1
|
Yang L, Cai T, Wang X, Ge Q, Lv L, Xiao D, Zeng Y, Ma X, Zhou X, Zhang Y, Liu N, Yan D, Zhu S, Yang Q, Xiao J, Sun Q, Zhou L, Xiao M, Ji T. Multiple Transmission Pathways of Coxsackievirus A10 Leading to its Global Spread: A Phylogenetic and Spatiotemporal Analysis Based on Virological Surveillance. J Med Virol 2025; 97:e70416. [PMID: 40411240 DOI: 10.1002/jmv.70416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/26/2025]
Abstract
Coxsackievirus A10 (CVA10) has been reported frequently in many infectious diseases and cases associated with hand, foot, and mouth disease (HFMD) emerging increasingly in recent years. Based on the National HFMD System Surveillance, 180 CVA10 strains were isolated from the mainland of China between 2008 and 2023. These strains were analyzed alongside 103 representative full VP1 sequences obtained from GenBank, with a focus on global-scale phylogenetic analysis and spatiotemporal dynamics of CVA10. Eight genotypes (A-H) were defined, of which the genotype C was the dominant gene subtype in Chinese mainland. Bayesian analysis indicated that the most renascent common ancestor (tMRCA) of CVA10 originated in 1932 (95% HPD:1867-1958), with a high evolutionary rate of 3.32 × 10-3 substitutions/site/year (95% HPD: 2.62 × 10-3 to 3.40 × 10-3). By analyzing the spatial propagation paths, the global CVA10 exhibited distinct regional characteristics. Though the origin of CVA10 could be in the USA, regional dissemination was mainly located around the Asia-Europe region. The spatiotemporal dynamics of CVA10 exhibited frequent viral traffic among localities, and virus from East and South China have played a central role in spreading around the mainland of China. Our phylogenetic description and phylogeographic analyses indicate the importance of large spatial- and temporal-scale studies in understanding epidemiological dynamics of CVA10, particularly the diffusion routes will be of great importance to global control efforts.
Collapse
Affiliation(s)
- Lan Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Tingting Cai
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Xiaoyi Wang
- Medical School, Anhui University of Science and Technology, Huainan, 232001, China
| | - Qiong Ge
- Zhejiang Center for Disease Control and Prevention, Hangzhou, 310057, China
| | - Likun Lv
- Tianjin Center for Disease Control and Prevention, Tianjin, 300011, China
| | - Dajin Xiao
- Jiangxi Center for Disease Control and Prevention, Nanchang, 330029, China
| | - Yunting Zeng
- Hainan Center for Disease Control and Prevention, Haikou, 57112, China
| | - Xiaozhen Ma
- Sichuan Center for Disease Control and Prevention, Chengdu, 610044, China
| | - Xiaofang Zhou
- Yunnan Center for Disease Control and Prevention, Kunming, 650034, China
| | - Yong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Na Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Dongmei Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Shuangli Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Qian Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Jinbo Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Qiang Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Lei Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Mengyi Xiao
- School of Public Health and Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tianjiao Ji
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- National Polio Laboratory, World Health Organization Polio Reference Laboratory for the Western Pacific Region, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- National Health Commission Key Laboratory of Laboratory Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| |
Collapse
|
2
|
He F, Zhu C, Wu X, Yi L, Lin Z, Wen W, Zhu C, Tu J, Qian K, Li Q, Ma G, Li H, Wang F, Zhou X. Genomic surveillance reveals low-level circulation of two subtypes of genogroup C coxsackievirus A10 in Nanchang, Jiangxi Province, China, 2015-2023. Front Microbiol 2024; 15:1459917. [PMID: 39355427 PMCID: PMC11443423 DOI: 10.3389/fmicb.2024.1459917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction In recent years, coxsackievirus (CV) A10 has been associated with increasing sporadic hand, foot, and mouth disease (HFMD) cases and outbreaks globally. In addition to mild symptoms such as pharyngitis and herpangina, CVA10-related complications or even fatality can occur. Currently, systematic phylogenetic studies of CVA10 are limited. Methods In this study, we first explored the epidemiological and genetic characteristics of CVA10 in Nanchang, an inland southeastern city of China, based on the HFMD surveillance network from 2015-2023. Results Among 3429 enterovirus-positive cases, 110 (3.04%) were associated with CVA10, with a male-to-female ratio of 1.62. The median age of the CVA10 patients was 2.3 years (interquartile range, IQR 1.0-4.0), with 94.55% (104/110) of the patients aged less than 5 years. Phylogenetic analyses using the full-length VP1, 5'UTR, P1, P2, P3 sequences and near full-length genomes indicated that CVA10 strains (n = 57) isolated in Nanchang belonged to genogroup C; two strains identified in 2017 belonged to C1 subtypes clustered with strains from Vietnam, Madagascar, France and Spain; and the others belonged to C2 subtypes interdigitating with CVA10 isolates from mainland China, the United States and Australia. Through extensive analysis, we identified a rare F168Y mutation in epitope 4 of VP1 in a Madagascar strain of genogroup F and a Chinese strain of genogroup C. Based on Bayesian evolutionary analyses, the average nucleotide substitution rate for the VP1 gene of CV10 strains was 3.07×10-3 substitutions/site/year. The most recent common ancestor (tMRCA) of genogroup C was dated 1990.84, and the tMRCA of CVA10 strains from Nanchang was dated approximately 2003.16, similar to strains circulating in other regions of China, suggesting that the viruses were likely introduced and cryptically circulated in China before the establishment of the HFMD surveillance network. Recombination analysis indicated intertypic recombination of the Nanchang strain with the genogroup G strain in the 3D region. Discussion Given the shifting dominance of viral genotypes and frequent recombination events, the existing surveillance system needs to be regulated to enhance genomic surveillance efforts on a more diverse spectrum of genotypes in the future.
Collapse
Affiliation(s)
- Fenglan He
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | | | - Xuan Wu
- The Third Hospital of Nanchang, Nanchang, China
| | - Liu Yi
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Ziqi Lin
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weijie Wen
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chunhui Zhu
- Department of Infectious Diseases, Jiangxi Children’s Hospital, Nanchang, China
| | - Junling Tu
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Ke Qian
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | | | - Guangqiang Ma
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hui Li
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Fang Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xianfeng Zhou
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
- Jiangxi Provincial Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
3
|
Lian H, Yi L, Qiu M, Li B, Sun L, Zeng H, Zeng B, Yang F, Yang H, Yang M, Xie C, Qu L, Lin H, Hu P, Xu S, Zeng H, Lu J. Genomic epidemiology of CVA10 in Guangdong, China, 2013-2021. Virol J 2024; 21:122. [PMID: 38816865 PMCID: PMC11140982 DOI: 10.1186/s12985-024-02389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Hand, Foot and Mouth Disease (HFMD) is a highly contagious viral illness primarily affecting children globally. A significant epidemiological transition has been noted in mainland China, characterized by a substantial increase in HFMD cases caused by non-Enterovirus A71 (EV-A71) and non-Coxsackievirus A16 (CVA16) enteroviruses (EVs). Our study conducts a retrospective examination of 36,461 EV-positive specimens collected from Guangdong, China, from 2013 to 2021. Epidemiological trends suggest that, following 2013, Coxsackievirus A6 (CVA6) and Coxsackievirus A10 (CVA10) have emerged as the primary etiological agents for HFMD. In stark contrast, the incidence of EV-A71 has sharply declined, nearing extinction after 2018. Notably, cases of CVA10 infection were considerably younger, with a median age of 1.8 years, compared to 2.3 years for those with EV-A71 infections, possibly indicating accumulated EV-A71-specific herd immunity among young children. Through extensive genomic sequencing and analysis, we identified the N136D mutation in the 2 A protein, contributing to a predominant subcluster within genogroup C of CVA10 circulating in Guangdong since 2017. Additionally, a high frequency of recombination events was observed in genogroup F of CVA10, suggesting that the prevalence of this lineage might be underrecognized. The dynamic landscape of EV genotypes, along with their potential to cause outbreaks, underscores the need to broaden surveillance efforts to include a more diverse spectrum of EV genotypes. Moreover, given the shifting dominance of EV genotypes, it may be prudent to re-evaluate and optimize existing vaccination strategies, which are currently focused primarily target EV-A71.
Collapse
Affiliation(s)
- Huimin Lian
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lina Yi
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ming Qiu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Baisheng Li
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Limei Sun
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huiling Zeng
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutica University, Guangzhou, China
| | - Biao Zeng
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Haiyi Yang
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Mingda Yang
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Jinan University, Guangzhou, China
| | - Chunyan Xie
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Jinan University, Guangzhou, China
| | - Lin Qu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Huifang Lin
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Pengwei Hu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Shaojian Xu
- Longhua District Center for Disease Control and Prevention, Shenzhen, China
| | - Hanri Zeng
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Jing Lu
- School of Public Health, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| |
Collapse
|
4
|
Wang Y, Ji W, Li D, Sun T, Zhu P, Li J, Zhang L, Zhang Y, Yang H, Chen S, Jin Y, Duan G. Active inoculation with an inactivated Coxsackievirus A2 vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine 2023; 41:6470-6482. [PMID: 37718187 DOI: 10.1016/j.vaccine.2023.08.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Coxsackievirus A2 (CVA2) is one of the causative agents of hand-foot-and-mouth disease (HFMD), which poses a great challenge for global public health. However, presently, there are no available commercial vaccines or antivirals to prevent CVA2 infection. Here, we present an inactivated Vero cell-based whole CVA2 vaccine candidate and evaluate its safety and efficacy in this study. Neonatal BALB/c mice were vaccinated at 5 and 7 days old, respectively, and then challenged with either homologous or heterologous strain of CVA2 at a lethal dose at 10 days old. The inactivated whole CVA2 vaccine candidate showed a high protective efficacy. Additionally, our inactivated vaccine stimulated the production of CVA2-specific IgG1 and IgG2a antibodies in vivo and high titers of neutralization antibodies (NtAbs) in the serum of immunized mice. Maternal immunization with the inactivated CVA2 vaccine provided full protection to pups against lethal infection. Compared with mice inoculated with only alum, the viral loads were decreased, and pathological changes were relieved in tissue samples of immunized mice. Moreover, the transcription levels of some genes related to cytokines (IFN-γ and TNF-α, MCP-1, IL-6, CXCL-10 etc.) were significantly reduced. The number of immune cells and levels of cytokines in peripheral blood of mice inoculated with only alum were higher than that of immunized mice. It is noteworthy that this vaccine showed a good cross-immunity efficacy against Enterovirus A71 (EVA71) challenge. In conclusion, our findings suggest that this experimental inactivated CVA2 vaccine is a promising component of polyvalent vaccines related to HFMD in the near future.
Collapse
Affiliation(s)
- Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Infectious Disease Control and Prevention, Jiangshan Center for Disease Control and Prevention, Jiangshan 324100, Zhejiang, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junwei Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Infectious Disease Control and Prevention, Jiangshan Center for Disease Control and Prevention, Jiangshan 324100, Zhejiang, China
| | - Liang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
5
|
Wang W, Rosenberg MW, Chen H, Gong S, Yang M, Deng D. Epidemiological characteristics and spatiotemporal patterns of hand, foot, and mouth disease in Hubei, China from 2009 to 2019. PLoS One 2023; 18:e0287539. [PMID: 37352281 PMCID: PMC10289314 DOI: 10.1371/journal.pone.0287539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a public health issue in Hubei and studies of- spatiotemporal clustering at a fine scale are limited. The purpose of this research was to analyze the epidemiological characteristics, temporal variation characteristics, and spatiotemporal clustering of HFMD cases at the town level from 2009 to 2019 to improve public health outcomes. METHODS Mathematical statistics, a seasonal index, wavelet analysis, and spatiotemporal scans were used to analyze epidemiological characteristics, time series trends, and spatiotemporal clusters of HFMD in Hubei. RESULTS EV-A71 (Enterovirus A71) and CVA16 (Coxsackievirus A16) constitute the two primary pathogens of the HFMD epidemic in Hubei, among which EV-A71 is the dominant pathogen, especially in 2016. In terms of age distribution, a major peak occurred at 0-5 years and a very small increase appeared at 25-35 years, with the former having a higher incidence among males than females and the latter having the opposite difference between males and females. The number/rate of HFMD cases exhibited a considerable increase followed by a moderate decline from 2009 to 2019, with the first large peak in April-July and a smaller peak in November-December. HFMD in Hubei exhibited the characteristics of a 270-day cycle with multiscale nesting, which was similar to the periodicity of HFMD cases caused by EV-A71 (9 months). Cities with a higher incidence of HFMD formed a part of an "A-shaped urban skeleton". Subdistricts had the highest incidence of HFMD, followed by towns and villages. The spatiotemporal scan results showed one most likely cluster and 22 secondary clusters, which was consistent with the geographic location of railways and rivers in Hubei. CONCLUSIONS These findings may be helpful in the prevention and control of HFMD transmission and in implementing effective measures in Hubei Province.
