1
|
Vetto JT. Clinical and Imaging Follow-Up for High-Risk Cutaneous Melanoma: Current Evidence and Guidelines. Cancers (Basel) 2024; 16:2572. [PMID: 39061211 PMCID: PMC11274402 DOI: 10.3390/cancers16142572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The most recent (eighth) edition of the American Joint Committee on Cancer (AJCC) staging system divides invasive cutaneous melanoma into two broad groups: "low-risk" (stage IA-IIA) and "high-risk" (stage IIB-IV). While surveillance imaging for high-risk melanoma patients makes intuitive sense, supporting data are limited in that they are mostly respective and used varying methods, schedules, and endpoints. As a result, there is a lack of uniformity across different dermatologic and oncologic organizations regarding recommendations for follow-up, especially regarding imaging. That said, the bulk of retrospective and prospective data support imaging follow-up for high-risk patients. Currently, it seems that either positron emission tomography (PET) or whole-body computerized tomography (CT) are reasonable options for follow-up, with brain magnetic resonance imaging (MRI) preferred for the detection of brain metastases in patients who can undergo it. The current era of effective systemic therapies (ESTs), which can improve disease-free survival (DFS) and overall survival (OS) beyond lead-time bias, has emphasized the role of imaging in detecting various patterns of EST response and treatment relapse, as well as the importance of radiologic tumor burden.
Collapse
Affiliation(s)
- John T. Vetto
- Department of Surgery, Division of Surgical Oncology, Oregon Health & Science University, Portland, OR 97239, USA; ; Tel.: +1-503-494-5501
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
2
|
Najeeb HA, Sanusi T, Saldanha G, Brown K, Cooke MS, Jones GD. Redox modulation of oxidatively-induced DNA damage by ascorbate enhances both in vitro and ex-vivo DNA damage formation and cell death in melanoma cells. Free Radic Biol Med 2024; 213:309-321. [PMID: 38262545 DOI: 10.1016/j.freeradbiomed.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Elevated genomic instability in cancer cells suggests a possible model-scenario for their selective killing via the therapeutic delivery of well-defined levels of further DNA damage. To examine this scenario, this study investigated the potential for redox modulation of oxidatively-induced DNA damage by ascorbate in malignant melanoma (MM) cancer cells, to selectively enhance both DNA damage and MM cell killing. DNA damage was assessed by Comet and ɣH2AX assays, intracellular oxidising species by dichlorofluorescein fluorescence, a key antioxidant enzymatic defence by assessment of catalase activity and cell survival was determined by clonogenic assay. Comet revealed that MM cells had higher endogenous DNA damage levels than normal keratinocytes (HaCaT cells); this correlated MM cells having higher intracellular oxidising species and lower catalase activity, and ranked with MM cell melanin pigmentation. Comet also showed MM cells more sensitive towards the DNA damaging effects of exogenous H2O2, and that ascorbate further enhanced this H2O2-induced damage in MM cells; again, with MM cell sensitivity to induced damage ranking with degree of cell pigmentation. Furthermore, cell survival data indicated that ascorbate enhanced H2O2-induced clonogenic cell death selectively in MM cells whilst protecting HaCaT cells. Finally, we show that ascorbate serves to enhance the oxidising effects of the MM therapeutic drug Elesclomol in both established MM cells in vitro and primary cell cultures ex vivo. Together, these results suggest that ascorbate selectively enhances DNA damage and cell-killing in MM cells. This raises the option of incorporating ascorbate into clinical oxidative therapies to treat MM.
Collapse
Affiliation(s)
- Hishyar A Najeeb
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK
| | - Timi Sanusi
- Leicester Medical School, University of Leicester, UK
| | - Gerald Saldanha
- University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, UK
| | - Karen Brown
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, USA.
| | - George Dd Jones
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK.
| |
Collapse
|
3
|
Salehi M, Lavasani ZM, Keshavarz Alikhani H, Shokouhian B, Hassan M, Najimi M, Vosough M. Circulating Tumor Cells as a Promising Tool for Early Detection of Hepatocellular Carcinoma. Cells 2023; 12:2260. [PMID: 37759483 PMCID: PMC10527869 DOI: 10.3390/cells12182260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver cancer is a significant contributor to the cancer burden, and its incidence rates have recently increased in almost all countries. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is the second leading cause of cancer-related deaths worldwide. Because of the late diagnosis and lack of efficient therapeutic modality for advanced stages of HCC, the death rate continues to increase by ~2-3% per year. Circulating tumor cells (CTCs) are promising tools for early diagnosis, precise prognosis, and follow-up of therapeutic responses. They can be considered to be an innovative biomarker for the early detection of tumors and targeted molecular therapy. In this review, we briefly discuss the novel materials and technologies applied for the practical isolation and detection of CTCs in HCC. Also, the clinical value of CTC detection in HCC is highlighted.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Zohre Miri Lavasani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran;
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, B-1200 Brussels, Belgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden;
| |
Collapse
|
4
|
Liu J, Wang X, Sahin IH, Imanirad I, Felder SI, Kim RD, Xie H. Tumor Response-speed Heterogeneity as a Novel Prognostic Factor in Patients With Metastatic Colorectal Cancer. Am J Clin Oncol 2023; 46:50-57. [PMID: 36606664 DOI: 10.1097/coc.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE Differential tumor response to therapy is partially attributed to tumor heterogeneity. Additional efforts are needed to identify tumor heterogeneity parameters in response to therapy that is easily applicable in clinical practice. We aimed to describe tumor response-speed heterogeneity and evaluate its prognostic value in patients with metastatic colorectal cancer. PATIENTS AND METHODS Individual patient data from Amgen (NCT00364013) and Sanofi (NCT00305188; NCT00272051) trials were retrieved from Project Data Sphere. Patients in the Amgen 5-fluorouracil, leucovorin, oxaliplatin (FOLFOX) arm were used to establish response-speed heterogeneity. Its prognostic value was subsequently validated in the Sanofi FOLFOX arms and the Amgen panitumumab+FOLFOX arm. Kaplan-Meier method and Cox proportional hazards models were used for survival analyses. RESULTS Patients with high response-speed heterogeneity in the Amgen FOLFOX cohort had significantly shorter ( P <0.001) median progression-free survival (PFS) of 7.27 months (95% CI, 6.12-7.96 mo) and overall survival (OS) of 16.0 months (95% CI, 13.8-18.2 mo) than patients with low response-speed heterogeneity with median PFS of 9.41 months (95% CI, 8.75-10.89 mo) and OS of 22.4 months (95% CI, 20.1-26.7 mo), respectively. Tumor response-speed heterogeneity was a poor prognostic factor of shorter PFS (hazard ratio, 4.17; 95% CI, 2.49-6.99; P <0.001) and shorter OS (hazard ratio, 2.57; 95% CI, 1.64-4.01; P <0.001), after adjustment for other common prognostic factors. Comparable findings were found in the external validation cohorts. CONCLUSION Tumor response-speed heterogeneity to first-line chemotherapy was a novel prognostic factor associated with early disease progression and shorter survival in patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Junjia Liu
- Albert Einstein College of Medicine, Bronx, New York
| | | | - Ibrahim H Sahin
- Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Iman Imanirad
- Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Seth I Felder
- Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Richard D Kim
- Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Hao Xie
- Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
5
|
Beaumont H, Faye N, Iannessi A, Chamorey E, Klifa C, Hsieh C. Differences in sensitivity to new therapies between primary and metastatic breast cancer: A need to stratify the tumor response? Cancer Med 2022; 12:3112-3122. [PMID: 36098367 PMCID: PMC9939226 DOI: 10.1002/cam4.5236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/16/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE We compared therapeutic response of Varlitinib + Capecitabine (VC) versus Lapatinib + Capecitabine (LC) in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer after trastuzumab therapy by assessing changes in target lesion (TL) diameter and volume per location. METHODS We retrospectively analyzed the CT data of the ASLAN001-003 study (NCT02338245). We analyzed TL size and number at each location focusing on therapeutic response from baseline to Week 12. We used TL diameter and volume to conduct an inter-arm comparison of the response according to: RECIST 1.1; stratified per TL location and considering TLs independently. Multiple pairwise intra-arm comparisons of therapeutic responses were performed. Considering TL independently, weighted models were designed by adding weighted mean TL responses grouped by location. RESULTS We evaluated 42 patients (88 TL) and 35 patients (74 TL), respectively, at baseline and Week 12. We found reductions in breast TL burden in the VC arm compared to the LC arm (p = 0.002 (diameter), p < 0.001 (volume)). Responses and TL sizes at baseline were not correlated. Explained variabilities of volume change per TL location, patient and patient:TL interaction were 36%, 10% and 4% (VC), and 13%, 1% and 23%, (LC). A test of inter-arm difference of responses yielded p = 0.07 (diameter), and p < 0.001 (volume). CONCLUSIONS The therapeutic responses differed across tumors' locations; the magnitude of the differences of responses across the tumors' locations were drug-dependent. Stratified analysis of the response by tumor location improved drug comparisons and is a powerful tool to understand TL heterogeneity.
