1
|
Obata A, Iguchi M, Yasue H, Kasuga T. Influence of Seven Ion Species on Osteogenic Differentiation of Mesenchymal Stem Cells Stimulated by Macrophages in Indirect and Direct Coculture Systems. J Biomed Mater Res A 2025; 113:e37875. [PMID: 39806929 DOI: 10.1002/jbm.a.37875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells. However, DNA production was relatively unaffected. The MSC secretome may also stimulate RAW cells in coculture and, therefore, affect osteogenic differentiation of MSCs. Overall, the ions often exerted different effects on each cell type. This study guides future work that explores the mechanisms behind ion-dependent osteogenic differentiation and cell functions.
Collapse
Affiliation(s)
- Akiko Obata
- Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Makito Iguchi
- Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Hikaru Yasue
- Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Toshihiro Kasuga
- Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
2
|
Turżańska K, Tomczyk-Warunek A, Dobrzyński M, Jarzębski M, Patryn R, Niezbecka-Zając J, Wojciechowska M, Mela A, Zarębska-Mróz A. Strontium Ranelate and Strontium Chloride Supplementation Influence on Bone Microarchitecture and Bone Turnover Markers-A Preliminary Study. Nutrients 2023; 16:91. [PMID: 38201922 PMCID: PMC10781151 DOI: 10.3390/nu16010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Despite strontium ranelate use in osteoporosis management being one of the promising concepts in disease treatment, there is no clear evidence that strontium organic compounds are more effective than inorganic ones. The aim of this study was to compare strontium chlorate and strontium ranelate influence on the mice bone microarchitecture. We investigated whether strontium chlorate (7.532 mmol/L) and strontium ranelate (7.78 mmol/L) solutions fed to healthy SWISS growing mice (n = 42) had an influence on the percent of bone volume (BV/TV), trabecular thickness (Tb.Th), number of trabeculae (Tb.N), and separation between each trabecula (Tb.Sp) in the chosen ROI (region of interest) in the distal metaphysis of the left femurs. The cortical bone surface was examined close to the ROI proximal scan. There was an increase in each examined parameter compared with the control group. There were no statistical differences between strontium ranelate and strontium chlorate parameters. Our study indicates that organic and inorganic strontium compounds similarly affect the bone microarchitecture and strength.
Collapse
Affiliation(s)
- Karolina Turżańska
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.T.); (J.N.-Z.); (A.Z.-M.)
| | - Agnieszka Tomczyk-Warunek
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.T.); (J.N.-Z.); (A.Z.-M.)
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland;
| | - Rafał Patryn
- Department of Humanities and Social Medicine, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | - Joanna Niezbecka-Zając
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.T.); (J.N.-Z.); (A.Z.-M.)
| | - Monika Wojciechowska
- Department of Pediatrics and Nephrology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Aneta Mela
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Aneta Zarębska-Mróz
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.T.); (J.N.-Z.); (A.Z.-M.)
| |
Collapse
|
3
|
Salam N, Gibson IR. Lithium ion doped carbonated hydroxyapatite compositions: Synthesis, physicochemical characterisation and effect on osteogenic response in vitro. BIOMATERIALS ADVANCES 2022; 140:213068. [PMID: 35939955 DOI: 10.1016/j.bioadv.2022.213068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite is a commonly researched biomaterial for bone regeneration applications. To augment performance, hydroxyapatite can be substituted with functional ions to promote repair. Here, co-substituted lithium ion (Li+) and carbonate ion hydroxyapatite compositions were synthesised by an aqueous precipitation method. The co-substitution of Li+ and CO32- is a novel approach that accounts for charge balance, which has been ignored in the synthesis of Li doped calcium phosphates to date. Three compositions were synthesised: Li+-free (Li 0), low Li+ (Li 0.25), and high Li+ (Li 1). Synthesised samples were sintered as microporous discs (70-75 % theoretical sintered density) prior to being ground and fractionated to produce granules and powders, which were then characterised and evaluated in vitro. Physical and chemical characterisation demonstrated that lithium incorporation in Li 0.25 and Li 1 samples approached design levels (0.25 and 1 mol%), containing 0.253 and 0.881 mol% Li+ ions, respectively. The maximum CO32- ion content was observed in the Li 1 sample, with ~8 wt% CO3, with the carbonate ions located on both phosphate and hydroxyl sites in the crystal structure. Measurement of dissolution products following incubation experiments indicated a Li+ burst release profile in DMEM, with incubation of 30 mg/ml sample resulting in a Li+ ion concentration of approximately 140 mM after 24 h. For all compositions evaluated, sintered discs allowed for favourable attachment and proliferation of C2C12 cells, human osteoblast (hOB) cells, and human mesenchymal stem cells (hMSCs). An increase in alkaline phosphatase (ALP) activity with Li+ doping was demonstrated in C2C12 cells and hMSCs seeded onto sintered discs, whilst the inverse was observed in hOB cells. Furthermore, an increase in ALP activity was observed in C2C12 cells and hMSCs in response to dissolution products from Li 1 samples which related to Li+ release. Complementary experiments to further investigate the findings from hOB cells confirmed an osteogenic role of the surface topography of the discs. This research has shown successful synthesis of Li+ doped carbonated hydroxyapatite which demonstrated cytocompatibility and enhanced osteogenesis in vitro, compared to Li+-free controls.
Collapse
Affiliation(s)
- Nasseem Salam
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Iain R Gibson
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK.
| |
Collapse
|
4
|
Li Y, Zhang D, Wan Z, Yang X, Cai Q. Dental resin composites with improved antibacterial and mineralization properties via incorporating zinc/strontium-doped hydroxyapatite as functional fillers. Biomed Mater 2022; 17. [PMID: 35483341 DOI: 10.1088/1748-605x/ac6b72] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
This study intends to improve the antibacterial and mineralization performance of photocurable dental resin composites (DRCs) to reduce the possibility of repair failure caused by secondary caries. To the end, functionalized hydroxyapatite (HAp), including Zn-doped (Zn/HAp) and Sr-doped HAp (Sr/HAp), were added into the bisphenol A glycidyl methacrylate and triethylene glycol dimethacrylate mixture, providing the DRCs with antibacterial and mineralization capacity, respectively. By controlling the total amount of inorganic filler at 70 wt%, these HAp powders were introduced into the resin matrix with barium glass powder (BaGP), while the ratios of HAp to aGP varied from 0:70 to 8:62. And the 8 wt% of HAp could be pure HAp, Zn/HAp, Sr/HAp, or Zn/HAp +Sr/HAp in different ratios (i.e. 2:6, 4:4, 6:2). Though the fillers varied, the obtained DRCs displayed similar micro-morphology, flexural strength (∼110 MPa) and modulus (∼7 GPa), and Vickers hardness (∼65). When the doping amounts of Sr2+/Zn2+reached 15 mol% of Ca2+in the Sr/HAp and Zn/HAp, the DRCs displayed a high antibacterial activity by killing ∼95%Staphylococcus aureus, and induced rich mineral deposition on surface in simulated body fluid. The incorporation of the Zn/HAp and Sr/HAp into the DRCs did not cause significant cytotoxicity, with L929 fibroblasts remaining >99% viability as cultured in extracts made from the DRCs. Therein, the DRC preparations containing both Zn/HAp and Sr/HAp have achieved improvements in both the biomineralization and antibacterial performance, as well as, having sufficient mechanical properties and excellent biocompatibility for dental restoration.
Collapse
Affiliation(s)
- Yechen Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Daixing Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhuo Wan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,Foshan (Southern China) Institute for New Materials, Foshan 528200, Guangdong, People's Republic of China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
5
|
Ruffini A, Sandri M, Dapporto M, Campodoni E, Tampieri A, Sprio S. Nature-Inspired Unconventional Approaches to Develop 3D Bioceramic Scaffolds with Enhanced Regenerative Ability. Biomedicines 2021; 9:916. [PMID: 34440120 PMCID: PMC8389705 DOI: 10.3390/biomedicines9080916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Material science is a relevant discipline in support of regenerative medicine. Indeed, tissue regeneration requires the use of scaffolds able to guide and sustain the natural cell metabolism towards tissue regrowth. This need is particularly important in musculoskeletal regeneration, such as in the case of diseased bone or osteocartilaginous regions for which calcium phosphate-based scaffolds are considered as the golden solution. However, various technological barriers related to conventional ceramic processing have thus far hampered the achievement of biomimetic and bioactive scaffolds as effective solutions for still unmet clinical needs in orthopaedics. Driven by such highly impacting socioeconomic needs, new nature-inspired approaches promise to make a technological leap forward in the development of advanced biomaterials. The present review illustrates ion-doped apatites as biomimetic materials whose bioactivity resides in their unstable chemical composition and nanocrystallinity, both of which are, however, destroyed by the classical sintering treatment. In the following, recent nature-inspired methods preventing the use of high-temperature treatments, based on (i) chemically hardening bioceramics, (ii) biomineralisation process, and (iii) biomorphic transformations, are illustrated. These methods can generate products with advanced biofunctional properties, particularly biomorphic transformations represent an emerging approach that could pave the way to a technological leap forward in medicine and also in various other application fields.
