvae exposed to the BMAA/MCLR mixture relative to those exposed to the individual toxins. Supporting these behavioral results, our proteomic analysis revealed a 4-fold increase in the number of differentially expressed proteins in the mixture-exposed group. Additionally, prediction analysis reveals activation and/or inhibition of 8 enriched canonical pathways (enrichment p-value < .01; z-score≥|2|), including ILK, Rho Family GTPase, RhoGDI, and calcium signaling pathways, which have been implicated in neurodegeneration. We also found that expression of TDP-43, of which cytoplasmic aggregates are a hallmark of amyotrophic lateral sclerosis pathology, was significantly upregulated by 5.7-fold following BMAA/MCLR mixture exposure. Together, our results emphasize the importance of including mixtures of cyanotoxins when investigating the link between environmental cyanotoxins and neurodegeneration as we reveal that BMAA and MCLR interact in vivo to enhance neurotoxicity.
Collapse
Affiliation(s)
- Rubia M Martin
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Michael S Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Kurt C Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
32
|
Western Pacific ALS-PDC: Evidence implicating cycad genotoxins. J Neurol Sci 2020; 419:117185. [PMID: 33190068 DOI: 10.1016/j.jns.2020.117185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) is a disappearing neurodegenerative disorder of apparent environmental origin formerly hyperendemic among Chamorros of Guam-USA, Japanese residents of the Kii Peninsula, Honshu Island, Japan and Auyu-Jakai linguistic groups of Papua-Indonesia on the island of New Guinea. The most plausible etiology is exposure to genotoxins in seed of neurotoxic cycad plants formerly used for food and/or medicine. Primary suspicion falls on methylazoxymethanol (MAM), the aglycone of cycasin and on the non-protein amino acid β-N-methylamino-L-alanine, both of which are metabolized to formaldehyde. Human and animal studies suggest: (a) exposures occurred early in life and sometimes during late fetal brain development, (b) clinical expression of neurodegenerative disease appeared years or decades later, and (c) pathological changes in various tissues indicate the disease was not confined to the CNS. Experimental evidence points to toxic molecular mechanisms involving DNA damage, epigenetic changes, transcriptional mutagenesis, neuronal cell-cycle reactivation and perturbation of the ubiquitin-proteasome system that led to polyproteinopathy and culminated in neuronal degeneration. Lessons learned from research on ALS-PDC include: (a) familial disease may reflect common toxic exposures across generations, (b) primary disease prevention follows cessation of exposure to culpable environmental triggers; and (c) disease latency provides a prolonged period during which to intervene therapeutically. Exposure to genotoxic chemicals ("slow toxins") in the early stages of life should be considered in the search for the etiology of ALS-PDC-related neurodegenerative disorders, including sporadic forms of ALS, progressive supranuclear palsy and Alzheimer's disease.
Collapse
|
33
|
Metcalf JS, Banack SA, Wessel RA, Lester M, Pim JG, Cassani JR, Cox PA. Toxin Analysis of Freshwater Cyanobacterial and Marine Harmful Algal Blooms on the West Coast of Florida and Implications for Estuarine Environments. Neurotox Res 2020; 39:27-35. [PMID: 32683648 PMCID: PMC7904716 DOI: 10.1007/s12640-020-00248-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Recent marine and freshwater algal and cyanobacterial blooms in Florida have increased public concern and awareness of the risks posed by exposure to these organisms. In 2018, Lake Okeechobee and the Caloosahatchee river, on the west coast of Florida, experienced an extended bloom of Microcystis spp. and a bloom of Karenia brevis in the coastal waters of the Gulf of Mexico that coincided in the Fort Myers area. Samples from the Caloosahatchee at Fort Myers into Pine Island Sound and up to Boca Grande were collected by boat. High concentrations of microcystin-LR were detected in the cyanobacterial bloom along with brevetoxins in the marine samples. Furthermore, β-N-methylamino-L-alanine (BMAA) and isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobuytric acid (DAB) were detected in marine diatoms and dinoflagellates, and cyanobacteria of freshwater origin. High freshwater flows pushed the cyanobacterial bloom to barrier island beaches and Microcystis and microcystins could be detected into the marine environment at a salinity of 41 mS/cm. For comparison, in 2019 collections of Dapis (a new generic segregate from Lyngbya) mats from Sarasota showed high concentrations of BMAA, suggesting the possibility of long-term exposure of residents to BMAA. The findings highlight the potential for multiple, potentially toxic blooms to co-exist and the possible implications for human and animal health.
