1
|
Wijaya GYA, Vornoli A, Giambastiani L, Digiacomo M, Macchia M, Szymczak B, Wójcik M, Pozzo L, Longo V. Solid-State Fermented Cereals: Increased Phenolics and Their Role in Attenuating Liver Diseases. Nutrients 2025; 17:900. [PMID: 40077770 PMCID: PMC11901820 DOI: 10.3390/nu17050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Liver diseases, a leading cause of global mortality, necessitate effective dietary strategies. Fermented cereals, traditionally recognized for benefits in glucose regulation, lipid profiles, and antioxidant activity, hold potential for managing conditions such as type 2 diabetes, hypertension, and obesity. However, their specific impact on liver health requires further investigation. Fermentation, particularly solid-state fermentation (SSF), enhances the bioavailability of beneficial compounds, including phenolics. This review summarizes recent studies on the phenolic content of fermented cereals, highlighting variations based on microbial strains and cereal types. It examines the hepatoprotective effects of these phenolics, drawing on in vivo and in vitro research. Furthermore, the review explores recent findings on the impact of fermented cereals on liver health and related diseases. This work provides a foundation for future research exploring fermented cereals as a dietary intervention for liver disease prevention and management.
Collapse
Affiliation(s)
- Ganesha Yanuar Arief Wijaya
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy;
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
| | - Andrea Vornoli
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Lucia Giambastiani
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Bartłomiej Szymczak
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland;
| | - Marta Wójcik
- Veterinary Oncology Lab., Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Luisa Pozzo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Vincenzo Longo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| |
Collapse
|
2
|
Moriconi D, Pucci L, Longo V, Antonioli L, Bellini R, Tricò D, Baldi S, Nannipieri M. Efficacy of Lisosan G (fermented wheat) on reactive hypoglycemia after bariatric surgery. Obes Res Clin Pract 2024; 18:350-356. [PMID: 39550318 DOI: 10.1016/j.orcp.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
INTRODUCTION post-bariatric hypoglycemia (PBH) is considered a chronic complication after gastric bypass (RYGB) impacting roughly 30 % of patients. Current treatments often focus on nutritional interventions to reduce the frequency of episodes. This prospective study evaluated the effectiveness of Lisosan G (LG), a fermented wheat-based supplement added to the diet, in mitigating PBH episodes and elucidating its mechanism of action on the gut-pancreas axis. METHODS twenty subjects with PBH, who had undergone RYGB between 2015 and 2018, were enrolled. Subjects underwent clinical examination, blood test, and a 3-hour oral glucose load test (OGTT). Then, they were monitored for 2-weeks on a free diet with continuous glucose monitoring (CGM), which was extended for another 2-weeks after introduction of LG supplementation (5 g, twice daily) on the same diet. Finally, subjects repeated OGTT and blood test. PBH was defined as interstitial glucose ≤ 54 mg/dl. RESULTS after treatment, a marked reduction in PBH time was observed (75[23-113] vs 16 [0-33], minutes, p < 0.001). During OGTT, there was an increase in glucose nadir (44 ± 11 vs 56 ± 10, mg/dl, p = 0.038), and a significantly decrease in total GLP-1 AUC (7.6 ± 4.1 vs 6.5 ± 3.8, nmol/L*min, p = 0.043), in potentiation factor ratio (p = 0.037) and in total insulin AUC (57 ± 12 vs 49 ± 9, nmol/L*min, p = 0.043). CONCLUSION LG effectively reduces PBH frequency and duration, probably by attenuating GLP-1 concentrations and leading to a decrease in the second phase of insulin secretion in response to glucose. These findings underscore the promise of LG as a novel adjunct therapy for PBH, particularly when added to the diet, and emphasize the need for further exploration into its microbiota-modulating and anti-inflammatory effects.
Collapse
Affiliation(s)
- Diego Moriconi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Laura Pucci
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Vincenzo Longo
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Rosario Bellini
- Bariatric Surgery Unit. Azienda Ospedaliera Universitaria Pisana, Pisa, Italy.
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
3
|
Bongiorni S, Catalani E, Arisi I, Lazzarini F, Del Quondam S, Brunetti K, Cervia D, Prantera G. Pathological Defects in a Drosophila Model of Alzheimer's Disease and Beneficial Effects of the Natural Product Lisosan G. Biomolecules 2024; 14:855. [PMID: 39062569 PMCID: PMC11274821 DOI: 10.3390/biom14070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) brains are histologically marked by the presence of intracellular and extracellular amyloid deposits, which characterize the onset of the disease pathogenesis. Increasing evidence suggests that certain nutrients exert a direct or indirect effect on amyloid β (Aβ)-peptide production and accumulation and, consequently, on AD pathogenesis. We exploited the fruit fly Drosophila melanogaster model of AD to evaluate in vivo the beneficial properties of Lisosan G, a fermented powder obtained from organic whole grains, on the intracellular Aβ-42 peptide accumulation and related pathological phenotypes of AD. Our data showed that the Lisosan G-enriched diet attenuates the production of neurotoxic Aβ peptides in fly brains and reduces neuronal apoptosis. Notably, Lisosan G exerted anti-oxidant effects, lowering brain levels of reactive oxygen species and enhancing mitochondrial activity. These aspects paralleled the increase in autophagy turnover and the inhibition of nucleolar stress. Our results give support to the use of the Drosophila model not only to investigate the molecular genetic bases of neurodegenerative disease but also to rapidly and reliably test the efficiency of potential therapeutic agents and diet regimens.