Collapse
|
6
|
Miller CT, Gray WG, Schrefler BA. A continuum mechanical framework for modeling tumor growth and treatment in two- and three-phase systems. ARCHIVE OF APPLIED MECHANICS = INGENIEUR-ARCHIV 2022; 92:461-489. [PMID: 35811645 PMCID: PMC9269988 DOI: 10.1007/s00419-021-01891-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The growth and treatment of tumors is an important problem to society that involves the manifestation of cellular phenomena at length scales on the order of centimeters. Continuum mechanical approaches are being increasingly used to model tumors at the largest length scales of concern. The issue of how to best connect such descriptions to smaller-scale descriptions remains open. We formulate a framework to derive macroscale models of tumor behavior using the thermodynamically constrained averaging theory (TCAT), which provides a firm connection with the microscale and constraints on permissible forms of closure relations. We build on developments in the porous medium mechanics literature to formulate fundamental entropy inequality expressions for a general class of three-phase, compositional models at the macroscale. We use the general framework derived to formulate two classes of models, a two-phase model and a three-phase model. The general TCAT framework derived forms the basis for a wide range of potential models of varying sophistication, which can be derived, approximated, and applied to understand not only tumor growth but also the effectiveness of various treatment modalities.
Collapse
Affiliation(s)
- Cass T Miller
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - William G Gray
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Bernhard A Schrefler
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Padua, Italy
| |
Collapse
|
7
|
Smalley I, Chen Z, Phadke M, Li J, Yu X, Wyatt C, Evernden B, Messina JL, Sarnaik A, Sondak VK, Zhang C, Law V, Tran N, Etame A, Macaulay RJB, Eroglu Z, Forsyth PA, Rodriguez PC, Chen YA, Smalley KSM. Single-Cell Characterization of the Immune Microenvironment of Melanoma Brain and Leptomeningeal Metastases. Clin Cancer Res 2021; 27:4109-4125. [PMID: 34035069 DOI: 10.1158/1078-0432.ccr-21-1694] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Melanoma brain metastases (MBM) and leptomeningeal melanoma metastases (LMM) are two different manifestations of melanoma CNS metastasis. Here, we used single-cell RNA sequencing (scRNA-seq) to define the immune landscape of MBM, LMM, and melanoma skin metastases. EXPERIMENTAL DESIGN scRNA-seq was undertaken on 43 patient specimens, including 8 skin metastases, 14 MBM, and 19 serial LMM specimens. Detailed cell type curation was performed, the immune landscapes were mapped, and key results were validated by IHC and flow cytometry. Association analyses were undertaken to identify immune cell subsets correlated with overall survival. RESULTS The LMM microenvironment was characterized by an immune-suppressed T-cell landscape distinct from that of brain and skin metastases. An LMM patient with long-term survival demonstrated an immune repertoire distinct from that of poor survivors and more similar to normal cerebrospinal fluid (CSF). Upon response to PD-1 therapy, this extreme responder showed increased levels of T cells and dendritic cells in their CSF, whereas poor survivors showed little improvement in their T-cell responses. In MBM patients, therapy led to increased immune infiltrate, with similar T-cell transcriptional diversity noted between skin metastases and MBM. A correlation analysis across the entire immune landscape identified the presence of a rare population of dendritic cells (DC3) that was associated with increased overall survival and positively regulated the immune environment through modulation of activated T cells and MHC expression. CONCLUSIONS Our study provides the first atlas of two distinct sites of melanoma CNS metastases and defines the immune cell landscape that underlies the biology of this devastating disease.
Collapse
Affiliation(s)
- Inna Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Zhihua Chen
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Manali Phadke
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jiannong Li
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xiaoqing Yu
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Clayton Wyatt
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brittany Evernden
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jane L Messina
- Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Pathology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Amod Sarnaik
- Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Vernon K Sondak
- Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Chaomei Zhang
- Molecular Genomics Core, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Vincent Law
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nam Tran
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Arnold Etame
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert J B Macaulay
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Pathology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Peter A Forsyth
- Department of Neurooncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Paulo C Rodriguez
- Department of Immunology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Y Ann Chen
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida. .,Department of Cutaneous Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
8
|
Zhou J, Li Q, Cao Y. Spatiotemporal Heterogeneity across Metastases and Organ-Specific Response Informs Drug Efficacy and Patient Survival in Colorectal Cancer. Cancer Res 2021; 81:2522-2533. [PMID: 33589516 PMCID: PMC8137573 DOI: 10.1158/0008-5472.can-20-3665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/28/2020] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
The sum of target lesions is routinely used to evaluate patient objective responses to treatment in the RECIST criteria, but it fails to address response heterogeneity across metastases. This study argues that spatiotemporal heterogeneity across metastases and organ-specific response is informative for drug efficacy and patient survival. We analyzed the longitudinal data of 11,404 metastatic lesions in 2,802 colorectal cancer patients from five phase III clinical trials. Initially, a metric Gower distance was applied to quantify response heterogeneity across metastases. Next, the spatiotemporal response heterogeneity across anatomic sites, therapies, and KRAS mutation status was assessed and examined for its association with drug efficacy and long-term patient survival. The response of metastatic lesions broadly differed across anatomic sites and therapies. About 60% of patients had at least one lesion respond contrarily from total tumor size. High interlesion heterogeneity was associated with shorter progression-free survival and overall survival. Targeted therapies (bevacizumab or panitumumab) combined with standard chemotherapy reduced interlesion heterogeneity and elicited more favorable effects from liver lesions (P < 0.001) than chemotherapy alone. Moreover, the favorable responses in liver metastases (> 30% shrinkage) were associated with extended patient overall survival (P < 0.001), in contrast to lesions in the lungs and lymph nodes. Altogether, the spatiotemporal response heterogeneity across metastases informed drug efficacy and patient survival, which could improve the current methods for treatment evaluation and patient prognosis. SIGNIFICANCE: These findings support the modification of RECIST criteria to include individual lesion response to improve assessments of drug efficacy.
Collapse
Affiliation(s)
- Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina
| | - Quefeng Li
- School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Gambaro K, Marques M, McNamara S, Couetoux du Tertre M, Diaz Z, Hoffert C, Srivastava A, Hébert S, Samson B, Lespérance B, Ko Y, Dalfen R, St‐Hilaire E, Sideris L, Couture F, Burkes R, Harb M, Camlioglu E, Gologan A, Pelsser V, Constantin A, Greenwood CM, Tejpar S, Kavan P, Kleinman CL, Batist G. Copy number and transcriptome alterations associated with metastatic lesion response to treatment in colorectal cancer. Clin Transl Med 2021; 11:e401. [PMID: 33931971 PMCID: PMC8087915 DOI: 10.1002/ctm2.401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Therapeutic resistance is the main cause of death in metastatic colorectal cancer. To investigate genomic plasticity, most specifically of metastatic lesions, associated with response to first-line systemic therapy, we collected longitudinal liver metastatic samples and characterized the copy number aberration (CNA) landscape and its effect on the transcriptome. METHODS Liver metastatic biopsies were collected prior to treatment (pre, n = 97) and when clinical imaging demonstrated therapeutic resistance (post, n = 43). CNAs were inferred from whole exome sequencing and were correlated with both the status of the lesion and overall patient progression-free survival (PFS). We used RNA sequencing data from the same sample set to validate aberrations as well as independent datasets to prioritize candidate genes. RESULTS We identified a significantly increased frequency gain of a unique CN, in liver metastatic lesions after first-line treatment, on chr18p11.32 harboring 10 genes, including TYMS, which has not been reported in primary tumors (GISTIC method and test of equal proportions, FDR-adjusted p = 0.0023). CNA lesion profiles exhibiting different treatment responses were compared and we detected focal genomic divergences in post-treatment resistant lesions but not in responder lesions (two-tailed Fisher's Exact test, unadjusted p ≤ 0.005). The importance of examining metastatic lesions is highlighted by the fact that 15 out of 18 independently validated CNA regions found to be associated with PFS in this study were only identified in the metastatic lesions and not in the primary tumors. CONCLUSION This investigation of genomic-phenotype associations in a large colorectal cancer liver metastases cohort identified novel molecular features associated with treatment response, supporting the clinical importance of collecting metastatic samples in a defined clinical setting.
