1
|
Ju F, Wang J, Xu K, Xu Q, Liu X, Tian T, Du Z, Wang J, Liao Z, Wang B, Zhang H. Genome-wide insights into the nomenclature, evolution and expression of tobacco TIFY/JAZ genes. PLANTA 2025; 261:103. [PMID: 40183817 DOI: 10.1007/s00425-025-04676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
MAIN CONCLUSION A systematic nomenclature for tobacco TIFY/JAZ proteins was established via genome-wide analysis, and the gene transcription patterns and potential functions of these proteins were analyzed as well. Intensive studies focused on the plant-specific JAZ regulators of jasmonate (JA) signaling in tobacco due to their critical roles in regulating JA-mediated development, secondary metabolism, and stress responses. JAZs comprise a subfamily of the TIFY proteins, yet the reported TIFY/JAZ regulators of tobacco spp. are tangled in naming confusion, which resulted in nomenclature chaos. Here, we identified 32 TIFY/JAZ proteins via genome-wide analysis of tobacco cultivar TN90 and obtained their homologues in Nicotiana sylvestris and Nicotiana tomentosiformis. By bioinformatic analysis, these TIFY/JAZ regulators were classified into 4 subfamilies (i.e., 21 JAZs, 5 ZIM & ZMLs, 2 TIFY8s, and 4 PPDs) based on their phylogenetic relationship to establish a systematic nomenclature, which indicated gene loss or genomic rearrangement during the formation of common tobacco. Analysis of JA-induced expression revealed that these TIFY/JAZ genes displayed distinct expression patterns in the leaves and roots upon JA treatment. Further microarray and metabolomics assays observed that 5 TIFY/JAZ genes were differentially expressed in the plants with dysfunction of COI1, the receptor protein of JA hormone and that the abundance of a series of primary and secondary metabolites was altered as well. A predicted protein interaction network of tobacco TIFY/JAZ proteins was also constructed, and it indicated that 120 proteins may interact with these regulators. Findings of this work provide valuable information about TIFY/JAZ proteins in regulating JA responses and metabolic processes in tobacco and may contribute greatly to future studies on tobacco TIFY/JAZ proteins.
Collapse
Affiliation(s)
- Fuzhu Ju
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jiahao Wang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ke Xu
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qing Xu
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaofeng Liu
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Tian Tian
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zaifeng Du
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jialin Wang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhihua Liao
- SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400716, China
| | - Bingwu Wang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| | - Hongbo Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
2
|
Li YG, Zhang J, Cai XX, Fan LP, Zhu ZH, Zhu XJ, Guo DL. Genome-wide survey and expression analysis of JAZ genes in watermelon (Citrullus lanatus). Mol Biol Rep 2024; 52:24. [PMID: 39607638 DOI: 10.1007/s11033-024-10120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND JAZ: (Jasmonate ZIM-domain) genes play important roles in plant growth and JA signaling pathway which is correlated with fruit ripening process. However, there have been few reports on the genome-wide identification of JAZ genes in watermelon and its relationship with fruit ripening. METHODS AND RESULTS: In this study, bioinformatics approaches were employed to identify ClaJAZ genes of watermelon at the genome-wide levels. Further exploration delved into the phylogenetic relationships, chromosomal mappings, promoter dynamics, expression, and architectural features of the JAZ genes. The results showed that a total of 9 ClaJAZ genes unevenly distributed across six chromosomes were identified in the watermelon genome, and they all have conserved Jas and TIFY domains. These JAZ genes were divided into four distinct groups with five genes involved in inter-chromosomal tandem duplication events, and members of the same subgroup exhibited a high degree of similarity in their gene structure and protein motif patterns. Analysis of the promoter regions of the ClaJAZ genes indicated the presence of cis-acting elements associated with hormonal responses, stress, and developmental processes. Gene expression analysis through real-time quantitative PCR (qRT-PCR) showed that there were spatiotemporal differences in the expression of ClaJAZ genes at various stages of fruit development. Among them, ClaJAZ7 has the highest level of transcriptional expression and showed strong promoter activity. CONCLUSIONS: This study conducted a comprehensive analysis of the ClaJAZ genes and provided insights into the role of ClaJAZ in the development and ripening of watermelon fruit.
Collapse
Affiliation(s)
- Yan-Ge Li
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, Henan Province, 471100, China
| | - Jing Zhang
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiu-Xiu Cai
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, Henan Province, 471100, China
| | - Le-Ping Fan
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, Henan Province, 471100, China
| | - Zhong-Hou Zhu
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, Henan Province, 471100, China.
| | - Xue-Jie Zhu
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, Henan Province, 471100, China
| | - Da-Long Guo
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
3
|
Du JF, Zhao Z, Xu WB, Wang QL, Li P, Lu X. Comprehensive analysis of JAZ family members in Ginkgo biloba reveals the regulatory role of the GbCOI1/GbJAZs/GbMYC2 module in ginkgolide biosynthesis. TREE PHYSIOLOGY 2024; 44:tpad121. [PMID: 37741055 DOI: 10.1093/treephys/tpad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Ginkgo biloba L., an ancient relict plant known as a 'living fossil', has a high medicinal and nutritional value in its kernels and leaves. Ginkgolides are unique diterpene lactone compounds in G. biloba, with favorable therapeutic effects on cardiovascular and cerebrovascular diseases. Thus, it is essential to study the biosynthesis and regulatory mechanism of ginkgolide, which will contribute to quality improvement and medication requirements. In this study, the regulatory roles of the JAZ gene family and GbCOI1/GbJAZs/GbMYC2 module in ginkgolide biosynthesis were explored based on genome and methyl jasmonate-induced transcriptome. Firstly, 18 JAZ proteins were identified from G. biloba, and the gene characteristics and expansion patterns along with evolutionary relationships of these GbJAZs were analyzed systematically. Expression patterns analysis indicated that most GbJAZs expressed highly in the fibrous root and were induced significantly by methyl jasmonate. Mechanistically, yeast two-hybrid assays suggested that GbJAZ3/11 interacted with both GbMYC2 and GbCOI1, and several GbJAZ proteins could form homodimers or heterodimers between the GbJAZ family. Moreover, GbMYC2 is directly bound to the G-box element in the promoter of GbLPS, to regulate the biosynthesis of ginkgolide. Collectively, these results systematically characterized the JAZ gene family in G. biloba and demonstrated that the GbCOI1/GbJAZs/GbMYC2 module could regulate ginkgolides biosynthesis, which provides a novel insight for studying the mechanism of JA regulating ginkgolide biosynthesis.
Collapse
Affiliation(s)
- Jin-Fa Du
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhen Zhao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Wen-Bo Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Qiao-Lei Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, P. R. China
| |
Collapse
|
4
|
Bhad PG, Mondal S, Badigannavar AM. Molecular tagging of seed size using MITE markers in an induced large seed mutant with higher cotyledon cell size in groundnut. 3 Biotech 2024; 14:56. [PMID: 38298555 PMCID: PMC10825088 DOI: 10.1007/s13205-023-03909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
A large seed mutant, TG 89 having a 76.7% increment in hundred kernel weight in comparison to its parent TG 26, was isolated from an electron beam-induced mutagenized population. Studies based on environmental scanning electron microscopy of both parent and mutant revealed that the mutant seed cotyledon had significantly bigger cell size than parent. A mapping population with 122 F2 plants derived from the mutant and a distant normal seed genotype (ICGV 15007) was utilized to map the QTL associated with higher HKW. Bulk segregant analysis revealed putative association of three markers with this mutant large seed trait. Further, genotyping of F2 individuals with polymorphic markers detected 14 linkage groups with a map distance of 1053 cM. QTL analysis revealed a significant additive major QTL for the mutant large seed trait on linkage group A05 explaining 12.7% phenotypic variation for the seed size. This QTL was located between flanking markers AhTE333 and AhTE810 having a map interval of 4.7 cM which corresponds to 90.65 to 107.24 Mbp in A05 chromosome, respectively. Within this genomic fragment, an ortholog of the BIG SEEDS 1 gene was found at 102,476,137 bp. Real-time PCR revealed down-regulation of this BIG SEEDS 1 gene in the mutant indicating a loss of function mutation giving rise to a large seed phenotype. This QTL was validated in 11 advanced breeding lines having large seed size from this mutant but with varied genetic backgrounds. This validation showcased a highly promising selection accuracy of 90.9% for the marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03909-0.