Collapse
Affiliation(s)
- Wuwei Wang
- Institute of China Rural Studies, Central China Normal University, Wuhan, Hubei, China
- Institute of Sustainable Development & Department of Geography, Central China Normal University, Wuhan, Hubei, China
- Department of Geography and Planning, Queen’s University, Kingston, Ontario, Canada
| | - Mark W. Rosenberg
- Department of Geography and Planning, Queen’s University, Kingston, Ontario, Canada
| | - Hongying Chen
- Center for Disease Control and Prevention of Hubei Province, Wuhan, Hubei, China
| | - Shengsheng Gong
- Institute of Sustainable Development & Department of Geography, Central China Normal University, Wuhan, Hubei, China
| | - Mengmeng Yang
- Institute of Sustainable Development & Department of Geography, Central China Normal University, Wuhan, Hubei, China
| | - Dacai Deng
- Institute of China Rural Studies, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Wang J, Liu H, Cao Z, Xu J, Guo J, Zhao L, Wang R, Xu Y, Gao R, Gao L, Zuo Z, Xiao J, Lu H, Zhang Y. Epidemiology of Hand, Foot, and Mouth Disease and Genetic Evolutionary Characteristics of Coxsackievirus A10 in Taiyuan City, Shanxi Province from 2016 to 2020. Viruses 2023; 15:v15030694. [PMID: 36992403 PMCID: PMC10052898 DOI: 10.3390/v15030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, the prevalence of hand, foot, and mouth disease (HFMD) caused by enteroviruses other than enterovirus A71 (EV-A71) and coxsackievirus A16 (CVA16) has gradually increased. The throat swab specimens of 2701 HFMD cases were tested, the VP1 regions of CVA10 RNA were amplified using RT-PCR, and phylogenetic analysis of CVA10 was performed. Children aged 1–5 years accounted for the majority (81.65%) and boys were more than girls. The positivity rates of EV-A71, CVA16, and other EVs were 15.22% (219/1439), 28.77% (414/1439), and 56.01% (806/1439), respectively. CVA10 is one of the important viruses of other EVs. A total of 52 CVA10 strains were used for phylogenetic analysis based on the VP1 region, 31 were from this study, and 21 were downloaded from GenBank. All CVA10 sequences could be assigned to seven genotypes (A, B, C, D, E, F, and G), and genotype C was further divided into C1 and C2 subtypes, only one belonged to subtype C1 and the remaining 30 belonged to C2 in this study. This study emphasized the importance of strengthening the surveillance of HFMD to understand the mechanisms of pathogen variation and evolution, and to provide a scientific basis for HFMD prevention, control, and vaccine development.
Collapse
Affiliation(s)
- Jitao Wang
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
- Correspondence: (J.W.); (Y.Z.); Fax: +86-0351-7822732 (J.W.); +86-10-58900184 (Y.Z.)
| | - Hongyan Liu
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Zijun Cao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Jihong Xu
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Jiane Guo
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Lifeng Zhao
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Rui Wang
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Yang Xu
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Ruihong Gao
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Li Gao
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Zhihong Zuo
- Taiyuan Center for Disease Control and Prevention, 89 Xinjian South Road, Taiyuan 030012, China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (J.W.); (Y.Z.); Fax: +86-0351-7822732 (J.W.); +86-10-58900184 (Y.Z.)
| |
Collapse
|
7
|
Yan R, He J, Liu G, Zhong J, Xu J, Zheng K, Ren Z, He Z, Zhu Q. Drug Repositioning for Hand, Foot, and Mouth Disease. Viruses 2022; 15:75. [PMID: 36680115 PMCID: PMC9861398 DOI: 10.3390/v15010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease in children caused by a group of enteroviruses. HFMD currently presents a major threat to infants and young children because of a lack of antiviral drugs in clinical practice. Drug repositioning is an attractive drug discovery strategy aimed at identifying and developing new drugs for diseases. Notably, repositioning of well-characterized therapeutics, including either approved or investigational drugs, is becoming a potential strategy to identify new treatments for virus infections. Various types of drugs, including antibacterial, cardiovascular, and anticancer agents, have been studied in relation to their therapeutic potential to treat HFMD. In this review, we summarize the major outbreaks of HFMD and the progress in drug repositioning to treat this disease. We also discuss the structural features and mode of action of these repositioned drugs and highlight the opportunities and challenges of drug repositioning for HFMD.
Collapse
Affiliation(s)
- Ran Yan
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jiahao He
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Ge Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jianfeng Zhong
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Jiapeng Xu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Zhendan He
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
8
|
Guo J, Cao Z, Liu H, Xu J, Zhao L, Gao L, Zuo Z, Song Y, Han Z, Zhang Y, Wang J. Epidemiology of hand, foot, and mouth disease and the genetic characteristics of Coxsackievirus A16 in Taiyuan, Shanxi, China from 2010 to 2021. Front Cell Infect Microbiol 2022; 12:1040414. [PMID: 36439232 PMCID: PMC9692002 DOI: 10.3389/fcimb.2022.1040414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common childhood infectious disease caused by human enteroviruses (EV). This study aimed to describe the epidemiological features of HFMD and the genetic characteristics of Coxsackievirus A16 (CVA16) in Taiyuan, Shanxi, China, from 2010 to 2021. Descriptive epidemiological methods were used to analyze the time and population distribution of HFMD and the genetic characteristics of CVA16. Except being affected by the COVID-19 epidemic in 2020, HFMD epidemics were sporadic from January to March each year, and began to increase in April, with a major epidemic peak from May to August, which declined in September, followed by a secondary peak from October to December. The prevalence of EV infection was the highest in children aged one to five years (84.42%), whereas its incidence was very low in children under one year of age (5.48%). Enterovirus nucleic acid was detected by real-time reverse transcription polymerase chain reaction in 6641 clinical specimens collected from patients with HFMD from 2010 to 2021, and 4236 EV-positive specimens were detected, including 988 enterovirus A71 (EV-A71), 1488 CVA16, and 1760 other enteroviruses. CVA16 remains prevalent and has co-circulated with other EVs in Taiyuan from 2010 to 2021. A phylogenetic tree constructed based on the VP1 region showed that all CVA16 strains belonged to two different clades of the B1 genotype, B1a and B1b. They showed a nucleotide similarity of 86.5-100%, and an amino acid similarity of 96.9-100%. Overall, these findings add to the global genetic resources of CVA16, demonstrate the epidemiological characteristics of HFMD as well as the genetic features of CVA16 in Taiyuan City during 2010-2021, and provide supporting evidence for the prevention and control of HFMD.
Collapse
Affiliation(s)
- Jiane Guo
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China,Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, Shanxi, China
| | - Zijun Cao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongyan Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jihong Xu
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, Shanxi, China
| | - Lifeng Zhao
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, Shanxi, China
| | - Li Gao
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, Shanxi, China
| | - Zhihong Zuo
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, Shanxi, China
| | - Yang Song
- World Health Organization (WHO) Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenzhi Han
- World Health Organization (WHO) Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Zhang
- World Health Organization (WHO) Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission Key Laboratory of Biosafety, National Health Commission Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China,*Correspondence: Jitao Wang, ; Yong Zhang,
| | - Jitao Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China,Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, Shanxi, China,*Correspondence: Jitao Wang, ; Yong Zhang,
| |
Collapse
|
9
|
Zhong X, Wang H, Chen C, Zou X, Li T. Epidemiological Characteristics of Hand, Foot and Mouth Disease Reinfection in Guangzhou, Southern China from 2012 to 2017. IRANIAN JOURNAL OF PUBLIC HEALTH 2022; 51:2078-2088. [PMID: 36743381 PMCID: PMC9884378 DOI: 10.18502/ijph.v51i9.10563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022]
Abstract
Background Hand, foot and mouth disease (HFMD) reinfection is common because of the limited cross-protection from infections of different enterovirus. We aimed to investigate the epidemiological characteristics and its influential factors of HFMD reinfection in Guangzhou, China. Methods Data on HFMD patients aged ≤5 yr from 2012 to 2017 were extracted from surveillance system. Influential factors of reinfection were assessed using the logistic regression model. Results Of 369,054 HFMD patients, 11,321 patients (3.07%) were classified as reinfection. The reinfection rate in male was higher than in female (χ2=60.11, P<0.001). The reinfection rate in patients ≤1 yr was 3.86%, which showed a downward trend with age (Z=37.37, P trend<0.001). The highest reinfection rate was observed in the scattered children (3.38%), followed by nursery care children and others (χ2=514.75, P<0.001). Besides, higher risk of reinfection was detected among those who were male, lower age group, rural residence and other enteroviruses infection compared with their respective counterparts. Seasonality was illustrated according to the number of reinfections peaked from April to July. Time intervals curves revealed the number of reinfections gradually increased after 13 months from the initial infection. Conclusion Male ≤4 yr, living rural area, especially those lived scattered and infected with other enteroviruses were more likely to be reinfection.
Collapse
Affiliation(s)
- Xuan Zhong
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518054, China,School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hui Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Chun Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xiaoni Zou
- Guangdong Women and Children Hospital, Guangzhou 510010, China,Corresponding Authors: Emails: ;
| | - Tiegang Li
- Guangzhou Municipal Health Commission, Guangzhou 510062, China,Corresponding Authors: Emails: ;
| |
Collapse
|
10
|
Zhao H, Yang T, Yue L, Li H, Xie T, Xiang H, Wang J, Wei X, Zhang Y, Xie Z. Comparative analysis of the biological characteristics of three CV-A10 clones adaptively cultured on Vero cells. J Med Virol 2022; 94:3820-3828. [PMID: 35437759 DOI: 10.1002/jmv.27796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022]
Abstract
Coxsackievirus A10 (CV-A10) is a major pathogen that causes hand, foot, and mouth disease. There are no effective therapeutic drugs for CV-A10 infection; therefore, CV-A10 vaccines should be developed. Previously, we isolated a CV-A10 strain (N25) that can be cultured on Vero cells. In this study, the N25 strain was plaque-purified thrice from Vero cells, and three clones were selected for adaptive culture. The three clones of the 5th , 12th , and 19th generations were compared and analyzed in terms of viral titers, plaque morphology, pathogenicity in suckling mice, and nucleotide and amino acid sequences of the complete genome. The infectivity titers of the three clones (P2-P22) were maintained at 6.5-7.0 lgCCID50 /ml. The three clones began to proliferate at 6 h and peaked at 36 h; the corresponding CCID50 was in the range of 106.5 -106.875 /ml, which gradually decreased. The suckling mice in the challenged group exhibited clinical symptoms such as paralysis of the limbs, which gradually worsened until death. The inactivated vaccines prepared using the three clones efficiently induced antigen-specific serum antibodies in mice. There were eight nucleotide mutations in the three clones, which resulted in two and four amino acid substitutions in the VP3 and VP1 coding regions, respectively. The nucleotide and amino acid sequence homology between the three clones and N25 were 99.92%-100% and 99.78%-100%, respectively, indicating high genetic stability. Our findings provide a theoretical basis for screening CV-A10 vaccine candidate clones. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hong Zhao
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Ting Yang
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Hua Li
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Tianhong Xie
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Hong Xiang
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Jie Wang
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Xingchen Wei
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Yuhao Zhang
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| | - Zhongping Xie
- Institute of Medical Biology, Chinese Academic Medical Sciences and Peking Union Medical College, Kunming, China.,Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China
| |
Collapse
|
11
|
Huo Y, Yang J, Liu P, Cui B, Wang C, Liu S, Dong F, Yan X, Bian L, Gao F, Wu X, Zhou J, Cheng T, Li X, Mao Q, Liang Z. Evaluation of the cross-neutralization activities elicited by Coxsackievirus A10 vaccine strains. Hum Vaccin Immunother 2021; 17:5334-5347. [PMID: 34756160 PMCID: PMC8903991 DOI: 10.1080/21645515.2021.1978792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased severity of diseases caused by Coxsackievirus A10 (CV-A10) as well as a large number of mutants and recombinants circulating in the population are a cause of concern for public health. A vaccine with broad-spectrum and homogenous protective capacity is needed to prevent outbreaks of CV-A10. Here, we evaluated cross-neutralization of prototype strain and 17 CV-A10 strains from related manufacturers in mainland China in vitro using 30 samples of plasma collected from naturally infected human adults and 18 sera samples from murine immunized with the above strains of CV-A10. Both human plasma and murine sera exhibited varying degrees of cross-neutralizing activities. Prototype A/Kowalik and sub-genotype C3/S113 were most difficult to neutralize. Among all strains tested, neutralization of S102 and S108 strains by 18 different sera was the most uniform, suggesting their suitability for detection of NtAb titers of different vaccines for avoiding biases introduced by detection strain. Furthermore, among all immune-sera, cross-neutralization of the 18 strains of CV-A10 by anti-S110 and anti-S102 was the most homogenous. Anti-S102 exhibiting higher geometric mean titer (GMT) in vitro was evaluated for its cross-protection capacity in vivo. Remarkably, administration of anti-S102 protected mice from lethal dosage of eight strains of CV-A10. These results provide a framework for formulating strategies for the R&D of vaccines targeting CV-A10 infections.