Collapse
Affiliation(s)
- Karen Gambaro
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Maud Marques
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Suzan McNamara
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
| | | | - Zuanel Diaz
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
| | - Cyrla Hoffert
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Archana Srivastava
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Steven Hébert
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Benoit Samson
- Charles LeMoyne Hospital3120 Taschereau Blvd.Greenfield ParkQuebecJ4V 2H1Canada
| | | | - Yoo‐Joung Ko
- Sunnybrook Health Science Centre2075 Bayview Ave.TorontoOntarioM4N 3M5Canada
| | - Richard Dalfen
- St. Mary's Hospital3830 LacombeMontrealQuebecH3T 1M5Canada
| | - Eve St‐Hilaire
- Georges Dumont Hospital220 Avenue UniversiteMonctonNew BrunswickE1C 2Z3Canada
| | - Lucas Sideris
- Hôpital Maisonneuve Rosemont5415 Assumption BlvdMontrealQuebecH1T 2M4Canada
| | - Felix Couture
- Hôtel‐Dieu de Quebec11 Cote du PalaisMontrealQuebecG1R 2J6Canada
| | - Ronald Burkes
- Mount Sinai Hospital600 University AvenueTorontoOntarioM5G 1X5Canada
| | - Mohammed Harb
- Moncton Hospital135 Macbeath AveMonctonNew BrunswickE1C 6Z8Canada
| | - Errol Camlioglu
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Adrian Gologan
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Vincent Pelsser
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - André Constantin
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Celia M.T. Greenwood
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
- Gerald Bronfman Department of OncologyMcGill University3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
- Department of Epidemiology, Biostatistics and Occupational HealthMcGill University3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Sabine Tejpar
- Digestive Oncology UnitKatholieke Universiteit LeuvenOude Markt 13Leuven3000Belgium
| | - Petr Kavan
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Claudia L. Kleinman
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
- Department of Human GeneticsLady Davis Research Institute, McGill University3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Gerald Batist
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| |
Collapse
|
10
|
Bong CY, Smithers BM, Chua TC. Pulmonary metastasectomy in the era of targeted therapy and immunotherapy. J Thorac Dis 2021; 13:2618-2627. [PMID: 34012610 PMCID: PMC8107521 DOI: 10.21037/jtd.2020.03.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metastatic melanoma is a fatal malignancy with a high mortality and morbidity. Since the early 1970s, available medical therapies were limited in improving survival. Surgery represented the best chance for a cure. However, surgery could only be offered to selected patients. The current landscape of treatment has radically evolved since the introduction of targeted and immunotherapies including BRAF and MEK inhibitors, and checkpoint blockers, like PD-1 and CTLA-4 antibodies. These new therapies have seen survival rates matching, and in some cases surpassing, that of surgery. Anti-PD1 and CTLA-4 combination treatments are associated with severe side effects and BRAF and MEK inhibitor combinations may trigger initial tumour responses but prolonged use have resulted in the development of resistant tumour clones and disease relapse. This review examines the role of pulmonary metastasectomy for lung metastasis from malignant melanoma in the current landscape of effective targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Christopher Y Bong
- Department of Surgery, Logan Hospital, Metro South Health, Meadowbrook, Queensland, Australia
| | - B Mark Smithers
- Upper Gastrointestinal and Soft Tissue Unit, Department of Surgery, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Discipline of Surgery, Faculty of Medicine, The University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Terence C Chua
- Department of Surgery, Logan Hospital, Metro South Health, Meadowbrook, Queensland, Australia.,Discipline of Surgery, Faculty of Medicine, The University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
11
|
Whole-Body MRI for the Detection of Recurrence in Melanoma Patients at High Risk of Relapse. Cancers (Basel) 2021; 13:cancers13030442. [PMID: 33503861 PMCID: PMC7865287 DOI: 10.3390/cancers13030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: No standard protocol for surveillance for melanoma patients is established. Whole-body magnetic resonance imaging (whole-body MRI) is a safe and sensitive technique that avoids exposure to X-rays and contrast agents. This prospective study explores the use of whole-body MRI for the early detection of recurrences. Material and Methods: Patients with American Joint Committee on Cancer Staging Manual (seventh edition; AJCC-7) stages IIIb/c or -IV melanoma who were disease-free following resection of macrometastases (cohort A), or obtained a durable complete response (CR) or partial response (PR) following systemic therapy (cohort B), were included. All patients underwent whole-body MRI, including T1, Short Tau Inversion Recovery, and diffusion-weighted imaging, every 4 months the first 3 years of follow-up and every 6 months in the following 2 years. A total body skin examination was performed every 6 months. Results: From November 2014 to November 2019, 111 patients were included (four screen failures, cohort A: 68 patients; cohort B: 39 patients). The median follow-up was 32 months. Twenty-six patients were diagnosed with suspected lesions. Of these, 15 patients were diagnosed with a recurrence on MRI. Eleven suspected lesions were considered to be of non-neoplastic origin. In addition, nine patients detected a solitary subcutaneous metastasis during self-examination, and two patients presented in between MRIs with recurrences. The overall sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were, respectively, 58%, 98%, 58%, 98%, and 98%. Sensitivity and specificity for the detection of distant metastases was respectively 88% and 98%. No patient experienced a clinically meaningful (>grade 1) adverse event. Conclusions: Whole-body MRI for the surveillance of melanoma patients is a safe and sensitive technique sparing patients' cumulative exposure to X-rays and contrast media.
Collapse
|
12
|
Winge-Main AK, Wälchli S, Inderberg EM. T cell receptor therapy against melanoma-Immunotherapy for the future? Scand J Immunol 2020; 92:e12927. [PMID: 32640053 DOI: 10.1111/sji.12927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
Malignant melanoma has seen monumental changes in treatment options the last decade from the very poor results of dacarbazine treatment to the modern-day use of targeted therapies and immune checkpoint inhibitors. Melanoma has a high mutational burden making it more capable of evoking immune responses than many other tumours. Even when considering double immune checkpoint blockade with anti-CTLA-4 and anti-PD-1, we still have far to go in melanoma treatment as 50% of patients with metastatic disease do not respond to current treatment. Alternative immunotherapy should therefore be considered. Since melanoma has a high mutational burden, it is considered more immunogenic than many other tumours. T cell receptor (TCR) therapy could be a possible way forward, either alone or in combination, to improve the response rates of this deadly disease. Melanoma is one of the cancers where TCR therapy has been frequently applied. However, the number of antigens targeted remains fairly limited, although advanced personalized therapies aim at also targeting private mutations. In this review, we look at possible aspects of targeting TCR therapy towards melanoma and provide an implication of its use in the future.
Collapse
Affiliation(s)
- Anna K Winge-Main
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Chang GA, Wiggins JM, Corless BC, Syeda MM, Tadepalli JS, Blake S, Fleming N, Darvishian F, Pavlick A, Berman R, Shapiro R, Shao Y, Karlin-Neumann G, Spittle C, Osman I, Polsky D. TERT, BRAF, and NRAS Mutational Heterogeneity between Paired Primary and Metastatic Melanoma Tumors. J Invest Dermatol 2020; 140:1609-1618.e7. [PMID: 32087194 PMCID: PMC7387168 DOI: 10.1016/j.jid.2020.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022]
Abstract
Mutational heterogeneity can contribute to therapeutic resistance in solid cancers. In melanoma, the frequencies of intertumoral and intratumoral heterogeneity are controversial. We examined mutational heterogeneity within individual patients with melanoma using multiplatform analysis of commonly mutated driver and nonpassenger genes. We analyzed paired primary and metastatic tumors from 60 patients and multiple metastatic tumors from 39 patients whose primary tumors were unavailable (n = 271 tumors). We used a combination of multiplex SNaPshot assays, Sanger sequencing, mutation-specific PCR, or droplet digital PCR to determine the presence of BRAFV600, NRASQ61, TERT-124C>T, and TERT-146C>T mutations. Mutations were detected in BRAF (39%), NRAS (21%), and/or TERT (78%). Thirteen patients had TERTmutant discordant tumors; seven of these had a single tumor with both TERT-124C>T and TERT-146C>T mutations present at different allele frequencies. Two patients had both BRAF and NRAS mutations; one had different tumors and the other had a single tumor with both mutations. One patient with a BRAFmutant primary lacked mutant BRAF in at least one of their metastases. Overall, we identified mutational heterogeneity in 18 of 99 patients (18%). These results suggest that some primary melanomas may be composed of subclones with differing mutational profiles. Such heterogeneity may be relevant to treatment responses and survival outcomes.
Collapse
Affiliation(s)
- Gregory A Chang
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Health, New York, USA; The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA; St. Georges University School of Medicine, Grenada, West Indies
| | - Jennifer M Wiggins
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Health, New York, USA; The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA
| | - Broderick C Corless
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Health, New York, USA; The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA; Weill Cornell Medicine Graduate School of Medical Sciences, New York, USA
| | - Mahrukh M Syeda
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Health, New York, USA; The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA
| | - Jyothirmayee S Tadepalli
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Health, New York, USA; The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA
| | - Shria Blake
- MolecularMD Corporation, Portland, Oregon, USA
| | - Nathaniel Fleming
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Health, New York, USA; The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA
| | - Farbod Darvishian
- The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA; Department of Pathology, New York University School of Medicine, NYU Langone Health, New York, USA
| | - Anna Pavlick
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Health, New York, USA; The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA; Division of Medical Oncology, Department of Medicine, New York University School of Medicine, NYU Langone Health, New York, USA
| | - Russell Berman
- The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA; Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, USA
| | - Richard Shapiro
- The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA; Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, USA
| | - Yongzhao Shao
- The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA; Department of Population Health, New York University School of Medicine, NYU Langone Health, New York, USA
| | | | | | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Health, New York, USA; The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA; Division of Medical Oncology, Department of Medicine, New York University School of Medicine, NYU Langone Health, New York, USA
| | - David Polsky
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Health, New York, USA; The Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, USA.
| |
Collapse
|
14
|
Zippel D, Yalon T, Nevo Y, Markel G, Asher N, Schachter J, Goitein D, Segal TA, Nissan A, Hazzan D. The non-responding adrenal metastasis in melanoma: The case for minimally invasive adrenalectomy in the age of modern therapies. Am J Surg 2020; 220:349-353. [DOI: 10.1016/j.amjsurg.2019.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
|
15
|
Ziemys A, Kim M, Menzies AM, Wilmott JS, Long GV, Scolyer RA, Kwong L, Holder A, Boland G. Integration of Digital Pathologic and Transcriptomic Analyses Connects Tumor-Infiltrating Lymphocyte Spatial Density With Clinical Response to BRAF Inhibitors. Front Oncol 2020; 10:757. [PMID: 32528881 PMCID: PMC7247820 DOI: 10.3389/fonc.2020.00757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Abstract
Metastatic melanoma is one of the most immunogenic malignancies due to its high rate of mutations and neoantigen formation. Response to BRAF inhibitors (BRAFi) may be determined by intratumoral immune activation within melanoma metastases. To evaluate whether CD8+ T cell infiltration and distribution within melanoma metastases can predict clinical response to BRAFi, we developed a methodology to integrate immunohistochemistry with automated image analysis of CD8+ T cell position. CD8+ distribution patterns were correlated with gene expression data to identify and quantify “hot” areas within a tumor. Furthermore, the relative activation of CD8+cells, based on transcriptomic analysis, and their relationship to other CD8+ T cells and non-CD8+ cells within the tumor suggested a less crowded distribution of cells around activated CD8+ T cells. Furthermore, the relative activation of these CD8+ T cells was associated with improved clinical outcomes and decreased tumor cell proliferation. This study demonstrates the potential of digital pathomics to incorporate immune cell spatial distribution within metastases and RNAseq analysis to predict clinical response to BRAF inhibition in metastatic melanoma.