Collapse
Affiliation(s)
- Poonam Gajanan Bhad
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| | - Anand M. Badigannavar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| |
Collapse
|
5
|
Zhang Y, Bhat JA, Zhang Y, Yang S. Understanding the Molecular Regulatory Networks of Seed Size in Soybean. Int J Mol Sci 2024; 25:1441. [PMID: 38338719 PMCID: PMC10855573 DOI: 10.3390/ijms25031441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Soybean being a major cash crop provides half of the vegetable oil and a quarter of the plant proteins to the global population. Seed size traits are the most important agronomic traits determining the soybean yield. These are complex traits governed by polygenes with low heritability as well as are highly influenced by the environment as well as by genotype x environment interactions. Although, extensive efforts have been made to unravel the genetic basis and molecular mechanism of seed size in soybean. But most of these efforts were majorly limited to QTL identification, and only a few genes for seed size were isolated and their molecular mechanism was elucidated. Hence, elucidating the detailed molecular regulatory networks controlling seed size in soybeans has been an important area of research in soybeans from the past decades. This paper describes the current progress of genetic architecture, molecular mechanisms, and regulatory networks for seed sizes of soybeans. Additionally, the main problems and bottlenecks/challenges soybean researchers currently face in seed size research are also discussed. This review summarizes the comprehensive and systematic information to the soybean researchers regarding the molecular understanding of seed size in soybeans and will help future research work on seed size in soybeans.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.Z.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | | | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.Z.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.Z.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
6
|
Sim J, Kanazashi Y, Yamada T. Site-directed mutagenesis of soybean PEAPOD genes using the CRISPR/Cas9 system alters tissue developmental transition. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:247-254. [PMID: 38420568 PMCID: PMC10901156 DOI: 10.5511/plantbiotechnology.23.0628a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/28/2023] [Indexed: 03/02/2024]
Abstract
In general, plant organ size is determined using cell number and expansion. In our previous study, we generated soybean (Glycine max) mutants of the PEAPOD (PPD) genes GmPPD1 and GmPPD2 using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 system. Some of these mutants exhibited extremely abnormal phenotypes, such as twisted pods and limited seeds. These phenotypes were attributed to the frameshift mutation in both GmPPD loci. In this study, the physiological and molecular biological properties of mutant plants with two knocked-out GmPPD loci (ppd-KO) were characterized. The ppd-KO mutant exhibited a delayed growth phase from the time of development of the unifoliolate leaves to that of first trifoliolate leaves and a stay-green phenotype, which were not observed in the other mutants of soybean or ppd mutants of other plant species. Gene expression analysis revealed considerably decreased expression of SPIRAL1-LIKE 5 (GmSP1L5), mainly causing the twisted pod phenotype observed in the ppd-KO mutant. The relationship between PPD and SP1L5 has not been previously reported, and in this study, we showed that that loss of PPD functioning affects SP1L5 expression in soybean. In this study, we revealed that the decrease in PPD function contributed to organ enlargement and that complete knockout of PPD has a negative effect on soybean organogenesis.
Collapse
Affiliation(s)
- Jaechol Sim
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yuhei Kanazashi
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
7
|
Mao Y, Zhou S, Yang J, Wen J, Wang D, Zhou X, Wu X, He L, Liu M, Wu H, Yang L, Zhao B, Tadege M, Liu Y, Liu C, Chen J. The MIO1-MtKIX8 module regulates the organ size in Medicago truncatula. PHYSIOLOGIA PLANTARUM 2023; 175:e14046. [PMID: 37882293 DOI: 10.1111/ppl.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Plant organ size is an important agronomic trait tightly related to crop yield. However, the molecular mechanisms underlying organ size regulation remain largely unexplored in legumes. We previously characterized a key regulator F-box protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which controls plant organ size in the model legume Medicago truncatula. In order to further dissect the molecular mechanism, MIO1 was used as the bait to screen its interacting proteins from a yeast library. Subsequently, a KIX protein, designated MtKIX8, was identified from the candidate list. The interaction between MIO1 and MtKIX8 was confirmed further by Y2H, BiFC, split-luciferase complementation and pull-down assays. Phylogenetic analyses indicated that MtKIX8 is highly homologous to Arabidopsis KIX8, which negatively regulates organ size. Moreover, loss-of-function of MtKIX8 led to enlarged leaves and seeds, while ectopic expression of MtKIX8 in Arabidopsis resulted in decreased cotyledon area and seed weight. Quantitative reverse-transcription PCR and in situ hybridization showed that MtKIX8 is expressed in most developing organs. We also found that MtKIX8 serves as a crucial molecular adaptor, facilitating interactions with BIG SEEDS1 (BS1) and MtTOPLESS (MtTPL) proteins in M. truncatula. Overall, our results suggest that the MIO1-MtKIX8 module plays a significant and conserved role in the regulation of plant organ size. This module could be a good target for molecular breeding in legume crops and forages.
Collapse
Affiliation(s)
- Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuan Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyuan Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Mingli Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- Southwest Forestry University, Kunming, China
| | - Huan Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Liling Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Million Tadege
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
8
|
The Non-JAZ TIFY Protein TIFY8 of Arabidopsis thaliana Interacts with the HD-ZIP III Transcription Factor REVOLUTA and Regulates Leaf Senescence. Int J Mol Sci 2023; 24:ijms24043079. [PMID: 36834490 PMCID: PMC9967580 DOI: 10.3390/ijms24043079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
The HD-ZIP III transcription factor REVOLUTA (REV) is involved in early leaf development, as well as in leaf senescence. REV directly binds to the promoters of senescence-associated genes, including the central regulator WRKY53. As this direct regulation appears to be restricted to senescence, we aimed to characterize protein-interaction partners of REV which could mediate this senescence-specificity. The interaction between REV and the TIFY family member TIFY8 was confirmed by yeast two-hybrid assays, as well as by bimolecular fluorescence complementation in planta. This interaction inhibited REV's function as an activator of WRKY53 expression. Mutation or overexpression of TIFY8 accelerated or delayed senescence, respectively, but did not significantly alter early leaf development. Jasmonic acid (JA) had only a limited effect on TIFY8 expression or function; however, REV appears to be under the control of JA signaling. Accordingly, REV also interacted with many other members of the TIFY family, namely the PEAPODs and several JAZ proteins in the yeast system, which could potentially mediate the JA-response. Therefore, REV appears to be under the control of the TIFY family in two different ways: a JA-independent way through TIFY8, which controls REV function in senescence, and a JA-dependent way through PEAPODs and JAZ proteins.
Collapse
|
9
|
Gryffroy L, De Ryck J, Jonckheere V, Goormachtig S, Goossens A, Van Damme P. Cataloguing Protein Complexes In Planta Using TurboID-Catalyzed Proximity Labeling. Methods Mol Biol 2023; 2690:311-334. [PMID: 37450157 DOI: 10.1007/978-1-0716-3327-4_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Mapping protein-protein interactions is crucial to understand protein function. Recent advances in proximity-dependent biotinylation (BioID) coupled to mass spectrometry (MS) allow the characterization of protein complexes in diverse plant models. Here, we describe the use of BioID in hairy root cultures of tomato and provide detailed information on how to analyze the data obtained by MS.
Collapse
Affiliation(s)
- Lore Gryffroy
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
10
|
Cheng SS, Ku YS, Cheung MY, Lam HM. Identification of stably expressed reference genes for expression studies in Arabidopsis thaliana using mass spectrometry-based label-free quantification. FRONTIERS IN PLANT SCIENCE 2022; 13:1001920. [PMID: 36247637 PMCID: PMC9557097 DOI: 10.3389/fpls.2022.1001920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Arabidopsis thaliana has been used regularly as a model plant in gene expression studies on transcriptional reprogramming upon pathogen infection, such as that by Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), or when subjected to stress hormone treatments including jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been extensively employed to quantitate these gene expression changes. However, the accuracy of the quantitation is largely dependent on the stability of the expressions of reference genes used for normalization. Recently, RNA sequencing (RNA-seq) has been widely used to mine stably expressed genes for use as references in RT-qPCR. However, the amplification step in RNA-seq creates an intrinsic bias against those genes with relatively low expression levels, and therefore does not provide an accurate quantification of all expressed genes. In this study, we employed mass spectrometry-based label-free quantification (LFQ) in proteomic analyses to identify those proteins with abundances unaffected by Pst DC3000 infection. We verified, using RT-qPCR, that the levels of their corresponding mRNAs were also unaffected by Pst DC3000 infection. Compared to commonly used reference genes for expression studies in A. thaliana upon Pst DC3000 infection, the candidate reference genes reported in this study generally have a higher expression stability. In addition, using RT-qPCR, we verified that the mRNAs of the candidate reference genes were stably expressed upon stress hormone treatments including JA, SA, and ABA. Results indicated that the candidate genes identified here had stable expressions upon these stresses and are suitable to be used as reference genes for RT-qPCR. Among the 18 candidate reference genes reported in this study, many of them had greater expression stability than the commonly used reference genes, such as ACT7, in previous studies. Here, besides proposing more appropriate reference genes for Arabidopsis expression studies, we also demonstrated the capacity of mass spectrometry-based LFQ to quantify protein abundance and the possibility to extend protein expression studies to the transcript level.
Collapse
|
11
|
Lewsey MG, Yi C, Berkowitz O, Ayora F, Bernado M, Whelan J. scCloudMine: A cloud-based app for visualization, comparison, and exploration of single-cell transcriptomic data. PLANT COMMUNICATIONS 2022; 3:100302. [PMID: 35605202 PMCID: PMC9284053 DOI: 10.1016/j.xplc.2022.100302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 06/12/2023]
Abstract
scCloudMine is a cloud-based application for visualization, comparison, and exploration of single-cell transcriptome data. It does not require an on-site, high-power computing server, installation, or associated expertise and expense. Users upload their own or publicly available scRNA-seq datasets after pre-processing for visualization using a web browser. The data can be viewed in two color modes-Cluster, representing cell identity, and Values, showing levels of expression-and data can be queried using keywords or gene identification number(s). Using the app to compare studies, we determined that some genes frequently used as cell-type markers are in fact study specific. The apparent cell-specific expression of PHO1;H3 differed between GFP-tagging and scRNA-seq studies. Some phosphate transporter genes were induced by protoplasting, but they retained cell specificity, suggesting that cell-specific responses to stress (i.e., protoplasting) can occur. Examination of the cell specificity of hormone response genes revealed that 132 hormone-responsive genes display restricted expression and that the jasmonate response gene TIFY8 is expressed in endodermal cells, in contrast to previous reports. It also appears that JAZ repressors have cell-type-specific functions. These features identified using scCloudMine highlight the need for resources to enable biological researchers to compare their datasets of interest under a variety of parameters. scCloudMine enables researchers to form new hypotheses and perform comparative studies and allows for the easy re-use of data from this emerging technology by a wide variety of users who may not have access or funding for high-performance on-site computing and support.