Collapse
Affiliation(s)
- Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, 00161 Rome, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Francesca Lazzarini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| |
Collapse
|
4
|
Guidotti L, Tomassi E, Marracci S, Lai M, Lapi D, Pesi R, Pucci L, Novellino E, Albi E, Garcia-Gil M. Effects of Nutraceuticals on Cisplatin-Induced Cytotoxicity in HEI-OC1 Cells. Int J Mol Sci 2023; 24:17416. [PMID: 38139245 PMCID: PMC10743635 DOI: 10.3390/ijms242417416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cisplatin is a chemotherapeutic drug for the treatment of several solid tumors, whose use is limited by its nephrotoxicity, neurotoxicity, ototoxicity, and development of resistance. The toxicity is caused by DNA cross-linking, increase in reactive oxygen species and/or depletion of cell antioxidant defenses. The aim of the work was to study the effect of antioxidant compounds (Lisosan G, Taurisolo®) or hydrogen sulfide (H2S)-releasing compounds (erucin) in the auditory HEI-OC1 cell line treated with cisplatin. Cell viability was determined using the MTT assay. Caspase and sphingomyelinase activities were measured by fluorometric and colorimetric methods, respectively. Expression of transcription factors, apoptosis hallmarks and genes codifying for antioxidant response proteins were measured by Western blot and/or RT-qPCR. Lisosan G, Taurisolo® and erucin did not show protective effects. Sodium hydrosulfide (NaHS), a donor of H2S, increased the viability of cisplatin-treated cells and the transcription of heme oxygenase 1, superoxide dismutase 2, NAD(P)H quinone dehydrogenase type 1 and the catalytic subunit of glutamate-cysteine ligase and decreased reactive oxygen species (ROS), the Bax/Bcl2 ratio, caspase-3, caspase-8 and acid sphingomyelinase activity. Therefore, NaHS might counteract the cytotoxic effect of cisplatin by increasing the antioxidant response and by reducing ROS levels and caspase and acid sphingomyelinase activity.
Collapse
Affiliation(s)
- Lorenzo Guidotti
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Elena Tomassi
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (E.T.); (L.P.)
| | - Silvia Marracci
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, Strada Statale del Brennero 2, 56127 Pisa, Italy;
| | - Dominga Lapi
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Rossana Pesi
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy;
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (E.T.); (L.P.)
| | - Ettore Novellino
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, Interno Orto Botanico, University of Perugia, Via Romana, 06126 Perugia, Italy;
| | - Mercedes Garcia-Gil
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
5
|
Amato R, Melecchi A, Pucci L, Canovai A, Marracci S, Cammalleri M, Dal Monte M, Caddeo C, Casini G. Liposome-Mediated Delivery Improves the Efficacy of Lisosan G against Retinopathy in Diabetic Mice. Cells 2023; 12:2448. [PMID: 37887292 PMCID: PMC10605070 DOI: 10.3390/cells12202448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Nutraceuticals are natural substances whose anti-oxidant and anti-inflammatory properties may be used to treat retinal pathologies. Their efficacy is limited by poor bioavailability, which could be improved using nanocarriers. Lisosan G (LG), a fermented powder from whole grains, protects the retina from diabetic retinopathy (DR)-induced damage. For this study, we tested whether the encapsulation of LG in liposomes (LipoLG) may increase its protective effects. Diabetes was induced in mice via streptozotocin administration, and the mice were allowed to freely drink water or a water dispersion of two different doses of LG or of LipoLG. Electroretinographic recordings after 6 weeks showed that only the highest dose of LG could partially protect the retina from diabetes-induced functional deficits, while both doses of LipoLG were effective. An evaluation of molecular markers of oxidative stress, inflammation, apoptosis, vascular endothelial growth factor, and the blood-retinal barrier confirmed that the highest dose of LG only partially protected the retina from DR-induced changes, while virtually complete prevention was obtained with either dose of LipoLG. These data indicate that the efficacy of LG in contrasting DR is greatly enhanced by its encapsulation in liposomes and may lay the ground for new dietary supplements with improved therapeutic effects against DR.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
| | - Alberto Melecchi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), 56124 Pisa, Italy;
| | - Alessio Canovai
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Carla Caddeo
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
6
|
Taranu I, Pistol GC, Anghel AC, Marin D, Bulgaru C. Yeast-Fermented Rapeseed Meal Extract Is Able to Reduce Inflammation and Oxidative Stress Caused by Escherichia coli Lipopolysaccharides and to Replace ZnO in Caco-2/HTX29 Co-Culture Cells. Int J Mol Sci 2022; 23:ijms231911640. [PMID: 36232939 PMCID: PMC9569814 DOI: 10.3390/ijms231911640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) The present study tested in vitro the capacity of a fermented rapeseed meal extract to reduce medicinal ZnO, which will be banned at the EU level from 2023 onwards because of its potential to cause environmental pollution and the development of Zn resistance in gut bacteria. Rapeseed meal could be an important ZnO substitute as it has antioxidant/radical scavenging properties due to its content of bioactive compounds (e.g., polyphenols). (2) Protein array and flow cytometry were used to detect apoptosis, oxidative stress production, and inflammatory and signaling-related molecules in Caco-2 and goblet HT29-MTX co-culture cells challenged with Escherichia coli lipopolysaccharides and treated with ZnO and FRSM. (3) LPS induced cell death (21.1% vs. 12.7% in control, p < 0.005); apoptosis (16.6%); ROS production; and overexpression of biomarkers related to inflammation (63.15% cytokines and 66.67% chemokines), oxidative stress, and signaling proteins when compared to untreated cells. ZnO was effective in counteracting the effect of LPS, and 73.68% cytokines and 91.67% of chemokines were recovered. FRSM was better at restoring normal protein expression for 78.94% of cytokines, 91.67% of chemokines, and 61.11% of signaling molecules. FRSM was able to mitigate negative effects of LPS and might be an alternative to ZnO in pig diets.