Collapse
Affiliation(s)
- J S Metcalf
- Brain Chemistry Labs, Jackson, WY, 83001, USA.
| | - S A Banack
- Brain Chemistry Labs, Jackson, WY, 83001, USA
| | - R A Wessel
- Sanibel-Captiva Conservation Foundation, Sanibel, FL, 33957, USA
| | - M Lester
- Path of Wellness Holistic Health, Lexington, GA, 30648, USA
| | - J G Pim
- Calusa Waterkeeper, Inc., PO Box 1165, Fort Myers, FL, 33902, USA
| | - J R Cassani
- Calusa Waterkeeper, Inc., PO Box 1165, Fort Myers, FL, 33902, USA
| | - P A Cox
- Brain Chemistry Labs, Jackson, WY, 83001, USA
| |
Collapse
|
34
|
Fiore M, Parisio R, Filippini T, Mantione V, Platania A, Odone A, Signorelli C, Pietrini V, Mandrioli J, Teggi S, Costanzini S, Antonio C, Zuccarello P, Oliveri Conti G, Nicoletti A, Zappia M, Vinceti M, Ferrante M. Living near waterbodies as a proxy of cyanobacteria exposure and risk of amyotrophic lateral sclerosis: a population based case-control study. ENVIRONMENTAL RESEARCH 2020; 186:109530. [PMID: 32335431 DOI: 10.1016/j.envres.2020.109530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Epidemiological studies highlighted the possibility that exposure to cyanotoxins leads to the development of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). METHODS We devised a population-based case-control study in two Italian populations. We used residential proximity of the residence to water bodies as a measure of possible exposure to cyanotoxins. RESULTS Based on 703 newly-diagnosed ALS cases and 2737 controls, we calculated an ALS odds ratio (OR) of 1.41 (95% CI: 0.72-2.74) for current residence in the vicinity of water bodies, and a slightly lower estimate for historical residence (OR: 1.31; 95% CI: 0.57-2.99). Subjects <65 years and people living in the Northern Italy province of Modena had higher ORs, especially when historical residence was considered. CONCLUSIONS Overall, despite some risk of bias due to exposure misclassification and unmeasured confounding, our results appear to support the hypothesis that cyanotoxin exposure may increase ALS risk.
Collapse
Affiliation(s)
- Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123.
| | - Roberto Parisio
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valerio Mantione
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Armando Platania
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Anna Odone
- Department of Biomedical, Biotechnological, and Translational Sciences, University of Parma, 14 Via Gramsci, 43126, Parma, Italy
| | - Carlo Signorelli
- Department of Biomedical, Biotechnological, and Translational Sciences, University of Parma, 14 Via Gramsci, 43126, Parma, Italy; School of Medicine, University Vita-Salute San Raffaele, 58 Via Olgettina Milano, 20132, Milan, Italy
| | - Vladimiro Pietrini
- Department of Neuroscience, Neurology Unit, University of Parma, 14 Via Gramsci, 43126, Parma, Italy
| | - Jessica Mandrioli
- Department of Neuroscience, S. Agostino-Estense Hospital, and University of Modena and Reggio Emilia, 1355 Via Pietro Giardini, 41126, Modena, Italy
| | - Sergio Teggi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 10 Via Vivarelli, 41125, Modena, Italy
| | - Sofia Costanzini
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 10 Via Vivarelli, 41125, Modena, Italy
| | - Cristaldi Antonio
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123.