Collapse
Affiliation(s)
- Mathew G Lewsey
- La Trobe Institute for Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
| | - Changyu Yi
- La Trobe Institute for Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- La Trobe Institute for Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia
| | - Felipe Ayora
- BizData, Level 9/278, Collins Street, Melbourne, VIC 3000, Australia; Research and Advanced Computing, BizData, Level 31, 2-6, Gilmer Terrace, Wellington, 6011, New Zealand.
| | - Maurice Bernado
- BizData, Level 9/278, Collins Street, Melbourne, VIC 3000, Australia
| | - James Whelan
- La Trobe Institute for Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC 3086, Australia; Department of Animal, Plant and Soil Sciences, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
12
|
Cookson R, Winichayakul S, Xue H, Richardson K, Moraga R, Laugraud A, Biswas A, Bryan G, Roberts N. Evolution and conserved functionality of organ size and shape regulator PEAPOD. PLoS One 2022; 17:e0263928. [PMID: 35148336 PMCID: PMC8836299 DOI: 10.1371/journal.pone.0263928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
Transcriptional regulator PEAPOD (PPD) and its binding partners comprise a complex that is conserved throughout many core eudicot plants with regard to protein domain sequence and the function of controlling organ size and shape. Orthologues of PPD also exist in the basal angiosperm Amborella trichopoda, various gymnosperm species, the lycophyte Selaginella moellendorffii and several monocot genera, although until now it was not known if these are functional sequences. Here we report constitutive expression of orthologues from species representing diverse taxa of plant phylogeny in the Arabidopsis Δppd mutant. PPD orthologues from S. moellendorffii, gymnosperm Picea abies, A. trichopoda, monocot Musa acuminata, and dicot Trifolium repens were able to complement the mutant and return it to the wild-type phenotype, demonstrating the conserved functionality of PPD throughout vascular plants. In addition, analysis of bryophyte genomes revealed potential PPD orthologues in model liverwort and moss species, suggesting a more primitive lineage for this conserved regulator. The Poaceae (grasses) lack the genes for the PPD module and the reason for loss of the complex from this economically significant family is unclear, given that grasses were the last of the flowering plants to evolve. Bioinformatic analyses identified putative PPD orthologues in close relatives of the Poaceae, indicating that the explanation for absence of PPD in the grasses may be more complex than previously considered. Understanding the mechanisms which led to loss of PPD from the grasses will provide insight into evolution of the Poaceae.
Collapse
Affiliation(s)
- Ruth Cookson
- Plant Biotechnology, Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
- * E-mail: (RC); (NR)
| | - Somrutai Winichayakul
- Plant Biotechnology, Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
| | - Hong Xue
- Plant Biotechnology, Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
| | - Kim Richardson
- Plant Biotechnology, Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
| | - Roger Moraga
- Bioinformatics and Statistics, Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
| | - Aurelie Laugraud
- Bioinformatics and Statistics, Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
| | - Ambarish Biswas
- Bioinformatics and Statistics, Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
| | - Greg Bryan
- Plant Biotechnology, Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
| | - Nick Roberts
- Plant Biotechnology, Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand
- * E-mail: (RC); (NR)
| |
Collapse
|
13
|
Interactome of Arabidopsis Thaliana. PLANTS 2022; 11:plants11030350. [PMID: 35161331 PMCID: PMC8838453 DOI: 10.3390/plants11030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/24/2023]
Abstract
More than 95,000 protein–protein interactions of Arabidopsis thaliana have been published and deposited in databases. This dataset was supplemented by approximately 900 additional interactions, which were identified in the literature from the years 2002–2021. These protein–protein interactions were used as the basis for a Cytoscape network and were supplemented with data on subcellular localization, gene ontologies, biochemical properties and co-expression. The resulting network has been exemplarily applied in unraveling the PPI-network of the plant vacuolar proton-translocating ATPase (V-ATPase), which was selected due to its central importance for the plant cell. In particular, it is involved in cellular pH homeostasis, providing proton motive force necessary for transport processes, trafficking of proteins and, thereby, cell wall synthesis. The data points to regulation taking place on multiple levels: (a) a phosphorylation-dependent regulation by 14-3-3 proteins and by kinases such as WNK8 and NDPK1a, (b) an energy-dependent regulation via HXK1 and the glucose receptor RGS1 and (c) a Ca2+-dependent regulation by SOS2 and IDQ6. The known importance of V-ATPase for cell wall synthesis is supported by its interactions with several proteins involved in cell wall synthesis. The resulting network was further analyzed for (experimental) biases and was found to be enriched in nuclear, cytosolic and plasma membrane proteins but depleted in extracellular and mitochondrial proteins, in comparison to the entity of protein-coding genes. Among the processes and functions, proteins involved in transcription were highly abundant in the network. Subnetworks were extracted for organelles, processes and protein families. The degree of representation of organelles and processes reveals limitations and advantages in the current knowledge of protein–protein interactions, which have been mainly caused by a high number of database entries being contributed by only a few publications with highly specific motivations and methodologies that favor, for instance, interactions in the cytosol and the nucleus.
Collapse
|
14
|
Xu DB, Ma YN, Qin TF, Tang WL, Qi XW, Wang X, Liu RC, Fang HL, Chen ZQ, Liang CY, Wu W. Transcriptome-Wide Identification and Characterization of the JAZ Gene Family in Mentha canadensis L. Int J Mol Sci 2021; 22:ijms22168859. [PMID: 34445565 PMCID: PMC8396335 DOI: 10.3390/ijms22168859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
Jasmonate ZIM-domain (JAZ) proteins are the crucial transcriptional repressors in the jasmonic acid (JA) signaling process, and they play pervasive roles in plant development, defense, and plant specialized metabolism. Although numerous JAZ gene families have been discovered across several plants, our knowledge about the JAZ gene family remains limited in the economically and medicinally important Chinese herb Mentha canadensis L. Here, seven non-redundant JAZ genes named McJAZ1–McJAZ7 were identified from our reported M. canadensis transcriptome data. Structural, amino acid composition, and phylogenetic analysis showed that seven McJAZ proteins contained the typical zinc-finger inflorescence meristem (ZIM) domain and JA-associated (Jas) domain as conserved as those in other plants, and they were clustered into four groups (A-D) and distributed into five subgroups (A1, A2, B1, B2, and D). Quantitative real-time PCR (qRT-PCR) analysis showed that seven McJAZ genes displayed differential expression patterns in M. canadensis tissues, and preferentially expressed in flowers. Furthermore, the McJAZ genes expression was differentially induced after Methyl jasmonate (MeJA) treatment, and their transcripts were variable and up- or down-regulated under abscisic acid (ABA), drought, and salt treatments. Subcellular localization analysis revealed that McJAZ proteins are localized in the nucleus or cytoplasm. Yeast two-hybrid (Y2H) assays demonstrated that McJAZ1-5 interacted with McCOI1a, a homolog of Arabidopsis JA receptor AtCOI1, in a coronatine-dependent manner, and most of McJAZ proteins could also form homo- or heterodimers. This present study provides valuable basis for functional analysis and exploitation of the potential candidate McJAZ genes for developing efficient strategies for genetic improvement of M. canadensis.
Collapse
Affiliation(s)
- Dong-Bei Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
- Correspondence: (D.-B.X.); (C.-Y.L.); (W.W.)
| | - Ya-Nan Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Teng-Fei Qin
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China;
| | - Wei-Lin Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
| | - Xi-Wu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Xia Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
| | - Rui-Cen Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
| | - Hai-Ling Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Ze-Qun Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Cheng-Yuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
- Correspondence: (D.-B.X.); (C.-Y.L.); (W.W.)
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
- Correspondence: (D.-B.X.); (C.-Y.L.); (W.W.)
| |
Collapse
|
15
|
Sen S, DasGupta M. Involvement of Arachis hypogaea Jasmonate ZIM domain/TIFY proteins in root nodule symbiosis. JOURNAL OF PLANT RESEARCH 2021; 134:307-326. [PMID: 33558946 DOI: 10.1007/s10265-021-01256-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Jasmonate ZIM domain (JAZ) proteins are the key negative regulators of jasmonate signaling, an important integrator of plant-microbe relationships. Versatility of jasmonate signaling outcomes are maintained through the multiplicity of JAZ proteins and their definitive functionalities. How jasmonate signaling influences the legume-Rhizobium symbiotic relationship is still unclear. In Arachis hypogaea (peanut), a legume plant, one JAZ sub-family (JAZ1) gene and one TIFY sequence containing protein family member (TIFY8) gene show enhanced expression in the early stage and late stage of root nodule symbiosis (RNS) respectively. In plants, JAZ sub-family proteins belong to a larger TIFY family. Here, this study denotes the first attempt to reveal in planta interactions of downstream jasmonate signaling regulators through proteomics and mass spectrometry to find out the mode of jasmonate signaling participation in the RNS process of A. hypogaea. From 4-day old Bradyrhizobium-infected peanut roots, the JAZ1-protein complex shows its contribution towards the rhizobial entry, nodule development, autoregulation of nodulation and photo-morphogenesis during the early stage of symbiosis. From 30-day old Bradyrhizobium infected roots, the TIFY8-protein complex reveals repressor functionality of TIFY8, suppression of root jasmonate signaling, modulation of root circadian rhythm and nodule development. Cellular localization and expression level of the interaction partners during the nodulation process further substantiate the in planta interaction pairs. This study provides a comprehensive insight into the jasmonate functionality in RNS through modulation of nodule number and development, during the early stage and root circadian rhythm during the late stage of nodulation, through the protein complexes of JAZ1 and TIFY8 respectively in A. hypogaea.