Collapse
Affiliation(s)
- Ionelia Taranu
- Correspondence: ; Tel.: +40-213-512-241; Fax: +40-213-512-080
| | | | | | | | | |
Collapse
|
7
|
Genome-Wide Identification and Characterization of G2-Like Transcription Factor Genes in Moso Bamboo (Phyllostachys edulis). Molecules 2022; 27:molecules27175491. [PMID: 36080259 PMCID: PMC9457811 DOI: 10.3390/molecules27175491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
G2-like (GLK) transcription factors contribute significantly and extensively in regulating chloroplast growth and development in plants. This study investigated the genome-wide identification, phylogenetic relationships, conserved motifs, promoter cis-elements, MCScanX, divergence times, and expression profile analysis of PeGLK genes in moso bamboo (Phyllostachys edulis). Overall, 78 putative PeGLKs (PeGLK1–PeGLK78) were identified and divided into 13 distinct subfamilies. Each subfamily contains members displaying similar gene structure and motif composition. By synteny analysis, 42 orthologous pairs and highly conserved microsynteny between regions of GLK genes across moso bamboo and maize were found. Furthermore, an analysis of the divergence times indicated that PeGLK genes had a duplication event around 15 million years ago (MYA) and a divergence happened around 38 MYA between PeGLK and ZmGLK. Tissue-specific expression analysis showed that PeGLK genes presented distinct expression profiles in various tissues, and many members were highly expressed in leaves. Additionally, several PeGLKs were significantly up-regulated under cold stress, osmotic stress, and MeJA and GA treatment, implying that they have a likelihood of affecting abiotic stress and phytohormone responses in plants. The results of this study provide a comprehensive understanding of the moso bamboo GLK gene family, as well as elucidating the potential functional characterization of PeGLK genes.
Collapse
|
8
|
Taranu I, Marin D, Pistol G, Untea A, Vlassa M, Filip M, Gras M, Rotar C, Anghel A. Assessment of the ability of dietary yeast-fermented rapeseed
meal to modulate inflammatory and oxidative stress
in piglets after weaning. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/148055/2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
The Effect of Lithium Salt with Ascorbic Acid on the Antioxidant Status and Productivity of Gestating Sows. Animals (Basel) 2022; 12:ani12070915. [PMID: 35405903 PMCID: PMC8996941 DOI: 10.3390/ani12070915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
This research is aimed at the influence of different doses of lithium ascorbate on pigs’ diet estimation, at farrowing sows’ antioxidant status increase, and at lipid peroxidation product level decrease. The research was conducted in farrowing sows of the Irish landrace breed during the second farrow. Three groups of animals were formed, with ten livestock units in each. Thirty days after successful insemination, the sows of the E10, E5 and E2 experimental groups started receiving lithium ascorbate powder together with feed stuff in dosages of 10, 5 and 2 mg/kg of body weight, respectively. Their weighing and biochemical examinations were performed before the substance introduction as well as on the 60th and 110th days of pregnancy. The following were detected in sows’ blood plasma: malondialdehyde, reduced glutathione, oxidized glutathione, SH/SS ratio, superoxide dismutase and glutathione peroxidase activity. Lithium ascorbate usage during sows’ breeding cycle caused a significant increase in SH (reduced glutathione) level by 21% (p < 0.05), SS (oxidized glutathione) level decrease by 17% (p < 0.05), and malondialdehyde level decrease by 60% (p < 0.05). These data outline antioxidant defense system activization, reducing the risk of oxidative stress under the influence of feeding with lithium ascorbate. Lithium ascorbate in dosages of 10 mg/kg per body weight given together with feed stuff shows prominent adaptogene and stress protective features in the most effective way. The research conducted regarding lithium ascorbate usage for farrowing sows can reduce the negative consequences of oxidative stress, increase sows’ health preservation level, and contribute to fertility boost.