| | - Alessandra Nicoletti
- Section of Neurosciences, Department "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Mario Zappia
- Section of Neurosciences, Department "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| |
Collapse
|
35
|
Second Laboratory Validation of β-N-Methylamino-L-Alanine, N-(2aminoethyl)Glycine, and 2,4-Diaminobuytric Acid by Ultra-Performance Liquid Chromatography and Tandem Mass Spectrometry. Neurotox Res 2020; 39:107-116. [PMID: 32462275 DOI: 10.1007/s12640-020-00208-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
The analysis of β-N-methylamino-L-alanine (BMAA) has been validated according to AOAC international standards by a single laboratory (Glover et al. 2015). Using the same validated method, we add a second laboratory validation optimizing for different equipment. Given publicized concerns about standardizing methods across laboratories and recent reviews indicating superior results using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization for the separation of BMAA and its isomers N-(2aminoethyl)glycine (AEG), and 2,4-diaminobuytric acid (DAB) (Bishop and Murch 2019), we add a second laboratory validation to this method demonstrating that the method is robust across laboratories using different equipment. Using the US Food and Drug Administration (FDA 2018) method for evaluating instrument parameters, we calculated a limit of detection (LOD) of 10 pg/ml for BMAA, AEG, and DAB and lower limits of quantification (LLOQ) of 37 pg/ml based on reagent blanks. In biological matrices, a higher LLOQ may be warranted for AEG and DAB. We demonstrate that the endogenous BMAA in mussel tissue can be lost by drying the hydrolyzed preparation and suggest sample preparation parameters be evaluated for robustness.
Collapse
|
36
|
Transfer of the Neurotoxin β- N-methylamino-l-alanine (BMAA) in the Agro-Aqua Cycle. Mar Drugs 2020; 18:md18050244. [PMID: 32384637 PMCID: PMC7281744 DOI: 10.3390/md18050244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
Abstract
The neurotoxic non-protein amino acid β-N-methylamino-l-alanine (BMAA) is connected to the development of neurodegenerative diseases. BMAA has been shown to accumulate in aquatic ecosystems, and filter-feeding molluscs seem particularly susceptible to BMAA accumulation. The blue mussels farmed along the Swedish coastline in the Baltic Sea are, due to their small size, exclusively used to produce feed for chicken and fish in the agro-aqua cycle. We have investigated the possible biotransfer of BMAA from mussels, via mussel-based feed, into chickens. Chickens were divided into two groups, the control and the treatment. BMAA was extracted from the muscle, liver, brain, and eye tissues in both chicken groups; a UPLC-MS/MS method was subsequently used to quantify BMAA. The results indicate detectable concentrations of BMAA in both chicken groups. However, the BMAA concentration in chicken was 5.65 times higher in the treatment group than the control group, with the highest concentration found in muscle tissue extracted from the treatment group chickens. These data suggest that there is a BMAA transfer route within the agro-aqua cycle, so further investigation is recommended before using mussel-based feed in the chicken industry.
Collapse
|
37
|
Han NC, Bullwinkle TJ, Loeb KF, Faull KF, Mohler K, Rinehart J, Ibba M. The mechanism of β-N-methylamino-l-alanine inhibition of tRNA aminoacylation and its impact on misincorporation. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Han NC, Bullwinkle TJ, Loeb KF, Faull KF, Mohler K, Rinehart J, Ibba M. The mechanism of β- N-methylamino-l-alanine inhibition of tRNA aminoacylation and its impact on misincorporation. J Biol Chem 2019; 295:1402-1410. [PMID: 31862734 DOI: 10.1074/jbc.ra119.011714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/10/2019] [Indexed: 11/06/2022] Open
Abstract
β-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS-purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine codons, following a screen for amino acid activation in ATP/PPi exchange assays, we observed that BMAA is not a substrate for human seryl-tRNA synthetase (SerRS). Instead, we observed that BMAA is a substrate for human alanyl-tRNA synthetase (AlaRS) and can form BMAA-tRNAAla by escaping from the intrinsic AlaRS proofreading activity. Furthermore, we found that BMAA inhibits both the cognate amino acid activation and the editing functions of AlaRS. Our results reveal that, in addition to being misincorporated during translation, BMAA may be able to disrupt the integrity of protein synthesis through multiple different mechanisms.