Collapse
Affiliation(s)
- Yaqian Huo
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,Department of Research & Development, Shanghai Institute of Biological Products Co., Ltd, Shanghai, China
| | - Jinghuan Yang
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Pei Liu
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Bopei Cui
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Chenfei Wang
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Siyuan Liu
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Fangyu Dong
- Department of Research & Development, Taibang Biologic Group, Beijing, China
| | - Xujia Yan
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Lianlian Bian
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xing Wu
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jiuyue Zhou
- Department of Medical & Scientific Affairs, Taibang Biologic Group, Beijing, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiuling Li
- Department of Research & Development, Shanghai Institute of Biological Products Co., Ltd, Shanghai, China
| | - Qunying Mao
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- Division of Hepatitis Virus and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
12
|
Zhang J, Xu D, Liu H, Zhang M, Feng C, Cong S, Sun H, Yang Z, Ma S. Characterization of coxsackievirus A10 strains isolated from children with hand, foot, and mouth disease. J Med Virol 2021; 94:601-609. [PMID: 34387895 DOI: 10.1002/jmv.27268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a contagious disease that threatens the health of children under 5 years of age. Coxsackievirus A10 (CV-A10) is one of the main pathogens of HFMD. Currently, preventive vaccines and specific therapeutic drugs are not available for CV-A10. In this study, a total of 327 stool specimens were collected from pediatric patients from 2009 to 2017 during HFMD surveillance, among which 14 CV-A10 strains could only be isolated from RD cells, but not from KMB17 and Vero cells. Through adaptive culture, two and 11 CV-A10 strains were recovered from Vero and KMB17 cell cultures, respectively. The growth of CV-A10 strains in Vero cells was better than that in KMB17 cells. The 14 CV-A10 strains belonged to the F genotype, and the nucleotides and amino acids of their complete genomes shared 92.6% - 96.3% and 98.4 - 98.9% identities, respectively. The different CV-A10 strains exhibited varying virulence in vivo, but had similar effects on tissue injury, with the hind limb muscles, kidneys, and lungs being severely affected. Additionally, the hind limb muscles had the highest viral loads. CV-A10 was found to exhibit strong tropism to muscle tissue. The results of this study are critical to developing vaccines against CV-A10 infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hongbo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| |
Collapse
|
13
|
Xiao J, Wang J, Zhang Y, Sun D, Lu H, Han Z, Song Y, Yan D, Zhu S, Pei Y, Xu W, Wang X. Coxsackievirus B4: an underestimated pathogen associated with a hand, foot, and mouth disease outbreak. Arch Virol 2021; 166:2225-2234. [PMID: 34091782 DOI: 10.1007/s00705-021-05128-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023]
Abstract
In order to discover the causes of a coxsackievirus B4 (CV-B4)-associated hand, foot, and mouth disease (HFMD) outbreak and to study the evolutionary characteristics of the virus, we sequenced isolates obtained during an outbreak for comparative analysis with previously sequenced strains. Phylogenetic and evolutionary dynamics analysis was performed to examine the genetic characteristics of CV-B4 in China and worldwide. Phylogenetic analysis showed that CV-B4 originated from a common ancestor in Shandong. CV-B4 strains isolated worldwide could be classified into genotypes A-E based on the sequence of the VP1 region. All CV-B4 strains in China belonged to genotype E. The global population diversity of CV-B4 fluctuated substantially over time, and CV-B4 isolated in China accounted for a significant increase in the diversity of CV-B4. The average nucleotide substitution rate in VP1 of Chinese CV-B4 (5.20 × 10-3 substitutions/site/year) was slightly higher than that of global CV-B4 (4.82 × 10-3 substitutions/site/year). This study is the first to investigate the evolutionary dynamics of CV-B4 and its association with an HFMD outbreak. These findings explain both the 2011 outbreak and the global increase in CV-B4 diversity. In addition to improving our understanding of a major outbreak, these findings provide a basis for the development of surveillance strategies.
Collapse
Affiliation(s)
- Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Jianxing Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China. .,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Dapeng Sun
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Yaowen Pei
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Rocha LCD, Estofolete CF, Milhim BHGDA, Augusto MT, Zini N, Silva GCDD, Ferraz-Junior HC, Brienze VMS, Liso E, Cunha MS, Sabino EC, da Costa AC, Nogueira ML, Luchs A, Terzian ACB. Enteric viruses circulating in undiagnosed central nervous system infections at tertiary hospital in São José do Rio Preto, São Paulo, Brazil. J Med Virol 2021; 93:3539-3548. [PMID: 32579291 DOI: 10.1002/jmv.26216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022]
Abstract
Enterovirus (EV) is commonly associated with central nervous system (CNS) syndromes. Recently, gastroenteric viruses, including rotavirus (RVA), human astrovirus (HAstV), and norovirus (NoV), have also been associated with CNS neurological disorders. The aim of the present study was to investigate the presence of EV, RVA, HAst, and NoV associated to CNS infections with undiagnosed etiology in Northwest region of São Paulo State, Brazil, and to conduct the molecular characterization of the positive samples detected. A total of 288 cerebrospinal fluid samples collected from July to December 2017 were tested for EV and NoV by quantitative real-time polymerase chain reaction (RT-qPCR), HAstV by conventional RT-PCR, and RVA by enzyme-linked immunosorbent assay. Positive-EV samples were inoculated in cells lines, amplified by RT-PCR and sequenced. RVA, NoV, and HAstV were not detected. EV infection was detected in 5.5% (16/288), and five samples successful genotyped: echovirus 3 (E3) (1/5), coxsackie virus A6 (CVA6) (1/5), and coxsackie virus B4 (CVB4) (3/5). Meningitis was the main syndrome observed (12/16; 75%). CVA6, CVB4, and E3 were identified associated with aseptic meningitis. Reports of CVA6 associated with aseptic meningitis are rare, E3 had not been previously reported in Brazil, and epidemiological data on CVB4 in the country is virtually unknown. The present investigation illustrates the circulation of diverse EV types in a small regional sample set and in a short period of time, highlighting the importance of an active EV surveillance system in CNS infections. Enhanced understanding of undiagnosed CNS infections will assist in public health and health care planning.
Collapse
Affiliation(s)
| | | | | | | | - Nathalia Zini
- São José do Rio Preto School of Medicine (FAMERP), São Paulo, Brazil
| | | | | | | | | | - Mariana Sequetin Cunha
- Vector Borne Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Ester Cerdeira Sabino
- LIM/46, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | - Adriana Luchs
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | |
Collapse
|
15
|
Rui J, Luo K, Chen Q, Zhang D, Zhao Q, Zhang Y, Zhai X, Zhao Z, Zhang S, Liao Y, Hu S, Gao L, Lei Z, Wang M, Wang Y, Liu X, Yu S, Xie F, Li J, Liu R, Chiang YC, Zhao B, Su Y, Zhang XS, Chen T. Early warning of hand, foot, and mouth disease transmission: A modeling study in mainland, China. PLoS Negl Trop Dis 2021; 15:e0009233. [PMID: 33760810 PMCID: PMC8021164 DOI: 10.1371/journal.pntd.0009233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/05/2021] [Accepted: 02/11/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a global infectious disease; particularly, it has a high disease burden in China. This study was aimed to explore the temporal and spatial distribution of the disease by analyzing its epidemiological characteristics, and to calculate the early warning signals of HFMD by using a logistic differential equation (LDE) model. METHODS This study included datasets of HFMD cases reported in seven regions in Mainland China. The early warning time (week) was calculated using the LDE model with the key parameters estimated by fitting with the data. Two key time points, "epidemic acceleration week (EAW)" and "recommended warning week (RWW)", were calculated to show the early warning time. RESULTS The mean annual incidence of HFMD cases per 100,000 per year was 218, 360, 223, 124, and 359 in Hunan Province, Shenzhen City, Xiamen City, Chuxiong Prefecture, Yunxiao County across the southern regions, respectively and 60 and 34 in Jilin Province and Longde County across the northern regions, respectively. The LDE model fitted well with the reported data (R2 > 0.65, P < 0.001). Distinct temporal patterns were found across geographical regions: two early warning signals emerged in spring and autumn every year across southern regions while one early warning signals in summer every year across northern regions. CONCLUSIONS The disease burden of HFMD in China is still high, with more cases occurring in the southern regions. The early warning of HFMD across the seven regions is heterogeneous. In the northern regions, it has a high incidence during summer and peaks in June every year; in the southern regions, it has two waves every year with the first wave during spring spreading faster than the second wave during autumn. Our findings can help predict and prepare for active periods of HFMD.
Collapse
Affiliation(s)
- Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Kaiwei Luo
- Hunan Provincial Center for Disease Control and Prevention, Changsha City, Hunan Province, People’s Republic of China
| | - Qiuping Chen
- Université de Montpellier, Montpellier, France; CIRAD, Intertryp, Montpellier, France; IES, Université de Montpellier-CNRS, Montpellier, France
- Medical Insurance Office, Xiang’an Hospital of Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Dexing Zhang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Qinglong Zhao
- Jilin Provincial Center for Disease Control and Prevention, Changchun City, Jilin Province, People’s Republic of China
| | - Yanhong Zhang
- Yunxiao County Center for Disease Control, Zhangzhou City, Fujian Province, People’s Republic of China
| | - Xiongjie Zhai
- Longde County Center for Disease Control, Guyuan City, the Ningxia Hui Autonomous Region, People’s Republic of China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Siyu Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha City, Hunan Province, People’s Republic of China
| | - Yuxue Liao
- Shenzhen Centers for Disease Control and Prevention, Shenzhen City, Guangdong Province, People’s Republic of China
| | - Shixiong Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha City, Hunan Province, People’s Republic of China
| | - Lidong Gao
- Hunan Provincial Center for Disease Control and Prevention, Changsha City, Hunan Province, People’s Republic of China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Mingzhai Wang
- Xiamen City Center for Disease Control and Prevention, Shenzhen City, Fujian Province, People’s Republic of China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xingchun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Shanshan Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Fang Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Jia Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Ruoyun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Yi-Chen Chiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Benhua Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Yanhua Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | | | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| |
Collapse
|
16
|
Han Z, Song Y, Xiao J, Jiang L, Huang W, Wei H, Li J, Zeng H, Yu Q, Li J, Yu D, Zhang Y, Li C, Zhan Z, Shi Y, Xiong Y, Wang X, Ji T, Yang Q, Zhu S, Yan D, Xu W, Zhang Y. Genomic epidemiology of coxsackievirus A16 in mainland of China, 2000-18. Virus Evol 2020; 6:veaa084. [PMID: 33343924 PMCID: PMC7733612 DOI: 10.1093/ve/veaa084] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD), which is a frequently reported and concerning disease worldwide, is a severe burden on societies globally, especially in the countries of East and Southeast Asia. Coxsackievirus A16 (CV-A16) is one of the most important causes of HFMD and a severe threat to human health, especially in children under 5 years of age. To investigate the epidemiological characteristics, spread dynamics, recombinant forms (RFs), and other features of CV-A16, we leveraged the continuous surveillance data of CV-A16-related HFMD cases collected over an 18-year period. With the advent of the EV-A71 vaccine since 2016, which targeted the EV-A71-related HFMD cases, EV-A71-related HFMD cases decreased dramatically, whereas the CV-A16-related HFMD cases showed an upward trend from 2017 to October 2019. The CV-A16 strains observed in this study were genetically related and widely distributed in the mainland of China. Our results show that three clusters (B1a-B1c) existed in the mainland of China and that the cluster of B1b dominates the diffusion of CV-A16 in China. We found that eastern China played a decisive role in seeding the diffusion of CV-A16 in China, with a more complex and variant transmission trend. Although EV-A71 vaccine was launched in China in 2016, it did not affect the genetic diversity of CV-A16, and its genetic diversity did not decline, which confirmed the epidemiological surveillance trend of CV-A16. Two discontinuous clusters (2000-13 and 2014-18) were observed in the full-length genome and arranged along the time gradient, which revealed the reason why the relative genetic diversity of CV-A16 increased and experienced more complex fluctuation model after 2014. In addition, the switch from RFs B (RF-B) and RF-C co-circulation to RF-D contributes to the prevalence of B1b cluster in China after 2008. The correlation between genotype and RFs partially explained the current prevalence of B1b. This study provides unprecedented full-length genomic sequences of CV-A16 in China, with a wider geographic distribution and a long-term time scale. The study presents valuable information about CV-A16, aimed at developing effective control strategies, as well as a call for a more robust surveillance system, especially in the Asia-Pacific region.
Collapse
Affiliation(s)
- Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Lili Jiang
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Wei Huang
- Chongqing Center for Disease Control and Prevention, Chongqing City, People's Republic of China
| | - Haiyan Wei
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan Province, People's Republic of China
| | - Jie Li
- Beijing Center for Disease Control and Prevention, Beijing City, People's Republic of China
| | - Hanri Zeng
- Guangdong Center for Disease Control and Prevention, Guangzhou, Guangdong Province, People's Republic of China
| | - Qiuli Yu
- Hebei Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, People's Republic of China
| | - Jiameng Li
- Tianjin Center for Disease Control and Prevention, Tianjin City, People's Republic of China
| | - Deshan Yu
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, People's Republic of China
| | - Yanjun Zhang
- Zhejiang Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chonghai Li
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai Province, People's Republic of China
| | - Zhifei Zhan
- Hunan Center for Disease Control and Prevention, Changsha, Hunan Province, People's Republic of China
| | - Yonglin Shi
- Anhui Center for Disease Control and Prevention, Hefei, Anhui Province, People's Republic of China
| | - Ying Xiong
- Jiangxi Center for Disease Control and Prevention, Nanchang, Jiangxi Province, People's Republic of China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People's Republic of China
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
17
|
The Pyrimidine Analog FNC Potently Inhibits the Replication of Multiple Enteroviruses. J Virol 2020; 94:JVI.00204-20. [PMID: 32075935 PMCID: PMC7163137 DOI: 10.1128/jvi.00204-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human enteroviruses (EVs), including coxsackieviruses, the numbered enteroviruses, and echoviruses, cause a wide range of diseases, such as hand, foot, and mouth disease (HFMD), encephalitis, myocarditis, acute flaccid myelitis (AFM), pneumonia, and bronchiolitis. Therefore, broad-spectrum anti-EV drugs are urgently needed to treat EV infection. Here, we demonstrate that FNC (2'-deoxy-2'-β-fluoro-4'-azidocytidine), a small nucleoside analog inhibitor that has been demonstrated to be a potent inhibitor of HIV and entered into a clinical phase II trial in China, potently inhibits the viral replication of a multitude of EVs, including enterovirus 71 (EV71), coxsackievirus A16 (CA16), CA6, EVD68, and coxsackievirus B3 (CVB3), at the nanomolar level. The antiviral mechanism of FNC involves mainly positive- and negative-strand RNA synthesis inhibition by targeting and competitively inhibiting the activity of EV71 viral RNA-dependent RNA polymerase (3Dpol), as demonstrated through quantitative real-time reverse transcription-PCR (RT-qPCR), in vitro 3Dpol activity, and isothermal titration calorimetry (ITC) experiments. We further demonstrated that FNC treatment every 2 days with 1 mg/kg of body weight in EV71 and CA16 infection neonatal mouse models successfully protected mice from lethal challenge with EV71 and CA16 viruses and reduced the viral load in various tissues. These findings provide important information for the clinical development of FNC as a broad-spectrum inhibitor of human EV pathogens.IMPORTANCE Human enterovirus (EV) pathogens cause various contagious diseases such as hand, foot, and mouth disease, encephalitis, myocarditis, acute flaccid myelitis, pneumonia, and bronchiolitis, which have become serious health threats. However, except for the EV71 vaccine on the market, there are no effective strategies to prevent and treat other EV pathogen infections. Therefore, broad-spectrum anti-EV drugs are urgently needed. In this study, we demonstrated that FNC, a small nucleoside analog inhibitor that has been demonstrated to be a potent inhibitor of HIV and entered into a clinical phase II trial in China, potently inhibits the viral replication of a multitude of EVs at the nanomolar level. Further investigation revealed that FNC inhibits positive- and negative-strand RNA synthesis of EVs by interacting and interfering with the activity of EV71 viral RNA-dependent RNA polymerase (3Dpol). Our findings demonstrate for the first time that FNC is an effective broad-spectrum inhibitor for human EV pathogens.