Collapse
Affiliation(s)
| | | | | | | | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, 48018 Faenza, Italy; (A.R.); (M.S.); (M.D.); (E.C.)
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, 48018 Faenza, Italy; (A.R.); (M.S.); (M.D.); (E.C.)
| |
Collapse
|
6
|
Li L, Yao L, Wang H, Shen X, Lou W, Huang C, Wu G. Magnetron sputtering of strontium nanolayer on zirconia implant to enhance osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112191. [PMID: 34225847 DOI: 10.1016/j.msec.2021.112191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The zirconia implants have a wide range of clinical applications, however, the biological inertness and lack of osteoinductive properties limit these applications. Strontium possesses superior biocompatibility and excellent osteogenic properties. To take advantage of these, the strontium titanate-coated zirconia implants were prepared in this study by sandblasting, acid etching, and magnetron sputtering, followed by the analysis of the biological behavior. Briefly, the zirconia sheets were polished and subjected to sandblasting and acid etching. Subsequently, a nano‑strontium titanate coating was developed on the sheets by magnetron sputtering. The specimens were characterized by scanning electron microscopy (SEM), water contact angle measurement (WCA) and EDS mapping, which confirmed the physical alternation and successful deposition of the strontium titanate coating. The in vitro experiments indicated that the majority of the filopodia and actin fibers of the MC3T3-E1 cells on SA-ZrO2/Sr possessed an optimal osteogenic property to promote the osteogenic differentiation. Moreover, the RT-PCR results revealed that SA-ZrO2/Sr significantly up-regulated the gene expression of Runx2, COL-1, ALP, OPG, OPN and OCN. Further, the in vivo evaluation confirmed that the SA-ZrO2/Sr implants promoted the bone-implant osseointegration to the greatest extent as compared to SA-ZrO2 and ZrO2 implant. Overall, the SA-ZrO2/Sr system was confirmed to be a promising implant, thus, providing new pathways for an effective implant design.
Collapse
Affiliation(s)
- Li Li
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China; Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
| | - Litao Yao
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China; Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands.
| | - Haiyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xufei Shen
- Deqing campus, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiwei Lou
- Department of stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chengyi Huang
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands; Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| |
Collapse
|
7
|
Negrescu AM, Cimpean A. The State of the Art and Prospects for Osteoimmunomodulatory Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1357. [PMID: 33799681 PMCID: PMC7999637 DOI: 10.3390/ma14061357] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The critical role of the immune system in host defense against foreign bodies and pathogens has been long recognized. With the introduction of a new field of research called osteoimmunology, the crosstalk between the immune and bone-forming cells has been studied more thoroughly, leading to the conclusion that the two systems are intimately connected through various cytokines, signaling molecules, transcription factors and receptors. The host immune reaction triggered by biomaterial implantation determines the in vivo fate of the implant, either in new bone formation or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and in vivo results were reported. This led to a shift in the development of biomaterials towards implants with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain a proper bone regeneration process. In this context, various approaches, such as the modification of chemical/structural characteristics or the incorporation of bioactive molecules, have been employed in order to modulate the crosstalk with the immune cells. The current review provides an overview of recent developments in such applied strategies.
Collapse
Affiliation(s)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
8
|
Lodoso-Torrecilla I, Klein Gunnewiek R, Grosfeld EC, de Vries RBM, Habibović P, Jansen JA, van den Beucken JJJP. Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve in vivo performance: a systematic review and meta-analysis of animal studies. Biomater Sci 2020; 8:4792-4809. [PMID: 32729591 DOI: 10.1039/d0bm00599a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supplementation of CaP-based bone graft substitutes with bioinorganics such as strontium, zinc or silicon is an interesting approach to increase the biological performance in terms of bone regenerative potential of calcium phosphate (CaP)-based bone substitutes. However, the in vivo efficacy of this approach has not been systematically analyzed, yet. Consequently, we performed a systematic review using the available literature regarding the effect of bioinorganic supplementation in CaP-based biomaterials on new bone formation and material degradation in preclinical animal bone defect models and studied this effect quantitatively by performing a meta-analysis. Additional subgroup analyses were used to study the effect of different bioinorganics, animal model, or phase category of CaP-based biomaterial on bone formation or material degradation. Results show that bioinorganic supplementation increases new bone formation (standardized mean difference [SMD]: 1.43 SD, confidence interval [CI]: 1.13-1.73). Additional subgroup analysis showed that strontium, magnesium and silica significantly enhanced bone formation, while zinc did not have any effect. This effect of bioinorganic supplementation on new bone formation was stronger for DCPD or β-TCP and biphasic CaPs than for HA or α-TCP (p < 0.001). In general, material degradation was slightly hindered by bioinorganic supplementation (mean difference [MD]: 0.84%, CI: 0.01-1.66), with the exception of strontium that significantly enhanced degradation. Overall, bioinorganic supplementation represents an effective approach to enhance the biological performance of CaP-based bone substitutes.
Collapse
|
9
|
Yang L, Chen S, Shang T, Zhao R, Yuan B, Zhu X, Raucci MG, Yang X, Zhang X, Santin M, Ambrosio L. Complexation of Injectable Biphasic Calcium Phosphate with Phosphoserine-Presenting Dendrons with Enhanced Osteoregenerative Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37873-37884. [PMID: 32687309 DOI: 10.1021/acsami.0c09004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Injectable biphasic calcium phosphates have been proposed as a solution in the treatment of a range of clinical applications including as fillers in the augmentation of osteoporotic bone. To date, various biodegradable natural or synthetic organics have been used as a polymer component of bone materials to increase their cohesiveness. Herein, a novel bone material was developed combining osteoconductive biphasic calcium phosphate (BCP) nanoparticles with phosphoserine-tethered generation 3 poly(epsilon-lysine) dendron (G3-K PS), a class of hyperbranched peptides previously shown to induce biomineralization and stem cell osteogenic differentiation. Strontium was also incorporated into the BCP nanocrystals (SrBCP) to prevent bone resorption. Within 24 h, an antiwashout behavior was observed in G3-K PS-integrated pure BCP group (BCPG3). Moreover, both in vitro tests by relevant cell phenotypes and an in vivo tissue regeneration study by an osteoporotic animal bone implantation showed that the integration of G3-K PS would downregulate Cxcl9 gene and protein expressions, thus enhancing bone regeneration measured as bone mineral density, new bone volume ratio, and trabecular microarchitectural parameters. However, no synergistic effect was found when Sr was incorporated into the BCPG3 bone pastes. Notably, results indicated a concomitant reduction of bone regeneration potential assessed as reduced Runx2 and PINP expression when bone resorptive RANKL and CTX-I levels were reduced by Sr supplementation. Altogether, the results suggest the potential of injectable BCPG3 bone materials in the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Long Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Tieliang Shang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Rui Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bo Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials (IPCB)-National Research Council of Italy (CNR), 80125 Naples, Italy
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Matteo Santin
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, U.K
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials (IPCB)-National Research Council of Italy (CNR), 80125 Naples, Italy
| |
Collapse
|
10
|
Marx D, Rahimnejad Yazdi A, Papini M, Towler M. A review of the latest insights into the mechanism of action of strontium in bone. Bone Rep 2020; 12:100273. [PMID: 32395571 PMCID: PMC7210412 DOI: 10.1016/j.bonr.2020.100273] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Interest in strontium (Sr) has persisted over the last three decades due to its unique mechanism of action: it simultaneously promotes osteoblast function and inhibits osteoclast function. While this mechanism of action is strongly supported by in vitro studies and small animal trials, recent large-scale clinical trials have demonstrated that orally administered strontium ranelate (SrRan) may have no anabolic effect on bone formation in humans. Yet, there is a strong correlation between Sr accumulation in bone and reduced fracture risk in post-menopausal women, suggesting Sr acts via a purely physiochemical mechanism to enhance bone strength. Conversely, the local administration of Sr with the use of modified biomaterials has been shown to enhance bone growth, osseointegration and bone healing at the bone-implant interface, to a greater degree than Sr-free materials. This review summarizes current knowledge of the main cellular and physiochemical mechanisms that underly Sr's effect in bone, which center around Sr's similarity to calcium (Ca). We will also summarize the main controversies in Sr research which cast doubt on the 'dual-acting mechanism'. Lastly, we will explore the effects of Sr-modified bone-implant materials both in vitro and in vivo, examining whether Sr may act via an alternate mechanism when administered locally.