Collapse
Affiliation(s)
- Nien-Ching Han
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43220
| | - Tammy J Bullwinkle
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43220
| | - Kaeli F Loeb
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43220
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90024-1759
| | - Kyle Mohler
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520.,Systems Biology Institute, Yale University, New Haven, Connecticut 06520
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520.,Systems Biology Institute, Yale University, New Haven, Connecticut 06520
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43220
| |
Collapse
|
39
|
Bishop SL, Murch SJ. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-l-alanine (BMAA). Analyst 2019; 145:13-28. [PMID: 31742261 DOI: 10.1039/c9an01252d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are influenced by environmental factors such as exposure to toxins including the cyanotoxin β-N-methylamino-l-alanine (BMAA) that can bioaccumulate in common food sources such as fish, mussels and crabs. Accurate and precise analytical methods are needed to detect and quantify BMAA to minimize human health risks. The objective of this review is to provide a comprehensive overview of the methods used for BMAA analysis from 2003 to 2019 and to evaluate the reported performance characteristics for each method to determine the consensus data for each analytical approach and different sample matrices. Detailed searches of the database Web of Science™ (WoS) were performed between August 21st, 2018 and April 5th, 2019. Eligible studies included analytical methods for the detection and quantification of BMAA in cyanobacteria and bioaccumulated BMAA in higher trophic levels, in phytoplankton and zooplankton and in human tissues and fluids. This systematic review has limitations in that only the English language literature is included and it did not include standard operating protocols nor any method validation data that have not been made public. We identified 148 eligible studies, of which a positive result for BMAA in one or more samples analyzed was reported in 84% (125 out of 148) of total studies, 57% of HILIC studies, 92% of RPLC studies and 71% of other studies. The largest discrepancy between different methods arose from the analysis of cyanobacteria samples, where BMAA was detected in 95% of RPLC studies but only in 25% of HILIC studies. Without sufficient published validation of each method's performance characteristics, it is difficult to establish each method as fit for purpose for each sample matrix. The importance of establishing methods as appropriate for their intended use is evidenced by the inconsistent reporting of BMAA across environmental samples, despite its prevalence in diverse ecosystems and food webs.
Collapse
Affiliation(s)
- Stephanie L Bishop
- Chemistry, University of British Columbia, Kelowna, British Columbia, CanadaV1V 1V7.
| | | |
Collapse
|
40
|
Spencer P, Lagrange E, Camu W. ALS and environment: Clues from spatial clustering? Rev Neurol (Paris) 2019; 175:652-663. [DOI: 10.1016/j.neurol.2019.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
|
41
|
The Diversity of Cyanobacterial Toxins on Structural Characterization, Distribution and Identification: A Systematic Review. Toxins (Basel) 2019; 11:toxins11090530. [PMID: 31547379 PMCID: PMC6784007 DOI: 10.3390/toxins11090530] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
The widespread distribution of cyanobacteria in the aquatic environment is increasing the risk of water pollution caused by cyanotoxins, which poses a serious threat to human health. However, the structural characterization, distribution and identification techniques of cyanotoxins have not been comprehensively reviewed in previous studies. This paper aims to elaborate the existing information systematically on the diversity of cyanotoxins to identify valuable research avenues. According to the chemical structure, cyanotoxins are mainly classified into cyclic peptides, alkaloids, lipopeptides, nonprotein amino acids and lipoglycans. In terms of global distribution, the amount of cyanotoxins are unbalanced in different areas. The diversity of cyanotoxins is more obviously found in many developed countries than that in undeveloped countries. Moreover, the threat of cyanotoxins has promoted the development of identification and detection technology. Many emerging methods have been developed to detect cyanotoxins in the environment. This communication provides a comprehensive review of the diversity of cyanotoxins, and the detection and identification technology was discussed. This detailed information will be a valuable resource for identifying the various types of cyanotoxins which threaten the environment of different areas. The ability to accurately identify specific cyanotoxins is an obvious and essential aspect of cyanobacterial research.