Collapse
Affiliation(s)
- Arturas Ziemys
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Michelle Kim
- Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Alexander M Menzies
- Department of Medical Oncology, Westmead Hospital, Westmead, NSW, Australia.,Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Department of Medical Oncology, Westmead Hospital, Westmead, NSW, Australia.,Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Camperdown, NSW, Australia
| | - Larry Kwong
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ashley Holder
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Genevieve Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Yang C, Xia BR, Jin WL, Lou G. Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 2019; 19:341. [PMID: 31866766 PMCID: PMC6918690 DOI: 10.1186/s12935-019-1067-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Circulating tumor cells (CTCs) are a rare subset of cells found in the blood of patients with solid tumors, which function as a seed for metastases. Cancer cells metastasize through the bloodstream either as single migratory CTCs or as multicellular groupings-CTC clusters. The CTCs preserve primary tumor heterogeneity and mimic tumor properties, and may be considered as clinical biomarker, preclinical model, and therapeutic target. The potential clinical application of CTCs is being a component of liquid biopsy. CTCs are also good candidates for generating preclinical models, especially 3D organoid cultures, which could be applied in drug screening, disease modeling, genome editing, tumor immunity, and organoid biobanks. In this review, we summarize current knowledge on the value and promise of evolving CTC technologies and highlight cutting-edge research on CTCs in liquid biopsy, tumor metastasis, and organoid preclinical models. The study of CTCs offers broad pathways to develop new biomarkers for tumor patient diagnosis, prognosis, and response to therapy, as well as translational models accelerating oncologic drug development.
Collapse
Affiliation(s)
- Chang Yang
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| | - Bai-Rong Xia
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| | - Wei-Lin Jin
- 2Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People's Republic of China.,3National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai, 200240 People's Republic of China
| | - Ge Lou
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| |
Collapse
|
17
|
Pires da Silva I, Lo S, Quek C, Gonzalez M, Carlino MS, Long GV, Menzies AM. Site‐specific response patterns, pseudoprogression, and acquired resistance in patients with melanoma treated with ipilimumab combined with anti–PD‐1 therapy. Cancer 2019; 126:86-97. [DOI: 10.1002/cncr.32522] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/15/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Ines Pires da Silva
- Melanoma Institute Australia Sydney New South Wales Australia
- Central Clinical School The University of Sydney Sydney New South Wales Australia
| | - Serigne Lo
- Melanoma Institute Australia Sydney New South Wales Australia
- Central Clinical School The University of Sydney Sydney New South Wales Australia
| | - Camelia Quek
- Melanoma Institute Australia Sydney New South Wales Australia
- Central Clinical School The University of Sydney Sydney New South Wales Australia
| | - Maria Gonzalez
- Melanoma Institute Australia Sydney New South Wales Australia
| | - Matteo S. Carlino
- Melanoma Institute Australia Sydney New South Wales Australia
- Western Clinical School The University of Sydney Sydney New South Wales Australia
- Department of Medical Oncology Westmead and Blacktown Hospitals Sydney New South Wales Australia
| | - Georgina V. Long
- Melanoma Institute Australia Sydney New South Wales Australia
- Department of Medical Oncology Royal North Shore and Mater Hospitals Sydney New South Wales Australia
- Northern Clinical School The University of Sydney Sydney New South Wales Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia Sydney New South Wales Australia
- Department of Medical Oncology Royal North Shore and Mater Hospitals Sydney New South Wales Australia
- Northern Clinical School The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
18
|
Khaliq M, Fallahi-Sichani M. Epigenetic Mechanisms of Escape from BRAF Oncogene Dependency. Cancers (Basel) 2019; 11:cancers11101480. [PMID: 31581557 PMCID: PMC6826668 DOI: 10.3390/cancers11101480] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 12/14/2022] Open
Abstract
About eight percent of all human tumors (including 50% of melanomas) carry gain-of-function mutations in the BRAF oncogene. Mutated BRAF and subsequent hyperactivation of the MAPK signaling pathway has motivated the use of MAPK-targeted therapies for these tumors. Despite great promise, however, MAPK-targeted therapies in BRAF-mutant tumors are limited by the emergence of drug resistance. Mechanisms of resistance include genetic, non-genetic and epigenetic alterations. Epigenetic plasticity, often modulated by histone-modifying enzymes and gene regulation, can influence a tumor cell's BRAF dependency and therefore, response to therapy. In this review, focusing primarily on class 1 BRAF-mutant cells, we will highlight recent work on the contribution of epigenetic mechanisms to inter- and intratumor cell heterogeneity in MAPK-targeted therapy response.
Collapse
Affiliation(s)
- Mehwish Khaliq
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Mohammad Fallahi-Sichani
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Brunsell TH, Cengija V, Sveen A, Bjørnbeth BA, Røsok BI, Brudvik KW, Guren MG, Lothe RA, Abildgaard A, Nesbakken A. Heterogeneous radiological response to neoadjuvant therapy is associated with poor prognosis after resection of colorectal liver metastases. Eur J Surg Oncol 2019; 45:2340-2346. [PMID: 31350075 DOI: 10.1016/j.ejso.2019.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/22/2019] [Accepted: 07/08/2019] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Surgery combined with perioperative chemotherapy has become standard of care in patients with resectable colorectal liver metastases. However, poor outcome is expected for a significant subgroup. The clinical implications of inter-metastatic heterogeneity remain largely unknown. In a prospective, population-based series of patients undergoing resection of multiple colorectal liver metastases, the aim was to investigate the prevalence and prognostic impact of heterogeneous response to neoadjuvant chemotherapy. MATERIALS AND METHODS Radiological response to treatment was evaluated in a lesion-specific manner in 2-5 metastases per patient. Change of lesion diameter was evaluated and response/progression was classified according to three different size thresholds; 3, 4 and 5 mm. A heterogeneous response was defined as progression and response of different metastases in the same patient. RESULTS In total, 142 patients with 585 liver metastases were examined with the same radiological method (MRI or CT) before and after neoadjuvant treatment. Heterogeneous response to treatment was seen in 16 patients (11%) using the 3 mm size change threshold, and this group had a 5-year cancer-specific survival of 19% compared to 49% for patients with response in all lesions (p = 0.003). Cut-off values of 4-5 mm were less sensitive for detecting a heterogeneous response, but the survival difference was similar and significant. CONCLUSION A subgroup of patients with multiple colorectal liver metastases had heterogeneous radiological response to neoadjuvant chemotherapy and poor prognosis. The evaluation of response pattern is easy to perform, feasible in clinical practice and, if validated, a promising biomarker for treatment decisions.
Collapse
Affiliation(s)
- Tuva Høst Brunsell
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, POB 1171 Blindern, N-0318, Oslo, Norway.
| | - Vanja Cengija
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway.
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, POB 1171 Blindern, N-0318, Oslo, Norway.
| | - Bjørn Atle Bjørnbeth
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway.
| | - Bård I Røsok
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway.
| | - Kristoffer Watten Brudvik
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway.
| | - Marianne Grønlie Guren
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; Department of Oncology, Oslo University Hospital, POB 4956 Nydalen, N-0424, Oslo, Norway.
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, POB 1171 Blindern, N-0318, Oslo, Norway.
| | - Andreas Abildgaard
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway.