Collapse
Affiliation(s)
- Daniella Marx
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada
| | - Alireza Rahimnejad Yazdi
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| | - Marcello Papini
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| | - Mark Towler
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| |
Collapse
|
11
|
Guo S, Yu D, Xiao X, Liu W, Wu Z, Shi L, Zhao Q, Yang D, Lu Y, Wei X, Tang Z, Wang N, Li X, Han Y, Guo Z. A vessel subtype beneficial for osteogenesis enhanced by strontium-doped sodium titanate nanorods by modulating macrophage polarization. J Mater Chem B 2020; 8:6048-6058. [PMID: 32627795 DOI: 10.1039/d0tb00282h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Early vascularization plays an important role in bone healing, especially in interfacial bone formation.
Collapse
|
12
|
Functionalization of Ceramic Coatings for Enhancing Integration in Osteoporotic Bone: A Systematic Review. COATINGS 2019. [DOI: 10.3390/coatings9050312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The success of reconstructive orthopaedic surgery strongly depends on the mechanical and biological integration between the prosthesis and the host bone tissue. Progressive population ageing with increased frequency of altered bone metabolism conditions requires new strategies for ensuring an early implant fixation and long-term stability. Ceramic materials and ceramic-based coatings, owing to the release of calcium phosphate and to the precipitation of a biological apatite at the bone-implant interface, are able to promote a strong bonding between the host bone and the implant. Methods: The aim of the present systematic review is the analysis of the existing literature on the functionalization strategies for improving the implant osteointegration in osteoporotic bone and their relative translation into the clinical practice. The review process, conducted on two electronic databases, identified 47 eligible preclinical studies and 5 clinical trials. Results: Preclinical data analysis showed that functionalization with both organic and inorganic molecules usually improves osseointegration in the osteoporotic condition, assessed mainly in rodent models. Clinical studies, mainly retrospective, have tested no functionalization strategies. Registered trademarks materials have been investigated and there is lack of information about the micro- or nano- topography of ceramics. Conclusions: Ceramic materials/coatings functionalization obtained promising results in improving implant osseointegration even in osteoporotic conditions but preclinical evidence has not been fully translated to clinical applications.
Collapse
|
13
|
Lu X, Zhang W, Liu Z, Ma S, Sun Y, Wu X, Zhang X, Gao P. Application of a Strontium-Loaded, Phase-Transited Lysozyme Coating to a Titanium Surface to Enhance Osteogenesis and Osteoimmunomodulation. Med Sci Monit 2019; 25:2658-2671. [PMID: 30973161 PMCID: PMC6476409 DOI: 10.12659/msm.914269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background To fabricate strontium (Sr)-incorporated titanium (Ti) surfaces by a novel 1-step phase-transited lysozyme (PTL) treatment, and investigate the effects of the prepared samples on osteogenesis and osteoimmunoregulation. Material/Methods Five groups of titanium specimens were prepared, including Ti, PTL, PTL@10Sr (PTL coating with 10 mg/mL Sr), PTL@20Sr PTL coating with 20 mg/mL Sr), and PTL@50Sr (PTL coating with 50 mg/mL Sr) groups. Behaviors of bone marrow mesenchymal stem cells (BMSCs) such as initial attachment, spread, proliferation, and migration, on different surfaces were examined by immunofluorescence, MTS assay, and Transwell system. Then the osteogenic differentiation of BMSCs was detected. When an immune response was factored in, the polarization of macrophages induced by the prepared surfaces was detected by real-time PCR, and the response of BMSCs to macrophage-conditioned medium was assessed in terms of cell migration and osteogenic differentiation. Finally, an in vivo study was performed, using the rat femora implant model, to evaluate the potential for osteogenic induction and osteoimmunoregulation of materials. Results Our in vitro experiments indicated that PTL coating could improve cell spread and adhesion, and the stable Sr release of PTL@Sr layers could promote cell migration and osteogenesis. Moreover, PTL@Sr surface could regulate the immune response of macrophages resulting in enhanced BMSCs recruitment and osteogenic differentiation. The in vivo evaluation showed less inflammatory infiltration and improved bone formation in the PTL@20Sr group. Conclusions The Sr-loaded PTL layers have greater potential for the induction of osteogenic differentiation of BMSCs, meanwhile Sr-loaded PTL layers could adjust the immune response and thus promote osteogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Xin Lu
- Tianjin Medical University School and Hospital of Stomatology, Tianjin, China (mainland)
| | - Wenxin Zhang
- Tianjin Medical University School and Hospital of Stomatology, Tianjin, China (mainland)
| | - Zihao Liu
- Tianjin Medical University School and Hospital of Stomatology, Tianjin, China (mainland)
| | - Shiqing Ma
- Tianjin Medical University School and Hospital of Stomatology, Tianjin, China (mainland)
| | - Yingchun Sun
- Tianjin Medical University School and Hospital of Stomatology, Tianjin, China (mainland)
| | - Xudong Wu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China (mainland)
| | - Xu Zhang
- Tianjin Medical University School and Hospital of Stomatology, Tianjin, China (mainland)
| | - Ping Gao
- Tianjin Medical University School and Hospital of Stomatology, Tianjin, China (mainland)
| |
Collapse
|
14
|
The Role of Strontium Enriched Hydroxyapatite and Tricalcium Phosphate Biomaterials in Osteoporotic Bone Regeneration. Symmetry (Basel) 2019. [DOI: 10.3390/sym11020229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Strontium (Sr) enriched biomaterials have been used to improve bone regeneration in vivo. However, most studies provide only two experimental groups. The aim of our study was to compare eleven different bone sample groups from osteoporotic and healthy rabbits’ femoral neck, as it is the most frequent osteoporotic fracture in humans. Methods: Osteoporotic bone defects were filled with hydroxyapatite 30% (HA) and tricalcium phosphate 70% (TCP), 5% Sr-enriched HA30/TCP70, HA70/TCP30, or Sr-HA70/TCP30 granules and were compared with intact leg, sham surgery and healthy non-operated bone. Expression of osteoprotegerin (OPG), nuclear factor kappa beta 105 (NFkB-105), osteocalcin (OC), bone morphogenetic protein 2/4 (BMP-2/4), collagen I (Col-1α), matrix metalloproteinase 2 (MMP-2), tissue inhibitor of matrix metalloproteinase 2 (TIMP-2), interleukin 1 (IL-1) and interleukin 10 (IL-10) was analyzed by histomorphometry and immunohistochemistry. Results: Our study showed that Sr-HA70/TCP30 induced higher expression of all above-mentioned factors compared to intact leg and even higher expression of OC, MMP-2 and NFkB-105 compared to Sr-HA30/TCP70. HA70/TCP30 induced higher level of NFkB-105 and IL-1 compared to HA30/TCP70. Conclusion: Sr-enriched biomaterials improved bone regeneration at molecular level in severe osteoporosis and induced activity of the factors was higher than after pure ceramic, sham or even healthy rabbits.