Collapse
|
42
|
Production of β-methylamino-L-alanine (BMAA) and Its Isomers by Freshwater Diatoms. Toxins (Basel) 2019; 11:toxins11090512. [PMID: 31480725 PMCID: PMC6784237 DOI: 10.3390/toxins11090512] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
β-methylamino-L-alanine (BMAA) is a non-protein amino acid that has been implicated as a risk factor for motor neurone disease (MND). BMAA is produced by a wide range of cyanobacteria globally and by a small number of marine diatoms. BMAA is commonly found with two of its constitutional isomers: 2,4-diaminobutyric acid (2,4-DAB), and N-(2-aminoethyl)glycine (AEG). The isomer 2,4-DAB, like BMAA, has neurotoxic properties. While many studies have shown BMAA production by cyanobacteria, few studies have looked at other algal groups. Several studies have shown BMAA production by marine diatoms; however, there are no studies examining freshwater diatoms. This study aimed to determine if some freshwater diatoms produced BMAA, and which diatom taxa are capable of BMAA, 2,4-DAB and AEG production. Five axenic diatom cultures were established from river and lake sites across eastern Australia. Cultures were harvested during the stationary growth phase and intracellular amino acids were extracted. Using liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS), diatom extracts were analysed for the presence of both free and protein-associated BMAA, 2,4-DAB and AEG. Of the five diatom cultures analysed, four were found to have detectable BMAA and AEG, while 2,4-DAB was found in all cultures. These results show that BMAA production by diatoms is not confined to marine genera and that the prevalence of these non-protein amino acids in Australian freshwater environments cannot be solely attributed to cyanobacteria.
Collapse
|
43
|
Insufficient evidence for BMAA transfer in the pelagic and benthic food webs in the Baltic Sea. Sci Rep 2019; 9:10406. [PMID: 31320701 PMCID: PMC6639344 DOI: 10.1038/s41598-019-46815-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
The evidence regarding BMAA occurrence in the Baltic Sea is contradictory, with benthic sources appearing to be more important than pelagic ones. The latter is counterintuitive considering that the identified sources of this compound in the food webs are pelagic primary producers, such as diatoms, dinoflagellates, and cyanobacteria. To elucidate BMAA distribution, we analyzed BMAA in the pelagic and benthic food webs in the Northern Baltic Proper. As potential sources, phytoplankton communities were used. Pelagic food chain was represented by zooplankton, mysids and zooplanktivorous fish, whereas benthic invertebrates and benthivorous fish comprised the benthic chain. The trophic structure of the system was confirmed by stable isotope analysis. Contrary to the reported ubiquitous occurrence of BMAA in the Baltic food webs, only phytoplankton, zooplankton and mysids tested positive, whereas no measurable levels of this compound occurred in the benthic invertebrates and any of the tested fish species. These findings do not support the widely assumed occurrence and transfer of BMAA to the top consumers in the Baltic food webs. More controlled experiments and field observations are needed to understand the transfer and possible transformation of BMAA in the food web under various environmental settings.
