1
|
Singh PK, Maurya S, Saadi A, Shekh-Ahmad T. Targeting NOX2 Mitigates Seizure Susceptibility, Oxidative Stress, and Neuroinflammation in the Pentylenetetrazol Seizure Model. Free Radic Biol Med 2025:S0891-5849(25)00661-6. [PMID: 40345502 DOI: 10.1016/j.freeradbiomed.2025.05.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/27/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Oxidative stress is a pivotal driver of epileptogenesis and seizure-induced neuronal pathology, with NADPH oxidase 2 (NOX2) serving as a major source of reactive oxygen species (ROS) in the brain. Despite its established role in seizure pathophysiology, the therapeutic implications of selective NOX2 inhibition in epilepsy remain insufficiently explored. Here, we investigate the effect of GSK2795039, a potent NOX2 inhibitor, using both in vitro and in vivo epilepsy models. In vitro, mixed cortical neuroglial cultures were treated with 4-aminopyridine (4-AP) and picrotoxin (PTX) to induce epileptiform activity. Calcium imaging and dihydroethidium (DHE) fluorescence assays revealed that GSK2795039 significantly reduced synchronous Ca2+ oscillations and ROS accumulation. In vivo, adult rats implanted with ECoG transmitters were pretreated with GSK2795039 prior to pentylenetetrazol (PTZ) administration to evoke seizures. ECoG recording and behavioral seizure scoring showed that GSK2795039 pretreatment inhibited the seizure severity, duration and cumulative seizure burden. Molecular analyses, including quantitative PCR and western blotting, revealed a significant downregulation of NOX2 mRNA in both the hippocampus and cortex, although protein levels remained unchanged. Additionally, immunofluorescence and histological staining confirmed that GSK2795039 mitigated oxidative DNA damage, preserved hippocampal neuronal integrity, and differentially modulated pro- and anti-inflammatory cytokine expression. These findings underscore NOX2 inhibition as a compelling neuroprotective strategy and highlight the potential of GSK2795039 to suppress oxidative and inflammatory cascades in epilepsy. Targeting NOX2 may represent a promising avenue for precision therapeutics in oxidative stress-driven epilepsy.
Collapse
Affiliation(s)
- Prince Kumar Singh
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel - 91120.
| | - Shweta Maurya
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel - 91120
| | - Aseel Saadi
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel - 91120
| | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel - 91120.
| |
Collapse
|
2
|
Kanojia N, Kukal S, Machahary N, Bora S, Srivastava A, Paul PR, Sagar S, Kumar R, Grewal GK, Sharma S, B K B, Kukreti R. Antiepileptic drugs carbamazepine and valproic acid mediate transcriptional activation of CYP1A1 via aryl hydrocarbon receptor and regulation of estrogen metabolism. J Steroid Biochem Mol Biol 2025; 248:106699. [PMID: 39952367 DOI: 10.1016/j.jsbmb.2025.106699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Cytochrome P450 1A1 (CYP1A1) actively catalyzes estrogen hydroxylation reactions and maintains the levels of neuroactive steroid estradiol. The widely prescribed first-line anti-epileptic drugs (AEDs) are considered to be a potent inducer of CYP1A1 and have also been observed to affect serum estradiol and calcium levels in patients with epilepsy. However, the ability of AEDs to interfere with CYP enzyme function and estrogen disposition is a relatively unexplored area. Here we investigate the effect of widely prescribed AEDs (carbamazepine and valproic acid) on CYP1A1 regulation and the levels of estradiol and calcium in cell supernatants of hepatocellular, HepG2, and neuronal, SH-SY5Y cells. We observed that both the AEDs significantly increased CYP1A1 expression and enzyme activity, which was accompanied by a decrease in estradiol and calcium levels in HepG2 cells. This induction of CYP1A1 mRNA and protein was fully prevented by aryl hydrocarbon receptor (AHR) knockdown and StemRegenin 1 (SR1) antagonism. Notably, the AEDs did not affect the AHR expression but regulated its nuclear translocation, potentially driving the transcriptional upregulation of CYP1A1. Furthermore, the knockdown of CYP1A1 in HepG2 cells elucidated a marked increase in estradiol and calcium levels. Later, this increase subsided upon AED exposure. Lastly, we observed a similar trend in estradiol and calcium alterations in SH-SY5Y cells on AED exposure, speculating the involvement of CYP1A1 induction via AEDs at neuronal sites. This work demonstrates that AEDs mediate the upregulation of CYP1A1 via an AHR-dependent mechanism and influence estrogen and calcium homeostasis.
Collapse
Affiliation(s)
- Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nitin Machahary
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University (DTU), Shahbad Daulatpur, Delhi 110042, India
| | - Ankit Srivastava
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Delhi 110062, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakti Sagar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reema Kumar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India
| | - Gurpreet Kaur Grewal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Srishti Sharma
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Binukumar B K
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Voldřich J, Matoušová M, Šmídková M, Mertlíková‐Kaiserová H. Fluorescence-Based HTS Assays for Ion Channel Modulation in Drug Discovery Pipelines. ChemMedChem 2024; 19:e202400383. [PMID: 39221492 PMCID: PMC11648840 DOI: 10.1002/cmdc.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Ion channels represent a druggable family of transmembrane pore-forming proteins with important (patho)physiological functions. While electrophysiological measurement (manual patch clamp) remains the only direct method for detection of ion currents, it is a labor-intensive technique. Although automated patch clamp instruments have become available to date, their high costs limit their use to large pharma companies or commercial screening facilities. Therefore, fluorescence-based assays are particularly important for initial screening of compound libraries. Despite their numerous disadvantages, they are highly amenable to high-throughput screening and in many cases, no sophisticated instrumentation or materials are required. These features predispose them for implementation in early phases of drug discovery pipelines (hit identification), even in an academic environment. This review summarizes the advantages and pitfalls of individual methodological approaches for identification of ion channel modulators employing fluorescent probes (i. e., membrane potential and ion flux assays) with emphasis on practical aspects of their adaptation to high-throughput format.
Collapse
Affiliation(s)
- Jan Voldřich
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicFlemingovo nam. 2Prague 6 – Dejvice16610Czech Republic
- University of Chemistry and TechnologyTechnická 5Prague 6 – Dejvice166 28Czech Republic
| | - Marika Matoušová
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicFlemingovo nam. 2Prague 6 – Dejvice16610Czech Republic
| | - Markéta Šmídková
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicFlemingovo nam. 2Prague 6 – Dejvice16610Czech Republic
| | - Helena Mertlíková‐Kaiserová
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicFlemingovo nam. 2Prague 6 – Dejvice16610Czech Republic
| |
Collapse
|
4
|
Mishra NM, Spitznagel BD, Du Y, Mohamed YK, Qin Y, Weaver CD, Emmitte KA. Structure-Activity Relationship Studies in a Series of 2-Aryloxy- N-(pyrimidin-5-yl)acetamide Inhibitors of SLACK Potassium Channels. Molecules 2024; 29:5494. [PMID: 39683653 DOI: 10.3390/molecules29235494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Epilepsy of infancy with migrating focal seizures (EIMFS) is a rare, serious, and pharmacoresistant epileptic disorder often linked to gain-of-function mutations in the KCNT1 gene. KCNT1 encodes the sodium-activated potassium channel known as SLACK, making small molecule inhibitors of SLACK channels a compelling approach to the treatment of EIMFS and other epilepsies associated with KCNT1 mutations. In this manuscript, we describe a hit optimization effort executed within a series of 2-aryloxy-N-(pyrimidin-5-yl)acetamides that were identified via a high-throughput screen. We systematically prepared analogs in four distinct regions of the scaffold and evaluated their functional activity in a whole-cell, automated patch clamp (APC) assay to establish structure-activity relationships for wild-type (WT) SLACK inhibition. Two selected analogs were also profiled for selectivity versus other members of the Slo family of potassium channels, of which SLACK is a member, and versus a panel of structurally diverse ion channels. The same two analogs were evaluated for activity versus the WT mouse channel as well as two clinically relevant mutant human channels.