Collapse
|
15
|
Antiresorptive properties of strontium substituted and alendronate functionalized hydroxyapatite nanocrystals in an ovariectomized rat spinal arthrodesis model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:355-362. [DOI: 10.1016/j.msec.2017.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 09/21/2017] [Accepted: 11/17/2017] [Indexed: 11/24/2022]
|
16
|
Li D, Chen K, Duan L, Fu T, Li J, Mu Z, Wang S, Zou Q, Chen L, Feng Y, Li Y, Zhang H, Wang H, Chen T, Ji P. Strontium Ranelate Incorporated Enzyme-Cross-Linked Gelatin Nanoparticle/Silk Fibroin Aerogel for Osteogenesis in OVX-Induced Osteoporosis. ACS Biomater Sci Eng 2019; 5:1440-1451. [DOI: 10.1021/acsbiomaterials.8b01298] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Kaiwen Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lian Duan
- College of Textiles and Garments, Southwest University, Chongqing 400715, P. R. China
| | - Tiwei Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Jiao Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Zhixiang Mu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Si Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Li Chen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yangyingfan Feng
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Yihan Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Huanan Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| |
Collapse
|
17
|
Yuan B, Raucci MG, Fan Y, Zhu X, Yang X, Zhang X, Santin M, Ambrosio L. Injectable strontium-doped hydroxyapatite integrated with phosphoserine-tethered poly(epsilon-lysine) dendrons for osteoporotic bone defect repair. J Mater Chem B 2018; 6:7974-7984. [PMID: 32255042 DOI: 10.1039/c8tb02526f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The control of the inflammatory response induced by the implantation of foreign biomaterials is fundamental in determining tissue healing. It has been shown that the activation of specific macrophage pathways upon contact with a biomaterial can lead either to a chronic inflammation preventing a physiological tissue repair or to an improved tissue healing. In the case of bone repair, calcium phosphate cements with good osteoconductivity properties have been successfully applied in bone defect filling and repair, but poor handling properties, insufficient viscous flow and unmatched degradation rate are still problems that remain unsolved. In this study, a strontium-doped hydroxyapatite (HA) gel was modified by integrating branched poly(epsilon-lysine) dendrons with third-generation branches exposing phosphoserine (SrHA/G3-K PS). The interaction of this material with macrophages was investigated in vitro, focusing on the secretion and gene expression of specific pro-inflammatory cytokines. Our results showed that the addition of strontium and G3-K PS to HA sol-gel could down-regulate the gene expression of inflammatory factors such as IL-1β, TNF-α and MCP-1, while increasing the gene expression of IL-6, a cytokine known for its osteogenic effect. These results were further confirmed by ELISA test of the respective protein concentrations. When exposed to supernatants of macrophage culture in the presence of strontium and G3-K PS, osteoblast viability was promoted with elevated osteogenic gene markers, in terms of OPG, ALP, OCN and COL-I. In vivo implantation experiments using an osteoporotic rat model with bone defect further confirmed that the addition of G3-K PS to HA could dramatically promote new bone regeneration. Although the introduction of strontium improved the degradation properties of the injectable materials, no positive effect on promoting in vivo bone regeneration was observed.
Collapse
Affiliation(s)
- Bo Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhao F, Lei B, Li X, Mo Y, Wang R, Chen D, Chen X. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials 2018; 178:36-47. [PMID: 29908343 DOI: 10.1016/j.biomaterials.2018.06.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023]
Abstract
Early vascularization capacity of biomaterials plays an essential role in efficient wound healing and tissue regeneration, especially in large tissue tension implanting position such as bone augmentation. Strontium-contained silica-based bioactive materials have shown the role of promoting angiogenesis by stimulating osteoblasts to secrete angiogenesis related cytokines. However, osteoblasts have little effect on early angiogenesis due to the inflammatory reaction of implantation site. Here, for the first time, we found that the monodispersed strontium-contained bioactive glasses microspheres (SrBGM) could significantly promote the early angiogenesis through regulating macrophage phenotypes. After being stimulated with SrBGM in vitro, RAW cells (macrophages) presented a trend towards to M2 phenotype and expressed high level of platelet-derived growth factor-BB (PDGF-BB). Moreover, the RAW conditioned medium of SrBGM significantly enhanced the angiogenic capacity of HUVECs. The in vivo early vascularization studies showed that significant new vessels were observed at the center of SrBGM-based scaffolds after implantation for 1 week in a bone defect model of rats, suggesting their enhanced early vascularization. Due to the efficient vascularization, the in vivo new bone formation was promoted significantly. Our study may provide a novel strategy to promote the early vascularization of biomaterials through modulating the microphage phenotypes, which has wide applications in various tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Fujian Zhao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Xian Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Yunfei Mo
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, 100035, China.
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Aroni MAT, de Oliveira GJPL, Spolidório LC, Andersen OZ, Foss M, Marcantonio RAC, Stavropoulos A. Loading deproteinized bovine bone with strontium enhances bone regeneration in rat calvarial critical size defects. Clin Oral Investig 2018; 23:1605-1614. [DOI: 10.1007/s00784-018-2588-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/17/2018] [Indexed: 12/01/2022]
|
20
|
Shyong YJ, Chang KC, Lin FH. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug delivery. Colloids Surf B Biointerfaces 2018; 171:391-397. [PMID: 30064087 DOI: 10.1016/j.colsurfb.2018.07.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are attractive potential carriers for drug delivery because of their natural function of transferring biomolecules among cells without eliciting immune responses. However, an obstacle to the application of exosomes for drug delivery is the difficulty in collecting sufficient numbers of these vesicles. In this study, we demonstrate treatment with calcium phosphate (CaP) particles could increase over two-fold the number of exosomes secreted from macrophage-like RAW264.7 cells and monocyte-like THP-1 cells. CaP particles were easily internalized into cells and dissolved in acidic late-endosomes or lysosomes, resulting in the rupture of their membranes followed by the release of Ca2+ into cytosol. Moreover, we found that exosomes secreted from cells treated with CaP particles are not contaminated by the Ca2+ released from CaP; the Ca2+ contents in exosomes secreted from CaP particle-treated cells were similar to that in exosomes from untreated control cells. This study highlights the potential for the efficient production of exosomes using CaP particles for drug delivery.
Collapse
Affiliation(s)
- Yan-Jye Shyong
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Kuo-Chi Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Road, Taipei, 10608, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan.
| |
Collapse
|
21
|
Zarins J, Pilmane M, Sidhoma E, Salma I, Locs J. Immunohistochemical evaluation after Sr-enriched biphasic ceramic implantation in rabbits femoral neck: comparison of seven different bone conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:119. [PMID: 30030632 DOI: 10.1007/s10856-018-6124-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Strontium (Sr) has shown effectiveness for stimulating bone remodeling. Nevertheless, the exact therapeutic values are not established yet. Authors hypothesized that local application of Sr-enriched ceramics would enhance bone remodeling in constant osteoporosis of rabbits' femoral neck bone. Seven different bone conditions were analyzed: ten healthy rabbits composed a control group, while other twenty underwent ovariectomy and were divided into three groups. Bone defect was filled with hydroxyapatite 30% (HAP) and tricalcium phosphate 70% (TCP) granules in 7 rabbits, 5% of Sr-enriched HAP/TCP granules in 7, but sham defect was left unfilled in 6 rabbits. Bone samples were obtained from operated and non-operated legs 12 weeks after surgery and analyzed by histomorphometry and immunohistochemistry (IMH). Mean trabecular bone area in control group was 0.393 mm2, in HAP/TCP - 0.226 mm2, in HAP/TCP/Sr - 0.234 mm2 and after sham surgery - 0.242 mm2. IMH revealed that HAP/TCP/Sr induced most noticeable increase of nuclear factor kappa beta 105 (NFkB 105), osteoprotegerin (OPG), osteocalcin (OC), bone morphogenetic protein 2/4 (BMP 2/4), collagen type 1α (COL-1α), interleukin 1 (IL-1) with comparison to intact leg; NFkB 105 and OPG rather than pure HAP/TCP or sham bone. We concluded that Sr-enriched biomaterials induce higher potential to improve bone regeneration than pure bioceramics in constant osteoporosis of femoral neck bone. Further studies on bigger osteoporotic animals using Sr-substituted orthopedic implants for femoral neck fixation should be performed to confirm valuable role in local treatment of osteoporotic femoral neck fractures in humans.
Collapse
Affiliation(s)
- Janis Zarins
- Department of Hand and Plastic Surgery, Microsurgery Centre of Latvia, Brivibas Street 410, Riga, Latvia.
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia.