Collapse
|
44
|
Violi JP, Mitrovic SM, Colville A, Main BJ, Rodgers KJ. Prevalence of β-methylamino-L-alanine (BMAA) and its isomers in freshwater cyanobacteria isolated from eastern Australia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:72-81. [PMID: 30682636 DOI: 10.1016/j.ecoenv.2019.01.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Environmental exposure to the amino acid β-methylamino-L-alanine (BMAA) was linked to the high incidence of neurodegenerative disease first reported on the island of Guam in the 1940s and has more recently been implicated in an increased incidence of amyotrophic lateral sclerosis (ALS) in parts of the USA. BMAA has been shown to be produced by a range of cyanobacteria and some marine diatoms and dinoflagellates in different parts of the world. BMAA is commonly found with two of its constitutional isomers: 2,4- diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl) glycine (AEG). These isomers are thought to be co-produced by the same organisms that produce BMAA and MS/MS analysis following LC separation can add an additional level of specificity over LC-FL. Although the presence of BMAA and 2,4-DAB in surface scum samples from several sites in Australia has been reported, which Australian cyanobacterial species are capable of BMAA, 2,4-DAB and AEG production remains unknown. The aims of the present studies were to identify some of the cyanobacterial genera or species that can produce BMAA, 2,4-DAB and AEG in freshwater cyanobacteria blooms in eastern Australia. Eleven freshwater sites were sampled and from these, 19 single-species cyanobacterial cultures were established. Amino acids were extracted from cyanobacterial cultures and analysed using liquid chromatography-tandem mass spectrometry. BMAA was detected in 17 of the 19 isolates, 2,4-DAB was detected in all isolates, and AEG was detected in 18 of the 19 isolates, showing the prevalence of these amino acids in Australian freshwater cyanobacteria. Concentrations of all three isomers in Australian cyanobacteria were generally higher than the concentrations reported elsewhere. This study confirmed the presence of BMAA and its isomers in cyanobacteria isolated from eastern Australian freshwater systems, and determined which Australian cyanobacterial genera or species were capable of producing them when cultured under laboratory conditions.
Collapse
Affiliation(s)
- Jake P Violi
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Simon M Mitrovic
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Anne Colville
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Brendan J Main
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
45
|
Davis DA, Mondo K, Stern E, Annor AK, Murch SJ, Coyne TM, Brand LE, Niemeyer ME, Sharp S, Bradley WG, Cox PA, Mash DC. Cyanobacterial neurotoxin BMAA and brain pathology in stranded dolphins. PLoS One 2019; 14:e0213346. [PMID: 30893348 PMCID: PMC6426197 DOI: 10.1371/journal.pone.0213346] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Dolphin stranding events occur frequently in Florida and Massachusetts. Dolphins are an excellent sentinel species for toxin exposures in the marine environment. In this report we examine whether cyanobacterial neurotoxin, β-methylamino-L-alanine (BMAA), is present in stranded dolphins. BMAA has been shown to bioaccumulate in the marine food web, including in the muscles and fins of sharks. Dietary exposure to BMAA is associated with the occurrence of neurofibrillary tangles and β-amyloid plaques in nonhuman primates. The findings of protein-bound BMAA in brain tissues from patients with Alzheimer’s disease has advanced the hypothesis that BMAA may be linked to dementia. Since dolphins are apex predators and consume prey containing high amounts of BMAA, we examined necropsy specimens to determine if dietary and environmental exposures may result in the accumulation of BMAA in the brains of dolphins. To test this hypothesis, we measured BMAA in a series of brains collected from dolphins stranded in Florida and Massachusetts using two orthogonal analytical methods: 1) high performance liquid chromatography, and 2) ultra-performance liquid chromatography with tandem mass spectrometry. We detected high levels of BMAA (20–748 μg/g) in the brains of 13 of 14 dolphins. To correlate neuropathological changes with toxin exposure, gross and microscopic examinations were performed on cortical brain regions responsible for acoustico-motor navigation. We observed increased numbers of β-amyloid+ plaques and dystrophic neurites in the auditory cortex compared to the visual cortex and brainstem. The presence of BMAA and neuropathological changes in the stranded dolphin brain may help to further our understanding of cyanotoxin exposure and its potential impact on human health.