Collapse
Affiliation(s)
- Nigam M Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yasmeen K Mohamed
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ying Qin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
5
|
Sasaki T, Hisada S, Kanki H, Nunomura K, Lin B, Nishiyama K, Kawano T, Matsumura S, Mochizuki H. Modulation of Ca 2+ oscillation following ischemia and nicotinic acetylcholine receptors in primary cortical neurons by high-throughput analysis. Sci Rep 2024; 14:27667. [PMID: 39532929 PMCID: PMC11557898 DOI: 10.1038/s41598-024-77882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium oscillations in primary neuronal cultures and iPSCs have been employed to investigate arrhythmogenicity and epileptogenicity in drug development. Previous studies have demonstrated that Ca2+ influx via NMDA and nicotinic acetylcholine receptors (nAChRs) modulates Ca2+ oscillations. Nevertheless, there has been no comprehensive investigation into the impact of ischemia or nAChR-positive allosteric modulators (PAM) drugs on Ca2+ oscillations at a level that would facilitate high-throughput screening. We investigated the effects of ischemia and nAChR subtypes or nAChR PAM agonists on Ca2+ oscillations in high-density 2D and 3D-sphere primary neuronal cultures using 384-well plates with FDSS-7000. Ischemia for 1 and 2 h resulted in an increase in the frequency of Ca2+ oscillations and a decrease in their amplitude in a time-dependent manner. The NMDA and AMPA receptor inhibition significantly suppressed Ca2+ oscillation. Inhibition of NR2A or NR2B had the opposite effect on Ca oscillations. The potentiation of ischemia-induced Ca2+ oscillations was significantly inhibited by the NMDA receptor antagonist, MK-801, and the frequency of these oscillations was suppressed by the NR2B inhibitor, Ro-256981. In the 3D-neurosphere, the application of an α7nAChR agonist increased the frequency of Ca2+ oscillations, whereas the activation of α4β2 had no effect. The combination of nicotine and PNU-120596 (type II PAM) affected the frequency and amplitude of Ca2+ oscillations in a manner distinct from that of type I PAM. These systems may be useful not only for detecting epileptogenicity but also in the search for neuroprotective agents against cerebral ischemia.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Sunao Hisada
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tomohito Kawano
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shigenobu Matsumura
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, 583-8555, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Li M, Jin Y, Wu J, Zhao M, Yu K, Yu H. Arbidol, an antiviral drug, identified as a sodium channel blocker with anticonvulsant activity. Br J Pharmacol 2024; 181:4311-4327. [PMID: 38982721 DOI: 10.1111/bph.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Sodium channel blockers (SCBs) have traditionally been utilized as anti-seizure medications by primarily targeting the inactivation process. In a drug discovery project aiming at finding potential anticonvulsants, we have identified arbidol, originally an antiviral drug, as a potent SCB. In order to evaluate its anticonvulsant potential, we have thoroughly examined its biophysical properties as well as its effects on animal seizure models. EXPERIMENTAL APPROACH Patch clamp recording was used to investigate the electrophysiological properties of arbidol, as well as the binding and unbinding kinetics of arbidol, carbamazepine and lacosamide. Furthermore, we evaluated the anticonvulsant effects of arbidol using three different seizure models in male mice. KEY RESULTS Arbidol effectively suppressed neuronal epileptiform activity by blocking sodium channels. Arbidol demonstrated a distinct mode of action by interacting with both the fast and slow inactivation of Nav1.2 channels compared with carbamazepine and lacosamide. A kinetic study suggested that the binding and unbinding rates might be associated with the specific characteristics of these three drugs. Arbidol targeted the classical binding site of local anaesthetics, effectively inhibited the gain-of-function effects of Nav1.2 epileptic mutations and exhibited varying degrees of anticonvulsant effects in the maximal electroshock model and subcutaneous pentylenetetrazol model but had no effect in the pilocarpine-induced status epilepticus model. CONCLUSIONS AND IMPLICATIONS Arbidol shows promising potential as an anticonvulsant agent, providing a unique mode of action that sets it apart from existing SCBs.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yuchen Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jun Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Miao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Kexin Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Haibo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
7
|
Varlamova EG, Kuldaeva VP, Mitina NN, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Generation and Characterization of Three Novel Mouse Mutant Strains Susceptible to Audiogenic Seizures. Cells 2024; 13:1747. [PMID: 39513854 PMCID: PMC11545774 DOI: 10.3390/cells13211747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of epileptogenesis after brain injury, ischemic stroke, or brain tumors have been extensively studied. As a result, many effective antiseizure drugs have been developed. However, there are still many patients who are resistant to therapy. The molecular and genetic bases regarding such drug-resistant seizures have been poorly elucidated. In many cases, heavy seizures are instigated by brain development malformations and often caused by gene mutations. Such malformations can be demonstrated in mouse models by generating mutant strains. One of the most potent mutagens is ENU (N-ethyl-N-nitrosourea). In the present study, we describe three novel mutant strains generated by ENU-directed mutagenesis. Two of these strains present a very strong epileptic phenotype triggered by audiogenic stimuli (G9-1 and S5-1 strains). The third mouse strain is characterized by behavioral disorders and hyperexcitation of neuronal networks. We identified changes in the expression of those genes encoding neurotransmission proteins in the cerebral cortexes of these mice. It turned out that the G9-1 strain demonstrated the strongest disruptions in the expression of those genes encoding plasma membrane channels, excitatory glutamate receptors, and protein kinases. On the other hand, the number of GABAergic neurons was also affected by the mutation. All three lines are characterized by increased anxiety, excitability, and suppressed motor and orientational-exploratory activities. On the other hand, the strains with an epileptic phenotype-G9-1 and S5-1ave reduced learning ability, and the A9-2 mice line retains high learning ability.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Natalia N. Mitina
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Alexei A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| |
Collapse
|
8
|
Ishibashi Y, Nagafuku N, Kimura S, Han X, Suzuki I. Development of an evaluation method for addictive compounds based on electrical activity of human iPS cell-derived dopaminergic neurons using microelectrode array. Addict Biol 2024; 29:e13443. [PMID: 39382235 PMCID: PMC11462589 DOI: 10.1111/adb.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Addiction is known to occur through the consumption of substances such as pharmaceuticals, illicit drugs, food, alcohol and tobacco. These addictions can be viewed as drug addiction, resulting from the ingestion of chemical substances contained in them. Multiple neural networks, including the reward system, anti-reward/stress system and central immune system in the brain, are believed to be involved in the onset of drug addiction. Although various compound evaluations using microelectrode array (MEA) as an in vitro testing methods to evaluate neural activities have been conducted, methods for assessing addiction have not been established. In this study, we aimed to develop an in vitro method for assessing the addiction of compounds, as an alternative to animal experiments, using human iPS cell-derived dopaminergic neurons with MEA measurements. MEA data before and after chronic exposure revealed specific changes in addictive compounds compared to non-addictive compounds, demonstrating the ability to estimate addiction of compound. Additionally, conducting gene expression analysis on cultured samples after the tests revealed changes in the expression levels of various receptors (nicotine, dopamine and GABA) due to chronic administration of addictive compounds, suggesting the potential interpretation of these expression changes as addiction-like responses in MEA measurements. The addiction assessment method using MEA measurements in human iPS cell-derived dopaminergic neurons conducted in this study proves effective in evaluating addiction of compounds on human neural networks.
Collapse
Affiliation(s)
- Yuto Ishibashi
- Department of Electronics, Graduate School of EngineeringTohoku Institute of TechnologySendaiMiyagiJapan
| | - Nami Nagafuku
- Department of Electronics, Graduate School of EngineeringTohoku Institute of TechnologySendaiMiyagiJapan
| | - Shingo Kimura
- Department of Electronics, Graduate School of EngineeringTohoku Institute of TechnologySendaiMiyagiJapan
| | - Xiaobo Han
- Department of Electronics, Graduate School of EngineeringTohoku Institute of TechnologySendaiMiyagiJapan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of EngineeringTohoku Institute of TechnologySendaiMiyagiJapan
| |
Collapse
|
9
|
Tanveer R, Neale PA, Melvin SD, Leusch FDL. Application of in vitro bioassays to monitor pharmaceuticals in water: A synthesis of chronological analysis, mode of action, and practical insights. CHEMOSPHERE 2024; 359:142255. [PMID: 38729441 DOI: 10.1016/j.chemosphere.2024.142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Pharmaceutical compounds in wastewater have emerged as a significant concern for the aquatic environment. The use of in vitro bioassays represents a sustainable and cost-effective approach for assessing the potential toxicological risks of these biologically active compounds in wastewater and aligns with ethical considerations in research. It facilitates high-throughput analysis, captures mixture effects, integrates impacts of both known and unknown chemicals, and reduces reliance on animal testing. The core aim of the current review was to explore the practical application of in vitro bioassays in evaluating the environmental impacts of pharmaceuticals in wastewater. This comprehensive review strives to achieve several key objectives. First, it provides a summary categorisation of pharmaceuticals based on their mode of action, providing a structured framework for understanding their ecological significance. Second, a chronological analysis of pharmaceutical research aims to document their prevalence and trends over time, shedding light on evolving environmental challenges. Third, the review critically analyses existing bioassay applications in wastewater, while also examining bioassay coverage of representative compounds within major pharmaceutical classes. Finally, it explores the potential for developing innovative bioassays tailored for water quality monitoring of pharmaceuticals, paving the way for more robust environmental monitoring and risk assessment. Overall, adopting effect-based methods for pharmaceutical monitoring in water holds significant promise. It encompasses a broad spectrum of biological impacts, promotes standardized protocols, and supports a bioassay test battery approach indicative of different endpoints, thereby enhancing the effectiveness of environmental risk assessment.
Collapse
Affiliation(s)
- Rameesha Tanveer
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Peta A Neale
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| |
Collapse
|
10
|
Qunies AM, Spitznagel BD, Du Y, Peprah PK, Mohamed YK, Weaver CD, Emmitte KA. Structure-Activity Relationship Studies in a Series of Xanthine Inhibitors of SLACK Potassium Channels. Molecules 2024; 29:2437. [PMID: 38893312 PMCID: PMC11173529 DOI: 10.3390/molecules29112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.
Collapse
Affiliation(s)
- Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Paul K. Peprah
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yasmeen K. Mohamed
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
11
|
Makino K, Fukuda R, Sueki S, Anada M. Total Synthesis of Alanense A through an Intramolecular Friedel-Crafts Alkylation. J Org Chem 2024; 89:2050-2054. [PMID: 38241043 DOI: 10.1021/acs.joc.3c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The first total synthesis of cadinane sesquiterpenoid alanense A, in which an intramolecular dehydrative Friedel-Crafts alkylation of 2,5-diaryl-2-pentanol is incorporated as a key step, has been achieved. The combinatorial use of p-TsOH·H2O as a catalyst and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a solvent provides 1,1-disubstituted tetrahydronaphthalene in 97% yield. It was also found that the combination of p-TsOH and HFIP is effective for the removal of phenolic MOM ether.
Collapse
Affiliation(s)
- Kosho Makino
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Rio Fukuda
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Shunsuke Sueki
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Masahiro Anada
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| |
Collapse
|
12
|
Ishibashi Y, Nagafuku N, Kanda Y, Suzuki I. Evaluation of neurotoxicity for pesticide-related compounds in human iPS cell-derived neurons using microelectrode array. Toxicol In Vitro 2023; 93:105668. [PMID: 37633473 DOI: 10.1016/j.tiv.2023.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
In vivo evaluations of chemicals in neurotoxicity have certain limitations due to the considerable time and cost required, necessity of extrapolation from rodents to humans, and limited information on toxicity mechanisms. To address this issue, the development of in vitro test methods using new approach methodologies (NAMs) is important to evaluate the chemicals in neurotoxicity. Microelectrode array (MEA) allows the assessment of changes in neural network activity caused by compound administration. However, studies on compound evaluation criteria are scarce. In this study, we evaluated the impact of pesticides on neural activity using MEA measurements of human iPSC-derived neurons. A principal component analysis was performed on the electrical physiological parameters obtained by MEA measurements, and the influence of excessive neural activity due to compound addition was defined using the standard deviation of neural activity with solvent addition as the reference. By using known seizurogenic compounds as positive controls for neurotoxicity in MEA and evaluating pesticides with insufficient verification of their neurotoxicity in humans, we demonstrated that these pesticides exhibit neurotoxicity in humans. In conclusion, our data suggest that the neurotoxicity evaluation method in human iPSC neurons using MEA measurements could be one of the in vitro neurotoxicity test methods that could replace animal experiments.