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway; Institute for Clinical Medicine, University of Oslo, POB 1171 Blindern, N-0318, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, POB 4950 Nydalen, N-0424, Oslo, Norway.
| |
Collapse
|
20
|
Zhang X, Peng Y, Li C, Li Q, Yu Z, Pang Y, Wu AR, Huang Y, Li H. Genomic Heterogeneity and Branched Evolution of Early Stage Primary Acral Melanoma Shown by Multiregional Microdissection Sequencing. J Invest Dermatol 2019; 139:1526-1534. [DOI: 10.1016/j.jid.2019.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/30/2022]
|
21
|
Kai M, Ziemys A, Liu YT, Kojic M, Ferrari M, Yokoi K. Tumor Site-Dependent Transport Properties Determine Nanotherapeutics Delivery and Its Efficacy. Transl Oncol 2019; 12:1196-1205. [PMID: 31228770 PMCID: PMC6600803 DOI: 10.1016/j.tranon.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Insufficient delivery of systemically administered anticancer drugs to tumors can compromise therapeutic efficacy and develop drug delivery-based therapeutic resistance. Nanotherapeutics such as PEGylated liposomal doxorubicin (PLD) are designed to preferentially accumulate in tumors utilizing enhanced permeation and retention effect. However, their antitumor effects and resulting clinical outcomes are modest and heterogeneous among tumors. Here, we aimed to investigate whether the amount and efficacy of PLD delivered to tumors are tumor site dependent. We established orthotopic primary tumor or liver metastases models of murine breast cancer using 4 T1 cells. PLD showed significant therapeutic effects against tumors that grew in primary mammary sites but not in the liver. We found that differences in therapeutic efficacy were not because of the intrinsic biological resistance of cancer cells but rather were associated with tumor site-dependent differences in transport properties, such as the amount of PLD delivery, blood vessel function, relative vascular permeability, and mechanical pressure in tumors. Thus, transport properties in tumor is site dependent and can be used as phenotypic surrogate markers for tumor drug delivery and therapeutic efficacy.
Collapse
Affiliation(s)
- Megumi Kai
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA
| | - Arturas Ziemys
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA
| | - Yan Ting Liu
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA
| | - Milos Kojic
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA.
| | - Kenji Yokoi
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Chatterjee N, Bivona TG. Polytherapy and Targeted Cancer Drug Resistance. Trends Cancer 2019; 5:170-182. [PMID: 30898264 PMCID: PMC6446041 DOI: 10.1016/j.trecan.2019.02.003] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
A current challenge in cancer treatment is drug resistance. Even the most effective therapies often fail to produce a complete and durable tumor response and ultimately give rise to therapy resistance and tumor relapse. However, how resistance arises in cancer remains incompletely understood. While drug resistance in cancer is thought to be driven by irreversible genetic mutations, emerging evidence also implicates reversible proteomic and epigenetic mechanisms in the development of drug resistance. Tumor microenvironment-mediated mechanisms and tumor heterogeneity can significantly contribute to cancer treatment resistance. Here, we discuss the diverse and dynamic strategies that cancers use to evade drug response, the promise of upfront combination and intermittent therapies and therapy switching in forestalling resistance, and epigenetic reprogramming to combat resistance.
Collapse
Affiliation(s)
- Nilanjana Chatterjee
- Department of Medicine, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA.
| |
Collapse
|
23
|
Freeman M, Laks S. Surveillance imaging for metastasis in high-risk melanoma: importance in individualized patient care and survivorship. Melanoma Manag 2019; 6:MMT12. [PMID: 31236204 PMCID: PMC6582455 DOI: 10.2217/mmt-2019-0003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022] Open
Abstract
Most patients newly diagnosed with melanoma have early-stage disease considered of good prognosis. However, with a risk of recurrence, appropriate follow-up may include surveillance imaging for early relapse detection. Previously, surveillance imaging to detect recurrences was considered unjustified, given the lack of effective treatments. Now, systemic therapies have improved, and patients with low tumor burden may derive benefit from surveillance imaging. Despite this, controversy exists regarding the role of surveillance imaging in early-stage melanoma survivorship, in part reflected by the lack of consensus on specific imaging protocols and broad guidelines. This review discusses published evidence on surveillance imaging to detect metastasis in high-risk melanoma, the need for early recurrence detection and implications for value-based clinical decision-making, survivorship care and multidisciplinary patient management.
Collapse
Affiliation(s)
- Morganna Freeman
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA
| | - Shachar Laks
- Department of Surgery, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
24
|
Lin C, Harmon S, Bradshaw T, Eickhoff J, Perlman S, Liu G, Jeraj R. Response-to-repeatability of quantitative imaging features for longitudinal response assessment. Phys Med Biol 2019; 64:025019. [PMID: 30566922 DOI: 10.1088/1361-6560/aafa0a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Quantitative imaging biomarkers (QIBs) are often selected and ranked based on their repeatability performance. In the context of treatment response assessment, however, one must also consider how sensitive a QIB is to measuring changes in the tumour. This work introduces response-to-repeatability ratio (R/R), which weighs the ability of a QIB to detect significant changes with respect to its measurement repeatability and applies it to the case of PET texture features. R/R is evaluated as the proportion of measurable changes from baseline to follow-up for each candidate QIB. We analyse 47 texture features extracted from lesions in bone-metastatic prostate cancer patients who received double baseline and/or baseline to treatment follow-up 18F-NaF PET/CT scans. R/R evaluates the proportion of follow-up changes outside of the 95% limits of agreement (LOA) defined by test-retest values. Intraclass correlation coefficient (ICC) and coefficient of variation (CV) are calculated for each feature. Relationship between ICC and R/R are evaluated with the Spearman's correlation coefficient. R/R varied significantly across texture features: 41/47 (87%) features demonstrated R/R > 5%; 21/47 (45%) features demonstrated R/R > 10%, and 11/47 (23%) features demonstrated R/R > 20%. LOA of features ranged from [0.998, 1.001] to [0.22, 4.86]. Repeatability alone did not qualify a feature for its efficacy at detecting measurable change at follow-up, as shown by weak correlations between R/R and both CV and ICC (ρ = 0.23 and ρ = 0.40, respectively). Three features demonstrated excellent ICC (ICC > 0.75) and R/R greater than that of SUVmax (R/R = 41.8%): skewness (ICC = 0.92, R/R = 75.4%), kurtosis (ICC = 0.88, R/R = 47.0%) and diagonal moment (ICC = 0.88, R/R = 45.5%). R/R characterizes the sensitivity of candidate QIBs to detect measurable changes at follow-up. R/R supplements existing precision performance metrics (e.g. CV, ICC, and LOA) as an index to assess the utility of QIBs for response assessment.
Collapse
Affiliation(s)
- Christie Lin
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
| | | | | | | | | | | | | |
Collapse
|
25
|
Rožanc J, Sakellaropoulos T, Antoranz A, Guttà C, Podder B, Vetma V, Rufo N, Agostinis P, Pliaka V, Sauter T, Kulms D, Rehm M, Alexopoulos LG. Phosphoprotein patterns predict trametinib responsiveness and optimal trametinib sensitisation strategies in melanoma. Cell Death Differ 2018; 26:1365-1378. [PMID: 30323272 DOI: 10.1038/s41418-018-0210-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/19/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
Malignant melanoma is a highly aggressive form of skin cancer responsible for the majority of skin cancer-related deaths. Recent insight into the heterogeneous nature of melanoma suggests more personalised treatments may be necessary to overcome drug resistance and improve patient care. To this end, reliable molecular signatures that can accurately predict treatment responsiveness need to be identified. In this study, we applied multiplex phosphoproteomic profiling across a panel of 24 melanoma cell lines with different disease-relevant mutations, to predict responsiveness to MEK inhibitor trametinib. Supported by multivariate statistical analysis and multidimensional pattern recognition algorithms, the responsiveness of individual cell lines to trametinib could be predicted with high accuracy (83% correct predictions), independent of mutation status. We also successfully employed this approach to case specifically predict whether individual melanoma cell lines could be sensitised to trametinib. Our predictions identified that combining MEK inhibition with selective targeting of c-JUN and/or FAK, using siRNA-based depletion or pharmacological inhibitors, sensitised resistant cell lines and significantly enhanced treatment efficacy. Our study indicates that multiplex proteomic analyses coupled with pattern recognition approaches could assist in personalising trametinib-based treatment decisions in the future.
Collapse
Affiliation(s)
- Jan Rožanc
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg.,ProtATonce Ltd, Science Park Demokritos, Athens, Greece
| | | | - Asier Antoranz
- ProtATonce Ltd, Science Park Demokritos, Athens, Greece.,Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Biswajit Podder
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Vesna Vetma
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nicole Rufo
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Vaia Pliaka
- ProtATonce Ltd, Science Park Demokritos, Athens, Greece
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, Technical University Dresden, Dresden, Germany.,Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Leonidas G Alexopoulos
- ProtATonce Ltd, Science Park Demokritos, Athens, Greece. .,Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
26
|
Konieczkowski DJ, Johannessen CM, Garraway LA. A Convergence-Based Framework for Cancer Drug Resistance. Cancer Cell 2018; 33:801-815. [PMID: 29763622 PMCID: PMC5957297 DOI: 10.1016/j.ccell.2018.03.025] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Despite advances in cancer biology and therapeutics, drug resistance remains problematic. Resistance is often multifactorial, heterogeneous, and prone to undersampling. Nonetheless, many individual mechanisms of targeted therapy resistance may coalesce into a smaller number of convergences, including pathway reactivation (downstream re-engagement of original effectors), pathway bypass (recruitment of a parallel pathway converging on the same downstream output), and pathway indifference (development of a cellular state independent of the initial therapeutic target). Similar convergences may also underpin immunotherapy resistance. Such parsimonious, convergence-based frameworks may help explain resistance across tumor types and therapeutic categories and may also suggest strategies to overcome it.