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Elga Sidhoma
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Ilze Salma
- Department of Oral and Maxillofacial Surgery, Riga Stradins University, Dzirciema Street 20, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of Riga Technical University, Pulka Street 3, Riga, Latvia
| |
Collapse
|
22
|
Li K, Hu D, Xie Y, Huang L, Zheng X. Sr-doped nanowire modification of Ca-Si-based coatings for improved osteogenic activities and reduced inflammatory reactions. NANOTECHNOLOGY 2018; 29:084001. [PMID: 29256438 DOI: 10.1088/1361-6528/aaa2b4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biomedical coatings for orthopedic implants should facilitate osseointegration and mitigate implant-induced inflammatory reactions. In our study, Ca-Si coatings with Sr-containing nanowire-like structures (NW-Sr-CS) were achieved via hydrothermal treatment. In order to identify the effect of nanowire-like topography and Sr dopant on the biological properties of Ca-Si-based coatings, the original Ca-Si coating, Ca-Si coatings modified with nanoplate (NP-CS) and similar nanowire-like structure (NW-CS) were fabricated as the control. Surface morphology, phase composition, surface area, zeta potential and ion release of these coatings were characterized. The in vitro osteogenic activities and immunomodulatory properties were evaluated with bone marrow stromal cells (BMSCs) and RAW 264.7 cells, a mouse macrophage cell line. Compared with the CS and NP-CS coatings, the NW-CS coating possessed a larger surface area and pore volume, beneficial protein adsorption, up-regulated the expression levels of integrin β1, Vinculin and focal adhesion kinase and promoted cell spreading. Furthermore, the NW-CS coating significantly enhanced the osteogenic differentiation and mineralization as indicated by the up-regulation of ALP activity, mineralized nodule formation and osteoblastogenesis-related gene expression. With the introduction of Sr, the NW-Sr-CS coatings exerted a greater effect on the BMSC proliferation rate, calcium sensitive receptor gene expression as well as PKC and ERK1/2 phosphorylation. In addition, the Sr-doped coatings significantly up-regulated the ratio of OPG/RANKL in the BMSCs. The NW-Sr-CS coatings could modulate the polarization of macrophages towards the wound-healing M2 phenotype, reduce the mRNA expression levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and enhance anti-inflammatory cytokines (IL-1ra, IL-10). The Sr-doped nanowire modification may be a valuable approach to enhance osteogenic activities and reduce inflammatory reactions.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Kolmas J, Velard F, Jaguszewska A, Lemaire F, Kerdjoudj H, Gangloff SC, Kaflak A. Substitution of strontium and boron into hydroxyapatite crystals: Effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Henriques Lourenço A, Neves N, Ribeiro-Machado C, Sousa SR, Lamghari M, Barrias CC, Trigo Cabral A, Barbosa MA, Ribeiro CC. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Sci Rep 2017; 7:5098. [PMID: 28698571 PMCID: PMC5506032 DOI: 10.1038/s41598-017-04866-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/22/2017] [Indexed: 12/11/2022] Open
Abstract
Strontium (Sr) has been described as having beneficial influence in bone strength and architecture. However, negative systemic effects have been reported on oral administration of Sr ranelate, leading to strict restrictions in clinical application. We hypothesized that local delivery of Sr improves osteogenesis without eliciting detrimental side effects. Therefore, the in vivo response to an injectable Sr-hybrid system composed of RGD-alginate hydrogel cross-linked in situ with Sr and reinforced with Sr-doped hydroxyapatite microspheres, was investigated. The system was injected in a critical-sized bone defect model and compared to a similar Sr-free material. Micro-CT results show a trend towards higher new bone formed in Sr-hybrid group and major histological differences were observed between groups. Higher cell invasion was detected at the center of the defect of Sr-hybrid group after 15 days with earlier bone formation. Higher material degradation with increase of collagen fibers and bone formation in the center of the defect after 60 days was observed as opposed to bone formation restricted to the periphery of the defect in the control. These histological findings support the evidence of an improved response with the Sr enriched material. Importantly, no alterations were observed in the Sr levels in systemic organs or serum.
Collapse
Affiliation(s)
- Ana Henriques Lourenço
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Nuno Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto, Serviço de Ortopedia, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cláudia Ribeiro-Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal
| | - Susana R Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal
| | - Abel Trigo Cabral
- Faculdade de Medicina, Universidade do Porto, Serviço de Ortopedia, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313, Porto, Portugal
| | - Cristina C Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal. .,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
25
|
Neves N, Linhares D, Costa G, Ribeiro CC, Barbosa MA. In vivo and clinical application of strontium-enriched biomaterials for bone regeneration: A systematic review. Bone Joint Res 2017; 6:366-375. [PMID: 28600382 PMCID: PMC5492369 DOI: 10.1302/2046-3758.66.bjr-2016-0311.r1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/28/2017] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling. METHODS A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group. RESULTS A total of 572 references were retrieved and 27 were included. Animal models were used in 26 articles, and one article described a human study. Osteoporotic models were included in 11 papers. All articles showed similar or increased effect of Sr in bone formation and/or regeneration, in both healthy and osteoporotic models. No study found a decreased effect. Adverse effects were assessed in 17 articles, 13 on local and four on systemic adverse effects. From these, only one reported a systemic impact from Sr addition. Data on gene and/or protein expression were available from seven studies. CONCLUSIONS This review showed the safety and effectiveness of Sr-enriched biomaterials for stimulating bone formation and remodelling in animal models. The effect seems to increase over time and is impacted by the concentration used. However, included studies present a wide range of study methods. Future work should focus on consistent models and guidelines when developing a future clinical application of this element.Cite this article: N. Neves, D. Linhares, G. Costa, C. C. Ribeiro, M. A. Barbosa. In vivo and clinical application of strontium-enriched biomaterials for bone regeneration: A systematic review. Bone Joint Res 2017;6:366-375. DOI: 10.1302/2046-3758.66.BJR-2016-0311.R1.
Collapse
Affiliation(s)
- N Neves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto and Researcher, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto and Lecturer Faculty of Medicine, University of Porto, Surgery Department, Alameda Prof. Hernâni Monteiro, 4200-319 Porto and Orthopaedic Surgeon Centro Hospitalar de São João, Orthopedic Department, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - D Linhares
- Orthopaedic Department, Centro Hospitalar de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto and Researcher and Lecturer, MEDCIDS - Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto Portugal
| | - G Costa
- Faculty of Medicine, Surgery Department, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, and Orthopaedic Surgeon, Centro Hospitalar de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - C C Ribeiro
- Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal and Researcher, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto and Professor, ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - M A Barbosa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto and Researcher, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto and Professor, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Chen XY, Xu SZ, Wang XW, Yang XY, Ma L, Zhang L, Yang GJ, Yang F, Wang LH, Zhang XL, Ting K, Gao CY, Mou XZ, Gou ZR, Zou H. Systematic comparison of biologically active foreign ions-codoped calcium phosphate microparticles on osteogenic differentiation in rat osteoporotic and normal mesenchymal stem cells. Oncotarget 2017; 8:36578-36590. [PMID: 28402265 PMCID: PMC5482678 DOI: 10.18632/oncotarget.16618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
Osteoporosis is a disease characterized by structural deterioration of bone tissue, leading to skeletal fragility with increased fracture risk. Calcium phosphates (CaPs) are widely used in bone tissue engineering strategies as they have similarities to bone apatite except for the absence of trace elements (TEs) in the CaPs. Bioactive glasses (BGs) have also been used successfully in clinic for craniomaxillofacial and dental applications during the last two decades due to their excellent potential for bonding with bone and inducing osteoblastic differentiation. In this study, we evaluated the osteogenic effects of the ionic dissolution products of the quaternary Si-Sr-Zn-Mg-codoped CaP (TEs-CaP) or 45S5 Bioglass® (45S5 BG), both as mixtures and separately, on rat bone marrow-derived mesenchymal stem cells (rOMSCs & rMSCs) from osteoporotic and normal animals, using an MTT test and Alizarin Red S staining. The materials enhanced cell proliferation and osteogenic differentiation, especially the combination of the BG and TEs-CaP. Analysis by quantitative PCR and ELISA indicated that the expression of osteogenic-specific genes and proteins were elevated. These investigations suggest that the TEs-CaP and 45S5 BG operate synergistically to create an extracellular environment that promotes proliferation and terminal osteogenic differentiation of both osteoporotic and normal rMSCs.
Collapse
Affiliation(s)
- Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - San-Zhong Xu
- The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Xuan-Wei Wang
- The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Xian-Yan Yang
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Liang Ma
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Lei Zhang
- Rui'an People's Hospital & The 3rd Affiliated Hospital to Wenzhou Medical University, Rui'an 325005, China
| | - Guo-Jing Yang
- Rui'an People's Hospital & The 3rd Affiliated Hospital to Wenzhou Medical University, Rui'an 325005, China
| | - Fan Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Lin-Hong Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Xin-Li Zhang
- Dental and Craniofacial Research Institute, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Kang Ting
- Dental and Craniofacial Research Institute, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Chang-You Gao
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Zhong-Ru Gou
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| |
Collapse
|
27
|
Garbani M, Xia W, Rhyner C, Prati M, Scheynius A, Malissen B, Engqvist H, Maurer M, Crameri R, Terhorst D. Allergen-loaded strontium-doped hydroxyapatite spheres improve allergen-specific immunotherapy in mice. Allergy 2017; 72:570-578. [PMID: 27590538 DOI: 10.1111/all.13041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Immunomodulatory interventions play a key role in the treatment of infections and cancer as well as allergic diseases. Adjuvants such as micro- and nanoparticles are often added to immunomodulatory therapies to enhance the triggered immune response. Here, we report the immunological assessment of novel and economically manufactured microparticle adjuvants, namely strontium-doped hydroxyapatite porous spheres (SHAS), which we suggest for the use as adjuvant and carrier in allergen-specific immunotherapy (ASIT). METHODS AND RESULTS Scanning electron microscopy revealed that the synthesis procedure developed for the production of SHAS results in a highly homogeneous population of spheres. Strontium-doped hydroxyapatite porous spheres bound and released proteins such as ovalbumin (OVA) or the major cat allergen Fel d 1. SHAS-OVA were taken up by human monocyte-derived dendritic cells (mdDCs) and murine DCs and did not have any necrotic or apoptotic effects even at high densities. In a murine model of ASIT for allergic asthmatic inflammation, we found that OVA released from subcutaneously injected SHAS-OVA led to a sustained stimulation of both CD4+ and CD8+ T cells. Allergen-specific immunotherapy with SHAS-OVA as compared to soluble OVA resulted in similar humoral responses but in a higher efficacy as assessed by symptom scoring. CONCLUSION We conclude that SHAS may constitute a suitable carrier and adjuvant for ASIT with great potential due to its unique protein-binding properties.