Collapse
|
18
|
Liu F, Ren M, Chen S, Nie T, Cui J, Ran L, Li Z, Chang Z. Pathogen Spectrum of Hand, Foot, and Mouth Disease Based on Laboratory Surveillance - China, 2018. China CDC Wkly 2020; 2:167-171. [PMID: 34594617 PMCID: PMC8393163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS TOPIC? Enterovirus 71 (EV-A71) is the main causative pathogen for severe and fatal patients with Hand, Foot, and Mouth Disease (HFMD) in mainland China from 2008 to 2017. Non-EV-A71 and non-CV-A16 (other enterovirus) serotypes were the major causative-serotypes for mild HFMD in years of 2013, 2015, and 2017. WHAT IS ADDED BY THIS REPORT? In 2018, other enterovirus serotypes replaced EV-A71 for the first time as the major cause of severe HFMD with a proportion of 70.7%. However, at the national level, only a small proportion of the other enterovirus serotypes were further identified as CV-A6 and CV-A10. WHAT ARE THE LIMITATIONS FOR PUBLIC HEALTH PRACTICE? Further identification of other enterovirus serotypes is highly recommended for provincial CDCs, especially for severe HFMD. Studies contributing to a multivalent vaccine for HFMD should be prioritized.
Collapse
Affiliation(s)
- Fengfeng Liu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Minrui Ren
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shumin Chen
- Xuancheng City Center for Disease Control and Prevention, Xuancheng City, Anhui Province, 242000, China
| | - Taoran Nie
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China,Miyun District Center for Disease Control and Prevention, Miyun District, Beijing, 101500, China
| | - Jinzhao Cui
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Lu Ran
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhongjie Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhaorui Chang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China,Zhaorui Chang,
| |
Collapse
|
19
|
Xu Y, Zheng Y, Shi W, Guan L, Yu P, Xu J, Zhang L, Ma P, Xu J. Pathogenic characteristics of hand, foot and mouth disease in Shaanxi Province, China, 2010-2016. Sci Rep 2020; 10:989. [PMID: 31969644 PMCID: PMC6976675 DOI: 10.1038/s41598-020-57807-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common childhood illness caused by enteroviruses. We analyzed the pathogenic characteristics of HFMD in Shaanxi province, China, during 2010-2016. Clinical samples were collected from HFMD cases. Real-time PCR and RT-PCR were used to identify the enterovirus(EVs) serotypes. Viral RNA sequences were amplified using RT-PCR and compared by phylogenetic analysis. Descriptive epidemiological methods were used to analyze. A total of 16,832 HFMD positive cases were confirmed in the laboratory. EV-A71 and CV-A16 were the main pathogens in 2010. EV-A71 was the dominant pathogen in the periods of 2011 to 2012 and 2014, 2016. In 2013 and 2015, other EVs increased greatly, in which CV-A6 was the predominant pathogen. EV-A71 was more frequently detected in deaths and severe cases. Phylogenetic analysis revealed that EV-A71 belonged to the C4a evolution branch of C4 sub-genotype and CV-A16 belonged to the B1a or B1b evolution branch of B1 sub-genotype, whereas CV-A6 strains were assigned to D2 or D3 sub-genotype. The pathogen spectrum of HFMD has changed in 7 years, and the major serotypes EV-A71, CV- A16 and CV- A6 alternated or co-circulated. Long-term surveillance and research of EVs should be strengthened for the prevention and control of HFMD.
Collapse
Affiliation(s)
- Yi Xu
- Department of Microbiology and Immunology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Viral Disease Control and Prevention, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Yuan Zheng
- Department of Viral Disease Control and Prevention, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Wei Shi
- Department of Viral Disease Control and Prevention, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Luyuan Guan
- Department of Viral Disease Control and Prevention, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Pengbo Yu
- Department of Viral Disease Control and Prevention, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Jing Xu
- Department of Viral Disease Control and Prevention, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Lei Zhang
- Department of Viral Disease Control and Prevention, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Ping Ma
- Department of Viral Disease Control and Prevention, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
20
|
Han Z, Zhang Y, Huang K, Wang J, Tian H, Song Y, Yang Q, Yan D, Zhu S, Yao M, Wang X, Xu W. Two Coxsackievirus B3 outbreaks associated with hand, foot, and mouth disease in China and the evolutionary history worldwide. BMC Infect Dis 2019; 19:466. [PMID: 31126252 PMCID: PMC6534883 DOI: 10.1186/s12879-019-4107-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Coxsackievirus B3 (CV-B3) is usually associated with aseptic meningitis and myocarditis; however, the association between CV-B3 and hand, foot, and mouth disease (HFMD) has not been clearly demonstrated, and the phylogenetic dynamics and transmission history of CV-B3 have not been well summarized. METHOD Two HFMD outbreaks caused by CV-B3 were described in Hebei Province in 2012 and in Shandong Province in 2016 in China. To analyze the epidemiological features of two CV-B3 outbreaks, a retrospective analysis was conducted. All clinical specimens from CV-B3 outbreaks were collected and disposed according to the standard procedures supported by the WHO Global Poliovirus Specialized Laboratory. EV genotyping and phylogenetic analysis were performed to illustrate the genetic characteristics of CV-B3 in China and worldwide. RESULTS Two transmissible lineages (lineage 2 and 3) were observed in Northern China, which acted as an important "reservoir" for the transmission of CV-B3. Sporadic exporting and importing of cases were observed in almost all regions. In addition, the global sequences of CV-B3 showed a tendency of geographic-specific clustering, indicating that geographic-driven adaptation plays a major role in the diversification and evolution of CV-B3. CONCLUSIONS Overall, our study indicated that CV-B3 is a causative agent of HFMD outbreak and revealed the phylogenetic dynamics of CV-B3 worldwide, as well as provided an insight on CV-B3 outbreaks for effective intervention and countermeasures.
Collapse
Affiliation(s)
- Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China.
| | - Keqiang Huang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Jianxing Wang
- Shandong Center for Disease Control and Prevention, Jinan City, Shandong Province, People's Republic of China
| | - Huifang Tian
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Mingxiao Yao
- Shandong Center for Disease Control and Prevention, Jinan City, Shandong Province, People's Republic of China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan City, Shandong Province, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China.,Anhui University of Science and Technology, Hefei City, Anhui Province, People's Republic of China
| |
Collapse
|
21
|
Bian L, Gao F, Mao Q, Sun S, Wu X, Liu S, Yang X, Liang Z. Hand, foot, and mouth disease associated with coxsackievirus A10: more serious than it seems. Expert Rev Anti Infect Ther 2019; 17:233-242. [PMID: 30793637 DOI: 10.1080/14787210.2019.1585242] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) is a common viral childhood illness, that has been a severe public health concern worldwide, particularly in the Asia-Pacific region. According to epidemiological data of HFMD during the past decade, the most prevalent causal viruses were enterovirus (EV)-A71, coxsackievirus (CV)-A16, CV-A6, and CV-A10. The public health burden of CV-A10-related diseases has been underestimated as their incidence was lower than that of EV-A71 and CV-A16 in most HFMD outbreaks. However, cases of CV-A10 infection are more severe, and its genome is more variable, which has alerted the research community worldwide. Areas covered: In this paper, studies on the epidemiology, laboratory diagnosis, clinical manifestations, molecular epidemiology, seroepidemiology, animal models of CV-A10, and vaccines and antiviral strategies against this genotype are reviewed. In addition, the genetic evolution of circulating strains was analyzed. Expert opinion: Multivalent vaccines against EV-A71, CV-A16, CV-A6, and CV-A10 should be a next-step HFMD vaccine strategy.
Collapse
Affiliation(s)
- Lianlian Bian
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China.,b Division of Hepatitis Virus Vaccines , Wuhan Institute of Biological Products Co., Ltd , Wuhan , China
| | - Fan Gao
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Qunying Mao
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Shiyang Sun
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Xing Wu
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Siyuan Liu
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Xiaoming Yang
- b Division of Hepatitis Virus Vaccines , Wuhan Institute of Biological Products Co., Ltd , Wuhan , China
| | - Zhenglun Liang
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| |
Collapse
|
22
|
Ji T, Guo Y, Huang W, Shi Y, Xu Y, Tong W, Yao W, Tan Z, Zeng H, Ma J, Zhao H, Han T, Zhang Y, Yan D, Yang Q, Zhu S, Zhang Y, Xu W. The emerging sub-genotype C2 of CoxsackievirusA10 Associated with Hand, Foot and Mouth Disease extensively circulating in mainland of China. Sci Rep 2018; 8:13357. [PMID: 30190558 PMCID: PMC6127217 DOI: 10.1038/s41598-018-31616-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 11/11/2022] Open
Abstract
Coxsackievirus A10 (CV-A10) associated with Hand, foot, and mouth disease (HFMD) cases emerged increasingly in recent years. In this study, the samples from nation-wide HFMD surveillance, including 27 out of 31 provinces in China were investigated, and the continuous and extensive virological surveillance, covered 13 years, were conducted to provide a comprehensive molecular characterization analysis of CV-A10. 855 CV-A10 viruses (33 severe cases included), were isolated from HFMD children patients during 2009 to 2016 in China. 164 representative sequences from these viruses, together with 117 CV-A10 sequences downloaded from GenBank based on entire VP1 were recruited in this study. Two new genotypes (F and G) and two sub-genotypes (C1 and C2) were identified. Among 264 Chinese sequences, 9 of them were genotype B, 8 of them were C1, and the other (247) were C2, the predominant sub-genotype in China since 2012. Chinese C2 viruses showed obvious temporal characteristics and can be divided into 3 clusters (cluster 1~3). Cluster 3 viruses was circulating extensively during 2014 and 2016 with more severe cases. It is very necessary and important to continuously conduct the extensive virological surveillance for CV-A10, and further evolutionary studies will provide more evidence on its evolution and virulence.
Collapse
Affiliation(s)
- Tianjiao Ji
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yue Guo
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wei Huang
- Hunan Center for Disease Control and Prevention, Changsha, Hunan Province, People's Republic of China
| | - Yong Shi
- Jiangxi Center for Disease Control and Prevention, Nanchang, Jiangxi Province, People's Republic of China
| | - Yi Xu
- Shaanxi Center for Disease Control and Prevention, Xi'an, Shaanxi Province, People's Republic of China
| | - Wenbin Tong
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan Province, People's Republic of China
| | - Wenqing Yao
- Liaoning Center for Disease Control and Prevention, Shenyang, Liaoning Province, People's Republic of China
| | - Zhaolin Tan
- Tianjin municipal Center for Disease Control and Prevention, Tianjin municipal, People's Republic of China
| | - Hanri Zeng
- Guangdong Center for Disease Control and Prevention, Guangzhou, Guangdong Province, People's Republic of China
| | - Jiangtao Ma
- Ningxia Center for Disease Control and Prevention, Yinchuan, Ningxia Province, People's Republic of China
| | - Hua Zhao
- Chongqing Center for Disease Control and Prevention, Chongqing municipal, People's Republic of China
| | - Taoli Han
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yong Zhang
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qian Yang
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yan Zhang
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Wenbo Xu
- Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
23
|
Donbraye E, Olasunkanmi OI, Opabode BA, Ishola TR, Faleye TOC, Adewumi OM, Adeniji JA. Abundance of enterovirus C in RD-L20B cell culture-negative stool samples from acute flaccid paralysis cases in Nigeria is geographically defined. J Med Microbiol 2018; 67:854-865. [PMID: 29708482 DOI: 10.1099/jmm.0.000737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE We recently showed that enteroviruses (EVs) andenterovirus species C (EV-C) in particular were abundant in faecal samples from children who had been diagnosed with acute flaccid paralysis (AFP) in Nigeria but declared to be EV-free by the RD-L20B cell culture-based algorithm. In this study, we investigated whether this observed preponderance of EVs (and EV-Cs) in such samples varies by geographical region. METHODOLOGY One hundred and eight samples (i.e. 54 paired stool suspensions from 54 AFP cases) that had previously been confirmed to be negative for EVs by the WHO-recommended RD-L20B cell culture-based algorithm were analysed. The 108 samples were made into 54 pools (27 each from North-West and South-South Nigeria). All were subjected to RNA extraction, cDNA synthesis and the WHO-recommended semi-nested PCR assay and its modifications. All of the amplicons were sequenced, and the enteroviruses identified, using the enterovirus genotyping tool and phylogenetic analysis. RESULTS EVs were detected in 16 (29.63 %) of the 54 samples that were screened and successfully identified in 14 (25.93 %). Of these, 10 were from North-West and 4 were from South-South Nigeria. One (7.14 %), 2 (14.29 %) and 11 (78.57 %) of the strains detected were EV-A, EV-B and EV-C, respectively. The 10 strains from North-West Nigeria included 7 EV types, namely CV-A10, E29, CV-A13, CV-A17, CV-A19, CV-A24 and EV-C99. The four EV types recovered from South-South Nigeria were E31, CV-A1, EV-C99 and EV-C116. CONCLUSION The results of this study showed that the presence of EVs and consequently EV-Cs in AFP samples declared to be EV-free by the RD-L20B cell culture-based algorithm varies by geographical region in Nigeria.