Collapse
|
27
|
Rechallenge with BRAF-directed treatment in metastatic melanoma: A multi-institutional retrospective study. Eur J Cancer 2018; 91:116-124. [DOI: 10.1016/j.ejca.2017.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 12/11/2022]
|
28
|
Brighton HE, Angus SP, Bo T, Roques J, Tagliatela AC, Darr DB, Karagoz K, Sciaky N, Gatza ML, Sharpless NE, Johnson GL, Bear JE. New Mechanisms of Resistance to MEK Inhibitors in Melanoma Revealed by Intravital Imaging. Cancer Res 2018; 78:542-557. [PMID: 29180473 PMCID: PMC6132242 DOI: 10.1158/0008-5472.can-17-1653] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/06/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022]
Abstract
Targeted therapeutics that are initially effective in cancer patients nearly invariably engender resistance at some stage, an inherent challenge in the use of any molecular-targeted drug in cancer settings. In this study, we evaluated resistance mechanisms arising in metastatic melanoma to MAPK pathway kinase inhibitors as a strategy to identify candidate strategies to limit risks of resistance. To investigate longitudinal responses, we developed an intravital serial imaging approach that can directly visualize drug response in an inducible RAF-driven, autochthonous murine model of melanoma incorporating a fluorescent reporter allele (tdTomatoLSL). Using this system, we visualized formation and progression of tumors in situ, starting from the single-cell level longitudinally over time. Reliable reporting of the status of primary murine tumors treated with the selective MEK1/2 inhibitor (MEKi) trametinib illustrated a time-course of initial drug response and persistence, followed by the development of drug resistance. We found that tumor cells adjacent to bundled collagen had a preferential persistence in response to MEKi. Unbiased transcriptional and kinome reprogramming analyses from selected treatment time points suggested increased c-Kit and PI3K/AKT pathway activation in resistant tumors, along with enhanced expression of epithelial genes and epithelial-mesenchymal transition downregulation signatures with development of MEKi resistance. Similar trends were observed following simultaneous treatment with BRAF and MEK inhibitors aligned to standard-of-care combination therapy, suggesting these reprogramming events were not specific to MEKi alone. Overall, our results illuminate the integration of tumor-stroma dynamics with tissue plasticity in melanoma progression and provide new insights into the basis for drug response, persistence, and resistance.Significance: A longitudinal study tracks the course of MEKi treatment in an autochthonous imageable murine model of melanoma from initial response to therapeutic resistance, offering new insights into the basis for drug response, persistence, and resistance. Cancer Res; 78(2); 542-57. ©2017 AACR.
Collapse
Affiliation(s)
- Hailey E Brighton
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Steven P Angus
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tao Bo
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jose Roques
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alicia C Tagliatela
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David B Darr
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kubra Karagoz
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael L Gatza
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Norman E Sharpless
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gary L Johnson
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
29
|
Hassel JC, Buder‐Bakhaya K, Bender C, Zimmer L, Weide B, Loquai C, Ugurel S, Slynko A, Gutzmer R, the German Dermatooncology Group (DeCOG/ADO). Progression patterns under BRAF inhibitor treatment and treatment beyond progression in patients with metastatic melanoma. Cancer Med 2018; 7:95-104. [PMID: 29266761 PMCID: PMC5773979 DOI: 10.1002/cam4.1267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 01/07/2023] Open
Abstract
Despite markedly improved treatment options for metastatic melanoma, resistance to targeted therapies such as BRAF inhibitors (BRAFi) or BRAFi plus MEK inhibitors (MEKi) remains a major problem. Our aim was to characterize progression on BRAFi therapy and outcome of subsequent treatment. One hundred and eighty patients with BRAF-mutant metastatic melanoma who had progressed on treatment with single-agent BRAFi from February 2010 to April 2015 were included in a retrospective data analysis focused on patterns of progression, treatment beyond progression (TBP) and subsequent treatments after BRAFi therapy. Analysis revealed that 51.1% of patients progressed with both new and existing metastases opposed to progression of only preexisting (28.3%) or only new (20.6%) metastases. Exclusive extracranial progression occurred in 50.6% of patients compared to both extra- and intracranial (29.4%) or sole cerebral progression (20%). Multivariable analyses demonstrated that single site progression and primary response to BRAFi were associated with improved progression-free survival. Progression with exclusively new or only existing metastases and a baseline Eastern Cooperative Oncology Group (ECOG) of 0 were associated with prolonged overall survival (OS). TBP had no significant impact on OS. Other subsequent treatments showed low efficacy with the exception of anti-PD-1 antibodies. In conclusion we identified specific patterns of progression which significantly correlate with further prognosis after progression on BRAFi treatment. In contrast to previously published data, we could not demonstrate a significant survival benefit for BRAFi TBP. Subsequent therapies had strikingly low efficacy except for PD-1 inhibitors.
Collapse
Affiliation(s)
- Jessica C. Hassel
- Department of Dermatology and National Center for Tumor DiseasesUniversity Hospital HeidelbergHeidelbergGermany
| | - Kristina Buder‐Bakhaya
- Department of Dermatology and National Center for Tumor DiseasesUniversity Hospital HeidelbergHeidelbergGermany
| | - Carolin Bender
- Department of Dermatology and National Center for Tumor DiseasesUniversity Hospital HeidelbergHeidelbergGermany
| | - Lisa Zimmer
- Department of DermatologyUniversity Hospital EssenUniversity Duisburg‐EssenEssenGermany
| | - Benjamin Weide
- Department of DermatologyCenter for DermatooncologyUniversity Medical Center TübingenTübingenGermany
| | - Carmen Loquai
- Department of DermatologyUniversity Medical CenterJohannes Gutenberg‐UniversityMainzGermany
| | - Selma Ugurel
- Department of DermatologyUniversity Hospital EssenUniversity Duisburg‐EssenEssenGermany
| | - Alla Slynko
- Department of Mathematics, Natural and Economic SciencesUniversity of Applied SciencesUlmGermany
| | - Ralf Gutzmer
- Department of Dermatology and AllergySkin Cancer Center HannoverHannover Medical SchoolHannoverGermany
| | | |
Collapse
|
30
|
Ferguson PM, Long GV, Scolyer RA, Thompson JF. Impact of genomics on the surgical management of melanoma. Br J Surg 2018; 105:e31-e47. [PMID: 29341162 DOI: 10.1002/bjs.10751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/28/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although surgery for early-stage melanoma offers the best chance of cure, recent advances in molecular medicine have revolutionized the management of late-stage melanoma, leading to significant improvements in clinical outcomes. Research into the genomic drivers of disease and cancer immunology has not only ushered in a new era of targeted and immune-based therapies for patients with metastatic melanoma, but has also provided new tools for monitoring disease recurrence and selecting therapeutic strategies. These advances present new opportunities and challenges to the surgeon treating patients with melanoma. METHODS The literature was reviewed to evaluate diagnostic and therapeutic advances in the management of cutaneous melanoma, and to highlight the impact of these advances on surgical decision-making. RESULTS Genomic testing is not required in the surgical management of primary melanoma, although it can provide useful information in some situations. Circulating nucleic acids from melanoma cells can be detected in peripheral blood to predict disease recurrence before it manifests clinically, but validation is required before routine clinical application. BRAF mutation testing is the standard of care for all patients with advanced disease to guide therapy, including the planning of surgery in adjuvant and neoadjuvant settings. CONCLUSION Surgery remains central for managing primary melanoma, and is an important element of integrated multidisciplinary care in advanced disease, particularly for patients with resectable metastases. The field will undergo further change as clinical trials address the relationships between surgery, radiotherapy and systemic therapy for patients with high-risk, early-stage and advanced melanoma.
Collapse
Affiliation(s)
- P M Ferguson
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - G V Long
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - R A Scolyer
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - J F Thompson
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Lee JHJ, Lyle M, Menzies AM, Chan MMK, Lo S, Clements A, Carlino MS, Kefford RF, Long GV. Metastasis-specific patterns of response and progression with anti-PD-1 treatment in metastatic melanoma. Pigment Cell Melanoma Res 2017; 31:404-410. [PMID: 29171176 DOI: 10.1111/pcmr.12675] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/05/2017] [Indexed: 12/21/2022]
Abstract
This study evaluated patterns of response as discerned by comprehensive metastasis-specific analysis in metastatic melanoma patients receiving anti-PD-1 antibodies. Bi-dimensional measurements of every metastasis in patients enrolled in the KEYNOTE-001 trial at a single institution were obtained at baseline and throughout treatment. Twenty-seven evaluable patients had 399 baseline metastases measurable on CT imaging. Complete response (CR) which occurred in 52.6% of metastases was smaller (mean 223 mm2 versus 760 mm2 , p < .01) and occurred more frequently in the lungs (65% versus 39.4%, p < .01). Response was heterogenous (new/progressing metastases alongside CR metastases) at first assessment in 4/14 patients with objective response (OR) as opposed to 7/13 patients with non-OR. CR of individual metastases is common and influenced by site and size. Most patients with OR demonstrate homogenous regression in all metastases at the first assessment. In contrast, patients with early heterogeneity had a poor outcome.