Collapse
Affiliation(s)
- Saswati Sen
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| |
Collapse
|
16
|
Schneider M, Gonzalez N, Pauwels L, Inzé D, Baekelandt A. The PEAPOD Pathway and Its Potential To Improve Crop Yield. TRENDS IN PLANT SCIENCE 2021; 26:220-236. [PMID: 33309102 DOI: 10.1016/j.tplants.2020.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 05/18/2023]
Abstract
A key strategy to increase plant productivity is to improve intrinsic organ growth. Some of the regulatory networks underlying organ growth and development, as well as the interconnections between these networks, are highly conserved. An example of such a growth-regulatory module with a highly conserved role in final organ size and shape determination in eudicot species is the PEAPOD (PPD)/KINASE-INDUCIBLE DOMAIN INTERACTING (KIX)/STERILE APETALA (SAP) module. We review the proteins constituting the PPD pathway and their roles in different plant developmental processes, and explore options for future research. We also speculate on strategies to exploit knowledge about the PPD pathway for targeted yield improvement to engineer crop traits of agronomic interest, such as leaf, fruit, and seed size.
Collapse
Affiliation(s)
- Michele Schneider
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Biologie du Fruit et Pathologie (BFP), Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
17
|
Sun TP. Novel nucleocytoplasmic protein O-fucosylation by SPINDLY regulates diverse developmental processes in plants. Curr Opin Struct Biol 2021; 68:113-121. [PMID: 33476897 DOI: 10.1016/j.sbi.2020.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
In metazoans, protein O-fucosylation of Ser/Thr residues was only found in secreted or cell surface proteins, and this post-translational modification is catalyzed by ER-localized protein O-fucosyltransferases (POFUTs) in the GT65 family. Recently, a novel nucleocytoplasmic POFUT, SPINDLY (SPY), was identified in the reference plant Arabidopsis thaliana to modify nuclear transcription regulators DELLAs, revealing a new regulatory mechanism for gene expression. The paralog of AtSPY, SECRET AGENT (SEC), is an O-link-N-acetylglucosamine (GlcNAc) transferase (OGT), which O-GlcNAcylates Ser/Thr residues of target proteins. Both AtSPY and AtSEC are tetratricopeptide repeat-domain-containing glycosyltransferases in the GT41 family. The discovery that AtSPY is a POFUT clarified decades of miss-classification of AtSPY as an OGT. SPY and SEC play pleiotropic roles in plant development, and the interactions between SPY and SEC are complex. SPY-like genes are conserved in diverse organisms, except in fungi and metazoans, suggesting that O-fucosylation is a common mechanism in modulating intracellular protein functions.
Collapse
Affiliation(s)
- Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
18
|
Genome-Wide Identification of the Tify Gene Family and Their Expression Profiles in Response to Biotic and Abiotic Stresses in Tea Plants ( Camellia sinensis). Int J Mol Sci 2020; 21:ijms21218316. [PMID: 33167605 PMCID: PMC7664218 DOI: 10.3390/ijms21218316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
The TIFY family is a plant-specific gene family that is involved in regulating a variety of plant processes, including developmental and defense responses. The chromosome-level genome of the tea plant (Camellia sinensis) has recently been released, but a comprehensive view of the TIFY family in C. sinensis (the CsTIFY genes) is lacking. The current study performed an extensive genome-wide identification of CsTIFY genes. The phylogenetics, chromosome location, exon/intron structure, and conserved domains of these genes were analyzed to characterize the members of the CsTIFY family. The expression profiles of the CsTIFY genes in four organs were analyzed, and they showed different spatial expression patterns. All CsJAZ genes were observed to be induced by jasmonate acid (JA) and exhibited different responses to abiotic and biotic stresses. Six of seven CsJAZ genes (CsJAZ1, CsJAZ2, CsJAZ3, CsJAZ4, CsJAZ7, and CsJAZ8) were upregulated by mechanical wounding and infestation with the tea geometrid (Ectropis obliqua), while infection with tea anthracnose (Colletotrichum camelliae) primarily upregulated the expression levels of CsJAZ1 and CsJAZ10. In addition, CsJAZs were observed to interact with CsMYC2 and AtMYC2. Therefore, the results of this study may contribute to the functional characterization of the CsTIFY genes, especially the members of the JAZ subfamily, as regulators of the JA-mediated defense response in tea plant.
Collapse
|
19
|
Oña Chuquimarca S, Ayala-Ruano S, Goossens J, Pauwels L, Goossens A, Leon-Reyes A, Ángel Méndez M. The Molecular Basis of JAZ-MYC Coupling, a Protein-Protein Interface Essential for Plant Response to Stressors. FRONTIERS IN PLANT SCIENCE 2020; 11:1139. [PMID: 32973821 PMCID: PMC7468482 DOI: 10.3389/fpls.2020.01139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 05/29/2023]
Abstract
The jasmonic acid (JA) signaling pathway is one of the primary mechanisms that allow plants to respond to a variety of biotic and abiotic stressors. Within this pathway, the JAZ repressor proteins and the basic helix-loop-helix (bHLH) transcription factor MYC3 play a critical role. JA is a volatile organic compound with an essential role in plant immunity. The increase in the concentration of JA leads to the decoupling of the JAZ repressor proteins and the bHLH transcription factor MYC3 causing the induction of genes of interest. The primary goal of this study was to identify the molecular basis of JAZ-MYC coupling. For this purpose, we modeled and validated 12 JAZ-MYC3 3D in silico structures and developed a molecular dynamics/machine learning pipeline to obtain two outcomes. First, we calculated the average free binding energy of JAZ-MYC3 complexes, which was predicted to be -10.94 +/-2.67 kJ/mol. Second, we predicted which ones should be the interface residues that make the predominant contribution to the free energy of binding (molecular hotspots). The predicted protein hotspots matched a conserved linear motif SL••FL•••R, which may have a crucial role during MYC3 recognition of JAZ proteins. As a proof of concept, we tested, both in silico and in vitro, the importance of this motif on PEAPOD (PPD) proteins, which also belong to the TIFY protein family, like the JAZ proteins, but cannot bind to MYC3. By mutating these proteins to match the SL••FL•••R motif, we could force PPDs to bind the MYC3 transcription factor. Taken together, modeling protein-protein interactions and using machine learning will help to find essential motifs and molecular mechanisms in the JA pathway.
Collapse
Affiliation(s)
- Samara Oña Chuquimarca
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sebastián Ayala-Ruano
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Jonas Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Antonio Leon-Reyes
- Laboratorio de Biotecnología Agrícola y de Alimentos, Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Campus Cumbayá, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Investigaciones Biológicas y Ambientales BIÓSFERA, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Miguel Ángel Méndez
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
20
|
Liu Z, Li N, Zhang Y, Li Y. Transcriptional repression of GIF1 by the KIX-PPD-MYC repressor complex controls seed size in Arabidopsis. Nat Commun 2020; 11:1846. [PMID: 32296056 PMCID: PMC7160150 DOI: 10.1038/s41467-020-15603-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Seed size is a key agronomic trait that greatly determines plant yield. Elucidating the molecular mechanism underlying seed size regulation is also an important question in developmental biology. Here, we show that the KIX-PPD-MYC-GIF1 pathway plays a crucial role in seed size control in Arabidopsis thaliana. Disruption of KIX8/9 and PPD1/2 causes large seeds due to increased cell proliferation and cell elongation in the integuments. KIX8/9 and PPD1/2 interact with transcription factors MYC3/4 to form the KIX-PPD-MYC complex in Arabidopsis. The KIX-PPD-MYC complex associates with the typical G-box sequence in the promoter of GRF-INTERACTING FACTOR 1 (GIF1), which promotes seed growth, and represses its expression. Genetic analyses support that KIX8/9, PPD1/2, MYC3/4, and GIF1 function in a common pathway to control seed size. Thus, our results reveal a genetic and molecular mechanism by which the transcription factors MYC3/4 recruit KIX8/9 and PPD1/2 to the promoter of GIF1 and repress its expression, thereby determining seed size in Arabidopsis. Seed size is an important determinant of plant yield. Here, Liu et al. show that a KIX-PPD repressor complex and MYC transcription factors interact with the G-box motif in the promoter of GRF-INTERACTING FACTOR 1 to regulate seed size by influencing cell proliferation and elongation in the integument.
Collapse
Affiliation(s)
- Zupei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yueying Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100039, Beijing, China.
| |
Collapse
|
21
|
An Y, Zhou Y, Han X, Shen C, Wang S, Liu C, Yin W, Xia X. The GATA transcription factor GNC plays an important role in photosynthesis and growth in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1969-1984. [PMID: 31872214 PMCID: PMC7094078 DOI: 10.1093/jxb/erz564] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/21/2019] [Indexed: 05/18/2023]
Abstract
GATA transcription factors are involved in the regulation of diverse growth processes and environmental responses in Arabidopsis and rice. In this study, we conducted a comprehensive bioinformatic survey of the GATA family in the woody perennial Populus trichocarpa. Thirty-nine Populus GATA genes were classified into four subfamilies based on gene structure and phylogenetic relationships. Predicted cis-elements suggested potential roles of poplar GATA genes in light, phytohormone, development, and stress responses. A poplar GATA gene, PdGATA19/PdGNC (GATA nitrate-inducible carbon-metabolism-involved), was identified from a fast growing poplar clone. PdGNC expression was significantly up-regulated in leaves under both high (50 mM) and low (0.2 mM) nitrate concentrations. The CRISPR/Cas9-mediated mutant crispr-GNC showed severely retarded growth and enhanced secondary xylem differentiation. PdGNC-overexpressing transformants exhibited 25-30% faster growth, 20-28% higher biomass accumulation, and ~25% increase in chlorophyll content, photosynthetic rate, and plant height, compared with the wild type. Transcriptomic analysis showed that PdGNC was involved in photosynthetic electron transfer and carbon assimilation in the leaf, cell division and carbohydrate utilization in the stem, and nitrogen uptake in the root. These data indicated that PdGNC plays a crucial role in plant growth and is potentially useful in tree molecular breeding.