Collapse
Affiliation(s)
- Emmanuel Donbraye
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | | | - Babatunde Ayoola Opabode
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Temitayo Rachael Ishola
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Temitope Oluwasegun Cephas Faleye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Microbiology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti, State, Nigeria
| | - Olubusuyi Moses Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Johnson Adekunle Adeniji
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
- WHO National Polio Laboratory, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
24
|
Esposito S, Principi N. Hand, foot and mouth disease: current knowledge on clinical manifestations, epidemiology, aetiology and prevention. Eur J Clin Microbiol Infect Dis 2018; 37:391-398. [PMID: 29411190 DOI: 10.1007/s10096-018-3206-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Abstract
For a long time, hand, foot and mouth disease (HFMD) was seen as a mild viral infection characterized by typical clinical manifestations that spontaneously resolved in a few days without complications. In the past two decades, HFMD has received new attention because of evidence that this disease could have clinical, epidemiological and aetiological characteristics quite different from those initially thought. In contrast to previous beliefs, it has been clarified that HFMD can be associated with complications, leading to severe neurological sequelae and, rarely, to death. This finding has led to an enormous number of studies that have indicated that several viruses in addition to those known to be causes of HFMD could be associated with the development of disease. Moreover, it was found that if some viruses were more common in some geographic areas, frequent modification of the molecular epidemiology of the infecting strains could lead to outbreaks caused by infectious agents significantly different from those previously circulating. Vaccines able to confer protection against the most common aetiologic agents in a given country have been developed. However, simultaneous circulation of more than one causative virus and modification of the molecular epidemiology of infectious agents make preparations based on a single agent relatively inadequate. Vaccines with multiple components are a possible solution. However, several problems concerning their development must be solved before adequate prevention of severe cases of HFMD can be achieved.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy.
| | | |
Collapse
|
25
|
Yan TF, Li XN, Wang L, Chen C, Duan SX, Qi JJ, Li LX, Ma XJ. Development of a reverse transcription recombinase-aided amplification assay for the detection of coxsackievirus A10 and coxsackievirus A6 RNA. Arch Virol 2018; 163:1455-1461. [PMID: 29429036 DOI: 10.1007/s00705-018-3734-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
Hand, foot and mouth disease (HFMD) is a serious public health problem, and coxsackievirus A6 (CVA6) and coxsackievirus A10 (CVA10) are two of the major causative pathogens, in addition to enterovirus 71 (EV71) and coxsackievirus A16 (CVA16). A simple and rapid reverse transcription recombinase-aided amplification assay (RT-RAA) was developed for the detection of CVA10 and CVA6 in this study. The analytical sensitivity for detection of CVA10 and CVA6 at 95% probability by probit regression analysis was 35 copies per reaction and 38 copies per reaction, respectively, with 100% specificity. Compared with commercial RT-qPCR assays, when testing 455 fecal specimens, the kappa value of the RT-RAA assay for CVA10 and CVA6 was 0.920 (p < 0.001) and 0.952 (p < 0.001), respectively. Moreover, four samples that were positive for CVA10 and five that were positive for CVA6 by RT-RAA but negative by RT-qPCR were further determined to be true positives. These results demonstrate that the proposed RT-RAA assays are very valuable tools for the detection of CVA10 and CVA6 and have potential for use in resource-limited settings.
Collapse
Affiliation(s)
- Teng-Fei Yan
- Myasthenia Gravis Research Institute, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, China
| | - Xin-Na Li
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Le Wang
- Pediatric Research Institute, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, 050031, China
| | - Chen Chen
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Su-Xia Duan
- Pediatric Research Institute, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, 050031, China
| | - Ju-Ju Qi
- Myasthenia Gravis Research Institute, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, China
| | - Li-Xin Li
- Myasthenia Gravis Research Institute, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, China.
| | - Xue-Jun Ma
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China.
| |
Collapse
|
26
|
Gao F, Bian L, Hao X, Hu Y, Yao X, Sun S, Chen P, Yang C, Du R, Li J, Zhu F, Mao Q, Liang Z. Seroepidemiology of coxsackievirus B5 in infants and children in Jiangsu province, China. Hum Vaccin Immunother 2017; 14:74-80. [PMID: 29049009 DOI: 10.1080/21645515.2017.1384107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coxsackievirus B5 (CV-B5) is associated with various human diseases such as viral encephalitis, aseptic meningitis, paralysis, herpangina, and hand, foot and mouth disease (HFMD). However, there is currently no effective vaccine against CV-B5.The seroepidemiologic characteristics of CV-B5 remained unknown. A cohort study was carried out in 176 participants aged 6-35 months from January 2012 to January 2014. The serum samples were collected and tested for CV-B5 neutralizing antibodies (NtAbs) four times during these two years. The confirmed enterovirus cases were recorded through the surveillance system, and their throat or rectal swabs were collected for pathogen detection. According to the changes of CV-B5 NtAbs, two CV-B5 epidemics were detected among these participants during the two-year follow-up. Sixty-seven cases out of all participants had seroconversion in CV-B5 NtAbs. During the first epidemic from March 2012 to September 2012, CV-B5 seropositivity rate increased significantly (6.8%, 12/176 vs. 21.6%, 38/176, P = 0.000). The seroconversion rate and geometric mean fold-increase (GMFI) were 18.2% (32/176) and 55.7, respectively; During the second epidemic from September 2012 to January 2014, CV-B5 seropositivity rate also increased (21.6%, 38/176 vs. 38.6%, 68/176, P = 0.000), and the seroconversion rate and GMFI were 19.9% (35/176) and 46.5, respectively. Only one case had CV-B5 associated HFMD during the two-year follow-up, and CV-B5 from the throat swab isolate was GI.D3 subtype, which belonged to the major pandemic strain in mainland China. CV-B5 infection was common in infants and children in Jiangsu province, China. Therefore, it's necessary to strengthen the surveillance on CV-B5 and to understand the epidemic characteristics of CV-B5 infection.
Collapse
Affiliation(s)
- Fan Gao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Lianlian Bian
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Xiaotian Hao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Yalin Hu
- b Hualan Biological Engineering Inc , Xinxiang , Henan , P. R. China
| | - Xin Yao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Shiyang Sun
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Pan Chen
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Ce Yang
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Ruixiao Du
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Jingxin Li
- c Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , Jiangsu , P. R. China
| | - Fengcai Zhu
- c Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , Jiangsu , P. R. China
| | - Qunying Mao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Zhenglun Liang
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| |
Collapse
|
27
|
Wu X, Hu S, Kwaku AB, Li Q, Luo K, Zhou Y, Tan H. Spatio-temporal clustering analysis and its determinants of hand, foot and mouth disease in Hunan, China, 2009-2015. BMC Infect Dis 2017; 17:645. [PMID: 28946852 PMCID: PMC5613322 DOI: 10.1186/s12879-017-2742-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 09/15/2017] [Indexed: 11/10/2022] Open
Abstract
Background Hand, foot and mouth disease (HFMD) is one of the highest reported infectious diseases with several outbreaks across the world. This study aimed at describing epidemiological characteristics, investigating spatio-temporal clustering changes, and identifying determinant factors in different clustering areas of HFMD. Methods Descriptive statistics was used to evaluate the epidemic characteristics of HFMD from 2009 to 2015. Spatial autocorrelation and spatio-temporal cluster analysis were used to explore the spatial temporal patterns. An autologistic regression model was employed to explore determinants of HFMD clustering. Results The incidence rates of HFMD ranged from 54.31/10 million to 318.06/10 million between 2009 and 2015 in Hunan. Cases were mainly prevalent in children aged 5 years and even younger, with an average male-to-female sex ratio of 1.66, and two epidemic periods in each year. Clustering areas gathered in the northern regions in 2009 and in the central regions from 2010 to 2012. They moved to central-southern regions in 2013 and 2014 and central-western regions in 2015. The significant risk factors of HFMD clusters were rainfall (OR = 2.187), temperature (OR = 4.329) and humidity (OR = 2.070). The protect factor was wind speed (OR = 0.258). Conclusions The HFMD incidence from 2009 to 2015 in Hunan showed a new spatiotemporal clustering tendency, with the shifting trend of clustering areas toward south and west. Meteorological factors showed a strong association with HFMD clustering, which may assist in predicting future spatial-temporal clusters. Electronic supplementary material The online version of this article (10.1186/s12879-017-2742-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinrui Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Shixiong Hu
- Hunan Center for Disease Control and Prevention, Changsha, Hunan, 410078, People's Republic of China
| | - Abuaku Benjamin Kwaku
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, PO Box LG581, Legon, Accra, Ghana
| | - Qi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Kaiwei Luo
- Hunan Center for Disease Control and Prevention, Changsha, Hunan, 410078, People's Republic of China
| | - Ying Zhou
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
28
|
Sun Z, Zhang G, Guo P, Liu J, Gao Q, Xu X, Gong L. Epidemiological characterizations, pathogen spectrum and molecular characteristics of Coxsackievirus A16 from patients with HFMD in Yantai, Shandong, China between 2011 and 2015. Hum Vaccin Immunother 2017; 13:1831-1838. [PMID: 28537484 PMCID: PMC5557242 DOI: 10.1080/21645515.2017.1318233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022] Open
Abstract
This study aimed to investigate the epidemiological characterizations and pathogen spectrum of hand, foot, and mouth disease (HFMD) in Yantai City, Shandong Province, China, during 2011-2015, and to study the nucleotide evolution and amino acid variation of coxsackievirus A16 (CV-A16) epidemic strains that caused HFMD. The HFMD epidemic began to rise in March, and became prevalent from May to August, reached its peak in June, and then declined in September every year, children aged one to 5 years-old had the highest incidence rate whereas the incidence in children under 6 months was very low, and there were more males than females. Enterovirus nucleic acid detection using real-time reverse transcription polymerase chain reaction was performed on 2130 clinical specimens collected from patients with HFMD between 2011 and 2015, and 2012 enterovirus positive samples were detected, including 678 CV-A16, 639 EV-A71, and 695 other enteroviruses. In total, 60 CV-A16 isolates were randomly selected each year for virus isolation, of which 33 CV-A16 strains were randomly selected for further characterization because CV-A16 is the predominant serotype that caused HFMD in Yantai City, and a phylogenetic tree based on the VP1 region was constructed. All 33 CV-A16 strains belonged to the Bla and B1b genotypes, with a nucleotide similarity of 87.9-100% and deduced amino acid similarity of 98.6-100%. Compared with the reference strain Tainan/5079/98 (AF177911), amino acid mutations were identified at positions 11, 23, 25, 31, 99, 145, and 289, where differences were observed among 33 strains, indicating a unique mutation map of CV-A16 in Yantai City. Our findings demonstrate the etiologic characteristics of HFMD, provide supporting evidence for the prevention and control of HFMD, and open a promising avenue for vaccine development against HFMD, by targeting CV-A16.
Collapse
Affiliation(s)
- Zhenlu Sun
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Guifang Zhang
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Peijun Guo
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Juan Liu
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Qiao Gao
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Xiaowen Xu
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| | - Lianfeng Gong
- Yantai Center for Disease Control and Prevention, Yantai, Shandong Province, PR China
| |
Collapse
|
29
|
Li Y, Bao H, Zhang X, Zhai M, Bao X, Wang D, Zhang S. Epidemiological and genetic analysis concerning the non-enterovirus 71 and non-coxsackievirus A16 causative agents related to hand, foot and mouth disease in Anyang city, Henan Province, China, from 2011 to 2015. J Med Virol 2017; 89:1749-1758. [PMID: 28480969 DOI: 10.1002/jmv.24847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/14/2017] [Indexed: 11/07/2022]
Abstract
Enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are major pathogens of hand, foot, and mouth disease (HFMD) and have been associated with consecutive outbreaks of HFMD in China over the past years. Although several other human enteroviruses (HEVs) have also acted as causative agents of HFMD, published information on their roles in the prevalence of HFMD is limited. This study was conducted to reveal the characteristics of the pathogenic spectrum and molecular epidemiology of the non-EV-71 and -CV-A16 HEVs in Anyang City, which is located in north-central China and has a population of five million. From 2011 to 2015, 2270 samples were collected from HFMD patients (3.89 ± 1.06 years of age), and 1863 HEV-positive samples, including 524 samples with 23 non-EV-71 and non-CV-A16 serotypes, were identified. Based on the nucleotide sequence of the VP1 gene, 6 common non-EV-71 and non-CV-A16 HEVs, including coxsackievirus A2, A6, A10, A14, B2, and B5, were studied to determine their phylogenies and selective pressures. Phylogenetic analyses revealed a high level of genetic divergence and a pattern of lineage replacement over time in Mainland China. Selective pressure analyses showed that purifying selection was predominant in the evolution of the VP1 gene, whereas positive selection acted on individual codons. Overall, non-EV-71 and non-CV-A16 HEVs were important constituents of the pathogenic spectrum of HFMD in Anyang City during 2011-2015. Some of these HEVs with complex and active phylogenies represent a potential threat to public health, suggesting that long-term monitoring of these pathogens should be implemented to prevent HFMD outbreaks.
Collapse
Affiliation(s)
- Yang Li
- Anyang Center for Disease Control and Prevention, Anyang, Henan, China
| | - Honghong Bao
- Anyang Center for Disease Control and Prevention, Anyang, Henan, China
| | - Xiangping Zhang
- Anyang Center for Disease Control and Prevention, Anyang, Henan, China
| | - Mingqiang Zhai
- Anyang Center for Disease Control and Prevention, Anyang, Henan, China
| | - Xiaobing Bao
- Anyang Center for Disease Control and Prevention, Anyang, Henan, China
| | - Demin Wang
- Anyang Center for Disease Control and Prevention, Anyang, Henan, China
| | - Shuanhu Zhang
- Anyang Center for Disease Control and Prevention, Anyang, Henan, China
| |
Collapse
|
30
|
Tian H, Zhang Y, Shi Y, Li X, Sun Q, Liu L, Zhao D, Xu B. Epidemiological and aetiological characteristics of hand, foot, and mouth disease in Shijiazhuang City, Hebei province, China, 2009-2012. PLoS One 2017; 12:e0176604. [PMID: 28486500 PMCID: PMC5423607 DOI: 10.1371/journal.pone.0176604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/13/2017] [Indexed: 12/18/2022] Open
Abstract
Large outbreaks of hand, foot, and mouth disease (HFMD) have repeatedly occurred in mainland of China since 2007. In this study, we investigated the epidemiological and aetiological characteristics of HFMD in Shijiazhuang City, one of the biggest northern cities of China. A total of 57,173 clinical HFMD cases, including 911 severe and 32 fatal cases, were reported in Shijiazhuang City during 2009–2012. The disease incidence peaked during March–July, with a small increase in the number of cases observed in November of each year. Seventeen potential HFMD-causing enterovirus serotypes were detected, with the most frequent serotypes being EV-A71 and CV-A16. CV-A10 was also a frequently detected causative serotype, and was associated with the second largest number of severe HFMD cases, following EV-A71. Phylogenetic analysis revealed that all EV-A71, CV-A16 and CV-A10 strains from Shijiazhuang City had co-evolved and co-circulated with those from other Chinese provinces. Our findings underscore the need for enhanced surveillance and molecular detection for HFMD, and suggest that EV-A71 vaccination may be an effective intervention strategy for HFMD prevention and vaccines against CV-A10 and CV-A16 are also urgently needed.