Collapse
Affiliation(s)
- Yuto Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - Nami Nagafuku
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan.
| |
Collapse
|
13
|
Garcia-Durillo M, Frenguelli BG. Antagonism of P2X7 receptors enhances lorazepam action in delaying seizure onset in an in vitro model of status epilepticus. Neuropharmacology 2023; 239:109647. [PMID: 37459909 DOI: 10.1016/j.neuropharm.2023.109647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 08/06/2023]
Abstract
Approximately 30% of patients with status epilepticus (SE) become refractory to two or more antiseizure medications (ASMs). There is thus a real need to identify novel targets against which to develop new ASMs for treating this clinical emergency. Among purinergic receptors, the ionotropic ATP-gated P2X7 receptor (P2X7R) has received attention as a potential ASM target. This study evaluated the effect of the selective P2X7R antagonist A740003 on acute seizures in the dentate gyrus (DG) of hippocampal brain slices, where P2X7Rs are highly expressed, with a view to establishing the potential of P2X7R antagonists as a therapy or adjunct with lorazepam (LZP) in refractory SE. Extracellular electrophysiological recordings were made from the DG of male mouse hippocampal slices. Spontaneous seizure-like events (SLEs) were induced by removing extracellular Mg2+ and sequentially adding the K+ channel blocker 4-aminopyridine and the adenosine A1 receptor antagonist 8-cyclopentyltheophylline, during which the early and late application of A740003 and/or lorazepam was evaluated. Our study revealed that, in the absence of changes in mRNA for P2X7Rs or inflammatory markers, P2X7R antagonism did not reduce the frequency of SLEs. However, A740003 in conjunction with LZP delayed the onset of seizures. Furthermore, our results support the need for employing LZP before seizures become refractory during SE as delayed application of LZP increased seizure frequency. These studies reveal possible sites of intervention that could have a positive impact in patients with high risk of suffering SE.
Collapse
Affiliation(s)
| | - Bruno G Frenguelli
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
14
|
Ishibashi Y, Nagafuku N, Kinoshita K, Okamura A, Shirakawa T, Suzuki I. Verification of the seizure liability of compounds based on their in vitro functional activity in cultured rat cortical neurons and co-cultured human iPSC-derived neurons with astrocytes and in vivo extrapolation to cerebrospinal fluid concentration. Toxicol Appl Pharmacol 2023; 476:116675. [PMID: 37661062 DOI: 10.1016/j.taap.2023.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Methodical screening of safe and efficient drug candidate compounds is crucial for drug development. A high-throughput and accurate compound evaluation method targeting the central nervous system can be developed using in vitro neural networks. In particular, an evaluation system based on a human-derived neural network that can act as an alternative to animal experiments is desirable to avoid interspecific differences. A microelectrode array (MEA) is one such evaluation system, and can measure in vitro neural activity; however, studies on compound evaluation criteria and in vitro to in vivo extrapolation are scarce. In this study, we identified the parameters that can eliminate the effects of solvents from neural activity data obtained using MEA allow for accurate compound evaluation. Additionally, we resolved the issue associated with compound evaluation criteria during MEA using principal component analysis by considering the neuronal activity exceeding standard deviation (SD) of the solvent as indicator of seizurogenic potential. Overall, 10 seizurogenic compounds and three negative controls were assessed using MEA-based co-cultured human-induced pluripotent stem cell-derived neurons and astrocytes, and primary rat cortical neurons. In addition, we determined rat cerebrospinal fluid (CSF) concentrations during tremor and convulsion in response to exposure to test compounds. To characterize the in vitro to in vivo extrapolation and species differences, we compared the concentrations at which neuronal activity exceeding the SD range of the solvent was detectable using the MEA system and rat CSF concentration.
Collapse
Affiliation(s)
- Y Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - N Nagafuku
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - K Kinoshita
- Drug Safety Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - A Okamura
- Drug Safety Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - T Shirakawa
- Drug Safety Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - I Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan.
| |
Collapse
|
15
|
Imredy JP, Roussignol G, Clouse H, Salvagiotto G, Mazelin-Winum L. Comparative assessment of Ca 2+ oscillations in 2- and 3-dimensional hiPSC derived and isolated cortical neuronal networks. J Pharmacol Toxicol Methods 2023; 123:107281. [PMID: 37390871 DOI: 10.1016/j.vascn.2023.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Human induced Pluripotent Stem Cell (hiPSC) derived neural cells offer great potential for modelling neurological diseases and toxicities and have found application in drug discovery and toxicology. As part of the European Innovative Medicines Initiative (IMI2) NeuroDeRisk (Neurotoxicity De-Risking in Preclinical Drug Discovery), we here explore the Ca2+ oscillation responses of 2D and 3D hiPSC derived neuronal networks of mixed Glutamatergic/GABAergic activity with a compound set encompassing both clinically as well as experimentally determined seizurogenic compounds. Both types of networks are scored against Ca2+ responses of a primary mouse cortical neuronal 2D network model serving as an established comparator assay. Parameters of frequency and amplitude of spontaneous global network Ca2+ oscillations and the drug-dependent directional changes to these were assessed, and predictivity of seizurogenicity scored using contingency table analysis. In addition, responses between models were compared between both 2D models as well as between 2D and 3D models. Concordance of parameter responses was best between the hiPSC neurospheroid and the mouse primary cortical neuron model (77% for frequency and 65% for amplitude). Decreases in spontaneous Ca2+ oscillation frequency and amplitude were found to be the most basic shared determinants of risk of seizurogenicity between the mouse and the neurospheroid model based on testing of clinical compounds with documented seizurogenic activity. Increases in spontaneous Ca2+ oscillation frequency were primarily observed with the 2D hIPSC model, though the specificity of this effect to seizurogenic clinical compounds was low (33%), while decreases to spike amplitude in this model were more predictive of seizurogenicity. Overall predictivities of the models were similar, with sensitivity of the assays typically exceeding specificity due to high false positive rates. Higher concordance of the hiPSC 3D model over the 2D model when compared to mouse cortical 2D responses may be the result of both a longer maturation time of the neurospheroid (84-87 days for 3D vs. 22-24 days for 2D maturation) as well as the 3-dimensional nature of network connections established. The simplicity and reproducibility of spontaneous Ca2+ oscillation readouts support further investigation of hiPSC derived neuronal sources and their 2- and 3-dimensional networks for neuropharmacological safety screening.
Collapse
Affiliation(s)
- John P Imredy
- In Vitro Safety Pharmacology, Merck & Co., Inc., Rahway, NJ, USA.
| | | | - Holly Clouse
- In Vitro Safety Pharmacology, Merck & Co., Inc., Rahway, NJ, USA
| | | | | |
Collapse
|
16
|
Laryushkin DP, Maiorov SA, Zinchenko VP, Mal'tseva VN, Gaidin SG, Kosenkov AM. Of the Mechanisms of Paroxysmal Depolarization Shifts: Generation and Maintenance of Bicuculline-Induced Paroxysmal Activity in Rat Hippocampal Cell Cultures. Int J Mol Sci 2023; 24:10991. [PMID: 37446169 DOI: 10.3390/ijms241310991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Abnormal depolarization of neuronal membranes called paroxysmal depolarization shift (PDS) represents a cellular correlate of interictal spikes. The mechanisms underlying the generation of PDSs or PDS clusters remain obscure. This study aimed to investigate the role of ionotropic glutamate receptors (iGluRs) in the generation of PDS and dependence of the PDS pattern on neuronal membrane potential. We have shown that significant depolarization or hyperpolarization (by more than ±50 mV) of a single neuron does not change the number of individual PDSs in the cluster, indicating the involvement of an external stimulus in PDS induction. Based on this data, we have suggested reliable protocols for stimulating single PDS or PDS clusters. Furthermore, we have found that AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are necessary for PDS generation since AMPAR antagonist NBQX completely suppresses bicuculline-induced paroxysmal activity. In turn, antagonists of NMDA (N-methyl-D-aspartate) and kainate receptors (D-AP5 and UBP310, respectively) caused a decrease in the amplitude of the first action potential in PDSs and in the amplitude of the oscillations of intracellular Ca2+ concentration occurring alongside the PDS cluster generation. The effects of the NMDAR (NMDA receptor) and KAR (kainate receptor) antagonists indicate that these receptors are involved only in the modulation of paroxysmal activity. We have also shown that agonists of some Gi-coupled receptors, such as A1 adenosine (A1Rs) or cannabinoid receptors (CBRs) (N6-cyclohexyladenosine and WIN 55,212-2, respectively), completely suppressed PDS generation, while the A1R agonist even prevented it. We hypothesized that the dynamics of extracellular glutamate concentration govern paroxysmal activity. Fine-tuning of neuronal activity via action on Gi-coupled receptors or iGluRs paves the way for the development of new approaches for epilepsy pharmacotherapy.
Collapse
Affiliation(s)
- Denis P Laryushkin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei A Maiorov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Valery P Zinchenko
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Valentina N Mal'tseva
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei G Gaidin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Artem M Kosenkov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
17
|
Boucher-Routhier M, Thivierge JP. A deep generative adversarial network capturing complex spiral waves in disinhibited circuits of the cerebral cortex. BMC Neurosci 2023; 24:22. [PMID: 36964493 PMCID: PMC10039524 DOI: 10.1186/s12868-023-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND In the cerebral cortex, disinhibited activity is characterized by propagating waves that spread across neural tissue. In this pathological state, a widely reported form of activity are spiral waves that travel in a circular pattern around a fixed spatial locus termed the center of mass. Spiral waves exhibit stereotypical activity and involve broad patterns of co-fluctuations, suggesting that they may be of lower complexity than healthy activity. RESULTS To evaluate this hypothesis, we performed dense multi-electrode recordings of cortical networks where disinhibition was induced by perfusing a pro-epileptiform solution containing 4-Aminopyridine as well as increased potassium and decreased magnesium. Spiral waves were identified based on a spatially delimited center of mass and a broad distribution of instantaneous phases across electrodes. Individual waves were decomposed into "snapshots" that captured instantaneous neural activation across the entire network. The complexity of these snapshots was examined using a measure termed the participation ratio. Contrary to our expectations, an eigenspectrum analysis of these snapshots revealed a broad distribution of eigenvalues and an increase in complexity compared to baseline networks. A deep generative adversarial network was trained to generate novel exemplars of snapshots that closely captured cortical spiral waves. These synthetic waves replicated key features of experimental data including a tight center of mass, a broad eigenvalue distribution, spatially-dependent correlations, and a high complexity. By adjusting the input to the model, new samples were generated that deviated in systematic ways from the experimental data, thus allowing the exploration of a broad range of states from healthy to pathologically disinhibited neural networks. CONCLUSIONS Together, results show that the complexity of population activity serves as a marker along a continuum from healthy to disinhibited brain states. The proposed generative adversarial network opens avenues for replicating the dynamics of cortical seizures and accelerating the design of optimal neurostimulation aimed at suppressing pathological brain activity.