Collapse
Affiliation(s)
- Yi An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Yangyan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Xiao Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Chao Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Shu Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
- Correspondence:
| |
Collapse
|
22
|
Defoort J, Van de Peer Y, Carretero-Paulet L. The Evolution of Gene Duplicates in Angiosperms and the Impact of Protein-Protein Interactions and the Mechanism of Duplication. Genome Biol Evol 2020; 11:2292-2305. [PMID: 31364708 PMCID: PMC6735927 DOI: 10.1093/gbe/evz156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 01/17/2023] Open
Abstract
Gene duplicates, generated through either whole genome duplication (WGD) or small-scale duplication (SSD), are prominent in angiosperms and are believed to play an important role in adaptation and in generating evolutionary novelty. Previous studies reported contrasting evolutionary and functional dynamics of duplicate genes depending on the mechanism of origin, a behavior that is hypothesized to stem from constraints to maintain the relative dosage balance between the genes concerned and their interaction context. However, the mechanisms ultimately influencing loss and retention of gene duplicates over evolutionary time are not yet fully elucidated. Here, by using a robust classification of gene duplicates in Arabidopsis thaliana, Solanum lycopersicum, and Zea mays, large RNAseq expression compendia and an extensive protein-protein interaction (PPI) network from Arabidopsis, we investigated the impact of PPIs on the differential evolutionary and functional fate of WGD and SSD duplicates. In all three species, retained WGD duplicates show stronger constraints to diverge at the sequence and expression level than SSD ones, a pattern that is also observed for shared PPI partners between Arabidopsis duplicates. PPIs are preferentially distributed among WGD duplicates and specific functional categories. Furthermore, duplicates with PPIs tend to be under stronger constraints to evolve than their counterparts without PPIs regardless of their mechanism of origin. Our results support dosage balance constraint as a specific property of genes involved in biological interactions, including physical PPIs, and suggest that additional factors may be differently influencing the evolution of genes following duplication, depending on the species, time, and mechanism of origin.
Collapse
Affiliation(s)
- Jonas Defoort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Lorenzo Carretero-Paulet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| |
Collapse
|
23
|
Yu Y, Wan Y, Jiao Z, Bian L, Yu K, Zhang G, Guo D. Functional Characterization of Resistance to Powdery Mildew of VvTIFY9 from Vitis vinifera. Int J Mol Sci 2019; 20:ijms20174286. [PMID: 31480584 PMCID: PMC6747219 DOI: 10.3390/ijms20174286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/03/2022] Open
Abstract
Powdery mildew is a disease caused by fungal pathogens that harms grape leaves and fruits. The TIFY gene family is a plant-specific super-family involved in the process of plants’ development and their biotic and abiotic stress responses. This study aimed to learn the function of the VvTIFY9 gene to investigate molecular mechanisms of grape resistance to powdery mildew. A VvTIFY9 protein encoding a conserved motif (TIF[F/Y]XG) was characterized in grape (Vitis vinifera). Sequence analysis confirmed that VvTIFY9 contained this conserved motif (TIF[F/Y]XG). Quantitative PCR analysis of VvTIFY9 in various grape tissues demonstrated that the expression of VvTIFY9 was higher in grape leaves. VvTIFY9 was induced by salicylic acid (SA) and methyl jasmonate (MeJA) and it also quickly responded to infection with Erysiphe necator in grape. Analysis of the subcellular localization and transcriptional activation activity of VvTIFY9 showed that VvTIFY9 located to the nucleus and had transcriptional activity. Arabidopsis that overexpressed VvTIFY9 were more resistant to Golovinomyces cichoracearum, and quantitative PCR revealed that two defense-related genes, AtPR1 and AtPDF1.2, were up-regulated in the overexpressing lines. These results indicate that VvTIFY9 is intimately involved in SA-mediated resistance to grape powdery mildew. This study provides the basis for exploring the molecular mechanism of grape resistance to disease resistance and candidate genes for transgenic disease resistance breeding of grape plants.
Collapse
Affiliation(s)
- Yihe Yu
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Yutong Wan
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Zeling Jiao
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Lu Bian
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Keke Yu
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Guohai Zhang
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Dalong Guo
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China.
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China.
| |
Collapse
|
24
|
Li D, Mou W, Xia R, Li L, Zawora C, Ying T, Mao L, Liu Z, Luo Z. Integrated analysis of high-throughput sequencing data shows abscisic acid-responsive genes and miRNAs in strawberry receptacle fruit ripening. HORTICULTURE RESEARCH 2019; 6:26. [PMID: 30729016 DOI: 10.1038/s41438-018-0100-108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/25/2018] [Accepted: 09/02/2018] [Indexed: 05/25/2023]
Abstract
The perception and signal transduction of the plant hormone abscisic acid (ABA) are crucial for strawberry fruit ripening, but the underlying mechanism of how ABA regulates ripening-related genes has not been well understood. By employing high-throughput sequencing technology, we comprehensively analyzed transcriptomic and miRNA expression profiles simultaneously in ABA- and nordihydroguaiaretic acid (NDGA, an ABA biosynthesis blocker)-treated strawberry fruits with temporal resolution. The results revealed that ABA regulated many genes in different pathways, including hormone signal transduction and the biosynthesis of secondary metabolites. Transcription factor genes belonging to WRKY and heat shock factor (HSF) families might play key roles in regulating the expression of ABA inducible genes, whereas the KNOTTED1-like homeobox protein and Squamosa Promoter-Binding-like protein 18 might be responsible for ABA-downregulated genes. Additionally, 20 known and six novel differentially expressed miRNAs might be important regulators that assist ABA in regulating target genes that are involved in versatile physiological processes, such as hormone balance regulation, pigments formation and cell wall degradation. Furthermore, degradome analysis showed that one novel miRNA, Fa_novel6, could degrade its target gene HERCULES1, which likely contributed to fruit size determination during strawberry ripening. These results expanded our understanding of how ABA drives the strawberry fruit ripening process as well as the role of miRNAs in this process.
Collapse
Affiliation(s)
- Dongdong Li
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
- 2Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Wangshu Mou
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Rui Xia
- 3State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642 Guangzhou, P.R. China
| | - Li Li
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Christopher Zawora
- 2Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Tiejin Ying
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Linchun Mao
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Zhongchi Liu
- 2Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Zisheng Luo
- 1College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| |
Collapse
|
25
|
Li D, Mou W, Xia R, Li L, Zawora C, Ying T, Mao L, Liu Z, Luo Z. Integrated analysis of high-throughput sequencing data shows abscisic acid-responsive genes and miRNAs in strawberry receptacle fruit ripening. HORTICULTURE RESEARCH 2019; 6:26. [PMID: 30729016 PMCID: PMC6355886 DOI: 10.1038/s41438-018-0100-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/25/2018] [Accepted: 09/02/2018] [Indexed: 05/04/2023]
Abstract
The perception and signal transduction of the plant hormone abscisic acid (ABA) are crucial for strawberry fruit ripening, but the underlying mechanism of how ABA regulates ripening-related genes has not been well understood. By employing high-throughput sequencing technology, we comprehensively analyzed transcriptomic and miRNA expression profiles simultaneously in ABA- and nordihydroguaiaretic acid (NDGA, an ABA biosynthesis blocker)-treated strawberry fruits with temporal resolution. The results revealed that ABA regulated many genes in different pathways, including hormone signal transduction and the biosynthesis of secondary metabolites. Transcription factor genes belonging to WRKY and heat shock factor (HSF) families might play key roles in regulating the expression of ABA inducible genes, whereas the KNOTTED1-like homeobox protein and Squamosa Promoter-Binding-like protein 18 might be responsible for ABA-downregulated genes. Additionally, 20 known and six novel differentially expressed miRNAs might be important regulators that assist ABA in regulating target genes that are involved in versatile physiological processes, such as hormone balance regulation, pigments formation and cell wall degradation. Furthermore, degradome analysis showed that one novel miRNA, Fa_novel6, could degrade its target gene HERCULES1, which likely contributed to fruit size determination during strawberry ripening. These results expanded our understanding of how ABA drives the strawberry fruit ripening process as well as the role of miRNAs in this process.
Collapse
Affiliation(s)
- Dongdong Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Wangshu Mou
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642 Guangzhou, P.R. China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Christopher Zawora
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, 310058 Hangzhou, P.R. China
| |
Collapse
|
26
|
A user-friendly platform for yeast two-hybrid library screening using next generation sequencing. PLoS One 2018; 13:e0201270. [PMID: 30576311 PMCID: PMC6303091 DOI: 10.1371/journal.pone.0201270] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 01/19/2023] Open
Abstract
Yeast two-hybrid (Y2H) is a well-established genetics-based system that uses yeast to selectively display binary protein-protein interactions (PPIs). To meet the current need to unravel complex PPI networks, several adaptations have been made to establish medium- to high-throughput Y2H screening platforms, with several having successfully incorporated the use of the next-generation sequencing (NGS) technology to increase the scale and sensitivity of the method. However, these have been to date mainly restricted to the use of fully annotated custom-made open reading frame (ORF) libraries and subject to complex downstream data processing. Here, a streamlined Y2H library screening strategy, based on integration of Y2H with NGS, called Y2H-seq, was developed, which allows efficient and reliable screening of Y2H cDNA libraries. To generate proof of concept, the method was applied to screen for interaction partners of two key components of the jasmonate signaling machinery in the model plant Arabidopsis thaliana, resulting in the identification of several previously reported as well as hitherto unknown interactors. Our Y2H-seq method offers a user-friendly, specific and sensitive screening method that allows identification of PPIs without prior knowledge of the organism’s ORFs, thereby extending the method to organisms of which the genome has not entirely been annotated yet. The quantitative NGS readout allows to increase genome coverage, thereby overcoming some of the bottlenecks of current Y2H technologies, which will further strengthen the value of the Y2H technology as a discovery platform.