Collapse
Affiliation(s)
- M. Garbani
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Platz Switzerland
| | - W. Xia
- Applied Materials Science; Department of Engineering Sciences; Ångström Laboratory; Uppsala University; Uppsala Sweden
| | - C. Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Platz Switzerland
| | - M. Prati
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Platz Switzerland
| | - A. Scheynius
- Department of Clinical Science and Education; Karolinska Institutet, and Sachs’ Children and Youth Hospital; Södersjukhuset; Stockholm Sweden
| | - B. Malissen
- Centre d'Immunologie de Marseille-Luminy (CIML); INSERM U1104; CNRS UMR7280; UM2 Aix-Marseille Université; Marseille Cedex 9 France
| | - H. Engqvist
- Applied Materials Science; Department of Engineering Sciences; Ångström Laboratory; Uppsala University; Uppsala Sweden
| | - M. Maurer
- Department of Dermatology and Allergy; Allergie-Centrum-Charité; Charité -Universitätsmedizin Berlin; Berlin Germany
| | - R. Crameri
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Platz Switzerland
| | - D. Terhorst
- Centre d'Immunologie de Marseille-Luminy (CIML); INSERM U1104; CNRS UMR7280; UM2 Aix-Marseille Université; Marseille Cedex 9 France
- Department of Dermatology and Allergy; Allergie-Centrum-Charité; Charité -Universitätsmedizin Berlin; Berlin Germany
- Berlin Institute of Health (BIH); Berlin Germany
| |
Collapse
|
28
|
Li H, Edin F, Hayashi H, Gudjonsson O, Danckwardt-Lillieström N, Engqvist H, Rask-Andersen H, Xia W. Guided growth of auditory neurons: Bioactive particles towards gapless neural - electrode interface. Biomaterials 2016; 122:1-9. [PMID: 28107660 DOI: 10.1016/j.biomaterials.2016.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 01/26/2023]
Abstract
Cochlear implant (CI) is a successful device to restore hearing. Despite continuous development, frequency discrimination is poor in CI users due to an anatomical gap between the auditory neurons and CI electrode causing current spread and unspecific neural stimulation. One strategy to close this anatomical gap is guiding the growth of neuron dendrites closer to CI electrodes through targeted slow release of neurotrophins. Biodegradable calcium phosphate hollow nanospheres (CPHSs) were produced and their capacity for uptake and release of neurotrophins investigated using 125I-conjugated glia cell line-derived neurotrophic factor (GDNF). The CPHSs were coated onto CI electrodes and loaded with neurotrophins. Axon guidance effect of slow-released neurotrophins from the CPHSs was studied in an in vitro 3D culture model. CPHS coating bound and released GDNF with an association rate constant 6.3 × 103 M-1s-1 and dissociation rate 2.6 × 10-5 s-1, respectively. Neurites from human vestibulocochlear ganglion explants found and established physical contact with the GDNF-loaded CPHS coating on the CI electrodes placed 0.7 mm away. Our results suggest that neurotrophin delivery through CPHS coating is a plausible way to close the anatomical gap between auditory neurons and electrodes. By overcoming this gap, selective neural activation and the fine hearing for CI users become possible.
Collapse
Affiliation(s)
- Hao Li
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Fredrik Edin
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Olafur Gudjonsson
- Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Håkan Engqvist
- Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Wei Xia
- Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Blum C, Brückner T, Ewald A, Ignatius A, Gbureck U. Mg:Ca ratio as regulating factor for osteoclastic in vitro resorption of struvite biocements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:111-119. [PMID: 28183587 DOI: 10.1016/j.msec.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/28/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
Abstract
Bioceramic degradation can occur by both passive dissolution and following active osteoclastic bone remodeling. Key parameters controlling ceramic degradation are the pH-dependent solubility product of the ceramic phase, which alters ion concentrations in physiological solution and hence regulates cell activity. This study investigated the in vitro degradation profiles of various calcium magnesium phosphate ceramics formed at low temperature. The passive resorption was measured by incubating the cement samples in cell culture medium, while active resorption was determined during a surface culture of multinuclear osteoclastic cells derived from RAW 264.7 macrophages. All surfaces showed mostly similar TRAP activities after adding RANKL-factor to stimulate osteoclastogenesis. The active degradation of the materials by osteoclasts was found to be the predominant factor for ceramic dissolution as determined by measuring the ion concentrations of cell culture medium. Here, large sized osteoclasts formed predominantly on ceramics with a Mg:Ca ratio ≥2.0 seemed to be less effective compared to smaller macrophages.
Collapse
Affiliation(s)
- Carina Blum
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Theresa Brückner
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Andrea Ewald
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Anita Ignatius
- Centre for Musculoskeletal Research, Institute for Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, D-89081 Ulm, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany.
| |
Collapse
|
30
|
Zhang W, Zhao F, Huang D, Fu X, Li X, Chen X. Strontium-Substituted Submicrometer Bioactive Glasses Modulate Macrophage Responses for Improved Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30747-30758. [PMID: 27779382 DOI: 10.1021/acsami.6b10378] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Host immune response induced by foreign bone biomaterials plays an important role in determining their fate after implantation. Hence, it is well worth designing advanced bone substitute materials with beneficial immunomodulatory properties to modulate the host-material interactions. Bioactive glasses (BG), with excellent osteoconductivity and osteoinductivity, are regarded as important biomaterials in the field of bone regeneration. In order to explore a novel BG-based osteoimmunomodulatory implant with the capacity of potentially enhancing bone regeneration, it is a possible way to regulate the local immune microenvironment through manipulating macrophage polarization. In this study, strontium-substituted submicrometer bioactive glass (Sr-SBG) was prepared as an osteoimmunomodulatory bone repair material. To investigate whether the incorporation of Sr into SBG could synergistically improve osteogenesis by altering macrophage response, we systematically evaluated the interaction between Sr-SBG and macrophage during the process of bone regeneration by in vitro biological evaluation and in vivo histological assessment. It was found that the Sr-SBG modulates proper inflammatory status, leading to enhanced osteogenesis of mouse mesenchymal stem cells (mMSCs) and suppressed osteoclastogenesis of RAW 264.7 cells compared to SBG without strontium substitution. In vivo study confirmed that Sr-SBG initiated a less severe immune response and had an improved effect on bone regeneration than SBG, which corresponded with the in vitro evaluation. In conclusion, these findings suggested that Sr-SBG could be a promising immunomodulatory bone repair material designed for improved bone regeneration.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology , Guangzhou 510006, China
| | - Fujian Zhao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology , Guangzhou 510006, China
| | - Deqiu Huang
- College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Xiaoling Fu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology , Guangzhou 510006, China
| | - Xian Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology , Guangzhou 510006, China
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology , Guangzhou 510006, China
| |
Collapse
|
31
|
Fabrication of TiO 2 -strontium loaded CaSiO 3 / biopolymer coatings with enhanced biocompatibility and corrosion resistance by controlled release of minerals for improved orthopedic applications. J Mech Behav Biomed Mater 2016; 60:476-491. [DOI: 10.1016/j.jmbbm.2016.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/10/2016] [Accepted: 02/13/2016] [Indexed: 11/19/2022]
|
32
|
Chandran S, Babu S S, Vs HK, Varma HK, John A. Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model. J Biomater Appl 2016; 31:499-509. [PMID: 27164870 DOI: 10.1177/0885328216647197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Excessive demineralization in osteoporotic bones impairs its self-regeneration potential following a defect/fracture and is of great concern among the aged population. In this context, implants with inherent osteogenic ability loaded with therapeutic ions like Strontium (Sr2+) may bring forth promising outcomes. Micro-granular Strontium incorporated Hydroxyapatite scaffolds have been synthesized and in vivo osteogenic efficacy was evaluated in a long-term osteoporosis-induced aged (LOA) rat model. Micro-granules with improved surface area are anticipated to resorb faster and together with the inherent bioactive properties of Hydroxyapatite with the leaching of Strontium ions from the scaffold, osteoporotic bone healing may be promoted. Long-term osteoporosis-induced aged rat model was chosen to extrapolate the results to clinical osteoporotic condition in the aged. Micro-granular 10% Strontium incorporated Hydroxyapatite synthesized by wet precipitation method exhibited increased in vitro dissolution rate and inductively coupled plasma studies confirmed Strontium ion release of 0.01 mM, proving its therapeutic potential for osteoporotic applications. Wistar rats were induced to long-term osteoporosis-induced aged model by ovariectomy along with a prolonged induction period of 10 months. Thereafter, osteogenic efficacy of Strontium incorporated Hydroxyapatite micro-granules was evaluated in femoral bone defects in the long-term osteoporosis-induced aged model. Post eight weeks of implantation in vivo regeneration efficacy ratio was highest in the Strontium incorporated Hydroxyapatite implanted group (0.92 ± 0.04) compared to sham and Hydroxyapatite implanted group. Micro CT evaluation further substantiated the improved osteointegration of Strontium incorporated Hydroxyapatite implants from the density histograms. Thus, the therapeutical potential of micro-granular Strontium incorporated Hydroxyapatite scaffolds becomes relevant, especially as bone void fillers in osteoporotic cases of tumor resection or trauma.