Collapse
|
10
|
Pozzo L, Alcántara C, Selma-Royo M, Garcia-Mantrana I, Bramanti E, Longo V, Collado MC, Pucci L. The impact of sourdough fermentation of spelt (Triticum dicoccum) from Garfagnana on gut microbiota composition and in vitro activity. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
11
|
|
12
|
Determination of total phenolic contents and antioxidant activities of fruits from wild and creole Carica papaya genotypes in comparison to commercial papaya cultivars. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01121-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Amato R, Rossino MG, Cammalleri M, Timperio AM, Fanelli G, Dal Monte M, Pucci L, Casini G. The Potential of Lisosan G as a Possible Treatment for Glaucoma. Front Pharmacol 2021; 12:719951. [PMID: 34393798 PMCID: PMC8355587 DOI: 10.3389/fphar.2021.719951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Lisosan G (LG), a fermented powder obtained from whole grains, is a nutritional supplement containing a variety of metabolites with documented antioxidant properties. We have recently demonstrated that orally administered LG protects diabetic rodent retinas from oxidative stress, inflammation, apoptosis, blood-retinal barrier disruption, and functional damage. Here, we investigated whether LG may exert protective effects in a model of glaucoma and measured the amounts of selected LG components that reach the retina after oral LG administration. Six-month-old DBA/2J mice were given an aqueous LG solution in place of drinking water for 2 mo. During the 2 mo of treatment with LG, the intraocular pressure (IOP) was monitored and the retinal ganglion cell (RGC) functional activity was recorded with pattern-electroretinography (PERG). At the end of the 2-mo period, the expression of oxidative stress and inflammatory markers was measured with qPCR, and RGC survival or macroglial activation were assessed with immunofluorescence. Alternatively, LG was administered by gavage and the concentrations of four of the main LG components (nicotinamide, gallic acid, 4-hydroxybenzoic acid, and quercetin) were measured in the retinas in the following 24 h using mass spectrometry. LG treatment in DBA/2J mice did not influence IOP, but it affected RGC function since PERG amplitude was increased and PERG latency was decreased with respect to untreated DBA/2J mice. This improvement of RGC function was concomitant with a significant decrease of both oxidative stress and inflammation marker expression, of RGC loss, and of macroglial activation. All four LG metabolites were found in the retina, although with different proportions with respect to the amount in the dose of administered LG, and with different temporal profiles in the 24 h following administration. These findings are consistent with neuroenhancing and neuroprotective effects of LG in glaucoma that are likely to derive from its powerful antioxidant properties. The co-occurrence of different metabolites in LG may provide an added value to their beneficial effects and indicate LG as a basis for the potential treatment of a variety of retinal pathologies.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Laura Pucci
- National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA), Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Nutraceutical Strategy to Counteract Eye Neurodegeneration and Oxidative Stress in Drosophila melanogaster Fed with High-Sugar Diet. Antioxidants (Basel) 2021; 10:antiox10081197. [PMID: 34439445 PMCID: PMC8388935 DOI: 10.3390/antiox10081197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
Aberrant production of reactive oxygen species (ROS) is a common feature of damaged retinal neurons in diabetic retinopathy, and antioxidants may exert both preventive and therapeutic action. To evaluate the beneficial and antioxidant properties of food supplementation with Lisosan G, a powder of bran and germ of grain (Triticum aestivum) obtained by fermentation with selected lactobacillus and natural yeast strains, we used an in vivo model of hyperglycemia-induced retinal damage, the fruit fly Drosophila melanogaster fed with high-sucrose diet. Lisosan G positively affected the visual system of hyperglycemic flies at structural/functional level, decreased apoptosis, and reactivated protective autophagy at the retina internal network. Also, in high sucrose-fed Drosophila, Lisosan G reduced the levels of brain ROS and retina peroxynitrite. The analysis of oxidative stress-related metabolites suggested 7,8-dihydrofolate, uric acid, dihydroorotate, γ-L-glutamyl-L-cysteine, allantoin, cysteinyl-glycine, and quinolate as key mediators of Lisosan G-induced inhibition of neuronal ROS, along with the upregulation of glutathione system. Of note, Lisosan G may impact oxidative stress and the ensuing retinal cell death, also independently from autophagy, although the autophagy-ROS cross-talk is critical. This study demonstrated that the continuous supplementation with the alimentary integrator Lisosan G exerts a robust and multifaceted antioxidant effect on retinal neurons, thus providing efficacious neuroprotection of hyperglycemic eye.