Collapse
Affiliation(s)
- David A. Davis
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- * E-mail: (DM); (DD)
| | - Kiyo Mondo
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Erica Stern
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Ama K. Annor
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Susan J. Murch
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia, Canada
| | - Thomas M. Coyne
- Office of the District 21 Medical Examiner, Fort Myers, Florida, United States of America
| | - Larry E. Brand
- Divisions of Marine Biology and Fisheries and NSF/NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, United States of America
| | - Misty E. Niemeyer
- Marine Mammal Rescue and Research, International Fund for Animal Welfare (IFAW), Yarmouth Port, Massachusetts, United States of America
| | - Sarah Sharp
- Marine Mammal Rescue and Research, International Fund for Animal Welfare (IFAW), Yarmouth Port, Massachusetts, United States of America
| | - Walter G. Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson Hole, Wyoming, United States of America
| | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- * E-mail: (DM); (DD)
| |
Collapse
|
46
|
β-N-methylamino-L-alanine (BMAA) suppresses cell cycle progression of non-neuronal cells. Sci Rep 2018; 8:17995. [PMID: 30573743 PMCID: PMC6301973 DOI: 10.1038/s41598-018-36418-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022] Open
Abstract
β-N-methylamino-L-alanine (BMAA), a natural non-proteinaceous amino acid, is a neurotoxin produced by a wide range of cyanobacteria living in various environments. BMAA is a candidate environmental risk factor for neurodegenerative diseases such as amyotrophic lateral sclerosis and Parkinson-dementia complex. Although BMAA is known to exhibit weak neuronal excitotoxicity via glutamate receptors, the underlying mechanism of toxicity has yet to be fully elucidated. To examine the glutamate receptor-independent toxicity of BMAA, we investigated the effects of BMAA in non-neuronal cell lines. BMAA potently suppressed the cell cycle progression of NIH3T3 cells at the G1/S checkpoint without inducing plasma membrane damage, apoptosis, or overproduction of reactive oxygen species, which were previously reported for neurons and neuroblastoma cells treated with BMAA. We found no evidence that activation of glutamate receptors was involved in the suppression of the G1/S transition by BMAA. Our results indicate that BMAA affects cellular functions, such as the division of non-neuronal cells, through glutamate receptor-independent mechanisms.
Collapse
|
47
|
Fungal Neurotoxins and Sporadic Amyotrophic Lateral Sclerosis. Neurotox Res 2018; 35:969-980. [PMID: 30515715 DOI: 10.1007/s12640-018-9980-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Abstract
We review several lines of evidence that point to a potential fungal origin of sporadic amyotrophic lateral sclerosis (ALS). ALS is the most common form of motor neuron disease (MND) in adults. It is a progressive and fatal disease. Approximately 90% cases of ALS are sporadic, and 5-10% are due to genetic mutations (familial). About 25 genes implicated in familial ALS have been identified so far, including SOD1 and TARDBP, the gene encoding 43 kDa transactive response (TAR) DNA-binding protein (TDP-43). Despite intensive research over many decades, the aetiology of sporadic ALS is still unknown. An environmental cause, including grass or soil-associated fungal infections, is suggested from a range of widely diverse lines of evidence. Clusters of ALS have been reported in soccer players, natives of Guam and farmers. Grass-associated fungi are known to produce a range of neurotoxins and, in symbiotic associations, high levels of fungal SOD1. Exposure of neurons to fungal neurotoxins elicits a significant increase in glutamate production. High levels of glutamate stimulate TDP-43 translocation and modification, providing a link between fungal infection and one of the molecular and histologic hallmarks of sporadic ALS. A recent study provided evidence of a variety of fungi in the cerebrospinal fluid and brain tissue of ALS patients. This review provides a rational explanation for this observation. If a fungal infection could be confirmed as a potential cause of ALS, this could provide a straightforward treatment strategy for this fatal and incurable disease.