Collapse
Affiliation(s)
- Megan Boucher-Routhier
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON, K1N 6N5, Canada
| | - Jean-Philippe Thivierge
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON, K1N 6N5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
18
|
Lu HR, Seo M, Kreir M, Tanaka T, Yamoto R, Altrocchi C, van Ammel K, Tekle F, Pham L, Yao X, Teisman A, Gallacher DJ. High-Throughput Screening Assay for Detecting Drug-Induced Changes in Synchronized Neuronal Oscillations and Potential Seizure Risk Based on Ca 2+ Fluorescence Measurements in Human Induced Pluripotent Stem Cell (hiPSC)-Derived Neuronal 2D and 3D Cultures. Cells 2023; 12:cells12060958. [PMID: 36980298 PMCID: PMC10046961 DOI: 10.3390/cells12060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Drug-induced seizure liability is a significant safety issue and the basis for attrition in drug development. Occurrence in late development results in increased costs, human risk, and delayed market availability of novel therapeutics. Therefore, there is an urgent need for biologically relevant, in vitro high-throughput screening assays (HTS) to predict potential risks for drug-induced seizure early in drug discovery. We investigated drug-induced changes in neural Ca2+ oscillations, using fluorescent dyes as a potential indicator of seizure risk, in hiPSC-derived neurons co-cultured with human primary astrocytes in both 2D and 3D forms. The dynamics of synchronized neuronal calcium oscillations were measured with an FDSS kinetics reader. Drug responses in synchronized Ca2+ oscillations were recorded in both 2D and 3D hiPSC-derived neuron/primary astrocyte co-cultures using positive controls (4-aminopyridine and kainic acid) and negative control (acetaminophen). Subsequently, blinded tests were carried out for 25 drugs with known clinical seizure incidence. Positive predictive value (accuracy) based on significant changes in the peak number of Ca2+ oscillations among 25 reference drugs was 91% in 2D vs. 45% in 3D hiPSC-neuron/primary astrocyte co-cultures. These data suggest that drugs that alter neuronal activity and may have potential risk for seizures can be identified with high accuracy using an HTS approach using the measurements of Ca2+ oscillations in hiPSC-derived neurons co-cultured with primary astrocytes in 2D.
Collapse
Affiliation(s)
- Hua-Rong Lu
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Manabu Seo
- Elixirgen Scientific, Incorporated, Baltimore, MD 21205, USA
| | - Mohamed Kreir
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Tetsuya Tanaka
- Elixirgen Scientific, Incorporated, Baltimore, MD 21205, USA
| | - Rie Yamoto
- Healthcare Business Group, Drug Discovery Business Department, Ricoh Company Ltd., Tokyo 143-8555, Japan
| | - Cristina Altrocchi
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Karel van Ammel
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Fetene Tekle
- Statistics and Decision Sciences, Global Development, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Ly Pham
- Computational Biology & Toxicology, Preclinical Sciences and Translational Safety, A Division of Janssen Pharmaceutica NV, San Diego, CA 921921, USA
| | - Xiang Yao
- Computational Biology & Toxicology, Preclinical Sciences and Translational Safety, A Division of Janssen Pharmaceutica NV, San Diego, CA 921921, USA
| | - Ard Teisman
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| |
Collapse
|
19
|
Sakaguchi R, Nakamura S, Iha H, Tanaka M. Phenotypic screening using waveform analysis of synchronized calcium oscillations in primary cortical cultures. PLoS One 2023; 18:e0271782. [PMID: 37115794 PMCID: PMC10146483 DOI: 10.1371/journal.pone.0271782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
At present, in vitro phenotypic screening methods are widely used for drug discovery. In the field of epilepsy research, measurements of neuronal activities have been utilized for predicting efficacy of anti-epileptic drugs. Fluorescence measurements of calcium oscillations in neurons are commonly used for measurement of neuronal activities, and some anti-epileptic drugs have been evaluated using this assay technique. However, changes in waveforms were not quantified in previous reports. Here, we have developed a high-throughput screening system containing a new analysis method for quantifying waveforms, and our method has successfully enabled simultaneous measurement of calcium oscillations in a 96-well plate. Features of waveforms were extracted automatically and allowed the characterization of some anti-epileptic drugs using principal component analysis. Moreover, we have shown that trajectories in accordance with the concentrations of compounds in principal component analysis plots were unique to the mechanism of anti-epileptic drugs. We believe that an approach that focuses on the features of calcium oscillations will lead to better understanding of the characteristics of existing anti-epileptic drugs and allow to predict the mechanism of action of novel drug candidates.
Collapse
Affiliation(s)
- Richi Sakaguchi
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Kagasuno, Tokushima, Japan
| | - Saki Nakamura
- Department of Research Management, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Kagasuno, Tokushima, Japan
| | - Hiroyuki Iha
- Office of Bioinformatics, Department of Drug Discovery Strategy, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Kagasuno, Tokushima, Japan
| | - Masaki Tanaka
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Kagasuno, Tokushima, Japan
| |
Collapse
|
20
|
Singh PK, Saadi A, Sheeni Y, Shekh-Ahmad T. Specific inhibition of NADPH oxidase 2 modifies chronic epilepsy. Redox Biol 2022; 58:102549. [PMID: 36459714 PMCID: PMC9712695 DOI: 10.1016/j.redox.2022.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Recent work by us and others has implicated NADPH oxidase (NOX) enzymes as main producers of reactive oxygen species (ROS) following a brain insult such as status epilepticus, contributing to neuronal damage and development of epilepsy. Although several NOX isoforms have been examined in the context of epilepsy, most attention has focused on NOX2. In this present study, we demonstrate the effect of gp91ds-tat, a specific competitive inhibitor of NOX2, in in vitro epileptiform activity model as well as in temporal lobe epilepsy (TLE) model in rats. We showed that in in vitro seizure model, gp91ds-tat modulated Ca2+ oscillation, prevented epileptiform activity-induced ROS generation, mitochondrial depolarization, and neuronal death. Administration of gp91ds-tat 1 h after kainic acid-induced status epilepticus significantly decreased the expression of NOX2, as well as the overall NOX activity in the cortex and the hippocampus. Finally, we showed that upon continuous intracerebroventricular administration to epileptic rats, gp91ds-tat significantly reduced the seizure frequency and the total number of seizures post-treatment compared to the scrambled peptide-treated animals. The results of the study suggest that NOX2 may have an important effect on modulation of epileptiform activity and has a critical role in mediating seizure-induced NOX activation, ROS generation and oxidative stress in the brain, and thus significantly contributes to development of epilepsy following a brain insult.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- Corresponding author. The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
21
|
Mehrotra S, Pierce ML, Dravid SM, Murray TF. Stimulation of Neurite Outgrowth in Cerebrocortical Neurons by Sodium Channel Activator Brevetoxin-2 Requires Both N-Methyl-D-aspartate Receptor 2B (GluN2B) and p21 Protein (Cdc42/Rac)-Activated Kinase 1 (PAK1). Mar Drugs 2022; 20:559. [PMID: 36135748 PMCID: PMC9504648 DOI: 10.3390/md20090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/05/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Omeros, Seattle, WA 98119, USA
| | - Marsha L. Pierce
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
22
|
Prael III FJ, Kim K, Du Y, Spitznagel BD, Sulikowski GA, Delpire E, Weaver CD. Discovery of Small Molecule KCC2 Potentiators Which Attenuate In Vitro Seizure-Like Activity in Cultured Neurons. Front Cell Dev Biol 2022; 10:912812. [PMID: 35813195 PMCID: PMC9263442 DOI: 10.3389/fcell.2022.912812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/02/2022] [Indexed: 01/14/2023] Open
Abstract
KCC2 is a K+-Cl- cotransporter that is expressed in neurons throughout the central nervous system. Deficits in KCC2 activity have been implicated in a variety of neurological disorders, including epilepsy, chronic pain, autism spectrum disorders, and Rett syndrome. Therefore, it has been hypothesized that pharmacological potentiation of KCC2 activity could provide a treatment for these disorders. To evaluate the therapeutic potential of pharmacological KCC2 potentiation, drug-like, selective KCC2 potentiators are required. Unfortunately, the lack of such tools has greatly hampered the investigation of the KCC2 potentiation hypothesis. Herein, we describe the discovery and characterization of a new class of small-molecule KCC2 potentiator. This newly discovered class exhibits KCC2-dependent activity and a unique mechanistic profile relative to previously reported small molecules. Furthermore, we demonstrate that KCC2 potentiation by this new class of KCC2 potentiator attenuates seizure-like activity in neuronal-glial co-cultures. Together, our results provide evidence that pharmacological KCC2 potentiation, by itself, is sufficient to attenuate neuronal excitability in an in vitro model that is sensitive to anti-epileptic drugs. Our findings and chemical tools are important for evaluating the promise of KCC2 as a therapeutic target and could lay a foundation for the development of KCC2-directed therapeutics for multiple neurological disorders.
Collapse
Affiliation(s)
- Francis J. Prael III
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States,Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | | | - Gary A. Sulikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States,Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States,Department of Chemistry, Vanderbilt University, Nashville, TN, United States,*Correspondence: C. David Weaver,
| |
Collapse
|
23
|
Yokoi R, Shigemoto-Kuroda T, Matsuda N, Odawara A, Suzuki I. Electrophysiological responses to seizurogenic compounds dependent on E/I balance in human iPSC-derived cortical neural networks. J Pharmacol Sci 2022; 148:267-278. [DOI: 10.1016/j.jphs.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022] Open
|
24
|
Ahtiainen A, Genocchi B, Tanskanen JMA, Barros MT, Hyttinen JAK, Lenk K. Astrocytes Exhibit a Protective Role in Neuronal Firing Patterns under Chemically Induced Seizures in Neuron-Astrocyte Co-Cultures. Int J Mol Sci 2021; 22:12770. [PMID: 34884577 PMCID: PMC8657549 DOI: 10.3390/ijms222312770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and neurons respond to each other by releasing transmitters, such as γ-aminobutyric acid (GABA) and glutamate, that modulate the synaptic transmission and electrochemical behavior of both cell types. Astrocytes also maintain neuronal homeostasis by clearing neurotransmitters from the extracellular space. These astrocytic actions are altered in diseases involving malfunction of neurons, e.g., in epilepsy, Alzheimer's disease, and Parkinson's disease. Convulsant drugs such as 4-aminopyridine (4-AP) and gabazine are commonly used to study epilepsy in vitro. In this study, we aim to assess the modulatory roles of astrocytes during epileptic-like conditions and in compensating drug-elicited hyperactivity. We plated rat cortical neurons and astrocytes with different ratios on microelectrode arrays, induced seizures with 4-AP and gabazine, and recorded the evoked neuronal activity. Our results indicated that astrocytes effectively counteracted the effect of 4-AP during stimulation. Gabazine, instead, induced neuronal hyperactivity and synchronicity in all cultures. Furthermore, our results showed that the response time to the drugs increased with an increasing number of astrocytes in the co-cultures. To the best of our knowledge, our study is the first that shows the critical modulatory role of astrocytes in 4-AP and gabazine-induced discharges and highlights the importance of considering different proportions of cells in the cultures.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Barbara Genocchi
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Jarno M. A. Tanskanen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Michael T. Barros
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Jari A. K. Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Kerstin Lenk
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- Institute of Neural Engineering, Graz University of Technology, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
25
|
Ishibashi Y, Odawara A, Kinoshita K, Okamura A, Shirakawa T, Suzuki I. Principal Component Analysis to Distinguish Seizure Liability of Drugs in Human iPS Cell-Derived Neurons. Toxicol Sci 2021; 184:265-275. [PMID: 34570236 DOI: 10.1093/toxsci/kfab116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Screening for drug discovery targeting the central nervous system requires the establishment of efficient and highly accurate toxicity test methods that can reduce costs and time while maintaining high throughput using the function of an in vitro neural network. In particular, an evaluation system using a human-derived neural network is desirable in terms of species difference. Despite the attention the microelectrode array (MEA) is attracting among the evaluation systems that can measure in vitro neural activity, an effective analysis method for evaluation of toxicity and mechanism of action has not yet been established. Here we established analytical parameters and multivariate analysis method capable of detecting seizure liability of drugs using MEA measurement of human iPS cell-derived neurons. Using the spike time series data of all drugs, we established periodicity as a new analytical parameter. Periodicity has facilitated the detection of responses to seizurogenic drugs, previously difficult to detect with conventional analytical parameters. By constructing a multivariate analytical method that identifies a parameter set that achieves an arbitrary condition, we found that the parameter set comprising total spikes, maximum frequency, inter maximum frequency interval, coefficient of variance of inter maximum frequency interval, and periodicity can uniformly detect the seizure liability of seizurogenic drugs with different mechanisms of action. Seizurogenic drugs were suggested to increase the regularity of the network burst in MEA measurements in human iPS cell-derived neurons.