Collapse
Affiliation(s)
- Huifang Tian
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
- * E-mail:
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory for Medical Virology, National Health and Family Planning Commission of China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yan Shi
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
| | - Xiujuan Li
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
| | - Qiang Sun
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory for Medical Virology, National Health and Family Planning Commission of China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Li Liu
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
| | - Dong Zhao
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
| | - Baohong Xu
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
| |
Collapse
|
31
|
A Case-control Study on Risk Factors for Severe Hand, Foot and Mouth Disease. Sci Rep 2017; 7:40282. [PMID: 28084311 PMCID: PMC5233949 DOI: 10.1038/srep40282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/02/2016] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to identify potential risk factors for severe hand, foot and mouth disease (HFMD). In this case-control study, 459 severe HFMD patients and 246 mild HFMD patients from Guangdong province and Henan province, China were included. Data comprising demographic characteristics, clinical symptoms and signs, laboratory findings and other factors were collected. Univariate analysis revealed 30 factors associated with severe cases. Further multivariate analysis indicated four independent risk factors: fatigue (p < 0.01, odd ratio [OR] = 204.7), the use of glucocorticoids (p = 0.03, OR = 10.44), the use of dehydrant drugs (p < 0.01, OR = 73.7) and maculopapular rash (p < 0.01, OR = 84.4); and one independent protective factor: herpes or ulcers in mouth (p = 0.01, OR = 0.02). However, more systematic research and validation are needed to understand the underlying risk factors for severe HFMD.
Collapse
|
32
|
Wang CR. Role and evolution trend of multiple enteroviruses in epidemic of hand, foot and mouth disease. Shijie Huaren Xiaohua Zazhi 2016; 24:4029-4039. [DOI: 10.11569/wcjd.v24.i29.4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There are a variety of enteroviruses (EV) that can cause hand, foot and mouth disease (HFMD), and the major pathogens include enterovirus 71 (EV71) and coxasckievirus A16 (CVA16). EV71 and CVA16 have attracted much attention for their high prevalence and pathogenicity, and disease surveillance and vaccine development are mainly concentrated on them. EV71 can cause serious harm to children with HFMD, especially the damage to the nervous system such as aseptic meningitis, brain stem encephalitis and paralytic disease, or even lead to death. However, in recent years, due to the epidemic of EV71 and CVA16, people have established an immune barrier through natural infection in a certain degree. Although there is no cross protection between types, the immune protection against the relevant type can persist for a long time. Thus, the number of HFMD cases caused by EV71 and CVA16 shows a decreasing trend, while the epidemic of HFMD caused by other EV exhibits an upward trend. Further studies found that non-EV71 and non-CVA16 EV are very complex, and there are also differences in EV prevalence each year, which makes the development, evolution and control of HFMD become complicated. At present, there is no enough attention paid to the sporadic virus in the HFMD epidemic, and a complete research system for non-EV71 and non-CVA16 EV has not formed. Therefore, it is necessary to strengthen the monitoring of multiple non-EV71 and non-CVA16 EV, further investigate their pathogenicity and genetic characteristics, and evaluate the relative frequency and biological hazard of infection. In this review, we summarize a variety of EV changes, molecular evolution, as well as typical epidemics, which may provide clues to the development of antiviral drugs and vaccines, and prevention and control of HFMD.
Collapse
|
33
|
Zhang J, Zhang H, Zhao Y, Guo C, Yang Z, Ma S. Molecular characterization of a new human coxsackievirus B2 associated with severe hand-foot-mouth disease in Yunnan Province of China in 2012. Arch Virol 2016; 162:307-311. [PMID: 27709402 DOI: 10.1007/s00705-016-3075-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/17/2016] [Indexed: 11/28/2022]
Abstract
Human coxsackievirus B2 (CVB2) belongs to the species Human enterovirus B and can cause aseptic meningitis, myocarditis and hand-foot-mouth disease (HFMD). We first determined the complete genome of the RW41-2/YN/CHN/2012 strain, isolated from a patient with HFMD and aseptic meningitis in the Yunnan Province, China in 2012. The strain shared 83.5 % and 82.2 % nucleotide similarity with CVB2 prototype strain Ohio-1, in the complete VP1 gene and the complete genome, respectively. Using phylogenetic and homogeneity analyses for the complete VP1 gene, CVB2 strains could be divided into four genogroups (A-D); the RW41-2/YN/CHN/2012 strain belonging to genogroup D. The amino acid sequence of VP1 is highly conserved. Recombination analyses showed the newly isolated RW41-2/YN/CHN/2012 strain was probably a recombinant, which was closely related to strain CVB2 (KM386639) in the genomic P1 and P2 regions and strains of other human enterovirus B (HEV-B) viruses (KT353721, JX644073, and KP262053) in the P3 region.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Haihao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yilin Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Chen Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| |
Collapse
|
34
|
Koh WM, Bogich T, Siegel K, Jin J, Chong EY, Tan CY, Chen MIC, Horby P, Cook AR. The Epidemiology of Hand, Foot and Mouth Disease in Asia: A Systematic Review and Analysis. Pediatr Infect Dis J 2016; 35:e285-300. [PMID: 27273688 PMCID: PMC5130063 DOI: 10.1097/inf.0000000000001242] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2016] [Indexed: 12/22/2022]
Abstract
CONTEXT Hand, foot and mouth disease (HFMD) is a widespread pediatric disease caused primarily by human enterovirus 71 (EV-A71) and Coxsackievirus A16 (CV-A16). OBJECTIVE This study reports a systematic review of the epidemiology of HFMD in Asia. DATA SOURCES PubMed, Web of Science and Google Scholar were searched up to December 2014. STUDY SELECTION Two reviewers independently assessed studies for epidemiologic and serologic information about prevalence and incidence of HFMD against predetermined inclusion/exclusion criteria. DATA EXTRACTION Two reviewers extracted answers for 8 specific research questions on HFMD epidemiology. The results are checked by 3 others. RESULTS HFMD is found to be seasonal in temperate Asia with a summer peak and in subtropical Asia with spring and fall peaks, but not in tropical Asia; evidence of a climatic role was identified for temperate Japan. Risk factors for HFMD include hygiene, age, gender and social contacts, but most studies were underpowered to adjust rigorously for confounding variables. Both community-level and school-level transmission have been implicated, but their relative importance for HFMD is inconclusive. Epidemiologic indices are poorly understood: No supporting quantitative evidence was found for the incubation period of EV-A71; the symptomatic rate of EV-A71/Coxsackievirus A16 infection was from 10% to 71% in 4 studies; while the basic reproduction number was between 1.1 and 5.5 in 3 studies. The uncertainty in these estimates inhibits their use for further analysis. LIMITATIONS Diversity of study designs complicates attempts to identify features of HFMD epidemiology. CONCLUSIONS Knowledge on HFMD remains insufficient to guide interventions such as the incorporation of an EV-A71 vaccine in pediatric vaccination schedules. Research is urgently needed to fill these gaps.
Collapse
Affiliation(s)
- Wee Ming Koh
- From the Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Standard Analytics, New York, New York; Rollins School of Public Health, Emory University, Atlanta, Georgia; Duke-NUS Graduate Medical School, Singapore; Communicable Disease Centre, Tan Tock Seng Hospital, Singapore; Nuffield Department of Medicine, University of Oxford, United Kingdom; and Yale-NUS College, National University of Singapore, Singapore
| | - Tiffany Bogich
- From the Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Standard Analytics, New York, New York; Rollins School of Public Health, Emory University, Atlanta, Georgia; Duke-NUS Graduate Medical School, Singapore; Communicable Disease Centre, Tan Tock Seng Hospital, Singapore; Nuffield Department of Medicine, University of Oxford, United Kingdom; and Yale-NUS College, National University of Singapore, Singapore
| | - Karen Siegel
- From the Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Standard Analytics, New York, New York; Rollins School of Public Health, Emory University, Atlanta, Georgia; Duke-NUS Graduate Medical School, Singapore; Communicable Disease Centre, Tan Tock Seng Hospital, Singapore; Nuffield Department of Medicine, University of Oxford, United Kingdom; and Yale-NUS College, National University of Singapore, Singapore
| | - Jing Jin
- From the Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Standard Analytics, New York, New York; Rollins School of Public Health, Emory University, Atlanta, Georgia; Duke-NUS Graduate Medical School, Singapore; Communicable Disease Centre, Tan Tock Seng Hospital, Singapore; Nuffield Department of Medicine, University of Oxford, United Kingdom; and Yale-NUS College, National University of Singapore, Singapore
| | - Elizabeth Y. Chong
- From the Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Standard Analytics, New York, New York; Rollins School of Public Health, Emory University, Atlanta, Georgia; Duke-NUS Graduate Medical School, Singapore; Communicable Disease Centre, Tan Tock Seng Hospital, Singapore; Nuffield Department of Medicine, University of Oxford, United Kingdom; and Yale-NUS College, National University of Singapore, Singapore
| | - Chong Yew Tan
- From the Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Standard Analytics, New York, New York; Rollins School of Public Health, Emory University, Atlanta, Georgia; Duke-NUS Graduate Medical School, Singapore; Communicable Disease Centre, Tan Tock Seng Hospital, Singapore; Nuffield Department of Medicine, University of Oxford, United Kingdom; and Yale-NUS College, National University of Singapore, Singapore
| | - Mark IC Chen
- From the Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Standard Analytics, New York, New York; Rollins School of Public Health, Emory University, Atlanta, Georgia; Duke-NUS Graduate Medical School, Singapore; Communicable Disease Centre, Tan Tock Seng Hospital, Singapore; Nuffield Department of Medicine, University of Oxford, United Kingdom; and Yale-NUS College, National University of Singapore, Singapore
| | - Peter Horby
- From the Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Standard Analytics, New York, New York; Rollins School of Public Health, Emory University, Atlanta, Georgia; Duke-NUS Graduate Medical School, Singapore; Communicable Disease Centre, Tan Tock Seng Hospital, Singapore; Nuffield Department of Medicine, University of Oxford, United Kingdom; and Yale-NUS College, National University of Singapore, Singapore
| | - Alex R. Cook
- From the Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Standard Analytics, New York, New York; Rollins School of Public Health, Emory University, Atlanta, Georgia; Duke-NUS Graduate Medical School, Singapore; Communicable Disease Centre, Tan Tock Seng Hospital, Singapore; Nuffield Department of Medicine, University of Oxford, United Kingdom; and Yale-NUS College, National University of Singapore, Singapore
| |
Collapse
|
35
|
Aswathyraj S, Arunkumar G, Alidjinou EK, Hober D. Hand, foot and mouth disease (HFMD): emerging epidemiology and the need for a vaccine strategy. Med Microbiol Immunol 2016; 205:397-407. [PMID: 27406374 DOI: 10.1007/s00430-016-0465-y] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/29/2016] [Indexed: 12/24/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a contagious viral disease and mainly affects infants and young children. The main manifestations are fever, vesicular rashes on hand, feet and buttocks and ulcers in the oral mucosa. Usually, HFMD is self-limiting, but a small proportion of children may experience severe complications such as meningitis, encephalitis, acute flaccid paralysis and neurorespiratory syndrome. Historically, outbreaks of HFMD were mainly caused by two enteroviruses: the coxsackievirus A16 (CV-A16) and the enterovirus 71 (EV-A71). In the recent years, coxsackievirus A6 and coxsackievirus A10 have been widely associated with both sporadic cases and outbreaks of HFMD worldwide, particularly in India, South East Asia and Europe with an increased frequency of neurological complications as well as mortality. Currently, there is no pharmacological intervention or vaccine available for HFMD. A formalin-inactivated EV-A71 vaccine has completed clinical trial in several Asian countries. However, this vaccine cannot protect against other major emerging etiologies of HFMD such as CV-A16, CV-A6 and CV-A10. Therefore, the development of a globally representative multivalent HFMD vaccine could be the best strategy.