Collapse
|
27
|
Baekelandt A, Pauwels L, Wang Z, Li N, De Milde L, Natran A, Vermeersch M, Li Y, Goossens A, Inzé D, Gonzalez N. Arabidopsis Leaf Flatness Is Regulated by PPD2 and NINJA through Repression of CYCLIN D3 Genes. PLANT PHYSIOLOGY 2018; 178:217-232. [PMID: 29991485 PMCID: PMC6130026 DOI: 10.1104/pp.18.00327] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/28/2018] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), reduced expression of the transcriptional regulator PEAPOD2 (PPD2) results in propeller-like rosettes with enlarged and dome-shaped leaves. However, the molecular and cellular processes underlying this peculiar phenotype remain elusive. Here, we studied the interaction between PPD2 and NOVEL INTERACTOR OF JAZ (NINJA) and demonstrated that ninja loss-of-function plants produce rosettes with dome-shaped leaves similar to those of ppd mutants but without the increase in size. We showed that ninja mutants have a convex-shaped primary cell cycle arrest front, putatively leading to excessive cell division in the central leaf blade region. Furthermore, ppd and ninja mutants have a similar increase in the expression of CYCLIN D3;2 (CYCD3;2), and ectopic overexpression of CYCD3;2 phenocopies the ppd and ninja rosette and leaf shape phenotypes without affecting the size. Our results reveal a pivotal contribution of NINJA in leaf development, in addition to its well-studied function in jasmonate signaling, and imply a new function for D3-type cyclins in, at least partially, uncoupling the size and shape phenotypes of ppd leaves.
Collapse
Affiliation(s)
- Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Zhibiao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liesbeth De Milde
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Annelore Natran
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Mattias Vermeersch
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| |
Collapse
|
28
|
Besbrugge N, Van Leene J, Eeckhout D, Cannoot B, Kulkarni SR, De Winne N, Persiau G, Van De Slijke E, Bontinck M, Aesaert S, Impens F, Gevaert K, Van Damme D, Van Lijsebettens M, Inzé D, Vandepoele K, Nelissen H, De Jaeger G. GS yellow, a Multifaceted Tag for Functional Protein Analysis in Monocot and Dicot Plants. PLANT PHYSIOLOGY 2018; 177:447-464. [PMID: 29678859 PMCID: PMC6001315 DOI: 10.1104/pp.18.00175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/01/2018] [Indexed: 05/04/2023]
Abstract
The ability to tag proteins has boosted the emergence of generic molecular methods for protein functional analysis. Fluorescent protein tags are used to visualize protein localization, and affinity tags enable the mapping of molecular interactions by, for example, tandem affinity purification or chromatin immunoprecipitation. To apply these widely used molecular techniques on a single transgenic plant line, we developed a multifunctional tandem affinity purification tag, named GSyellow, which combines the streptavidin-binding peptide tag with citrine yellow fluorescent protein. We demonstrated the versatility of the GSyellow tag in the dicot Arabidopsis (Arabidopsis thaliana) using a set of benchmark proteins. For proof of concept in monocots, we assessed the localization and dynamic interaction profile of the leaf growth regulator ANGUSTIFOLIA3 (AN3), fused to the GSyellow tag, along the growth zone of the maize (Zea mays) leaf. To further explore the function of ZmAN3, we mapped its DNA-binding landscape in the growth zone of the maize leaf through chromatin immunoprecipitation sequencing. Comparison with AN3 target genes mapped in the developing maize tassel or in Arabidopsis cell cultures revealed strong conservation of AN3 target genes between different maize tissues and across monocots and dicots, respectively. In conclusion, the GSyellow tag offers a powerful molecular tool for distinct types of protein functional analyses in dicots and monocots. As this approach involves transforming a single construct, it is likely to accelerate both basic and translational plant research.
Collapse
Affiliation(s)
- Nienke Besbrugge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bernard Cannoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Shubhada R Kulkarni
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel Bontinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Francis Impens
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium
- VIB Proteomics Core, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
29
|
Howe GA, Major IT, Koo AJ. Modularity in Jasmonate Signaling for Multistress Resilience. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:387-415. [PMID: 29539269 DOI: 10.1146/annurev-arplant-042817-040047] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant hormone jasmonate coordinates immune and growth responses to increase plant survival in unpredictable environments. The core jasmonate signaling pathway comprises several functional modules, including a repertoire of COI1-JAZ (CORONATINE INSENSITIVE1-JASMONATE-ZIM DOMAIN) coreceptors that couple jasmonoyl-l-isoleucine perception to the degradation of JAZ repressors, JAZ-interacting transcription factors that execute physiological responses, and multiple negative feedback loops to ensure timely termination of these responses. Here, we review the jasmonate signaling pathway with an emphasis on understanding how transcriptional responses are specific, tunable, and evolvable. We explore emerging evidence that JAZ proteins integrate multiple informational cues and mediate crosstalk by propagating changes in protein-protein interaction networks. We also discuss recent insights into the evolution of jasmonate signaling and highlight how plant-associated organisms manipulate the pathway to subvert host immunity. Finally, we consider how this mechanistic foundation can accelerate the rational design of jasmonate signaling for improving crop resilience and harnessing the wellspring of specialized plant metabolites.
Collapse
Affiliation(s)
- Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA; ,
- Department of Biochemistry and Molecular Biology, and Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ian T Major
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA; ,
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA;
| |
Collapse
|
30
|
Struk S, Braem L, Walton A, De Keyser A, Boyer FD, Persiau G, De Jaeger G, Gevaert K, Goormachtig S. Quantitative Tandem Affinity Purification, an Effective Tool to Investigate Protein Complex Composition in Plant Hormone Signaling: Strigolactones in the Spotlight. FRONTIERS IN PLANT SCIENCE 2018; 9:528. [PMID: 29755490 PMCID: PMC5932160 DOI: 10.3389/fpls.2018.00528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/04/2018] [Indexed: 05/13/2023]
Abstract
Phytohormones tightly regulate plant growth by integrating changing environmental and developmental cues. Although the key players have been identified in many plant hormonal pathways, the molecular mechanisms and mode of action of perception and signaling remain incompletely resolved. Characterization of protein partners of known signaling components provides insight into the formed protein complexes, but, unless quantification is involved, does not deliver much, if any, information about the dynamics of the induced or disrupted protein complexes. Therefore, in proteomics research, the discovery of what actually triggers, regulates or interrupts the composition of protein complexes is gaining importance. Here, tandem affinity purification coupled to mass spectrometry (TAP-MS) is combined with label-free quantification (LFQ) to a highly valuable tool to detect physiologically relevant, dynamic protein-protein interactions in Arabidopsis thaliana cell cultures. To demonstrate its potential, we focus on the signaling pathway of one of the most recently discovered phytohormones, strigolactones.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lukas Braem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Alan Walton
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - François-Didier Boyer
- UMR 1318, Institut National de la Recherche Agronomique – Institut Jean-Pierre Bourgin, Versailles, France
- Institut de Chimie des Substances Naturelles – UPR 2301, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, Paris, France
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- *Correspondence: Sofie Goormachtig,
| |
Collapse
|
31
|
Major IT, Yoshida Y, Campos ML, Kapali G, Xin X, Sugimoto K, de Oliveira Ferreira D, He SY, Howe GA. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. THE NEW PHYTOLOGIST 2017; 215. [PMID: 28649719 PMCID: PMC5542871 DOI: 10.1111/nph.14638] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The plant hormone jasmonate (JA) promotes the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins to relieve repression on diverse transcription factors (TFs) that execute JA responses. However, little is known about how combinatorial complexity among JAZ-TF interactions maintains control over myriad aspects of growth, development, reproduction, and immunity. We used loss-of-function mutations to define epistatic interactions within the core JA signaling pathway and to investigate the contribution of MYC TFs to JA responses in Arabidopsis thaliana. Constitutive JA signaling in a jaz quintuple mutant (jazQ) was largely eliminated by mutations that block JA synthesis or perception. Comparison of jazQ and a jazQ myc2 myc3 myc4 octuple mutant validated known functions of MYC2/3/4 in root growth, chlorophyll degradation, and susceptibility to the pathogen Pseudomonas syringae. We found that MYC TFs also control both the enhanced resistance of jazQ leaves to insect herbivory and restricted leaf growth of jazQ. Epistatic transcriptional profiles mirrored these phenotypes and further showed that triterpenoid biosynthetic and glucosinolate catabolic genes are up-regulated in jazQ independently of MYC TFs. Our study highlights the utility of genetic epistasis to unravel the complexities of JAZ-TF interactions and demonstrates that MYC TFs exert master control over a JAZ-repressible transcriptional hierarchy that governs growth-defense balance.