Collapse
|
15
|
Choi MH, Lee MY, Yang SH, Shin HJ, Jeon YJ. Hydrophobic Fractions of Triticum aestivum L. Extracts Contain Polyphenols and Alleviate Inflammation by Regulating Nuclear Factor-kappa B. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0352-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Antioxidant properties and hepatoprotective effect of the edible halophyte Crithmum maritimum L. against carbon tetrachloride-induced liver injury in rats. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03498-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Verni M, Verardo V, Rizzello CG. How Fermentation Affects the Antioxidant Properties of Cereals and Legumes. Foods 2019; 8:E362. [PMID: 31450581 PMCID: PMC6770679 DOI: 10.3390/foods8090362] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The major role of antioxidant compounds in preserving food shelf life, as well as providing health promoting benefits, combined with the increasing concern towards synthetic antioxidants, has led the scientific community to focus on natural antioxidants present in food matrices or resulting from microbial metabolism during fermentation. This review aims at providing a comprehensive overview of the effect of fermentation on the antioxidant compounds of vegetables, with emphasis on cereals- and legumes- derived foods. Polyphenols are the main natural antioxidants in food. However, they are often bound to cell wall, glycosylated, or in polymeric forms, which affect their bioaccessibility, yet several metabolic activities are involved in their release or conversion in more active forms. In some cases, the antioxidant properties in vitro, were also confirmed during in vivo studies. Similarly, bioactive peptides resulted from bacterial and fungal proteolysis, were also found to have ex vivo protective effect against oxidation. Fermentation also influenced the bioaccessibility of other compounds, such as vitamins and exopolysaccharides, enabling a further improvement of antioxidant activity in vitro and in vivo. The ability of fermentation to improve food antioxidant properties strictly relies on the metabolic activities of the starter used, and to further demonstrate its potential, more in vivo studies should be carried out.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus Universitario de Cartuja, E-18071 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain
| | | |
Collapse
|
18
|
Effect of Dietary Hemp Seed on Oxidative Status in Sows during Late Gestation and Lactation and Their Offspring. Animals (Basel) 2019; 9:ani9040194. [PMID: 31027169 PMCID: PMC6523475 DOI: 10.3390/ani9040194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Hemp seeds are rich in polyunsaturated fatty acids as well as other bioactive compounds. Using dietary hemp seeds as late gestation and lactation supplementation for sows and early life supplementation for piglets, we found that the indicators of oxidative status were improved in both sows and offspring. Besides the significant improvement in the antioxidant defense system of the sows, our assessment of dietary intervention resulted in an array of increased antioxidative status markers for their progeny. In addition, this could be translated into increased adaptability to the upcoming weaning stage. Abstract This study shows the antioxidant effect of a dietary hemp seed diet rich in ω-6 polyunsaturated fatty acid (PUFA) on oxidative status in sows during late gestation and lactation and their offspring. Ten pregnant sows were divided into two groups and fed either a control diet (CD) or a hemp diet (HD) containing 2% hemp seed meal for a period of 10 days before farrowing and 5% throughout the lactation period (21 d). After farrowing, 16 of their resulting piglets were divided into two groups: control group CD (eight piglets derived from control sows) and HD group (eight piglets derived from HD sows), respectively. Blood collected from sows and piglets at day 1, 7 and 21 was used for the measurement of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), glutathione (GPx)), nitric oxide production (NO), lipid peroxidation (thiobarbituric acid reactive substances—TBARS), reactive oxygen species (ROS) generation and total antioxidant capacity (TAC) in plasma. The results showed a significant improvement in the oxidative status of sows fed HD throughout lactation compared with CD. Similarly, in piglets, HD positively influenced the activities of antioxidant enzymes, TAC and NO levels and significantly decreased lipid peroxidation in plasma until weaning, in comparison with the CD group. This study suggests the potential of hemp seed diet to improve the overall antioxidant status of the lactating sows and their progeny.
Collapse
|
19
|
Rossino MG, Casini G. Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients 2019; 11:nu11040771. [PMID: 30987058 PMCID: PMC6520779 DOI: 10.3390/nu11040771] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and is characterized by degeneration of retinal neurons and neoangiogenesis, causing a severe threat to vision. Nowadays, the principal treatment options for DR are laser photocoagulation, vitreoretinal surgery, or intravitreal injection of drugs targeting vascular endothelial growth factor. However, these treatments only act at advanced stages of DR, have short term efficacy, and cause side effects. Treatment with nutraceuticals (foods providing medical or health benefits) at early stages of DR may represent a reasonable alternative to act upstream of the disease, preventing its progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DR, reducing both the neural and vascular damage typical of DR. Although most studies are limited to animal models and there is the problem of low bioavailability for many nutraceuticals, the use of these compounds may represent a natural alternative method to standard DR treatments.
Collapse
Affiliation(s)
| | - Giovanni Casini
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|
20
|
Balli D, Bellumori M, Paoli P, Pieraccini G, Di Paola M, De Filippo C, Di Gioia D, Mulinacci N, Innocenti M. Study on a Fermented Whole Wheat: Phenolic Content, Activity on PTP1B Enzyme and In Vitro Prebiotic Properties. Molecules 2019; 24:molecules24061120. [PMID: 30901847 PMCID: PMC6470552 DOI: 10.3390/molecules24061120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Fermented cereals, staple foods in Asia and Africa, are recently receiving a growing interest in Western countries. The object of this work is the characterization of a fermented wheat used as a food ingredient and dietary supplement. To this aim, the phenolic composition, the activity on protein tyrosine phosphatase 1B (PTP1B), an enzyme overexpressed in type-II diabetes, the in vitro prebiotic properties on Lactobacillusreuteri and the microbial composition were investigated. Basic and acidic hydrolysis were tested for an exhaustive recovery of bound phenols: the acidic hydrolysis gave best yields. Methyl ferulate and neocarlinoside were identified for the first time in wheat. The inhibitory power of the extracts of several batches were investigated on PTP1B enzyme. The product was not able to inhibit the enzyme, otherwise, for the first time, a complete inhibition was observed for schaftoside, a major C-flavonoid of wheat. The microbial composition was assessed identifying Lactobacillus, Enterococcus, and Pediococcus as the main bacterial species. The fermented wheat was a suitable substrate for the grown of L. reuteri, recognized for its health properties in the human gut. The proposed method for phenols is easier compared to those based on strong basic hydrolysis; our results assessed the bound phenols as the major fraction, differently from that suggested by the literature for fermented cereals.
Collapse
Affiliation(s)
- Diletta Balli
- Department of NEUROFARBA, and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.- Ce.R.A.), University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no Firenze, Italy.
| | - Maria Bellumori
- Department of NEUROFARBA, and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.- Ce.R.A.), University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no Firenze, Italy.