Collapse
Affiliation(s)
- Sunitha Chandran
- Transmission Electron Microscope Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Suresh Babu S
- Bioceramic Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Hari Krishnan Vs
- Division of Laboratory Animal Science, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - H K Varma
- Bioceramic Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Annie John
- Transmission Electron Microscope Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| |
Collapse
|
33
|
Xia W, Qin T, Suska F, Engqvist H. Bioactive Spheres: The Way of Treating Dentin Hypersensitivity. ACS Biomater Sci Eng 2016; 2:734-740. [DOI: 10.1021/acsbiomaterials.5b00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wei Xia
- Applied
Materials Science, Department of Engineering Sciences, Uppsala University, Lägerddsv 1, 75120 Uppsala, Sweden
| | - Tao Qin
- Applied
Materials Science, Department of Engineering Sciences, Uppsala University, Lägerddsv 1, 75120 Uppsala, Sweden
| | - Felicia Suska
- Department
of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Arvid
Wallgrens Backe 20, 40530 Göteborg, Sweden
| | - Håkan Engqvist
- Applied
Materials Science, Department of Engineering Sciences, Uppsala University, Lägerddsv 1, 75120 Uppsala, Sweden
| |
Collapse
|
34
|
Karazisis D, Ballo AM, Petronis S, Agheli H, Emanuelsson L, Thomsen P, Omar O. The role of well-defined nanotopography of titanium implants on osseointegration: cellular and molecular events in vivo. Int J Nanomedicine 2016; 11:1367-82. [PMID: 27099496 PMCID: PMC4824366 DOI: 10.2147/ijn.s101294] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Mechanisms governing the cellular interactions with well-defined nanotopography are not well described in vivo. This is partly due to the difficulty in isolating a particular effect of nanotopography from other surface properties. This study employed colloidal lithography for nanofabrication on titanium implants in combination with an in vivo sampling procedure and different analytical techniques. The aim was to elucidate the effect of well-defined nanotopography on the molecular, cellular, and structural events of osseointegration. Materials and methods Titanium implants were nanopatterned (Nano) with semispherical protrusions using colloidal lithography. Implants, with and without nanotopography, were implanted in rat tibia and retrieved after 3, 6, and 28 days. Retrieved implants were evaluated using quantitative polymerase chain reaction, histology, immunohistochemistry, and energy dispersive X-ray spectroscopy (EDS). Results Surface characterization showed that the nanotopography was well defined in terms of shape (semispherical), size (79±6 nm), and distribution (31±2 particles/µm2). EDS showed similar levels of titanium, oxygen, and carbon for test and control implants, confirming similar chemistry. The molecular analysis of the retrieved implants revealed that the expression levels of the inflammatory cytokine, TNF-α, and the osteoclastic marker, CatK, were reduced in cells adherent to the Nano implants. This was consistent with the observation of less CD163-positive macrophages in the tissue surrounding the Nano implant. Furthermore, periostin immunostaining was frequently detected around the Nano implant, indicating higher osteogenic activity. This was supported by the EDS analysis of the retrieved implants showing higher content of calcium and phosphate on the Nano implants. Conclusion The results show that Nano implants elicit less periimplant macrophage infiltration and downregulate the early expression of inflammatory (TNF-α) and osteoclastic (CatK) genes. Immunostaining and elemental analyses show higher osteogenic activity at the Nano implant. It is concluded that an implant with the present range of well-defined nanocues attenuates the inflammatory response while enhancing mineralization during osseointegration.
Collapse
Affiliation(s)
- Dimitrios Karazisis
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; Department of Oral and Maxillofacial Surgery, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ahmed M Ballo
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Sarunas Petronis
- BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden
| | - Hossein Agheli
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; BIOMATCELL, VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| |
Collapse
|
35
|
Elgali I, Turri A, Xia W, Norlindh B, Johansson A, Dahlin C, Thomsen P, Omar O. Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events. Acta Biomater 2016; 29:409-423. [PMID: 26441123 DOI: 10.1016/j.actbio.2015.10.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/03/2015] [Accepted: 10/02/2015] [Indexed: 11/26/2022]
Abstract
Bone insufficiency remains a major challenge for bone-anchored implants. The combination of guided bone regeneration (GBR) and bone augmentation is an established procedure to restore the bone. However, a proper understanding of the interactions between the bone substitute and GBR membrane materials and the bone-healing environment is lacking. This study aimed to investigate the early events of bone healing and the cellular activities in response to a combination of GBR membrane and different calcium phosphate (CaP) materials. Defects were created in the trabecular region of rat femurs, and filled with deproteinized bovine bone (DBB), hydroxyapatite (HA) or strontium-doped HA (SrHA) or left empty (sham). All the defects were covered with an extracellular matrix membrane. Defects were harvested after 12h, 3d and 6d for histology/histomorphometry, immunohistochemistry and gene expression analyses. Histology revealed new bone, at 6d, in all the defects. Larger amount of bone was observed in the SrHA-filled defect. This was in parallel with the reduced expression of osteoclastic genes (CR and CatK) and the osteoblast-osteoclast coupling gene (RANKL) in the SrHA defects. Immunohistochemistry indicated fewer osteoclasts in the SrHA defects. The observations of CD68 and periostin-expressing cells in the membrane per se indicated that the membrane may contribute to the healing process in the defect. It is concluded that the bone-promoting effects of Sr in vivo are mediated by a reduction in catabolic and osteoblast-osteoclast coupling processes. The combination of a bioactive membrane and CaP bone substitute material doped with Sr may produce early synergistic effects during GBR. STATEMENT OF SIGNIFICANCE The study provides novel molecular, cellular and structural evidence on the promotion of early bone regeneration in response to synthetic strontium-containing hydroxyapatite (SrHA) substitute, in combination with a resorbable, guided bone regeneration (GBR) membrane. The prevailing view, based mainly upon in vitro data, is that the beneficial effects of Sr are exerted by the stimulation of bone-forming cells (osteoblasts) and the inhibition of bone-resorbing cells (osteoclasts). In contrast, the present study demonstrates that the local effect of Sr in vivo is predominantly via the inhibition of osteoclast number and activity and the reduction of osteoblast-osteoclast coupling. This experimental data will form the basis for clinical studies, using this material as an interesting bone substitute for guided bone regeneration.
Collapse
|
36
|
García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015; 81:112-121. [PMID: 26163110 DOI: 10.1016/j.bone.2015.07.007] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023]
Abstract
Regeneration of bone defects caused by trauma, infection, tumours or inherent genetic disorders is a clinical challenge that usually necessitates bone grafting materials. Autologous bone or autograft is still considered the clinical "gold standard" and the most effective method for bone regeneration. However, limited bone supply and donor site morbidity are the most important disadvantages of autografting. Improved biomaterials are needed to match the performance of autograft as this is still superior to that of synthetic bone grafts. Osteoinductive materials would be the perfect candidates for achieving this task. The aim of this article is to review the different groups of bone substitutes in terms of their most recently reported osteoinductive properties. The different factors influencing osteoinductivity by biomaterials as well as the mechanisms behind this phenomenon are also presented, showing that it is very limited compared to osteoinductivity shown by bone morphogenetic proteins (BMPs). Therefore, a new term to describe osteoinductivity by biomaterials is proposed. Different strategies for adding osteoinductivity (BMPs, stem cells) to bone substitutes are also discussed. The overall objective of this paper is to gather the current knowledge on osteoinductivity of bone grafting materials for the effective development of new graft substitutes that enhance bone regeneration.