Collapse
Affiliation(s)
- Ian T. Major
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Yuki Yoshida
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Marcelo L. Campos
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - George Kapali
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Xiu‐Fang Xin
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Koichi Sugimoto
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | | | - Sheng Yang He
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- Howard Hughes Medical InstituteMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI42284USA
| | - Gregg A. Howe
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI42284USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
32
|
Chini A, Ben-Romdhane W, Hassairi A, Aboul-Soud MAM. Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses. PLoS One 2017; 12:e0177381. [PMID: 28570564 PMCID: PMC5453414 DOI: 10.1371/journal.pone.0177381] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
Plant phenotypic plasticity determines plant adaptation to changing environments and agricultural productivity. Phytohormones are essential plant signalling molecules regulating this plasticity through complex signalling networks. Jasmonates (JAs) are key phytohormones regulating many aspects of growth, development and defence responses. An important role of JAs in tolerance to abiotic stresses is also emerging. The expression of JAZ (JASMONATE-ZIM-DOMAIN PROTEIN) genes, encoding for the key repressors in the JA-pathway, is regulated by multiple abiotic stresses, suggesting a role for the JAZ proteins in response to these stresses. The JAZ proteins belong to the TIFY family, well described in many plant species. However, only the role of few tomato JAZ proteins in response to microbial infection has been analysed so far. Here, we identify the members of the tomato TIFY family, and characterize them phylogenetically. In addition, we analyse the transcriptional regulation of several SlJAZ in response to abiotic stresses and hormone treatments both in root and leaves to assess their specific expression in response to stresses. Most SlJAZ are JA-induced and responsive to one or more abiotic stresses, providing clues for functional analysis of JAZ genes in abiotic responses in tomato.
Collapse
Affiliation(s)
- Andrea Chini
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid, Spain
- * E-mail: (AC); (MAMA-S)
| | - Walid Ben-Romdhane
- Department of Plant Production, College of Food and Agricultural sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Centre of Biotechnology of Sfax (CBS), University of Sfax, LPAP, Sfax, Tunisia
| | - Afif Hassairi
- Department of Plant Production, College of Food and Agricultural sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Centre of Biotechnology of Sfax (CBS), University of Sfax, LPAP, Sfax, Tunisia
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Biochemistry and Molecular Biology Department, Cairo University Research Park, Cairo University, Giza, Egypt
- * E-mail: (AC); (MAMA-S)
| |
Collapse
|
33
|
Goossens J, De Geyter N, Walton A, Eeckhout D, Mertens J, Pollier J, Fiallos-Jurado J, De Keyser A, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Goormachtig S, Goossens A. Isolation of protein complexes from the model legume Medicago truncatula by tandem affinity purification in hairy root cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:476-489. [PMID: 27377668 DOI: 10.1111/tpj.13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 05/26/2023]
Abstract
Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most powerful techniques to isolate protein complexes and elucidate protein interaction networks. Here, we describe the development of a TAP-MS strategy for the model legume Medicago truncatula, which is widely studied for its ability to produce valuable natural products and to engage in endosymbiotic interactions. As biological material, transgenic hairy roots, generated through Agrobacterium rhizogenes-mediated transformation of M. truncatula seedlings, were used. As proof of concept, proteins involved in the cell cycle, transcript processing and jasmonate signalling were chosen as bait proteins, resulting in a list of putative interactors, many of which confirm the interologue concept of protein interactions, and which can contribute to biological information about the functioning of these bait proteins in planta. Subsequently, binary protein-protein interactions among baits and preys, and among preys were confirmed by a systematic yeast two-hybrid screen. Together, by establishing a M. truncatula TAP-MS platform, we extended the molecular toolbox of this model species.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Nathan De Geyter
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alan Walton
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jan Mertens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jennifer Fiallos-Jurado
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
34
|
Ge L, Yu J, Wang H, Luth D, Bai G, Wang K, Chen R. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci U S A 2016; 113:12414-12419. [PMID: 27791139 PMCID: PMC5098654 DOI: 10.1073/pnas.1611763113] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plant organs, such as seeds, are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a conserved role for the BIG SEEDS1 (BS1) gene in the control of seed size and weight in the model legume Medicago truncatula and the grain legume soybean (Glycine max). BS1 encodes a plant-specific transcription regulator and plays a key role in the control of the size of plant organs, including seeds, seed pods, and leaves, through a regulatory module that targets primary cell proliferation. Importantly, down-regulation of BS1 orthologs in soybean by an artificial microRNA significantly increased soybean seed size, weight, and amino acid content. Our results provide a strategy for the increase in yield and seed quality in legumes.
Collapse
Affiliation(s)
- Liangfa Ge
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Jianbin Yu
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Hongliang Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Diane Luth
- Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA 50011
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
- Hard Winter Wheat Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66506
| | - Kan Wang
- Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA 50011
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Rujin Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401;
| |
Collapse
|
35
|
Laha D, Parvin N, Dynowski M, Johnen P, Mao H, Bitters ST, Zheng N, Schaaf G. Inositol Polyphosphate Binding Specificity of the Jasmonate Receptor Complex. PLANT PHYSIOLOGY 2016; 171:2364-70. [PMID: 27288364 PMCID: PMC4972291 DOI: 10.1104/pp.16.00694] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/07/2016] [Indexed: 05/06/2023]
Abstract
Inositol polyphosphate binding specificity of the jasmonate receptor is largely determined by the F-box protein COI1.
Collapse
Affiliation(s)
- Debabrata Laha
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany (D.L., N.P., P.J., S.T.B., G.S.); Zentrum für Datenverarbeitung, University of Tübingen, 72074 Tübingen, Germany (M.D.); and Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195 (H.M., N.Z.)
| | - Nargis Parvin
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany (D.L., N.P., P.J., S.T.B., G.S.); Zentrum für Datenverarbeitung, University of Tübingen, 72074 Tübingen, Germany (M.D.); and Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195 (H.M., N.Z.)
| | - Marek Dynowski
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany (D.L., N.P., P.J., S.T.B., G.S.); Zentrum für Datenverarbeitung, University of Tübingen, 72074 Tübingen, Germany (M.D.); and Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195 (H.M., N.Z.)
| | - Philipp Johnen
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany (D.L., N.P., P.J., S.T.B., G.S.); Zentrum für Datenverarbeitung, University of Tübingen, 72074 Tübingen, Germany (M.D.); and Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195 (H.M., N.Z.)
| | - Haibin Mao
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany (D.L., N.P., P.J., S.T.B., G.S.); Zentrum für Datenverarbeitung, University of Tübingen, 72074 Tübingen, Germany (M.D.); and Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195 (H.M., N.Z.)
| | - Sven T Bitters
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany (D.L., N.P., P.J., S.T.B., G.S.); Zentrum für Datenverarbeitung, University of Tübingen, 72074 Tübingen, Germany (M.D.); and Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195 (H.M., N.Z.)
| | - Ning Zheng
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany (D.L., N.P., P.J., S.T.B., G.S.); Zentrum für Datenverarbeitung, University of Tübingen, 72074 Tübingen, Germany (M.D.); and Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195 (H.M., N.Z.)
| | - Gabriel Schaaf
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany (D.L., N.P., P.J., S.T.B., G.S.); Zentrum für Datenverarbeitung, University of Tübingen, 72074 Tübingen, Germany (M.D.); and Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195 (H.M., N.Z.)
| |
Collapse
|
36
|
Abstract
Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-L-isoleucine (JA-Ile), is perceived by the COI1-JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.
Collapse
|
37
|
Thatcher LF, Cevik V, Grant M, Zhai B, Jones JDG, Manners JM, Kazan K. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2367-86. [PMID: 26896849 PMCID: PMC4809290 DOI: 10.1093/jxb/erw040] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen PstDC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Murray Grant
- College of Life and Environmental Sciences, University of Exeter, UK
| | - Bing Zhai
- College of Biological Sciences, China Agricultural University, Beijing 100093, China
| | | | - John M Manners
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia
| | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia The Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, Brisbane, Queensland 4072, Australia
| |
Collapse
|
38
|
Li Z, Defoort J, Tasdighian S, Maere S, Van de Peer Y, De Smet R. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms. THE PLANT CELL 2016; 28:326-44. [PMID: 26744215 PMCID: PMC4790876 DOI: 10.1105/tpc.15.00877] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/04/2016] [Indexed: 05/02/2023]
Abstract
Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes.
Collapse
Affiliation(s)
- Zhen Li
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Jonas Defoort
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Setareh Tasdighian
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Riet De Smet
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
39
|
Nagels Durand A, Pauwels L, Goossens A. The Ubiquitin System and Jasmonate Signaling. PLANTS 2016; 5:plants5010006. [PMID: 27135226 PMCID: PMC4844421 DOI: 10.3390/plants5010006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 01/04/2023]
Abstract
The ubiquitin (Ub) system is involved in most, if not all, biological processes in eukaryotes. The major specificity determinants of this system are the E3 ligases, which bind and ubiquitinate specific sets of proteins and are thereby responsible for target recruitment to the proteasome or other cellular processing machineries. The Ub system contributes to the regulation of the production, perception and signal transduction of plant hormones. Jasmonic acid (JA) and its derivatives, known as jasmonates (JAs), act as signaling compounds regulating plant development and plant responses to various biotic and abiotic stress conditions. We provide here an overview of the current understanding of the Ub system involved in JA signaling.