Collapse
Affiliation(s)
- Y Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - A Odawara
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - K Kinoshita
- Drug Safety Research Labs, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - A Okamura
- Drug Safety Research Labs, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - T Shirakawa
- Drug Safety Research Labs, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - I Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| |
Collapse
|
26
|
Peng GY, Kurtán T, Mándi A, He J, Cao ZY, Tang H, Mao SC, Zhang W. Neuronal Modulators from the Coral-Associated Fungi Aspergillus candidus. Mar Drugs 2021; 19:md19050281. [PMID: 34069724 PMCID: PMC8161303 DOI: 10.3390/md19050281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Three new p-terphenyl derivatives, named 4″-O-methyl-prenylterphenyllin B (1) and phenylcandilide A and B (17 and 18), and three new indole-diterpene alkaloids, asperindoles E-G (22-24), were isolated together with eighteen known analogues from the fungi Aspergillus candidus associated with the South China Sea gorgonian Junceela fragillis. The structures and absolute configurations of the new compounds were elucidated on the basis of spectroscopic analysis, and DFT/NMR and TDDFT/ECD calculations. In a primary cultured cortical neuronal network, the compounds 6, 9, 14, 17, 18 and 24 modulated spontaneous Ca2+ oscillations and 4-aminopyridine hyperexcited neuronal activity. A preliminary structure-activity relationship was discussed.
Collapse
Affiliation(s)
- Gao-Yang Peng
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, China;
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
- School of Pharmacy, Navy Medical University, 325 Guo-He Rd., Shanghai 200433, China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (T.K.); (A.M.)
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (T.K.); (A.M.)
| | - Jing He
- State Key Laboratory of Natural Medicines, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long-Mian Ave., Nanjing 211198, China; (J.H.); (Z.-Y.C.)
| | - Zheng-Yu Cao
- State Key Laboratory of Natural Medicines, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long-Mian Ave., Nanjing 211198, China; (J.H.); (Z.-Y.C.)
| | - Hua Tang
- Institute of Translational Medicine, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China;
| | - Shui-Chun Mao
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, China;
- Correspondence: (S.-C.M.); (W.Z.)
| | - Wen Zhang
- School of Medicine, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China
- School of Pharmacy, Navy Medical University, 325 Guo-He Rd., Shanghai 200433, China
- Correspondence: (S.-C.M.); (W.Z.)
| |
Collapse
|
27
|
Vyas P, Tulsawani R, Vohora D. Methods for the Screening of New Chemical Entities for Deciphering Neuroinflammatory and Associated Pathways in Seizures: An In Vitro Perspective. NEUROMETHODS 2021:29-53. [DOI: 10.1007/978-1-0716-1254-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Spitznagel BD, Mishra NM, Qunies AM, Prael FJ, Du Y, Kozek KA, Lazarenko RM, Denton JS, Emmitte KA, Weaver CD. VU0606170, a Selective Slack Channels Inhibitor, Decreases Calcium Oscillations in Cultured Cortical Neurons. ACS Chem Neurosci 2020; 11:3658-3671. [PMID: 33143429 DOI: 10.1021/acschemneuro.0c00583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Malignant migrating partial seizures of infancy is a rare, devastating form of epilepsy most commonly associated with gain-of-function mutations in the potassium channel, Slack. Not only is this condition almost completely pharmacoresistant, there are not even selective drug-like tools available to evaluate whether inhibition of these overactivated, mutant Slack channels may represent a viable path forward toward new antiepileptic therapies. Therefore, we used a high-throughput thallium flux assay to screen a drug-like, 100 000-compound library in search of inhibitors of both wild-type and a disease-associated mutant Slack channel. Using this approach, we discovered VU0606170, a selective Slack channel inhibitor with low micromolar potency. Critically, VU0606170 also proved effective at significantly decreasing the firing rate in overexcited, spontaneously firing cortical neuron cultures. Taken together, our data provide compelling evidence that selective inhibition of Slack channel activity can be achieved with small molecules and that inhibition of Slack channel activity in neurons produces efficacy consistent with an antiepileptic effect. Thus, the identification of VU0606170 provides a much-needed tool for advancing our understanding of the role of the Slack channel in normal physiology and disease as well as its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Brittany D. Spitznagel
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Nigam M. Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Francis J. Prael
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Krystian A. Kozek
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Roman M. Lazarenko
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jerod S. Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
29
|
Matsui T, Miyamoto N, Saito F, Shinozawa T. Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Cells and their Application for Drug Safety Study. Curr Pharm Biotechnol 2020; 21:807-828. [PMID: 32321398 DOI: 10.2174/1389201021666200422090952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Drug-induced toxicity remains one of the leading causes of discontinuation of the drug candidate and post-marketing withdrawal. Thus, early identification of the drug candidates with the potential for toxicity is crucial in the drug development process. With the recent discovery of human- Induced Pluripotent Stem Cells (iPSC) and the establishment of the differentiation protocol of human iPSC into the cell types of interest, the differentiated cells from human iPSC have garnered much attention because of their potential applicability in toxicity evaluation as well as drug screening, disease modeling and cell therapy. In this review, we expanded on current information regarding the feasibility of human iPSC-derived cells for the evaluation of drug-induced toxicity with a focus on human iPSCderived hepatocyte (iPSC-Hep), cardiomyocyte (iPSC-CMs) and neurons (iPSC-Neurons). Further, we CSAHi, Consortium for Safety Assessment using Human iPS Cells, reported our gene expression profiling data with DNA microarray using commercially available human iPSC-derived cells (iPSC-Hep, iPSC-CMs, iPSC-Neurons), their relevant human tissues and primary cultured human cells to discuss the future direction of the three types of human iPSC-derived cells.
Collapse
Affiliation(s)
- Toshikatsu Matsui
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Norimasa Miyamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Fumiyo Saito
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | | |
Collapse
|
30
|
Turovskaya MV, Epifanova EA, Tarabykin VS, Babaev AA, Turovsky EA. Interleukin-10 restores glutamate receptor-mediated Ca 2+-signaling in brain circuits under loss of Sip1 transcription factor. Int J Neurosci 2020; 132:114-125. [PMID: 32727246 DOI: 10.1080/00207454.2020.1803305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study aimed to investigate the connection between the mutation of the Sip1 transcription factor and impaired Ca2+-signaling, which reflects changes in neurotransmission in the cerebral cortex in vitro. METHODS We used mixed neuroglial cortical cell cultures derived from Sip1 mutant mice. The cells were loaded with a fluorescent ratiometric calcium-sensitive probe Fura-2 AM and epileptiform activity was modeled by excluding magnesium ions from the external media or adding a GABA(A) receptor antagonist, bicuculline. Intracellular calcium dynamics were recorded using fluorescence microscopy. To identify the level of gene expression, the Real-Time PCR method was used. RESULTS It was found that cortical neurons isolated from homozygous (Sip1fl/fl) mice with the Sip1 mutation demonstrate suppressed Ca2+ signals in models of epileptiform activity in vitro. Wild-type cortical neurons are characterized by synchronous high-frequency and high-amplitude Ca2+ oscillations occurring in all neurons of the network in response to Mg2+-free medium and bicuculline. But cortical Sip1fl/fl neurons only single Ca2+ pulses or attenuated Ca2+ oscillations are recorded and only in single neurons, while most of the cell network does not respond to these stimuli. This signal deficiency of Sip1fl/fl neurons correlates with a suppressed expression level of the genes encoding the subunits of NMDA, AMPA, and KA receptors; protein kinases PKA, JNK, CaMKII; and also the transcription factor Hif1α. These negative effects were partially abolished when Sip1fl/fl neurons are grown in media with anti-inflammatory cytokine IL-10. IL-10 increases the expression of the above-mentioned genes but not to the level of expression in wild-type. At the same time, the amplitudes of Ca2+ signals increase in response to the selective agonists of NMDA, AMPA and KA receptors, and the proportion of neurons responding with Ca2+ oscillations to a Mg2+-free medium and bicuculline increases. CONCLUSION IL-10 restores neurotransmission in neuronal networks with the Sip1 mutation by regulating the expression of genes encoding signaling proteins.