Collapse
Affiliation(s)
- Elena García-Gareta
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| | - Melanie J Coathup
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Gordon W Blunn
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| |
Collapse
|
37
|
Abstract
In recent years, a significant achievement has been made in developing biomaterials, in particular the design of bioceramics, from natural sources for various biomedical applications. In this review, we discuss the fundamentals of structure, function and characteristics of human bone, its calcium and phosphate composition, role and importance of bioceramics for bone repairing or regeneration. This review also outlines various isolation techniques and the application of novel marine-derived hydroxyapatite (HA) and tri-calcium phosphate (TCP) for biocomposites engineering, and their potentials for bone substitute and bone regeneration.
Collapse
|
38
|
Luo X, Barbieri D, Zhang Y, Yan Y, Bruijn JD, Yuan H. Strontium-Containing Apatite/Poly Lactide Composites Favoring Osteogenic Differentiation and in Vivo Bone Formation. ACS Biomater Sci Eng 2015. [DOI: 10.1021/ab500005e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoman Luo
- Xpand Biotechnology BV, Professor
Bronkhorstlaan 10, Bld 48, 3723MB Bilthoven, The Netherlands
- MIRA
Institute, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Davide Barbieri
- Xpand Biotechnology BV, Professor
Bronkhorstlaan 10, Bld 48, 3723MB Bilthoven, The Netherlands
| | - Yunfei Zhang
- Chongqing Academy of Metrology and Quality Inspection, Yangliu North Road No. 1, Yubei
District, 401123 Chongqing, China
| | - Yonggang Yan
- College
of Physical Science and Technology, Sichuan University, Wangjiang
Road 29, 610064 Chengdu, China
| | - Joost D. Bruijn
- Xpand Biotechnology BV, Professor
Bronkhorstlaan 10, Bld 48, 3723MB Bilthoven, The Netherlands
- MIRA
Institute, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
- School
of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Huipin Yuan
- Xpand Biotechnology BV, Professor
Bronkhorstlaan 10, Bld 48, 3723MB Bilthoven, The Netherlands
- MIRA
Institute, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
- College
of Physical Science and Technology, Sichuan University, Wangjiang
Road 29, 610064 Chengdu, China
| |
Collapse
|
39
|
Liangjiao C, Ping Z, Ruoyu L, Yanli Z, Ting S, Yanjun L, Longquan S. Potential proinflammatory and osteogenic effects of dicalcium silicate particles in vitro. J Mech Behav Biomed Mater 2014; 44:10-22. [PMID: 25594366 DOI: 10.1016/j.jmbbm.2014.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Due to their biocompatibility and bioactivity, dicalcium silicate (C2S) and hydroxyapatite (HA) are used as coating materials for prosthetic orthopedic and dental implants or as bone substitute materials to fill bone defects. However, prostheses and bone substitutes can release particles that trigger an immune response in the recipient. The immunological effects of C2S particles have not yet been studied. OBJECTIVE The aim of this study was to determine the cytotoxic effects of C2S particles on primary human monocytes, a human monocyte cell line (THP-1) and an osteoblast-like cell line (MG-63). The proinflammatory effects of C2S particles on THP-1 were also detected. Moreover, the osteogenic effects of C2S and HA on MG-63 cells were investigated. METHODS Characterization of C2S and HA was performed using scanning electron microscopy (SEM), energy dispersive analysis (EDS), X-ray diffraction (XRD), Brunner-Emmett-Teller (BET) measurements and laser diffraction. The cytotoxic effect of C2S on primary human monocytes as well as THP-1 and MG-63 cells was measured using Trypan blue assays, Cell Counting Kit-8 (CCK-8) assays and flow cytometry to detect apoptosis. THP-1 human monocytes with or without lipopolysaccharide (LPS) stimulation were exposed to C2S and HA for 6 and 24h. Thereafter, the mRNA expression and protein concentrations of MMP-2, MMP-9, TIMP-2, TIMP-1 and TNF-α were evaluated using real-time PCR and ELISA, respectively. RANKL and OPG mRNA expression levels in MG-63 cells were examined using real-time PCR. RESULTS No significant cytotoxicity was recorded when cells were directly cultured with C2S/HA particles. After THP-1 cells were cultured with C2S/HA for 24h, MMP-2, MMP-9 and TNF-α expression increased, whereas TIMP-2 and TIMP-1 expression decreased. Compared with HA, C2S slightly increased MMP-9 expression and slightly decreased TIMP-1 expression. The MMP: TIMP ratio increased in the C2S and HA groups; however, HA significantly increased the MMP-9: TIMP-1 ratio compared with C2S. Compared with HA, C2S caused less TNF-α production. C2S/HA did not modify the expression of proinflammatory mediators in LPS-stimulated cells. Furthermore, C2S/HA significantly increased OPG expression and slightly increased RANKL expression in MG-63 cells. C2S and HA decreased the RANKL: OPG ratio. CONCLUSION Our in vitro data suggest that C2S is relatively safe when directly cultured with cells. In addition, C2S may exert proinflammatory effects; however, compared with HA, C2S had fewer proinflammatory effects on THP-1. C2S and HA did not alter the LPS-induced production of proinflammatory mediators and had similar osteogenic effects on MG-63 cells.
Collapse
Affiliation(s)
- Chen Liangjiao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhu Ping
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liu Ruoyu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhang Yanli
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sun Ting
- The Medical Centre of Stomatology, the 1st Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Liu Yanjun
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Shao Longquan
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
40
|
Turri A, Dahlin C. Comparative maxillary bone-defect healing by calcium-sulphate or deproteinized bovine bone particles and extra cellular matrix membranes in a guided bone regeneration setting: an experimental study in rabbits. Clin Oral Implants Res 2014; 26:501-6. [PMID: 24954120 DOI: 10.1111/clr.12425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of this study was to histologically compare the dynamics of bone healing response between calcium sulphate (CaS) and deproteinized bovine bone mineral (DBBM) particles in guided bone regeneration utilizing an extracellular matrix membrane (ECM) as barrier. MATERIALS AND METHODS Eighteen rabbits were used in thisstudy. 5 × 5 mm defects were created in the edentulous space between the incisors and molars in the maxilla. The CaS and DBBM particles were placed in the defects, with or without the placement of a membrane by means of random selection. Healing was evaluated at 2, 4 and 8 weeks by histology. RESULTS A total resorption of the CaS material was seen already at 2 weeks. Only minor resorption could be seen of the DBBM particles. The CaS group showed significantly more bone regeneration at all three healing periods compared to the DBBM group. The addition of an ECM membrane demonstrated significant additional effect on bone regeneration. The CaS group showed significant increased amounts of blood vessels compared to the DBBM group. CONCLUSIONS Thisstudy showed that CaS in combination with an ECM membrane provided synergistic effects on bone regeneration, seemingly due to stimulating angiogenesis in the early healing process.
Collapse
Affiliation(s)
- Alberto Turri
- Department of Biomaterials, BIOMATCELL VINN Excellence Center, Institute for Surgical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; The Brånemark Clinic, Institute of Odontology, Public Dental Health Care, Gothenburg, Sweden
| | | |
Collapse
|
41
|
Chen Z, Yi D, Zheng X, Chang J, Wu C, Xiao Y. Nutrient element-based bioceramic coatings on titanium alloy stimulating osteogenesis by inducing beneficial osteoimmmunomodulation. J Mater Chem B 2014; 2:6030-6043. [DOI: 10.1039/c4tb00837e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nutrient element-based Sr2ZnSi2O7 coatings induce favorable osteoimmunomodulation. Material chemistry of Sr2ZnSi2O7 coating modulates the immune environment to induce osteogenic differentiation of BMSCs by activating BMP2 signalling pathway.
Collapse
Affiliation(s)
- Zetao Chen
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- Brisbane
- Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine
| | - Deliang Yi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials
- Chinese Academy of Science
- Shanghai
- People's Republic of China
| | - Jiang Chang
- Australia-China Centre for Tissue Engineering and Regenerative Medicine
- Queensland University of Technology
- Brisbane
- Australia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
| | - Chengtie Wu
- Australia-China Centre for Tissue Engineering and Regenerative Medicine
- Queensland University of Technology
- Brisbane
- Australia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
| | - Yin Xiao
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- Brisbane
- Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine
| |
Collapse
|