Collapse
Affiliation(s)
- S Aswathyraj
- Université de Lille Faculté de Médecine CHU Lille Laboratoire de virologie EA3610, F-59000, Lille, France
- Manipal Center for Virus Research (Regional Reference Laboratory for Influenza Virus & ICMR Virology Network Laboratory-Grade-I), Manipal, 576104, Karnataka, India
| | - G Arunkumar
- Manipal Center for Virus Research (Regional Reference Laboratory for Influenza Virus & ICMR Virology Network Laboratory-Grade-I), Manipal, 576104, Karnataka, India
| | - E K Alidjinou
- Université de Lille Faculté de Médecine CHU Lille Laboratoire de virologie EA3610, F-59000, Lille, France
| | - D Hober
- Université de Lille Faculté de Médecine CHU Lille Laboratoire de virologie EA3610, F-59000, Lille, France.
| |
Collapse
|
36
|
Peng Q, Xie M, Zhang Y, Liu Q, Li W, Li S, Ma Q, Lu X, Zhong B. Molecular epidemiology of the enteroviruses associated with hand, foot and mouth disease/herpangina in Dongguan, China, 2015. Arch Virol 2016; 161:3463-3471. [PMID: 27654666 DOI: 10.1007/s00705-016-3058-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
Enteroviruses (EVs) are the etiological agents involved in most cases of hand, foot and mouth disease (HFMD) and herpangina (HA). Information on the epidemiology profiles of EVs in China is very limited, as the present surveillance system of China focuses on CAV16 and EV71, and no published data are available in Dongguan. The aim of this study is to determine the prevalence of EVs among patients with HFMD and HA in Dongguan, China, during 2015. A total of 271 clinical stool specimens that were clinically determined to be positive for enteroviruses were genotyped by semi-nested polymerase chain reaction (PCR) for the VP1 genes of EVs. The results showed that a total of 14 enterovirus genotypes were identified among HFMD and HA patients in this study. CVA6 was the most common genotype for HFMD, and CVA2 accounted for the majority of HA cases in this study. Sequence and phylogenetic analysis showed that all of the CVA6 and CVA2 strains identified in our study displayed a close genetic relationship to strains identified in other cities in China. This study also demonstrates that there are associations between particular causative enterovirus genotypes and some clinical symptoms, which may provide useful information for improving case prevention, diagnosis and treatment of HFMD and HA.
Collapse
Affiliation(s)
- Qi Peng
- Department of Pediatric Infectious Diseases, Children's Hospital of Dongguan, Dongguan, Guangdong, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Mingyu Xie
- Department of Pediatric Infectious Diseases, Children's Hospital of Dongguan, Dongguan, Guangdong, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China.,Guangdong Medical University, Dongguan, Guangdong, China
| | - Yinghong Zhang
- Department of Pediatric Infectious Diseases, Children's Hospital of Dongguan, Dongguan, Guangdong, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Qian Liu
- Department of Pediatric Infectious Diseases, Children's Hospital of Dongguan, Dongguan, Guangdong, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Wenrui Li
- Department of Pediatric Infectious Diseases, Children's Hospital of Dongguan, Dongguan, Guangdong, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Siping Li
- Department of Pediatric Infectious Diseases, Children's Hospital of Dongguan, Dongguan, Guangdong, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Qiang Ma
- Department of Pediatric Infectious Diseases, Children's Hospital of Dongguan, Dongguan, Guangdong, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Xiaomei Lu
- Department of Pediatric Infectious Diseases, Children's Hospital of Dongguan, Dongguan, Guangdong, China. .,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China.
| | - Baimao Zhong
- Department of Pediatric Infectious Diseases, Children's Hospital of Dongguan, Dongguan, Guangdong, China. .,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China. .,Guangdong Medical University, Dongguan, Guangdong, China.
| |
Collapse
|
37
|
Shen C, Liu Q, Zhou Y, Ku Z, Wang L, Lan K, Ye X, Huang Z. Inactivated coxsackievirus A10 experimental vaccines protect mice against lethal viral challenge. Vaccine 2016; 34:5005-5012. [DOI: 10.1016/j.vaccine.2016.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023]
|
38
|
Mao Q, Wang Y, Bian L, Xu M, Liang Z. EV-A71 vaccine licensure: a first step for multivalent enterovirus vaccine to control HFMD and other severe diseases. Emerg Microbes Infect 2016; 5:e75. [PMID: 27436364 PMCID: PMC5141264 DOI: 10.1038/emi.2016.73] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 01/17/2023]
Abstract
Enteroviruses (EVs) are the most common viral agents in humans. Although most infections are mild or asymptomatic, there is a wide spectrum of clinical manifestations that may be caused by EV infections with varying degrees of severity. Among these viruses, EV-A71 and coxsackievirus (CV) CV-A16 from group A EVs attract the most attention because they are responsible for hand, foot and mouth disease (HFMD). Other EV-A viruses such as CV-A6 and CV-A10 were also reported to cause HFMD outbreaks in several countries or regions. Group B EVs such as CV-B3, CV-B5 and echovirus 30 were reported to be the main pathogens responsible for myocarditis and encephalitis epidemics and were also detected in HFMD patients. Vaccines are the best tools to control infectious diseases. In December 2015, China's Food and Drug Administration approved two inactivated EV-A71 vaccines for preventing severe HFMD.The CV-A16 vaccine and the EV-A71-CV-A16 bivalent vaccine showed substantial efficacy against HFMD in pre-clinical animal models. Previously, research on EV-B group vaccines was mainly focused on CV-B3 vaccine development. Because the HFMD pathogen spectrum has changed, and the threat from EV-B virus-associated severe diseases has gradually increased, it is necessary to develop multivalent HFMD vaccines. This study summarizes the clinical symptoms of diseases caused by EVs, such as HFMD, myocarditis and encephalitis, and the related EV vaccine development progress. In conclusion, developing multivalent EV vaccines should be strongly recommended to prevent HFMD, myocarditis, encephalitis and other severe diseases.
Collapse
Affiliation(s)
- Qunying Mao
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yiping Wang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Lianlian Bian
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
39
|
Gao F, Bian LL, Mao QY, Chen P, Yao X, Li JX, Zhu FC, Liang ZL. An epidemic of coxsackievirus B3 infection in infants and children in Jiangsu Province, China: a prospective cohort study. Arch Virol 2016; 161:1945-7. [PMID: 27020571 DOI: 10.1007/s00705-016-2842-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/20/2016] [Indexed: 12/29/2022]
Abstract
To investigate the epidemiological data on coxsackievirus B3 (CVB3) infection and its incidence in infants and children, a prospective cohort study was carried out from 2012 to 2014 in Jiangsu Province, China. According to the results of seropositive rates and NTAb titers of CVB3, an epidemic of CVB3 infection was found, and a dynamic change in CVB3 neutralizing antibody was also observed. One case was recorded with CVB3-associated hand, foot and mouth disease (HFMD), and the isolates belonged to the CVB3 D2 subtype. Our data help us to better understand the epidemic characteristics of CVB3 infection in infants and children.
Collapse
Affiliation(s)
- Fan Gao
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Lian-Lian Bian
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Qun-Ying Mao
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Pan Chen
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Xin Yao
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Jing-Xin Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Zheng-Lun Liang
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China.
| |
Collapse
|
40
|
Hand, Foot, and Mouth Disease in China: Modeling Epidemic Dynamics of Enterovirus Serotypes and Implications for Vaccination. PLoS Med 2016; 13:e1001958. [PMID: 26882540 PMCID: PMC4755668 DOI: 10.1371/journal.pmed.1001958] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 01/05/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a common childhood illness caused by serotypes of the Enterovirus A species in the genus Enterovirus of the Picornaviridae family. The disease has had a substantial burden throughout East and Southeast Asia over the past 15 y. China reported 9 million cases of HFMD between 2008 and 2013, with the two serotypes Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16) being responsible for the majority of these cases. Three recent phase 3 clinical trials showed that inactivated monovalent EV-A71 vaccines manufactured in China were highly efficacious against HFMD associated with EV-A71, but offered no protection against HFMD caused by CV-A16. To better inform vaccination policy, we used mathematical models to evaluate the effect of prospective vaccination against EV-A71-associated HFMD and the potential risk of serotype replacement by CV-A16. We also extended the model to address the co-circulation, and implications for vaccination, of additional non-EV-A71, non-CV-A16 serotypes of enterovirus. METHODS AND FINDINGS Weekly reports of HFMD incidence from 31 provinces in Mainland China from 1 January 2009 to 31 December 2013 were used to fit multi-serotype time series susceptible-infected-recovered (TSIR) epidemic models. We obtained good model fit for the two-serotype TSIR with cross-protection, capturing the seasonality and geographic heterogeneity of province-level transmission, with strong correlation between the observed and simulated epidemic series. The national estimate of the basic reproduction number, R0, weighted by provincial population size, was 26.63 for EV-A71 (interquartile range [IQR]: 23.14, 30.40) and 27.13 for CV-A16 (IQR: 23.15, 31.34), with considerable variation between provinces (however, predictions about the overall impact of vaccination were robust to this variation). EV-A71 incidence was projected to decrease monotonically with higher coverage rates of EV-A71 vaccination. Across provinces, CV-A16 incidence in the post-EV-A71-vaccination period remained either comparable to or only slightly increased from levels prior to vaccination. The duration and strength of cross-protection following infection with EV-A71 or CV-A16 was estimated to be 9.95 wk (95% confidence interval [CI]: 3.31, 23.40) in 68% of the population (95% CI: 37%, 96%). Our predictions are limited by the necessarily short and under-sampled time series and the possible circulation of unidentified serotypes, but, nonetheless, sensitivity analyses indicate that our results are robust in predicting that the vaccine should drastically reduce incidence of EV-A71 without a substantial competitive release of CV-A16. CONCLUSIONS The ability of our models to capture the observed epidemic cycles suggests that herd immunity is driving the epidemic dynamics caused by the multiple serotypes of enterovirus. Our results predict that the EV-A71 and CV-A16 serotypes provide a temporary immunizing effect against each other. Achieving high coverage rates of EV-A71 vaccination would be necessary to eliminate the ongoing transmission of EV-A71, but serotype replacement by CV-A16 following EV-A71 vaccination is likely to be transient and minor compared to the corresponding reduction in the burden of EV-A71-associated HFMD. Therefore, a mass EV-A71 vaccination program of infants and young children should provide significant benefits in terms of a reduction in overall HFMD burden.
Collapse
|
41
|
Zhuang ZC, Kou ZQ, Bai YJ, Cong X, Wang LH, Li C, Zhao L, Yu XJ, Wang ZY, Wen HL. Epidemiological Research on Hand, Foot, and Mouth Disease in Mainland China. Viruses 2015; 7:6400-11. [PMID: 26690202 PMCID: PMC4690870 DOI: 10.3390/v7122947] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 01/23/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD), which has led to millions of attacks and several outbreaks across the world and become more predominant in Asia-Pacific Region, especially in Mainland China, is caused by several Human Enteroviruses including new enterovirus, coxsakievirus and echovirus. In recent years, much research has focused on the epidemiological characteristics of HFMD. In this article, multiple characteristics of HFMD such as basic epidemiology, etiology and molecular epidemiology; influencing factors; detection; and surveillance are reviewed, as these can be help protect high risks groups, prevalence prediction and policy making for disease prevention.
Collapse
Affiliation(s)
- Zhi-Chao Zhuang
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China.
| | - Zeng-Qiang Kou
- Shandong Center for Disease Control and Prevention, Jinan 250014, China.
| | - Yong-Juan Bai
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China.
| | - Xiang Cong
- Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Li-Hong Wang
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China.
| | - Chun Li
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China.
| | - Li Zhao
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China.
| | - Xue-Jie Yu
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China.
- Center for Biodefense and Emerging Infectious Diseases, Departments of Pathology and Microbiology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | - Zhi-Yu Wang
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China.
| | - Hong-Ling Wen
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China.
| |
Collapse
|
42
|
Guan H, Wang J, Wang C, Yang M, Liu L, Yang G, Ma X. Etiology of Multiple Non-EV71 and Non-CVA16 Enteroviruses Associated with Hand, Foot and Mouth Disease in Jinan, China, 2009-June 2013. PLoS One 2015; 10:e0142733. [PMID: 26562154 PMCID: PMC4642993 DOI: 10.1371/journal.pone.0142733] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/26/2015] [Indexed: 11/18/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is an infectious disease caused by human enterovirus 71 (EV71), coxsackievirus A16 (CVA16) and other enteroviruses. It is of interest that other enteroviruses associated with HFMD in Jinan have been rarely reported. The aim of the present study is to detect and characterize the circulating serotypes of non-EV71 and non-CVA16 enteroviruses associated with HFMD in Jinan city, Shandong province, China. A total of 400 specimens were collected from clinically diagnosed HFMD cases in Jinan from January 2009 to June 2013. All specimens were infected with non-EV71 and non-CVA16 enteroviruses previously confirmed by RT-PCR or real-time PCR according to the protocols at that time. The GeXP-based multiplex RT-PCR assay (GeXP assay) was performed to investigate the pathogen spectrum of 15 enteroviruses (coxsackieviruses A4, A5, A6, A9, A10, A16; coxsackieviruses B1, B3, B5; Echoviruses 6, 7, 11, 13, 19 and EV71) infections associated with HMFD. For GeXP assay negative samples, reverse transcription nested PCR (nested RT-PCR) based on the 5’ -untranslated region (5’- UTR) sequence and phylogenetic analysis were conducted to further explore the etiology of multiple enteroviruses. The results showed that a total of twenty serotypes of enteroviruses (including EV71 and CVA16) were identified by GeXP assay and nested RT-PCR. The most circulating twelve serotypes of enteroviruses with HFMD in Jinan from 2009 to June 2013 were EV71, CVA16, CVA10, CVA6, CVA12, CVA2, Echo3, CVA4, CVA9, CVB1, CVB3 and Echo6. CVA10 and CVA6 were the most prevalent pathogens other than EV71 and CVA16 in Jinan and their most prevalent seasons were spring and summer, and a slight increase was observed in autumn and early winter. It should be noted that mixed-infections were identified by GeXP assay and the phylogenetic tree clearly discriminated the multiple pathogens associated with HFMD. Our results thus demonstrate that there was a clear lack of a reliable testing method for EV71 and CVA16 and multiple non-EV71 and non-CVA16 enteroviruses associated with HFMD were present in Jinan. The GeXP assay combined with nested RT-PCR based on 5’-UTR region could meet the need for the national surveillance of multiple enteroviruses or the investigation of epidemic outbreaks triggered by enteroviruses in the future.