Collapse
Affiliation(s)
- Astrid Nagels Durand
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Laurens Pauwels
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Alain Goossens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
40
|
Niu X, Zhou M, Henkel CV, van Heusden GPH, Hooykaas PJJ. The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F-box gene VBF. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:914-924. [PMID: 26461850 DOI: 10.1111/tpj.13048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 05/29/2023]
Abstract
During Agrobacterium tumefaciens-mediated transformation of plant cells a part of the tumour-inducing plasmid, T-DNA, is integrated into the host genome. In addition, a number of virulence proteins are translocated into the host cell. The virulence protein VirE3 binds to the Arabidopsis thaliana pBrp protein, a plant-specific general transcription factor of the TFIIB family. To study a possible role for VirE3 in transcriptional regulation, we stably expressed virE3 in A. thaliana under control of a tamoxifen-inducible promoter. By RNA sequencing we showed that upon expression of virE3 the RNA levels of 607 genes were increased more than three-fold and those of 132 genes decreased more than three-fold. One of the strongly activated genes was that encoding VBF (At1G56250), an F-box protein that may affect the levels of the VirE2 and VIP1 proteins. Using Arabidopsis cell suspension protoplasts we showed that VirE3 stimulates the VBF promoter, especially when co-expressed with pBrp. Although pBrp is localized at the external surface of plastids, co-expression of VirE3 and pBrp in Arabidopsis cell suspension protoplasts resulted in the accumulation of pBrp in the nucleus. Our results suggest that VirE3 affects the transcriptional machinery of the host cell to favour the transformation process.
Collapse
Affiliation(s)
- Xiaolei Niu
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Meiliang Zhou
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Christiaan V Henkel
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - G Paul H van Heusden
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Paul J J Hooykaas
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| |
Collapse
|
41
|
Pauwels L, Ritter A, Goossens J, Durand AN, Liu H, Gu Y, Geerinck J, Boter M, Vanden Bossche R, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Solano R, Stone S, Innes RW, Callis J, Goossens A. The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. PLANT PHYSIOLOGY 2015; 169:1405-17. [PMID: 26320228 PMCID: PMC4587444 DOI: 10.1104/pp.15.00479] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/27/2015] [Indexed: 05/20/2023]
Abstract
Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCF(COI1)) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCF(COI1) components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability.
Collapse
Affiliation(s)
- Laurens Pauwels
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Andrés Ritter
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Astrid Nagels Durand
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Hongxia Liu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Yangnan Gu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jan Geerinck
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Marta Boter
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Rebecca De Clercq
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Jelle Van Leene
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Kris Gevaert
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Geert De Jaeger
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Roberto Solano
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Sophia Stone
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Roger W Innes
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Judy Callis
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (L.P., A.R., J.Go., A.N.D., J.Ge., R.V.B., R.D.C., J.V.L., G.D.J., A.G.);Department of Molecular and Cellular Biology, University of California, Davis, California 95616 (L.P., J.C.);Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 (H.L., S.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Y.Gu, R.W.I.);Plant Molecular Genetics Department, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas, Campus University Autónoma, 28049 Madrid, Spain (M.B., R.S.);Department of Medical Protein Research, Flanders Institute for Biotechnology, 9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, 9000 Ghent, Belgium (K.G.)
| |
Collapse
|
42
|
Gonzalez N, Pauwels L, Baekelandt A, De Milde L, Van Leene J, Besbrugge N, Heyndrickx KS, Cuéllar Pérez A, Durand AN, De Clercq R, Van De Slijke E, Vanden Bossche R, Eeckhout D, Gevaert K, Vandepoele K, De Jaeger G, Goossens A, Inzé D. A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis. THE PLANT CELL 2015; 27:2273-87. [PMID: 26232487 PMCID: PMC4568497 DOI: 10.1105/tpc.15.00006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/15/2015] [Accepted: 07/16/2015] [Indexed: 05/18/2023]
Abstract
Cell number is an important determinant of final organ size. In the leaf, a large proportion of cells are derived from the stomatal lineage. Meristemoids, which are stem cell-like precursor cells, undergo asymmetric divisions, generating several pavement cells adjacent to the two guard cells. However, the mechanism controlling the asymmetric divisions of these stem cells prior to differentiation is not well understood. Here, we characterized PEAPOD (PPD) proteins, the only transcriptional regulators known to negatively regulate meristemoid division. PPD proteins interact with KIX8 and KIX9, which act as adaptor proteins for the corepressor TOPLESS. D3-type cyclin encoding genes were identified among direct targets of PPD2, being negatively regulated by PPDs and KIX8/9. Accordingly, kix8 kix9 mutants phenocopied PPD loss-of-function producing larger leaves resulting from increased meristemoid amplifying divisions. The identified conserved complex might be specific for leaf growth in the second dimension, since it is not present in Poaceae (grasses), which also lack the developmental program it controls.
Collapse
Affiliation(s)
- Nathalie Gonzalez
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Alexandra Baekelandt
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nienke Besbrugge
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ken S Heyndrickx
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amparo Cuéllar Pérez
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Astrid Nagels Durand
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Rebecca De Clercq
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research and Biochemistry, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
43
|
Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth. PLoS Genet 2015; 11:e1005300. [PMID: 26070206 PMCID: PMC4466561 DOI: 10.1371/journal.pgen.1005300] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage. The study of plant development is generally carried out in the absence of physical injury. However, damage to plant organs through biotic and abiotic insult is common in nature. Under these conditions the jasmonate pathway that has a low activity in unstressed vegetative tissues imposes its activity on cell division and elongation. Such jasmonate-dependent growth restriction can strongly impact plant productivity. Taking roots as a model, we show that it is possible to manipulate regulatory layers in jasmonate signalling such that cell division and cell elongation can be constrained differently. This approach may lead to future strategies to alter organ growth. Moreover, during this study we identified a novel mutant in a key regulator of the jasmonate pathway. This mutant generated a positive regulator of jasmonate signalling that was so active that we were able to show that hormone synthesis can be completely uncoupled from hormone responses, suggesting ways to modify traits of potential agronomic importance.
Collapse
|
44
|
Wu H, Ye H, Yao R, Zhang T, Xiong L. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 232:1-12. [PMID: 25617318 DOI: 10.1016/j.plantsci.2014.12.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 05/21/2023]
Abstract
The basic functions of plant-specific TIFY proteins as transcriptional regulators have been reported in plants. Some TIFY genes are responsive to abiotic stresses, but the functions of these genes in stress tolerance have seldom been reported. OsJAZ9 is a member of the JAZ subfamily which belongs to the TIFY gene family in rice (Oryza sativa). Suppression of OsJAZ9 resulted in reduced salt tolerance. The altered salt tolerance was mainly due to changes in ion (especially K(+)) homeostasis, which was supported by the altered expression levels of several ion transporter genes. The OsJAZ9-suppression rice plants showed increased sensitivity to jasmonic acid (JA) treatment. OsJAZ9 interacts with OsCOI1a, a component of the SCF(COI1) E3 ubiquitin ligase complex, in a coronatine-dependent manner, suggesting that OsJAZ9 is involved in the regulation of JA signaling. OsJAZ9 interacts with several bHLH transcription factors including OsbHLH062 via the Jas domain. OsbHLH062 can bind to an E-box in the promoters of the ion transporter genes such as OsHAK21, and most of these ion transporter genes are responsive to JA treatment. We found that OsJAZ9 can also interact with OsNINJA, a rice homolog of the Arabidopsis thaliana transcriptional repressor NINJA in JA signaling. Both OsJAZ9 and OsNINJA (Novel Interactor of JAZ) repressed OsbHLH062-mediated transcription activation. These results together suggest that OsJAZ9 acts as a transcriptional regulator by forming a transcriptional regulation complex with OsNINJA and OsbHLH to fine tune the expression of JA-responsive genes involved in salt stress tolerance in rice.
Collapse
Affiliation(s)
- Hua Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Ye
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruifeng Yao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
45
|
|
46
|
Kalhorzadeh P, Hu Z, Cools T, Amiard S, Willing EM, De Winne N, Gevaert K, De Jaeger G, Schneeberger K, White CI, De Veylder L. Arabidopsis thaliana RNase H2 deficiency counteracts the needs for the WEE1 checkpoint kinase but triggers genome instability. THE PLANT CELL 2014; 26:3680-92. [PMID: 25217508 PMCID: PMC4213155 DOI: 10.1105/tpc.114.128108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The WEE1 kinase is an essential cell cycle checkpoint regulator in Arabidopsis thaliana plants experiencing replication defects. Whereas under non-stress conditions WEE1-deficient plants develop normally, they fail to adapt to replication inhibitory conditions, resulting in the accumulation of DNA damage and loss of cell division competence. We identified mutant alleles of the genes encoding subunits of the ribonuclease H2 (RNase H2) complex, known for its role in removing ribonucleotides from DNA-RNA duplexes, as suppressor mutants of WEE1 knockout plants. RNase H2 deficiency triggered an increase in homologous recombination (HR), correlated with the accumulation of γ-H2AX foci. However, as HR negatively impacts the growth of WEE1-deficient plants under replication stress, it cannot account for the rescue of the replication defects of the WEE1 knockout plants. Rather, the observed increase in ribonucleotide incorporation in DNA indicates that the substitution of deoxynucleotide with ribonucleotide abolishes the need for WEE1 under replication stress. Strikingly, increased ribonucleotide incorporation in DNA correlated with the occurrence of small base pair deletions, identifying the RNase H2 complex as an important suppressor of genome instability.
Collapse
Affiliation(s)
- Pooneh Kalhorzadeh
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zhubing Hu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Simon Amiard
- Génétique, Reproduction et Développement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6293-Clermont Université-Institut National de la Santé et de la Recherche Médicale U1103, F-63177 Aubière, France
| | - Eva-Maria Willing
- Department for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Nancy De Winne
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, Flanders Institute for Biotechnology (VIB), B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Korbinian Schneeberger
- Department for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Charles I White
- Génétique, Reproduction et Développement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6293-Clermont Université-Institut National de la Santé et de la Recherche Médicale U1103, F-63177 Aubière, France
| | - Lieven De Veylder
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|