Collapse
Affiliation(s)
- Maria V Turovskaya
- Laboratory of Intracellular Signaling, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," Russia
| | - Ekaterina A Epifanova
- Laboratory of Genetic Engineering Technologies, Lobachevsky State University of Nizhni Novgorod, Russia
| | - Victor S Tarabykin
- Laboratory of Genetic Engineering Technologies, Lobachevsky State University of Nizhni Novgorod, Russia
| | - Alexei A Babaev
- Laboratory of Genetic Engineering Technologies, Lobachevsky State University of Nizhni Novgorod, Russia
| | - Egor A Turovsky
- Laboratory of Intracellular Signaling, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences," Russia.,Laboratory of Genetic Engineering Technologies, Lobachevsky State University of Nizhni Novgorod, Russia
| |
Collapse
|
31
|
Oikari LE, Yu C, Okolicsanyi RK, Avgan N, Peall IW, Griffiths LR, Haupt LM. HSPGs glypican‐1 and glypican‐4 are human neuronal proteins characteristic of different neural phenotypes. J Neurosci Res 2020; 98:1619-1645. [DOI: 10.1002/jnr.24666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Lotta E. Oikari
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Chieh Yu
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Rachel K. Okolicsanyi
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Nesli Avgan
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Ian W. Peall
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Lyn R. Griffiths
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Larisa M. Haupt
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| |
Collapse
|
32
|
Fernández-García S, Sancho-Balsells A, Longueville S, Hervé D, Gruart A, Delgado-García JM, Alberch J, Giralt A. Astrocytic BDNF and TrkB regulate severity and neuronal activity in mouse models of temporal lobe epilepsy. Cell Death Dis 2020; 11:411. [PMID: 32483154 PMCID: PMC7264221 DOI: 10.1038/s41419-020-2615-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Astrocytes have emerged as crucial regulators of neuronal network activity, synapse formation, and underlying behavioral and cognitive processes. Despite some pathways have been identified, the communication between astrocytes and neurons remains to be completely elucidated. Unraveling this communication is crucial to design potential treatments for neurological disorders like temporal lobe epilepsy (TLE). The BDNF and TrkB molecules have emerged as very promising therapeutic targets. However, their modulation can be accompanied by several off-target effects such as excitotoxicity in case of uncontrolled upregulation or dementia, amnesia, and other memory disorders in case of downregulation. Here, we show that BDNF and TrkB from astrocytes modulate neuronal dysfunction in TLE models. First, conditional overexpression of BDNF from astrocytes worsened the phenotype in the lithium-pilocarpine mouse model. Our evidences pointed out to the astrocytic pro-BDNF isoform as a major player of this altered phenotype. Conversely, specific genetic deletion of BDNF in astrocytes prevented the increase in the number of firing neurons and the global firing rate in an in vitro model of TLE. Regarding to the TrkB, we generated mice with a genetic deletion of TrkB specifically in hippocampal neurons or astrocytes. Interestingly, both lines displayed neuroprotection in the lithium-pilocarpine model but only the mice with genetic deletion of TrkB in astrocytes showed significantly preserved spatial learning skills. These data identify the astrocytic BDNF and TrkB molecules as promising therapeutic targets for the treatment of TLE.
Collapse
Affiliation(s)
- Sara Fernández-García
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Sophie Longueville
- Inserm UMR-S 1270, 75005, Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005, Paris, France.,Institut du Fer a Moulin, 75005, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, 75005, Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005, Paris, France.,Institut du Fer a Moulin, 75005, Paris, France
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | | | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036, Barcelona, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
33
|
Ibhazehiebo K, Rho JM, Kurrasch DM. Metabolism-based drug discovery in zebrafish: An emerging strategy to uncover new anti-seizure therapies. Neuropharmacology 2020; 167:107988. [PMID: 32070912 DOI: 10.1016/j.neuropharm.2020.107988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
As one of the most common neurological disorders, epilepsy can occur throughout the lifespan and from a multiplicity of causes, including genetic mutations, inflammation, neurotrauma, or brain malformations. Although pharmacological agents are the mainstay of treatment for seizure control, an unyielding 30-40% of patients remain refractory to these medications and continue to experience spontaneous recurrent seizures with attendant life-long cognitive, behavioural, and mental health issues, as well as an increased risk for sudden unexpected death. Despite over eight decades of antiseizure drug (ASD) discovery and the approval of dozens of new medications, the percentage of this refractory population remains virtually unchanged, suggesting that drugs with new and unexpected mechanisms of action are needed. In this brief review, we discuss the need for new animal models of epilepsy, with a particular focus on the advantages and disadvantages of zebrafish. We also outline the evidence that epilepsy is characterized by derangements in mitochondrial function and introduce the rationale and promise of bioenergetics as a functional readout assay to uncover novel ASDs. We also consider limitations of a zebrafish metabolism-based drug screening approach. Our goal is to discuss the opportunities and challenges of further development of mitochondrial screening strategies for the development of novel ASDs. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Kingsley Ibhazehiebo
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jong M Rho
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Canada; Department of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, California, USA
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
34
|
Sirenko O, Parham F, Dea S, Sodhi N, Biesmans S, Mora-Castilla S, Ryan K, Behl M, Chandy G, Crittenden C, Vargas-Hurlston S, Guicherit O, Gordon R, Zanella F, Carromeu C. Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures. Toxicol Sci 2019; 167:58-76. [PMID: 30169818 DOI: 10.1093/toxsci/kfy218] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurological disorders affect millions of people worldwide and appear to be on the rise. Whereas the reason for this increase remains unknown, environmental factors are a suspected contributor. Hence, there is an urgent need to develop more complex, biologically relevant, and predictive in vitro assays to screen larger sets of compounds with the potential for neurotoxicity. Here, we employed a human induced pluripotent stem cell (iPSC)-based 3D neural platform composed of mature cortical neurons and astrocytes as a model for this purpose. The iPSC-derived human 3D cortical neuron/astrocyte co-cultures (3D neural cultures) present spontaneous synchronized, readily detectable calcium oscillations. This advanced neural platform was optimized for high-throughput screening in 384-well plates and displays highly consistent, functional performance across different wells and plates. Characterization of oscillation profiles in 3D neural cultures was performed through multi-parametric analysis that included the calcium oscillation rate and peak width, amplitude, and waveform irregularities. Cellular and mitochondrial toxicity were assessed by high-content imaging. For assay characterization, we used a set of neuromodulators with known mechanisms of action. We then explored the neurotoxic profile of a library of 87 compounds that included pharmaceutical drugs, pesticides, flame retardants, and other chemicals. Our results demonstrated that 57% of the tested compounds exhibited effects in the assay. The compounds were then ranked according to their effective concentrations based on in vitro activity. Our results show that a human iPSC-derived 3D neural culture assay platform is a promising biologically relevant tool to assess the neurotoxic potential of drugs and environmental toxicants.
Collapse
Affiliation(s)
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven Dea
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | - Neha Sodhi
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | | | | | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Epileptiform activity promotes decreasing of Ca 2+ conductivity of NMDARs, AMPARs, KARs, and voltage-gated calcium channels in Mg 2+-free model. Epilepsy Res 2019; 158:106224. [PMID: 31698280 DOI: 10.1016/j.eplepsyres.2019.106224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023]
Abstract
NMDA, AMPA, and kainate receptors are the principal excitatory receptors in the brain. These receptors have been considered as the main targets in the treatment of epilepsy in recent years. This work aimed to determine how the Ca2+ conductivity of ionotropic glutamate receptors and voltage-gated Ca2+ channels changes in an in vitro model of epilepsy. For induction of epileptiform activity, hippocampal neurons were exposed to Mg2+-free medium. It has been shown that removal of Mg2+ from the medium not only removes the block from the NMDA receptors but also stimulates the release of glutamate in a way that is independent of the NMDA receptors. Under these conditions, the structure of the bursts significantly differs from the spontaneous bursts arising in mature hippocampal cultures. We have demonstrated that the frequency and amplitude of Mg2+-free medium-induced Ca2+ oscillations decrease after the 60-min exposure. Besides, the Ca2+ conductivity of ionotropic glutamate receptors and voltage-gated calcium channels significantly reduces. Thus, the decrease of Ca2+ conductivity can be considered as one of the mechanisms of adaptation during epilepsy.
Collapse
|
36
|
Zheng J, Yu Y, Feng W, Li J, Liu J, Zhang C, Dong Y, Pessah IN, Cao Z. Influence of Nanomolar Deltamethrin on the Hallmarks of Primary Cultured Cortical Neuronal Network and the Role of Ryanodine Receptors. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:67003. [PMID: 31166131 PMCID: PMC6792378 DOI: 10.1289/ehp4583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The pyrethroid deltamethrin (DM) is broadly used for insect control. Although DM hyperexcites neuronal networks by delaying inactivation of axonal voltage-dependent [Formula: see text] channels, this mechanism is unlikely to mediate neurotoxicity at lower exposure levels during critical perinatal periods in mammals. OBJECTIVES We aimed to identify mechanisms by which acute and subchronic DM altered axonal and dendritic growth, patterns of synchronous [Formula: see text] oscillations (SCOs), and electrical spike activity (ESA) functions critical to neuronal network formation. METHODS Measurements of SCOs using [Formula: see text] imaging, ESA using microelectrode array (MEA) technology, and dendritic complexity using Sholl analysis were performed in primary murine cortical neurons from wild-type (WT) and/or ryanodine receptor 1 ([Formula: see text]) mice between 5 and 14 d in vitro (DIV). [Formula: see text] binding analysis and a single-channel voltage clamp were utilized to measure engagement of RyRs as a direct target of DM. RESULTS Neuronal networks responded to DM ([Formula: see text]) as early as 5 DIV, reducing SCO amplitude and depressing ESA and burst frequencies by 60-70%. DM ([Formula: see text]) enhanced axonal growth in a nonmonotonic manner. [Formula: see text] enhanced dendritic complexity. DM stabilized channel open states of RyR1, RyR2, and cortical preparations expressing all three isoforms. DM ([Formula: see text]) altered gating kinetics of RyR1 channels, increasing mean open time, decreasing mean closed time, and thereby enhancing overall open probability. SCO patterns from cortical networks expressing [Formula: see text] were more responsive to DM than WT. [Formula: see text] neurons showed inherently longer axonal lengths than WT neurons and maintained less length-promoting responses to nanomolar DM. CONCLUSIONS Our findings suggested that RyRs were sensitive molecular targets of DM with functional consequences likely relevant for mediating abnormal neuronal network connectivity in vitro. https://doi.org/10.1289/EHP4583.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Yiyi Yu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Jing Li
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ju Liu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunlei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
37
|
Abstract
The brain is the most complex organ of the body, and many pathological processes underlying various brain disorders are poorly understood. Limited accessibility hinders observation of such processes in the in vivo brain, and experimental freedom is often insufficient to enable informative manipulations. In vitro preparations (brain slices or cultures of dissociated neurons) offer much better accessibility and reduced complexity and have yielded valuable new insights into various brain disorders. Both types of preparations have their advantages and limitations with regard to lifespan, preservation of in vivo brain structure, composition of cell types, and the link to behavioral outcome is often unclear in in vitro models. While these limitations hamper general usage of in vitro preparations to study, e.g., brain development, in vitro preparations are very useful to study neuronal and synaptic functioning under pathologic conditions. This chapter addresses several brain disorders, focusing on neuronal and synaptic functioning, as well as network aspects. Recent progress in the fields of brain circulation disorders, excitability disorders, and memory disorders will be discussed, as well as limitations of current in vitro models.