Collapse
Affiliation(s)
- Hengyun Guan
- Viral Disease Inspection Laboratory, Jinan Municipal Center for Disease Control and Prevention, Jinan, China
| | - Ji Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chunrong Wang
- Viral Disease Inspection Laboratory, Jinan Municipal Center for Disease Control and Prevention, Jinan, China
| | - Mengjie Yang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lanzheng Liu
- Viral Disease Inspection Laboratory, Jinan Municipal Center for Disease Control and Prevention, Jinan, China
- * E-mail: (LZL); (XJM)
| | - Guoliang Yang
- Viral Disease Inspection Laboratory, Jinan Municipal Center for Disease Control and Prevention, Jinan, China
| | - Xuejun Ma
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (LZL); (XJM)
| |
Collapse
|
43
|
Xu M, Su L, Cao L, Zhong H, Dong N, Dong Z, Xu J. Genotypes of the Enterovirus Causing Hand Foot and Mouth Disease in Shanghai, China, 2012-2013. PLoS One 2015; 10:e0138514. [PMID: 26398767 PMCID: PMC4580587 DOI: 10.1371/journal.pone.0138514] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/30/2015] [Indexed: 11/19/2022] Open
Abstract
Sporadic HFMD (hand foot and mouth disease, HFMD) cases and outbreaks caused by etiologic agents other than EV71 and CA16 have increased globally. We conducted this study to investigate the prevalence and genetic characteristics of enteroviruses, especially the non-EV71 and non-CA16 enteroviruses, causing HFMD in Shanghai. Clinical specimens were collected from patients with a diagnosis of HFMD. A partial length of VP1 was amplified with RT-PCR and subjected to direct sequencing. Phylogenetic analyses were performed using MEGA 5.0. The ages of the HFMD cases ranged from 3 to 96 months, and the male/female ratio was 1.41. The median hospital stay was 2.96 days. Up to 18.0% of patients had neurologic system complications such as encephalitis, meningoencephalitis or meningitis. Of the 480 samples, 417 were positive for enterovirus (86.9%) with RT-PCR. A total of 13 enterovirus genotypes were identified. The most frequent genotypes were CA6 (31.9%), EV71 (30.6%), CA16 (8.8%) and CA10 (7.5%). Infections with CA6, EV71, CA16 and CA10 were prevalent throughout the years of study, while the proportion of CA6 notably increased from Sep. 2012 to Dec. 2013. Phylogenetic analyses showed that EV71 strains belonged to the C4a subgenogroup and CA16 was identified as B1b subgenogroup. The CA6 strains were assigned to genogroup F, whereas the CA10 strains were assigned to genogroup D. Patients infected with CA6 were typically younger, had a shorter hospital stay and had a lower incidence of neurologic system complications when compared to patients infected with EV71. Our study demonstrates that the enterovirus genotypes causing HFMD were diversified, and there was an increasing prevalence of the non-EV71 and non-CA16 enteroviruses from 2012 to 2013. CA6 was the most predominant pathogen causing HFMD from Sep. 2012 to Dec. 2013, and it often caused relatively mild HFMD symptoms. Most severe HFMD cases were associated with EV71 infection.
Collapse
Affiliation(s)
- Menghua Xu
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Liyun Su
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Lingfeng Cao
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Huaqing Zhong
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Niuniu Dong
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Zuoquan Dong
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Jin Xu
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, Shanghai, 201102, China
- * E-mail:
| |
Collapse
|
44
|
Prevalence of Coxsackievirus A6 and Enterovirus 71 in Hand, Foot and Mouth Disease in Nanjing, China in 2013. Pediatr Infect Dis J 2015; 34:951-7. [PMID: 26090576 DOI: 10.1097/inf.0000000000000794] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although hand, foot and mouth disease (HFMD) has been strongly associated with enterovirus 71 (EV71), coxsackievirus A16 (CVA16) and other enteroviruses, studies regarding coxsackievirus A6 (CVA6) infection in HFMD are limited. The aim of this study was to identify the major etiological agents causing HFMD in Nanjing in 2013 and explore the clinical and genetic characteristics of the prevalent enterovirus (EV) types in HFMD. METHODS A total of 394 throat swabs were collected from hospitalized children diagnosed with HFMD from April to July 2013. EVs were detected by reverse transcription polymerase chain reaction of 5' UTR sequences. Genotyping and phylogenetic analysis were based on VP4 sequences. Demographic and clinical data were obtained. RESULTS Of the specimens, 68.5% (270/394) were positive for EVs. The genotypes and detection rates were CVA6, 30.00% (81/270); EV71, 17.41% (47/270); HRV, 11.11% (30/270); CVA10, 3.33% (9/270); CVA2, 1.11% (3/270); CVA16, 0.74% (2/270); EV68, 0.37% (1/270); echovirus 6, 0.37% (1/270); echovirus 9, 0.37% (1/270), respectively. Patients infected with CVA6 displayed symptoms atypical of HFMD, including larger vesicles on their limbs and buttocks. Phylogenetic analysis revealed 2 genetically distinct CVA6 strains that circulated independently within the region. Patients infected with CVA6 were more likely to have abnormal periphery blood white blood cell and C-reactive protein levels, while EV71 was more likely to infect the central nervous system, as indicated by clinical manifestations and white blood cell analysis of cerebrospinal fluid. CONCLUSIONS Multiple EV genotypes contributed to HFMD in Nanjing in 2013, and CVA6 was the dominant genotype. The clinical presentation of CVA6 infection differs from that of EV71 infection in HFMD.
Collapse
|
45
|
Linsuwanon P, Poovorawan Y, Li L, Deng X, Vongpunsawad S, Delwart E. The Fecal Virome of Children with Hand, Foot, and Mouth Disease that Tested PCR Negative for Pathogenic Enteroviruses. PLoS One 2015; 10:e0135573. [PMID: 26288145 PMCID: PMC4545796 DOI: 10.1371/journal.pone.0135573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 07/24/2015] [Indexed: 01/21/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) affects infant and young children. A viral metagenomic approach was used to identify the eukaryotic viruses in fecal samples from 29 Thai children with clinical diagnosis of HFMD collected during the 2012 outbreak. These children had previously tested negative by PCR for enterovirus 71 and coxsackievirus A16 and A6. Deep sequencing revealed nine virus families: Picornaviridae, Astroviridae, Parvoviridae, Caliciviridae, Paramyxoviridae, Adenoviridae, Reoviridae, Picobirnaviridae, and Polyomaviridae. The highest number of viral sequences belonged to human rhinovirus C, astrovirus-MLB2, and coxsackievirus A21. Our study provides an overview of virus community and highlights a broad diversity of viruses found in feces from children with HFMD.
Collapse
Affiliation(s)
- Piyada Linsuwanon
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
46
|
Guo WP, Lin XD, Chen YP, Liu Q, Wang W, Wang CQ, Li MH, Sun XY, Shi M, Holmes EC, Zhang YZ. Fourteen types of co-circulating recombinant enterovirus were associated with hand, foot, and mouth disease in children from Wenzhou, China. J Clin Virol 2015; 70:29-38. [PMID: 26305816 DOI: 10.1016/j.jcv.2015.06.093] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although hand, foot, and mouth disease (HFMD) is a major public concern in China, the prevalence and clinical symptoms associated with the different agents of HFMD in this country remain poorly understood. OBJECTIVES We investigated the clinical and molecular characteristics of enteroviruses in patients with HFMD from Wenzhou, China. STUDY DESIGN Patients with laboratory-confirmed HFMD admitted to the Yuying Children's Hospital in Wenzhou, China during 2013 were included in this study. Viral RNA sequences were amplified using RT-PCR, determined by sequencing, and compared by phylogenetic analysis. RESULTS A total of 955 clinically diagnosed HFMD cases were determined using PCR, with whole viral genomes obtained for each enterovirus type. 14 types of enterovirus belonging to two viral species were identified. Notably, Coxsackievirus A6 (CV-A6) was the most common species detected (77.8%), followed by EV-A71 (8.2%) and CV-A10 (8.1%). Phylogenetic analysis revealed multiple independent introductions of these viruses into Wenzhou. In addition, the enterovirus observed in Wenzhou had a recombinant history, with two or three recombination breakpoints. Although the illness associated with CV-A6 was milder than that of EV-A71, CV-A6 infection caused more widespread rash, larger blisters, and subsequent skin peeling and/or nail shedding. CONCLUSION Our study revealed the co-circulation of 14 types of enteroviruses in a single location - Wenzhou, China - with CV-A6 virus the predominant agent of HFMD. This work highlights the need to perform larger-scale surveillance to fully understand the epidemiology of enteroviruses in China and the wider Asia-Pacific region.
Collapse
Affiliation(s)
- Wen-Ping Guo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325001, Zhejiang Province, China
| | - Yi-Ping Chen
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Qi Liu
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Wen Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Cai-Qiao Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China
| | - Ming-Hui Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiao-Yu Sun
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325001, Zhejiang Province, China
| | - Mang Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
47
|
Klein M, Chong P. Is a multivalent hand, foot, and mouth disease vaccine feasible? Hum Vaccin Immunother 2015; 11:2688-704. [PMID: 26009802 DOI: 10.1080/21645515.2015.1049780] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Enterovirus A infections are the primary cause of hand, foot and mouth disease (HFMD) in infants and young children. Although enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are the predominant causes of HFMD epidemics worldwide, EV-A71 has emerged as a major neurovirulent virus responsible for severe neurological complications and fatal outcomes. HFMD is a serious health threat and economic burden across the Asia-Pacific region. Inactivated EV-A71 vaccines have elicited protection against EV-A71 but not against CV-A16 infections in large efficacy trials. The current development of a bivalent inactivated EV-A71/CV-A16 vaccine is the next step toward that of multivalent HFMD vaccines. These vaccines should ultimately include other prevalent pathogenic coxsackieviruses A (CV-A6 and CV-A10), coxsackieviruses B (B3 and B5) and echovirus 30 that often co-circulate during HFMD epidemics and can cause severe HFMD, aseptic meningitis and acute viral myocarditis. The prospect and challenges for the development of such multivalent vaccines are discussed.
Collapse
Affiliation(s)
| | - Pele Chong
- b Vaccine R&D Center; National Health Research Institutes ; Zhunan Town, Miaoli County , Taiwan.,c Graduate Institute of Immunology; China Medical University ; Taichung , Taiwan
| |
Collapse
|
48
|
Phylogenetic analysis of the major causative agents of hand, foot and mouth disease in Suzhou City, Jiangsu province, China, in 2012-2013. Emerg Microbes Infect 2015; 4:e12. [PMID: 26038764 PMCID: PMC4345287 DOI: 10.1038/emi.2015.12] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 12/11/2014] [Accepted: 01/15/2015] [Indexed: 11/29/2022]
Abstract
Hand, foot and mouth disease (HFMD) is a serious public health problem that has emerged over the past several decades. Pathogen detection by the Chinese national HFMD surveillance system has focused mainly on enterovirus 71 (EV71) and coxsackievirus A16 (CA16). Therefore, epidemiological information regarding the other causative enteroviruses is limited. To identify the pandemic enterovirus in Suzhou, Jiangsu province, China, clinical samples from patients with HFMD were collected from 2012 to 2013 and analyzed. The results revealed that CA16 was the most dominant HFMD pathogen in 2012, whereas CA6 and CA10 were the dominant pathogens in 2013. Phylogenetic analysis revealed that the C4a sub-genogroup of EV71 and the B1a and B1b sub-genogroups of CA16 continued to evolve and circulate in Suzhou. The CA6 strains were assigned to six genotypes (A–F) and the CA10 strains were assigned to seven genotypes (A–G), with clear geographical and temporal distributions. All of the CA6 strains in Suzhou belonged to genogroup F, and there were several lineages circulating in Suzhou. All of the CA10 strains in Suzhou belonged to genogroup G, and they had the same genetic origin. Co-infections of EV71/CA16 and CA6/CA10 were found in the samples, and bootscan analysis of 5′-untranslated regions (UTRs) revealed that some CA16 strains in Suzhou had genetic recombination with EV71. This property might allow CA16 to alter its evolvability and circulating ability. This study underscores the need for surveillance of CA6 and CA10 in the Yangtze River Delta and East China.
Collapse
|
49
|
Molecular epidemiology of coxsackievirus A6 associated with outbreaks of hand, foot, and mouth disease in Tianjin, China, in 2013. Arch Virol 2015; 160:1097-104. [PMID: 25680566 DOI: 10.1007/s00705-015-2340-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
Since 2008, Mainland China has undergone widespread outbreaks of hand, foot, and mouth disease (HFMD). In order to determine the characteristics of epidemics and enteroviruses (EV) associated with HFMD in Tianjin, in northern China, epidemiological and virological data from routine surveillance were collected and analyzed. In Tianjin, a persistent epidemic of HFMD was demonstrated during 2008-2013, involving 102,705 mild, 179 severe, and 16 fatal cases. Overall, 8234 specimens were collected from 7829 HFMD patients for EV detection during 2008-2013. Enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) were the dominant serotypes during 2008-2012, and they were replaced by CV-A6 as the major causative agent in 2013. Phylogenetic analysis based on complete VP1 nucleotide sequences revealed that multiple CV-A6 lineages co-circulated in Tianjin, which grouped together with strains from China and other countries and split into two distinct clusters (clusters 1 and 2). Most Tianjin strains grouped in cluster 1 and were closely related to strains from several eastern and southern provinces of China during 2012 and 2013. Estimates from Bayesian MCMC analysis suggested that multiple lineages had been transmitted silently before the outbreaks at an estimated evolutionary rate of 4.10 × 10(-3) substitutions per site per year without a specific distribution of rate variances among lineages. The sudden outbreak of CV-A6 in Tianjin during 2013 is attributed to indigenous CV-A6 lineages, which were linked to the wide spread of endemic strains around eastern and southern China.
Collapse
|
50
|
Han JF, Zhang Y, Hou PQ, Zhu SY, Wu XY, Zhao H, Yu M, Qin CF. Human enterovirus co-infection in severe HFMD patients in China. J Clin Virol 2014; 61:621-2. [PMID: 25449173 DOI: 10.1016/j.jcv.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/04/2014] [Accepted: 09/14/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Jian-Feng Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Pei Qiang Hou
- Tai'an Center for Diseases Control and Prevention, Tai'an, China
| | - Shun-Ya Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Yan Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Man Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|