Collapse
|
48
|
Cyanotoxins and Cyanobacteria Cell Accumulations in Drinking Water Treatment Plants with a Low Risk of Bloom Formation at the Source. Toxins (Basel) 2018; 10:toxins10110430. [PMID: 30373126 PMCID: PMC6266306 DOI: 10.3390/toxins10110430] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Toxic cyanobacteria have been shown to accumulate in drinking water treatment plants that are susceptible to algal blooms. However, the risk for plants that do not experience algal blooms, but that receive a low influx of cells, is not well known. This study determined the extent of cell accumulation and presence of cyanotoxins across the treatment trains of four plants in the Great Lakes region. Samples were collected for microscopic enumeration and enzyme-linked immunosorbent assay (ELISA) measurements for microcystins, anatoxin-a, saxitoxin, cylindrospermopsin, and β-methylamino-L-alanine (BMAA). Low cell influxes (under 1000 cells/mL) resulted in significant cell accumulations (over 1 × 105 cells/mL) in clarifier sludge and filter backwash samples. Microcystins peaked at 7.2 µg/L in one clarifier sludge sample, exceeding the raw water concentration by a factor of 12. Anatoxin-a was detected in the finished drinking water of one plant at 0.6 µg/L. BMAA may have been detected in three finished water samples, though inconsistencies among the BMAA ELISAs call these results into question. In summary, the results show that plants receiving a low influx of cells can be at risk of toxic cyanobacterial accumulation, and therefore, the absence of a bloom at the source does not indicate the absence of risk.
Collapse
|
49
|
Ubiquity of the neurotoxin β-N-methylamino-L-alanine and its isomers confirmed by two different mass spectrometric methods in diverse marine mollusks. Toxicon 2018; 151:129-136. [DOI: 10.1016/j.toxicon.2018.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/24/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
|
50
|
Riancho J, Bosque-Varela P, Perez-Pereda S, Povedano M, de Munaín AL, Santurtun A. The increasing importance of environmental conditions in amyotrophic lateral sclerosis. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1361-1374. [PMID: 29713861 DOI: 10.1007/s00484-018-1550-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons (MNs). Although a small percentage of ALS has a familial origin, the vast majority of cases are sporadic in which genetic factors and environment interact with each other leading to disease onset in genetically predisposed individuals. In the current model of the disease, each individual has a determined genetic load, some degree of cell degeneration related to age and several risky environmental exposures. In this scenario, MN degeneration would occur when the sum of these factors reach a certain threshold. To date, an extensive list of environmental factors has been associated to ALS, including different categories, such as exposure to heavy metals and other toxicants, cyanotoxins or infectious agents. In addition, in recent years, lifestyle and other demographic parameters are gaining relevance in the genesis of the disease. Among them, physical activity, nutrition, body mass index, cardiovascular risk factors, autoimmune diseases and cancer are some of the conditions which have been related to the disease. In this review, we will discuss the potential mechanisms of environmental conditions in motor neuron degeneration. Understanding the role of each one of these factors as well as their interactions appears as a crucial step in order to develop new preventive, diagnostic and therapeutic approaches for ALS patients.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana, Institute of Research Valdecilla (IDIVAL), Torrelavega, Spain.
- Department of Medicine, University of Cantabria, Santander, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
| | - Pilar Bosque-Varela
- Service of Neurology, University Hospital Marques de Valdecilla, Santander, Spain
| | - Sara Perez-Pereda
- Service of Neurology, University Hospital Marques de Valdecilla, Santander, Spain
| | - Mónica Povedano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Service of Neurology-Motor Neuron Unit, IDIBELL, Bellvitge University Hospital, Barcelona, Spain
| | - Adolfo López de Munaín
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- ALS Multidisciplinary Unit, Hospital Donostia- Neuroscience Area, Donostia Health Research Institute, San Sebastián, Spain
| | - Ana Santurtun
- Toxicology Unit, Physiology and Farmacology Department, University of Cantabria-IDIVAL, Santander, Spain
| |
Collapse
|