Collapse
|
38
|
Lassus B, Naudé J, Faure P, Guedin D, Von Boxberg Y, Mannoury la Cour C, Millan MJ, Peyrin JM. Glutamatergic and dopaminergic modulation of cortico-striatal circuits probed by dynamic calcium imaging of networks reconstructed in microfluidic chips. Sci Rep 2018; 8:17461. [PMID: 30498197 PMCID: PMC6265304 DOI: 10.1038/s41598-018-35802-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 11/07/2018] [Indexed: 11/21/2022] Open
Abstract
Although the prefrontal cortex and basal ganglia are functionally interconnected by parallel loops, cellular substrates underlying their interaction remain poorly understood. One novel approach for addressing this issue is microfluidics, a methodology which recapitulates several intrinsic and synaptic properties of cortico-subcortical networks. We developed a microfluidic device where cortical neurons projected onto striatal neurons in a separate compartment. We exploited real-time (low-resolution/high-output) calcium imaging to register network dynamics and characterize the response to glutamatergic and dopaminergic agents. Reconstructed cortico-striatal networks revealed the progressive appearance of cortical VGLUT1 clusters on striatal dendrites, correlating with the emergence of spontaneous and synchronous glutamatergic responses of striatal neurons to concurrent cortical stimulation. Striatal exposure to the NMDA receptor GluN2A subunit antagonist TCN201 did not affect network rhythm, whereas the GluN2B subunit antagonist RO256981 significantly decreased striatal activity. Dopamine application or the D2/D3 receptor agonist, quinpirole, decreased cortico-striatal synchrony whereas the D1 receptor agonist, SKF38393, was ineffective. These data show that cortico-striatal networks reconstructed in a microfluidic environment are synchronized and present characteristics close to those of their in situ counterparts. They should prove instructive for deciphering the molecular substrates of CNS disorders and evaluating the actions of novel therapeutic agents.
Collapse
Affiliation(s)
- Benjamin Lassus
- CNRS UMR 8256, Biological Adaptation and Ageing, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Jérémie Naudé
- CNRS UMR 8246, Neurosciences, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Philippe Faure
- CNRS UMR 8246, Neurosciences, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Denis Guedin
- Servier Biotechnology, Chemogenetic Laboratory @ ICM Brain & Spine Institue, Pitié-Salpétrière Hospital, 52 boulevard Vincent Auriol, 75013, Paris, France
| | - Ysander Von Boxberg
- CNRS UMR 8246, Neurosciences, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Clotilde Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, 78290, Croissy-sur-Seine, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, 78290, Croissy-sur-Seine, France
| | - Jean-Michel Peyrin
- CNRS UMR 8246, Neurosciences, Paris, 75005, France. .,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France.
| |
Collapse
|
39
|
Kosenkov AM, Gaidin SG, Sergeev AI, Teplov IY, Zinchenko VP. Fast changes of NMDA and AMPA receptor activity under acute hyperammonemia in vitro. Neurosci Lett 2018; 686:80-86. [PMID: 30195972 DOI: 10.1016/j.neulet.2018.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/18/2018] [Indexed: 12/14/2022]
Abstract
It was established in experiments on cell cultures of neurons and astrocytes that ammonium ions at concentrations of 4-8 mM cause hyperexcitation of the neuronal network, as a result of which there is a disturbance of calcium homeostasis, which can lead to the death of neurons. In the present study, we investigated the effect of toxic doses of ammonium (8 mM NH4Cl) on the activity of NMDA and AMPA receptors and the role of these receptors in spontaneous synchronous activity (SSA). In a control experiment in the absence of NH4Cl, SSA is not suppressed by NMDA receptor inhibitors, but is suppressed by AMPA receptor antagonists. In the presence of toxic doses of NH4Cl, SSA is completely inhibited by NMDA receptor inhibitors in 63% of neurons and by AMPA receptor inhibitors in 33% of neurons. After short-term applications of toxic doses of ammonium, the amplitude of the Ca2+ response to 10 μM NMDA increases, and decreases in response to 500 nM FW (agonist of AMPA receptors). NMDA receptor blocker MK-801 (20 μM), competitive antagonist D-AP5 (10 μM) and competitive AMPA receptor antagonist NBQX (2 μM) abolished the activating ammonium mediated effect on the NMDA receptors while only MK-801, but not NBQX, abolished the inhibiting ammonium mediated effect on AMPA receptors. These data indicate that under acute hyperammonemia, the activity of NMDA receptors increases, while the activity of AMPA receptors decreases. This phenomenon could explain such a wide range of toxic effects of ammonium ions mediated by NMDA receptors.
Collapse
Affiliation(s)
- Artem M Kosenkov
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia.
| | - Sergei G Gaidin
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia
| | | | - Ilia Y Teplov
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia
| | - Valery P Zinchenko
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
40
|
Grainger AI, King MC, Nagel DA, Parri HR, Coleman MD, Hill EJ. In vitro Models for Seizure-Liability Testing Using Induced Pluripotent Stem Cells. Front Neurosci 2018; 12:590. [PMID: 30233290 PMCID: PMC6127295 DOI: 10.3389/fnins.2018.00590] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. The effects of prospective therapeutic entities on the brain and central nervous system (CNS) may potentially cause significant injury, hence, CNS toxicity testing forms part of the “core battery” of safety pharmacology studies. Drug-induced seizure is a major reason for compound attrition during drug development. Currently, the rat ex vivo hippocampal slice assay is the standard option for seizure-liability studies, followed by primary rodent cultures. These models can respond to diverse agents and predict seizure outcome, yet controversy over the relevance, efficacy, and cost of these animal-based methods has led to interest in the development of human-derived models. Existing platforms often utilize rodents, and so lack human receptors and other drug targets, which may produce misleading data, with difficulties in inter-species extrapolation. Current electrophysiological approaches are typically used in a low-throughput capacity and network function may be overlooked. Human-derived induced pluripotent stem cells (iPSCs) are a promising avenue for neurotoxicity testing, increasingly utilized in drug screening and disease modeling. Furthermore, the combination of iPSC-derived models with functional techniques such as multi-electrode array (MEA) analysis can provide information on neuronal network function, with increased sensitivity to neurotoxic effects which disrupt different pathways. The use of an in vitro human iPSC-derived neural model for neurotoxicity studies, combined with high-throughput techniques such as MEA recordings, could be a suitable addition to existing pre-clinical seizure-liability testing strategies.
Collapse
Affiliation(s)
| | - Marianne C King
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - David A Nagel
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - H Rheinallt Parri
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Michael D Coleman
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Eric J Hill
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
41
|
Huang Q, Chen J, Zhang W, Zhou B, Zhang C, Gerwick WH, Cao Z. Alkaloids from Corydalis decumbens suppress neuronal excitability in primary cultures of mouse neocortical neurons. PHYTOCHEMISTRY 2018; 150:85-92. [PMID: 29571149 DOI: 10.1016/j.phytochem.2018.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Eight previously undescribed alkaloids, named corydemine, dihydrocorydemine, corydedine, 8,13-dioxo-14-hydroxytetrahydropalmatine, egenine-α-N-oxide, egenine-β-N-oxide, 7'-O-ethylegenine-α-N-oxide, and 7'-O-ethylegenine-β-N-oxide, together with three known ones, muramine, l-tetrahydropalmatine, and (+)-egenine, were isolated from the bulbs of Corydalis decumbens. Their structures were elucidated by comprehensive spectroscopic analysis and chemical correlation. The isolated compounds were tested for their ability to modulate neuronal excitability in primary cultured neocortical neurons. Four of the compounds, corydemine, dihydrocorydemine, muramine, and l-tetrahydropalmatine, inhibited neuronal excitability with IC50 values of 3.6, 16.7, 13.5 and 14.0 μM, respectively.
Collapse
Affiliation(s)
- Qilong Huang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Juan Chen
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Wanjin Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Baoping Zhou
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chunlei Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Zhengyu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Triditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
42
|
Costain WJ, Rasquinha I, Comas T, Hewitt M, Aylsworth A, Rouleau Y, Marleau V, Soo EC, Tauskela JS. Analysis of the pharmacological properties of JWH-122 isomers and THJ-2201, RCS-4 and AB-CHMINACA in HEK293T cells and hippocampal neurons. Eur J Pharmacol 2018; 823:96-104. [PMID: 29408093 DOI: 10.1016/j.ejphar.2018.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/04/2018] [Accepted: 01/25/2018] [Indexed: 11/15/2022]
Abstract
Synthetic cannabinoids are marketed as legal alternatives to Δ9-THC, and are a growing worldwide concern as these drugs are associated with severe adverse effects. Unfortunately, insufficient information regarding the physiological and pharmacological effects of emerging synthetic cannabinoids (ESCs) makes their regulation by government authorities difficult. One strategy used to evade regulation is to distribute isomers of regulated synthetic cannabinoids. This study characterized the pharmacological properties of a panel of ESCs in comparison to Δ9-THC, as well as six JWH-122 isomers relative to its parent compound (JWH-122-4). Two cell-based assays were used to determine the potency and efficacy of ESCs and a panel of reference cannabinoids. HEK293T cells were transfected with human cannabinoid receptor 1 (CB1) and pGloSensor-22F, and the inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live cells. All ESCs examined were classified as agonists, with the following rank order of potency: Win 55,212-2 > CP 55,940 > JWH-122-4 > Δ9-THC ≈ RCS-4 ≈ THJ-2201 > JWH-122-5 > JWH-122-7 > JWH-122-2 ≈ AB-CHMINACA > JWH-122-8 > JWH-122-6 > JWH-122-3. Evaluation of ESC-stimulated Ca2+ transients in cultured rat primary hippocampal neurons confirmed the efficacy of four of the most potent ESCs (JWH-122-4, JWH-122-5, JWH-122-7 and AB-CHMINACA). This work helps regulatory agencies make informed decisions concerning these poorly characterized recreational drugs.