Collapse
Affiliation(s)
- Jenny H J Lee
- Departments of Biomedical Sciences and Clinical Medicine, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia
| | - Megan Lyle
- Melanoma Institute Australia, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia.,Liz Plummer Cancer Care Centre, Cairns Hospital, Cairns, QLD, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia.,Royal North Shore Hospital, Sydney, NSW, Australia
| | | | - Serigne Lo
- Melanoma Institute Australia, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| | - Arthur Clements
- Norwest hospital, Sydney, NSW, Australia.,Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| | - Richard F Kefford
- Departments of Biomedical Sciences and Clinical Medicine, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia.,Royal North Shore Hospital, Sydney, NSW, Australia
| |
Collapse
|
32
|
Perez-Lopez R, Roda D, Jimenez B, Brown J, Mateo J, Carreira S, Lopez J, Banerji U, Molife LR, Koh DM, Kaye SB, de Bono JS, Tunariu N, Yap TA. High frequency of radiological differential responses with poly(ADP-Ribose) polymerase (PARP) inhibitor therapy. Oncotarget 2017; 8:104430-104443. [PMID: 29262651 PMCID: PMC5732817 DOI: 10.18632/oncotarget.22303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/30/2017] [Indexed: 12/30/2022] Open
Abstract
Despite impressive clinical activity in patients with germline BRCA1 and BRCA2 (BRCA1/2) mutant cancers, antitumor responses to poly(ADP-Ribose) polymerase (PARP) inhibitors are variable. We set out to assess the rate of intrapatient radiological differential responses (RDR) to PARP inhibitors, its correlation with patient outcomes, and the identification of factors associated with RDR. We retrospectively reviewed all patients with advanced cancers from five early phase PARP inhibitor monotherapy trials. 113 patients (ovarian cancers 57.5%; breast cancers 23.9%) were included in this retrospective study; 46 (40.7%) patients developed RDR on PARP inhibitor monotherapy. We identified two patterns of RDR: early RDR (1st or 2nd on-treatment scans) in 69.6% of patients, and late RDR (penultimate or final scans) in 30.4% of patients. Early RDR was associated with shorter time to progression (TTP) (225 vs 367 days, HR:0.59, 95%CI 0.36-0.98; p=0.04) and overall survival (OS) (499 vs 857 days; HR:0.47, 95%CI 0.27-0.82, p=0.006). Seventy-nine (69.9%) patients had known germline BRCA1/2 mutations; 49.4% of these BRCA1/2 mutation carriers developed RDR versus 20.6% of patients with unknown or wildtype BRCA1/2 status. Harboring germline BRCA1/2 mutations was independently predictive for RDR (RR:2.93, 95% CI 1.08-7.90, p=0.03). Patients with germline BRCA1 mutations had worse TTP and OS than BRCA2 mutation carriers (212 vs 406 days, HR:0.58, 95% CI 0.36-0.94, p=0.023 and 515 vs 937 days; HR:0.49, 95% CI 0.29-0.83; p=0.007). RDR with PARP inhibitors are frequent, particularly in germline BRCA1/2 mutation carriers. These findings have clinical implications for patient outcomes and may reflect underlying intrapatient genomic heterogeneity.
Collapse
Affiliation(s)
- Raquel Perez-Lopez
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Desam Roda
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Begona Jimenez
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jessica Brown
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Joaquin Mateo
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Juanita Lopez
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Udai Banerji
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - L. Rhoda Molife
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Dow-Mu Koh
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Stan B. Kaye
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Johann S. de Bono
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Nina Tunariu
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Timothy A. Yap
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
33
|
Valachis A, Ullenhag GJ. Discrepancy in BRAF status among patients with metastatic malignant melanoma: A meta-analysis. Eur J Cancer 2017; 81:106-115. [PMID: 28623774 DOI: 10.1016/j.ejca.2017.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022]
Abstract
The incidence of malignant melanoma is growing rapidly. Approximately half of the cases are BRAF mutated, making treatment with kinase inhibitors a (MEK and BRAF inhibitors) preferred choice in the advanced setting. The vast majority of these patients will benefit from the treatment. It is therefore of vital importance that the BRAF analysis is reliable and reflects the true nature of the tumour. Intraindividual tumour BRAF heterogeneity may exist, and changes of BRAF status over time might occur. We reviewed the literature by searching the PubMed database and 630 potentially relevant studies were identified. Thereafter, studies that investigated intralesional heterogeneity only, studies with ≤10 patients and studies that did not include adequate data to calculate discrepancy rates were excluded. Twenty-two studies met our inclusion criteria and were included in the meta-analysis. The pooled discrepancy rate between primary and metastatic lesions was 13.4% (95% confidence interval [CI]: 9.2-18.2%) while it was 7.3% (95% CI: 3.3-12.6) between two metastatic lesions. The number of patients whose tumoural BRAF status was changed from mutation to wild type and from wild type to mutation, respectively, was comparable. We conclude that a clinically meaningful discrepancy rate in BRAF status both between primary-metastatic and metastatic-metastatic melanoma lesions exists. Our results support the polyclonal model of melanomas in which subclones with different BRAF status co-exist in the same melanoma lesion. In addition, the results indicate a need for biopsy of a metastatic lesion for subsequent BRAF analysis when treatment with kinase inhibitors is considered.
Collapse
Affiliation(s)
- Antonis Valachis
- Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden; Centre for Clinical Research Sörmland, Uppsala University, 63188, Eskilstuna, Sweden.
| | - Gustav J Ullenhag
- Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden; Department of Oncology, Uppsala University Hospital, 751 85, Uppsala, Sweden
| |
Collapse
|
34
|
Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy. Proc Natl Acad Sci U S A 2017; 114:E6277-E6286. [PMID: 28716945 DOI: 10.1073/pnas.1703355114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer is a highly heterogeneous disease, exhibiting spatial and temporal variations that pose challenges for designing robust therapies. Here, we propose the VEPART (Virtual Expansion of Populations for Analyzing Robustness of Therapies) technique as a platform that integrates experimental data, mathematical modeling, and statistical analyses for identifying robust optimal treatment protocols. VEPART begins with time course experimental data for a sample population, and a mathematical model fit to aggregate data from that sample population. Using nonparametric statistics, the sample population is amplified and used to create a large number of virtual populations. At the final step of VEPART, robustness is assessed by identifying and analyzing the optimal therapy (perhaps restricted to a set of clinically realizable protocols) across each virtual population. As proof of concept, we have applied the VEPART method to study the robustness of treatment response in a mouse model of melanoma subject to treatment with immunostimulatory oncolytic viruses and dendritic cell vaccines. Our analysis (i) showed that every scheduling variant of the experimentally used treatment protocol is fragile (nonrobust) and (ii) discovered an alternative region of dosing space (lower oncolytic virus dose, higher dendritic cell dose) for which a robust optimal protocol exists.
Collapse
|
35
|
The Slow Cycling Phenotype: A Growing Problem for Treatment Resistance in Melanoma. Mol Cancer Ther 2017; 16:1002-1009. [DOI: 10.1158/1535-7163.mct-16-0535] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/27/2016] [Accepted: 01/20/2017] [Indexed: 11/16/2022]
|
36
|
Hartung N, Huynh CTK, Gaudy-Marqueste C, Flavian A, Malissen N, Richard-Lallemand MA, Hubert F, Grob JJ. Study of metastatic kinetics in metastatic melanoma treated with B-RAF inhibitors: Introducing mathematical modelling of kinetics into the therapeutic decision. PLoS One 2017; 12:e0176080. [PMID: 28472075 PMCID: PMC5417482 DOI: 10.1371/journal.pone.0176080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
Background Evolution of metastatic melanoma (MM) under B-RAF inhibitors (BRAFi) is unpredictable, but anticipation is crucial for therapeutic decision. Kinetics changes in metastatic growth are driven by molecular and immune events, and thus we hypothesized that they convey relevant information for decision making. Patients and methods We used a retrospective cohort of 37 MM patients treated by BRAFi only with at least 2 close CT-scans available before BRAFi, as a model to study kinetics of metastatic growth before, under and after BRAFi. All metastases (mets) were individually measured at each CT-scan. From these measurements, different measures of growth kinetics of each met and total tumor volume were computed at different time points. A historical cohort permitted to build a reference model for the expected spontaneous disease kinetics without BRAFi. All variables were included in Cox and multistate regression models for survival, to select best candidates for predicting overall survival. Results Before starting BRAFi, fast kinetics and moreover a wide range of kinetics (fast and slow growing mets in a same patient) were pejorative markers. At the first assessment after BRAFi introduction, high heterogeneity of kinetics predicted short survival, and added independent information over RECIST progression in multivariate analysis. Metastatic growth rates after BRAFi discontinuation was usually not faster than before BRAFi introduction, but they were often more heterogeneous than before. Conclusions Monitoring kinetics of different mets before and under BRAFi by repeated CT-scan provides information for predictive mathematical modelling. Disease kinetics deserves more interest
Collapse
Affiliation(s)
- Niklas Hartung
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Cécilia T.-K. Huynh
- Aix-Marseille Université, APHM, Dermatology and skin cancers Department, Marseille, France
| | - Caroline Gaudy-Marqueste
- Aix-Marseille Université, APHM, Dermatology and skin cancers Department, Marseille, France
- Aix-Marseille Université, UMR_S 911 CRO2, Marseille, France
- * E-mail:
| | - Antonin Flavian
- APHM, Hopital Timone, Radiology department, Marseille, France
| | - Nausicaa Malissen
- Aix-Marseille Université, APHM, Dermatology and skin cancers Department, Marseille, France
| | - Marie-Aleth Richard-Lallemand
- Aix-Marseille Université, APHM, Dermatology and skin cancers Department, Marseille, France
- Aix-Marseille Université, UMR_S 911 CRO2, Marseille, France
| | - Florence Hubert
- Aix-Marseille Université, I2M, UMR 7373, CNRS, Centrale Marseille, Marseille, France
| | - Jean-Jacques Grob
- Aix-Marseille Université, APHM, Dermatology and skin cancers Department, Marseille, France
- Aix-Marseille Université, UMR_S 911 CRO2, Marseille, France
| |
Collapse
|
37
|
Combined vemurafenib and fotemustine in patients with BRAF V600 melanoma progressing on vemurafenib. Oncotarget 2016; 9:12408-12417. [PMID: 29552321 PMCID: PMC5844757 DOI: 10.18632/oncotarget.10589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023] Open
Abstract
Background BRAF inhibitor vemurafenib achieves high response rate and an improvement in survival in patients with BRAF-mutated metastatic melanoma. However, median progression-free survival is only 6.9 months in the phase 3 study. Retrospective analyses suggest that treatment with BRAF inhibitors beyond initial progression might be associated with improved overall survival. We aimed to prospectively investigate the activity of prolonged treatment with vemurafenib and the addition of fotemustine in patients with systemic progression on prior single-agent BRAF inhibitor. Patients and Methods In this two-centres, single-arm Phase 2 trial, we enrolled patients with systemic progressive disease during single-agent vemurafenib treatment. Participants received vemurafenib 960 mg twice daily or dose administered at time of disease progression with vemurafenib previous treatment and fotemustine 100 mg/m2 intravenously every three weeks. The primary endpoint was PFS. Results Thirty-one patients were enrolled in the study; 16 patients had brain metastases at baseline. Median PFS was 3.9 months and 19 patients (61.3%) achieved disease control (1 CR, 4 PR, 14 SD). For patients achieving disease control, median duration of treatment was 6 months. Median OS was 5.8 months from enrolment and 15.4 months from start of previous vemurafenib. Five patients (16.1%) had a G3-4 AE, the most common being thrombocytopenia, which occurred in 3 patients. This trial is registered with ClinicalTrials.gov number NCT01983124. Conclusion The combination of vemurafenib plus fotemustine has clinical activity and an acceptable safety profile in BRAF-refractory patients.