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G.B. Morgagni 50, 50139 Firenze, Italy.
| | - Giuseppe Pieraccini
- Mass Spectrometry Center (CISM), Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Firenze, Italy.
| | - Monica Di Paola
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 42, 40127 Bologna, Italy.
| | - Nadia Mulinacci
- Department of NEUROFARBA, and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.- Ce.R.A.), University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no Firenze, Italy.
| | - Marzia Innocenti
- Department of NEUROFARBA, and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.- Ce.R.A.), University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no Firenze, Italy.
| |
Collapse
|
21
|
Jia R, Du J, Cao L, Li Y, Johnson O, Gu Z, Jeney G, Xu P, Yin G. Antioxidative, inflammatory and immune responses in hydrogen peroxide-induced liver injury of tilapia (GIFT, Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2019; 84:894-905. [PMID: 30389642 DOI: 10.1016/j.fsi.2018.10.084] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of many liver diseases in fish, but the molecular mechanism is still obscure. Here, we used hydrogen peroxide (H2O2) as a reactive oxygen species (ROS) to induce liver injury and assess underlying molecular mechanism linking oxidative stress and liver injury in fish. Tilapia were injected with various concentrations of H2O2 (0, 40, 120, 200, 300 and 400 mM) for 72 h. The blood and liver were collected to assay biochemical parameters and genes expression after 24, 48 and 72 h of injection. The results showed that treatments with higher H2O2 levels (300 and/or 400 mM) significantly increased the levels of GPT, GOT, AKP and MDA, and apparently decreased the levels of TP, ALB, SOD, GSH, CAT, GST and T-AOC throughout of the 72 h. The gene expression data showed that treatments with 200, 300 and/or 400 H2O2 suppressed Nrf2/keap1 pathway and its downstream genes including ho-1, nqo1 and gsta, activated inflammatory response via enhancing the mRNA levels of nf-κb, tnf-α, il-1β and il-8, and attenuating il-10 mRNA level, and caused immunotoxicity through downregulating the genes expression of c3, hep, lzm and Igm for 24, 48 and/or 72 h. Additionally, there was a mild or strong increase in levels of nrf2 and its subsequent antioxidant genes or enzymes such as ho-1, nqo1, gst, CAT and SOD in treatments with lower concentrations of H2O2 (40 or 120 mM) for 24 and/or 48 h. Overall results suggested that H2O2 hepatotoxicity was mainly concerned with lipid peroxidation, impairment antioxidant defense systems, inflammatory response and immunotoxicity, and Nrf2/Keap1 and NF-κB signaling pathways played important roles in oxidative stress-induced liver injury in fish.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yao Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Opigo Johnson
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Zhengyan Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Galina Jeney
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; National Agricultural Research Center, Research Institute for Fisheries and Aquaculture, Anna Light 8, Szarvas, 5440, Hungary
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
22
|
Soccio M, Laus MN, Flagella Z, Pastore D. Assessment of Antioxidant Capacity and Putative Healthy Effects of Natural Plant Products Using Soybean Lipoxygenase-Based Methods. An Overview. Molecules 2018; 23:E3244. [PMID: 30544620 PMCID: PMC6320953 DOI: 10.3390/molecules23123244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/30/2022] Open
Abstract
In the last decades, increasing demand of antioxidant-rich foods and growing interest in their putative role in prevention of degenerative diseases have promoted development of methods for measuring Antioxidant Capacity (AC). Nevertheless, most of these assays use radicals and experimental conditions far from the physiological ones, and are able to estimate only one or a few antioxidant mechanisms. On the other hand, the novel LOX/RNO and LOX⁻FL methods, based on secondary reactions between the soybean lipoxygenase (LOX)-1 isoenzyme and either 4-nitroso-N,N-dimethylaniline (RNO) or fluorescein (FL), may provide a more comprehensive AC evaluation. In fact, they are able to detect simultaneously many antioxidant functions (scavenging of some physiological radical species, iron ion reducing and chelating activities, inhibition of the pro-oxidant apoenzyme) and to highlight synergism among phytochemicals. They are applied to dissect antioxidant properties of several natural plant products: food-grade antioxidants, cereal and pseudocereal grains, grain-derived products, fruits. Recently, LOX⁻FL has been used for ex vivo AC measurements of human blood samples after short- and long-term intakes of some of these foods, and the effectiveness in improving serum antioxidant status was evaluated using the novel Antioxidant/Oxidant Balance (AOB) parameter, calculated as an AC/Peroxide Level ratio. An overview of data is presented.