Collapse
Affiliation(s)
- Willard J Costain
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6.
| | - Ingrid Rasquinha
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Tanya Comas
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Melissa Hewitt
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Amy Aylsworth
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Yanouchka Rouleau
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Vincent Marleau
- Analytical and Forensic Services Division, Contraband Drug Analysis, Canada Border Services Agency, 79 Bentley Avenue, 2nd Floor, Ottawa, Ontario, Canada K1A 0L8
| | - Evelyn C Soo
- Health Products and Food Branch, Biologics and Genetic Therapies Directorate, Health Canada, 150 Tunney's Pasture Driveway #1605-676, Ottawa, Ontario, Canada K1A 0K9
| | - Joseph S Tauskela
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| |
Collapse
|
43
|
Chiang CC, Wei X, Ananthakrishnan AK, Shivacharan RS, Gonzalez-Reyes LE, Zhang M, Durand DM. Slow moving neural source in the epileptic hippocampus can mimic progression of human seizures. Sci Rep 2018; 8:1564. [PMID: 29367722 PMCID: PMC5784157 DOI: 10.1038/s41598-018-19925-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/10/2018] [Indexed: 11/23/2022] Open
Abstract
Fast and slow neural waves have been observed to propagate in the human brain during seizures. Yet the nature of these waves is difficult to study in a surgical setting. Here, we report an observation of two different traveling waves propagating in the in-vitro epileptic hippocampus at speeds similar to those in the human brain. A fast traveling spike and a slow moving wave were recorded simultaneously with a genetically encoded voltage sensitive fluorescent protein (VSFP Butterfly 1.2) and a high speed camera. The results of this study indicate that the fast traveling spike is NMDA-sensitive but the slow moving wave is not. Image analysis and model simulation demonstrate that the slow moving wave is moving slowly, generating the fast traveling spike and is, therefore, a moving source of the epileptiform activity. This slow moving wave is associated with a propagating neural calcium wave detected with calcium dye (OGB-1) but is independent of NMDA receptors, not related to ATP release, and much faster than those previously recorded potassium waves. Computer modeling suggests that the slow moving wave can propagate by the ephaptic effect like epileptiform activity. These findings provide an alternative explanation for slow propagation seizure wavefronts associated with fast propagating spikes.
Collapse
Affiliation(s)
- Chia-Chu Chiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Xile Wei
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | | | - Rajat S Shivacharan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Luis E Gonzalez-Reyes
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Mingming Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Dominique M Durand
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA.
| |
Collapse
|
44
|
Zhang C, Chen J, Zhao F, Chen R, Yu D, Cao Z. Iritectol G, a novel iridal-type triterpenoid from Iris tectorum displays anti-epileptic activity in vitro through inhibition of sodium channels. Fitoterapia 2017; 122:20-25. [DOI: 10.1016/j.fitote.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
|
45
|
Effect of synthetic cannabinoids on spontaneous neuronal activity: Evaluation using Ca 2+ spiking and multi-electrode arrays. Eur J Pharmacol 2016; 786:148-160. [DOI: 10.1016/j.ejphar.2016.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/18/2016] [Accepted: 05/30/2016] [Indexed: 01/22/2023]
|
46
|
Costain WJ, Tauskela JS, Rasquinha I, Comas T, Hewitt M, Marleau V, Soo EC. Pharmacological characterization of emerging synthetic cannabinoids in HEK293T cells and hippocampal neurons. Eur J Pharmacol 2016; 786:234-245. [DOI: 10.1016/j.ejphar.2016.05.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
|
47
|
Wang J, Wang Y, Guo F, Feng Z, Wang X, Lu C. Nicotinic modulation of Ca2+ oscillations in rat cortical neurons in vitro. Am J Physiol Cell Physiol 2016; 310:C748-54. [DOI: 10.1152/ajpcell.00197.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/29/2016] [Indexed: 01/28/2023]
Abstract
The roles of nicotine on Ca2+ oscillations [intracellular Ca2+ ([Ca2+]i) oscillation] in rat primary cultured cortical neurons were studied. The spontaneous [Ca2+]i oscillations (SCO) were recorded in a portion of the neurons (65%) cultured for 7–10 days in vitro. Application of nicotine enhanced [Ca2+]i oscillation frequency and amplitude, which were reduced by the selective α4β2-nicotinic acetylcholine receptors (nAChRs) antagonist dihydro-β-erythroidine (DHβE) hydrobromide, and the selective α7-nAChRs antagonist methyllycaconitine citrate (MLA, 20 nM). DHβE reduced SCO frequency and prevented the nicotinic increase in the frequency. DHβE somewhat enhanced SCO amplitude and prevented nicotinic increase in the amplitude. MLA (20 nM) itself reduced SCO frequency without affecting the amplitude but blocked nicotinic increase in [Ca2+]i oscillation frequency and amplitude. Furthermore, coadministration of both α4β2- and α7-nAChRs antagonists completely prevented nicotinic increment in [Ca2+]i oscillation frequency and amplitude. Thus, our results indicate that both α4β2- and α7-nAChRs mediated nicotine-induced [Ca2+]i oscillations, and two nAChR subtypes differentially regulated SCO.
Collapse
Affiliation(s)
- JianGang Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - YaLi Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| | - FangLi Guo
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| | - ZhiBo Feng
- Department of Anatomy, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - XiangFang Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - ChengBiao Lu
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| |
Collapse
|
48
|
Detrez JR, Verstraelen P, Gebuis T, Verschuuren M, Kuijlaars J, Langlois X, Nuydens R, Timmermans JP, De Vos WH. Image Informatics Strategies for Deciphering Neuronal Network Connectivity. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 219:123-48. [PMID: 27207365 DOI: 10.1007/978-3-319-28549-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Amongst the neuronal structures that show morphological plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular communication and the associated calcium bursting behaviour. In vitro cultured neuronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardization of both image acquisition and image analysis, it has become possible to extract statistically relevant readouts from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies.
Collapse
Affiliation(s)
- Jan R Detrez
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Titia Gebuis
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Jacobine Kuijlaars
- Neuroscience Department, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
- Laboratory for Cell Physiology, Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium
| | - Xavier Langlois
- Neuroscience Department, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Rony Nuydens
- Neuroscience Department, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- Cell Systems and Cellular Imaging, Department Molecular Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
49
|
Cao Z, Zou X, Cui Y, Hulsizer S, Lein PJ, Wulff H, Pessah IN. Rapid throughput analysis demonstrates that chemicals with distinct seizurogenic mechanisms differentially alter Ca2+ dynamics in networks formed by hippocampal neurons in culture. Mol Pharmacol 2015; 87:595-605. [PMID: 25583085 PMCID: PMC4366799 DOI: 10.1124/mol.114.096701] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/12/2015] [Indexed: 12/20/2022] Open
Abstract
Primary cultured hippocampal neurons (HN) form functional networks displaying synchronous Ca(2+) oscillations (SCOs) whose patterns influence plasticity. Whether chemicals with distinct seizurogenic mechanisms differentially alter SCO patterns was investigated using mouse HN loaded with the Ca(2+) indicator fluo-4-AM. Intracellular Ca(2+) dynamics were recorded from 96 wells simultaneously in real-time using fluorescent imaging plate reader. Although quiescent at 4 days in vitro (DIV), HN acquired distinctive SCO patterns as they matured to form extensive dendritic networks by 16 DIV. Challenge with kainate, a kainate receptor (KAR) agonist, 4-aminopyridine (4-AP), a K(+) channel blocker, or pilocarpine, a muscarinic acetylcholine receptor agonist, caused distinct changes in SCO dynamics. Kainate at <1 µM produced a rapid rise in baseline Ca(2+) (Phase I response) associated with high-frequency and low-amplitude SCOs (Phase II response), whereas SCOs were completely repressed with >1 µM kainate. KAR competitive antagonist CNQX [6-cyano-7-nitroquinoxaline-2,3-dione] (1-10 µM) normalized Ca(2+) dynamics to the prekainate pattern. Pilocarpine lacked Phase I activity but caused a sevenfold prolongation of Phase II SCOs without altering either their frequency or amplitude, an effect normalized by atropine (0.3-1 µM). 4-AP (1-30 µM) elicited a delayed Phase I response associated with persistent high-frequency, low-amplitude SCOs, and these disturbances were mitigated by pretreatment with the KCa activator SKA-31 [naphtho[1,2-d]thiazol-2-ylamine]. Consistent with its antiepileptic and neuroprotective activities, nonselective voltage-gated Na(+) and Ca(2+) channel blocker lamotrigine partially resolved kainate- and pilocarpine-induced Ca(2+) dysregulation. This rapid throughput approach can discriminate among distinct seizurogenic mechanisms that alter Ca(2+) dynamics in neuronal networks and may be useful in screening antiepileptic drug candidates.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Yanjun Cui
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Susan Hulsizer
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Pamela J Lein
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Heike Wulff
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Isaac N Pessah
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| |
Collapse
|
50
|
Cao Z, Cui Y, Busse E, Mehrotra S, Rainier JD, Murray TF. Gambierol inhibition of voltage-gated potassium channels augments spontaneous Ca2+ oscillations in cerebrocortical neurons. J Pharmacol Exp Ther 2014; 350:615-23. [PMID: 24957609 PMCID: PMC4152883 DOI: 10.1124/jpet.114.215319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/17/2014] [Indexed: 12/27/2022] Open
Abstract
Gambierol is a marine polycyclic ether toxin produced by the marine dinoflagellate Gambierdiscus toxicus and is a member of the ciguatoxin toxin family. Gambierol has been demonstrated to be either a low-efficacy partial agonist/antagonist of voltage-gated sodium channels or a potent blocker of voltage-gated potassium channels (Kvs). Here we examined the influence of gambierol on intact cerebrocortical neurons. We found that gambierol produced both a concentration-dependent augmentation of spontaneous Ca(2+) oscillations, and an inhibition of Kv channel function with similar potencies. In addition, an array of selective as well as universal Kv channel inhibitors mimicked gambierol in augmenting spontaneous Ca(2+) oscillations in cerebrocortical neurons. These data are consistent with a gambierol blockade of Kv channels underlying the observed increase in spontaneous Ca(2+) oscillation frequency. We also found that gambierol produced a robust stimulation of phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2). Gambierol-stimulated ERK1/2 activation was dependent on both inotropic [N-methyl-d-aspartate (NMDA)] and type I metabotropic glutamate receptors (mGluRs) inasmuch as MK-801 [NMDA receptor inhibitor; (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate], S-(4)-CGP [S-(4)-carboxyphenylglycine], and MTEP [type I mGluR inhibitors; 3-((2-methyl-4-thiazolyl)ethynyl) pyridine] attenuated the response. In addition, 2-aminoethoxydiphenylborane, an inositol 1,4,5-trisphosphate receptor inhibitor, and U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione), a phospholipase C inhibitor, both suppressed gambierol-induced ERK1/2 activation, further confirming the role of type I mGluR-mediated signaling in the observed ERK1/2 activation. Finally, we found that gambierol produced a concentration-dependent stimulation of neurite outgrowth that was mimicked by 4-aminopyridine, a universal potassium channel inhibitor. Considered together, these data demonstrate that gambierol alters both Ca(2+) signaling and neurite outgrowth in cerebrocortical neurons as a consequence of blockade of Kv channels.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Yanjun Cui
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Eric Busse
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Suneet Mehrotra
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Jon D Rainier
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Thomas F Murray
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| |
Collapse
|