Collapse
Affiliation(s)
- Mario Soccio
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Maura N Laus
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Zina Flagella
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Donato Pastore
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
23
|
Amato R, Rossino MG, Cammalleri M, Locri F, Pucci L, Dal Monte M, Casini G. Lisosan G Protects the Retina from Neurovascular Damage in Experimental Diabetic Retinopathy. Nutrients 2018; 10:nu10121932. [PMID: 30563182 PMCID: PMC6316708 DOI: 10.3390/nu10121932] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Lisosan G (LG), a fermented powder obtained from whole grains, is a recognized antioxidant compound that improves the bioactivity and survival of different cell types. The purpose of this study was to investigate whether LG ameliorates both the neural and the vascular damage characterizing early stages of diabetic retinopathy (DR). The effects of LG were studied in cultured explants of mouse retinas challenged with oxidative stress (OS) or in retinas of streptozotocin (STZ)-treated rats. Apoptosis, vascular endothelial growth factor (VEGF) expression, OS markers, blood-retinal barrier (BRB) integrity, and inflammation were assessed, while retinal function was evaluated with electroretinogram (ERG). LG extensively inhibited apoptosis, VEGF expression, and OS both in retinal explants and in STZ rats. In addition, STZ rats treated with LG displayed an almost total BRB integrity, reduced levels of inflammatory markers and a partially restored visual function as evaluated with ERG. In summary, we demonstrated that LG exhibits antioxidant and anti-inflammatory effects that exert powerful protective actions against neural and vascular defects characteristic of DR. Therefore, LG-containing foods or supplements may be considered to implement DR treatments.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
| | | | - Maurizio Cammalleri
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Filippo Locri
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
| | - Laura Pucci
- National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA), Pisa Unit, Via Moruzzi 1, 56124 Pisa, Italy.
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Giovanni Casini
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
24
|
Russo R, Pucci L, Giorgetti L, Árvay J, Vizzarri F, Longo V, Pozzo L. Polyphenolic characterisation of plant mixture (Lisosan® Reduction) and its hypocholesterolaemic effect in high fat diet-fed mice. Nat Prod Res 2017; 33:651-658. [DOI: 10.1080/14786419.2017.1402328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rossella Russo
- Institute of Agricultural Biology and Biotechnology, NRC, Pisa, Italy
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, NRC, Pisa, Italy
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology, NRC, Pisa, Italy
| | - Július Árvay
- Faculty of Biotechnology and Food Sciences, Department of Chemistry, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Francesco Vizzarri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology, NRC, Pisa, Italy
| | - Luisa Pozzo
- Institute of Agricultural Biology and Biotechnology, NRC, Pisa, Italy
| |
Collapse
|
25
|
A Fermented Whole Grain Prevents Lipopolysaccharides-Induced Dysfunction in Human Endothelial Progenitor Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1026268. [PMID: 28386305 PMCID: PMC5366772 DOI: 10.1155/2017/1026268] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
Abstract
Endogenous and exogenous signals derived by the gut microbiota such as lipopolysaccharides (LPS) orchestrate inflammatory responses contributing to development of the endothelial dysfunction associated with atherosclerosis in obesity, metabolic syndrome, and diabetes. Endothelial progenitor cells (EPCs), bone marrow derived stem cells, promote recovery of damaged endothelium playing a pivotal role in cardiovascular repair. Since healthy nutrition improves EPCs functions, we evaluated the effect of a fermented grain, Lisosan G (LG), on early EPCs exposed to LPS. The potential protective effect of LG against LPS-induced alterations was evaluated as cell viability, adhesiveness, ROS production, gene expression, and NF-kB signaling pathway activation. Our results showed that LPS treatment did not affect EPCs viability and adhesiveness but induced endothelial alterations via activation of NF-kB signaling. LG protects EPCs from inflammation as well as from LPS-induced oxidative and endoplasmic reticulum (ER) stress reducing ROS levels, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defense. Moreover, LG pretreatment prevented NF-kB translocation from the cytoplasm into the nucleus caused by LPS exposure. In human EPCs, LPS increases ROS and upregulates proinflammatory tone, proapoptotic factors, and antioxidants. LG protects EPCs exposed to LPS reducing ROS, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defenses possibly by inhibiting NF-κB nuclear translocation.
Collapse
|
26
|
Liu F, Xu Y, Han G, Zhou L, Ali A, Zhu S, Li X. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize. PLoS One 2016; 11:e0161763. [PMID: 27560803 PMCID: PMC4999087 DOI: 10.1371/journal.pone.0161763] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022] Open
Abstract
The productivity of maize (Zea mays L.) depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59) were divided into seven groups (I-VII). By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP) analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Yunjian Xu
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Guomin Han
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Lingyan Zhou
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Asif Ali
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Suwen Zhu
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
- * E-mail:
| |
Collapse
|
27
|
Gabriele M, Pucci L, La Marca M, Lucchesi D, Della Croce CM, Longo V, Lubrano V. A fermented bean flour extract downregulates LOX-1, CHOP and ICAM-1 in HMEC-1 stimulated by ox-LDL. Cell Mol Biol Lett 2016; 21:10. [PMID: 28536613 PMCID: PMC5415722 DOI: 10.1186/s11658-016-0015-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023] Open
Abstract
This study focused on an extract from fermented flour from the Lady Joy variety of the common bean Phaseolus vulgaris. The extract, Lady Joy lysate (Lys LJ), is enriched in antioxidant compounds during the fermentation. We assessed it for its protective effect on endothelial cells treated with oxidized-LDL (ox-LDL). The oxidative stress was determined by measuring the contents of thiobarbituric acid-reactive substances and reactive oxygen metabolites. ICAM-1, ET-1 and IL-6 concentrations were assessed using ELISA. LOX-1 and CHOP expression were analyzed using both quantitative RT-PCR and ELISA or western blotting. Ox-LDL treatment induced significant oxidative stress, which was strongly reduced by pre-treatment with the extract. The ox-LDL exposure significantly enhanced ICAM-1, IL-6 and ET-1 levels over basal levels. Lys LJ pre-treatment exerted an inhibitory effect on ox-LDL-induced endothelial activation with ICAM-1 levels comparable to those for the untreated cells. IL-6 and ET-1 production, although reduced, was still significantly higher than for the control. Both LOX-1 and CHOP expression were upregulated after ox-LDL exposure, but this effect was significantly decreased after Lys LJ pre-treatment. Lys LJ alone did not alter the ICAM-1, IL-6 and ET-1 concentrations or CHOP expression, but it did significantly lower the LOX-1 protein level. Our data suggest that Lys LJ is an effective antioxidant that is able to inhibit the oxidation process, but that it is only marginally active against inflammation and ET-1 production in HMEC-1 exposed to ox-LDL.
Collapse
Affiliation(s)
- Morena Gabriele
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Laura Pucci
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Margherita La Marca
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Daniela Lucchesi
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Clara Maria Della Croce
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Vincenzo Longo
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Valter Lubrano
- Fondazione CNR/Regione Toscana G. Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
28
|
Frassinetti S, Gabriele M, Caltavuturo L, Longo V, Pucci L. Antimutagenic and antioxidant activity of a selected lectin-free common bean (Phaseolus vulgaris L.) in two cell-based models. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2015; 70:35-41. [PMID: 25631277 DOI: 10.1007/s11130-014-0453-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Legumes and particularly beans are a key food of Mediterranean diet representing an important source of proteins, fiber, some minerals and vitamins and bioactive compounds. We evaluated the antioxidant and anti-mutagenic effects of a new fermented powder of a selected lectin-free and phaseolamin-enriched variety of common bean (Phaseolus vulgaris L.), named Lady Joy. Lady Joy lysate (Lys LJ) was studied in human erythrocytes and in Saccharomyces cerevisiae yeast cells. The antioxidant and anti-hemolytic properties of Lys LJ, studied in an ex vivo erythrocytes system using the cellular antioxidant assay (CAA-RBC) and the hemolysis test, evidenced a dose-dependent antioxidant activity as well as a significant hemolysis inhibition. Besides, results evidenced that Lys LJ treatment significantly decreased the intracellular ROS concentration and mutagenesis induced by hydrogen peroxide in S. cerevisiae D7 strain. In conclusion, Lys LJ showed both an antimutagenic effect in yeast and a strong scavenging activity in yeast and human cells.
Collapse
Affiliation(s)
- Stefania Frassinetti
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124, Pisa, Italy,
| | | | | | | | | |
Collapse
|
29
|
Taranu I, Gras M, Pistol GC, Motiu M, Marin DE, Lefter N, Ropota M, Habeanu M. ω-3 PUFA rich camelina oil by-products improve the systemic metabolism and spleen cell functions in fattening pigs. PLoS One 2014; 9:e110186. [PMID: 25303320 PMCID: PMC4193896 DOI: 10.1371/journal.pone.0110186] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/08/2014] [Indexed: 12/31/2022] Open
Abstract
Camelina oil-cakes results after the extraction of oil from Camelina sativa plant. In this study, camelina oil-cakes were fed to fattening pigs for 33 days and its effect on performance, plasma biochemical analytes, pro-/anti-inflammatory mediators and antioxidant detoxifying defence in spleen was investigated in comparison with sunflower meal. 24 crossbred TOPIG pigs were randomly assigned to one of two experimental dietary treatments containing either 12% sunflower meal (treatment 1-T1), or 12.0% camelina oil-cakes, rich in polyunsaturated fatty acids ω-3 (ω-3 PUFA) (treatment 2-T2). The results showed no effect of T2 diet (camelina cakes) on feed intake, average weight gain or feed efficiency. Consumption of camelina diet resulted in a significant decrease in plasma glucose concentration (18.47%) with a trend towards also a decrease of plasma cholesterol. In spleen, T2 diet modulated cellular immune response by decreasing the protein and gene expression of pro-inflammatory markers, interleukin 1-beta (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin (IL-8) and cyclooxigenase 2 (COX-2) in comparison with T1 diet. By contrast, T2 diet increased (P<0.05) in spleen the mRNA expression of antioxidant enzymes, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase 1 (GPx1) by 3.43, 2.47 and 1.83 fold change respectively, inducible nitric oxide synthase (iNOS) (4.60 fold), endothelial nitric oxide synthase (eNOS) (3.23 fold) and the total antioxidant level (9.02%) in plasma. Camelina diet increased also peroxisome-proliferator activated receptor gamma (PPAR-γ) mRNA and decreased that of mitogen-activated protein kinase 14 (p38α MAPK) and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB). At this level of inclusion (12%) camelina oil-cakes appears to be a potentially alternative feed source for pig which preserves a high content of ω-3 PUFA indicating antioxidant properties by the stimulation of detoxifying enzymes expression and the suppression of spleen pro-inflammatory markers.
Collapse
Affiliation(s)
- Ionelia Taranu
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Mihail Gras
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Gina Cecilia Pistol
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Monica Motiu
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Daniela E. Marin
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Nicoleta Lefter
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Mariana Ropota
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Mihaela Habeanu
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| |
Collapse
|
30
|
Sacco R, Sivozhelezov V, Pellegrini L, Giacomelli L, Longo V. Dietary supplementation in cancer patients: a personal view of current status and future perspectives. Future Oncol 2014; 10:1523-5. [PMID: 25145420 DOI: 10.2217/fon.14.85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|