Collapse
|
38
|
Emmons MF, Faião-Flores F, Smalley KSM. The role of phenotypic plasticity in the escape of cancer cells from targeted therapy. Biochem Pharmacol 2016; 122:1-9. [PMID: 27349985 DOI: 10.1016/j.bcp.2016.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
Targeted therapy has proven to be beneficial at producing significant responses in patients with a wide variety of cancers. Despite initially impressive responses, most individuals ultimately fail these therapies and show signs of drug resistance. Very few patients are ever cured. Emerging evidence suggests that treatment of cancer cells with kinase inhibitors leads a minor population of cells to undergo a phenotypic switch to a more embryonic-like state. The adoption of this state, which is analogous to an epithelial-to-mesenchymal transition, is associated with drug resistance and increased tumor aggressiveness. In this commentary we will provide a comprehensive analysis of the mechanisms that underlie the embryonic reversion that occurs on targeted cancer therapy and will review potential novel therapeutic strategies designed to eradicate the escaping cells.
Collapse
Affiliation(s)
- Michael F Emmons
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Fernanda Faião-Flores
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA; The Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA; The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
| |
Collapse
|
39
|
Finlayson SG, Levy M, Reddy S, Rubin DL. Toward rapid learning in cancer treatment selection: An analytical engine for practice-based clinical data. J Biomed Inform 2016; 60:104-13. [PMID: 26836975 DOI: 10.1016/j.jbi.2016.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/06/2016] [Accepted: 01/15/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Wide-scale adoption of electronic medical records (EMRs) has created an unprecedented opportunity for the implementation of Rapid Learning Systems (RLSs) that leverage primary clinical data for real-time decision support. In cancer, where large variations among patient features leave gaps in traditional forms of medical evidence, the potential impact of a RLS is particularly promising. We developed the Melanoma Rapid Learning Utility (MRLU), a component of the RLS, providing an analytical engine and user interface that enables physicians to gain clinical insights by rapidly identifying and analyzing cohorts of patients similar to their own. MATERIALS AND METHODS A new approach for clinical decision support in Melanoma was developed and implemented, in which patient-centered cohorts are generated from practice-based evidence and used to power on-the-fly stratified survival analyses. A database to underlie the system was generated from clinical, pharmaceutical, and molecular data from 237 patients with metastatic melanoma from two academic medical centers. The system was assessed in two ways: (1) ability to rediscover known knowledge and (2) potential clinical utility and usability through a user study of 13 practicing oncologists. RESULTS The MRLU enables physician-driven cohort selection and stratified survival analysis. The system successfully identified several known clinical trends in melanoma, including frequency of BRAF mutations, survival rate of patients with BRAF mutant tumors in response to BRAF inhibitor therapy, and sex-based trends in prevalence and survival. Surveyed physician users expressed great interest in using such on-the-fly evidence systems in practice (mean response from relevant survey questions 4.54/5.0), and generally found the MRLU in particular to be both useful (mean score 4.2/5.0) and useable (4.42/5.0). DISCUSSION The MRLU is an RLS analytical engine and user interface for Melanoma treatment planning that presents design principles useful in building RLSs. Further research is necessary to evaluate when and how to best use this functionality within the EMR clinical workflow for guiding clinical decision making. CONCLUSION The MRLU is an important component in building a RLS for data driven precision medicine in Melanoma treatment that could be generalized to other clinical disorders.
Collapse
Affiliation(s)
| | - Mia Levy
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Sunil Reddy
- Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel L Rubin
- Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
40
|
|
41
|
Seifert H, Hirata E, Gore M, Khabra K, Messiou C, Larkin J, Sahai E. Extrinsic factors can mediate resistance to BRAF inhibition in central nervous system melanoma metastases. Pigment Cell Melanoma Res 2016; 29:92-100. [PMID: 26414886 PMCID: PMC4737278 DOI: 10.1111/pcmr.12424] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022]
Abstract
Here, we retrospectively review imaging of 68 consecutive unselected patients with BRAF V600-mutant metastatic melanoma for organ-specific response and progression on vemurafenib. Complete or partial responses were less often seen in the central nervous system (CNS) (36%) and bone (16%) compared to lung (89%), subcutaneous (83%), spleen (71%), liver (85%) and lymph nodes/soft tissue (83%), P < 0.001. CNS was also the most common site of progression. Based on this, we tested in vitro the efficacy of the BRAF inhibitors PLX4720 and dabrafenib in the presence of cerebrospinal fluid (CSF). Exogenous CSF dramatically reduced cell death in response to both BRAF inhibitors. Effective cell killing was restored by co-administration of a PI-3 kinase inhibitor. We conclude that the efficacy of vemurafenib is variable in different organs with CNS being particularly prone to resistance. Extrinsic factors, such as ERK- and PI3K-activating factors in CSF, may mediate BRAF inhibitor resistance in the CNS.
Collapse
Affiliation(s)
- Heike Seifert
- Department of Medical OncologyRoyal Marsden NHS TrustLondonUK
| | - Eishu Hirata
- Tumour Cell Biology LaboratoryThe Francis Crick InstituteLondonUK
- Department of Oncologic PathologyKanazawa Medical UniversityKahoku‐gunIshikawaJapan
| | - Martin Gore
- Department of Medical OncologyRoyal Marsden NHS TrustLondonUK
| | - Komel Khabra
- Department of Medical OncologyRoyal Marsden NHS TrustLondonUK
| | | | - James Larkin
- Department of Medical OncologyRoyal Marsden NHS TrustLondonUK
| | - Erik Sahai
- Tumour Cell Biology LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
42
|
Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells. Stem Cells Int 2015; 2016:8394960. [PMID: 27057178 PMCID: PMC4707343 DOI: 10.1155/2016/8394960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs) that express programmed cell death protein-1 (PD-1) are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy.
Collapse
|
43
|
Badri H, Watanabe Y, Leder K. Optimal radiotherapy dose schedules under parametric uncertainty. Phys Med Biol 2015; 61:338-64. [PMID: 26679572 DOI: 10.1088/0031-9155/61/1/338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We consider the effects of parameter uncertainty on the optimal radiation schedule in the context of the linear-quadratic model. Our interest arises from the observation that if inter-patient variability in normal and tumor tissue radiosensitivity or sparing factor of the organs-at-risk (OAR) are not accounted for during radiation scheduling, the performance of the therapy may be strongly degraded or the OAR may receive a substantially larger dose than the allowable threshold. This paper proposes a stochastic radiation scheduling concept to incorporate inter-patient variability into the scheduling optimization problem. Our method is based on a probabilistic approach, where the model parameters are given by a set of random variables. Our probabilistic formulation ensures that our constraints are satisfied with a given probability, and that our objective function achieves a desired level with a stated probability. We used a variable transformation to reduce the resulting optimization problem to two dimensions. We showed that the optimal solution lies on the boundary of the feasible region and we implemented a branch and bound algorithm to find the global optimal solution. We demonstrated how the configuration of optimal schedules in the presence of uncertainty compares to optimal schedules in the absence of uncertainty (conventional schedule). We observed that in order to protect against the possibility of the model parameters falling into a region where the conventional schedule is no longer feasible, it is required to avoid extremal solutions, i.e. a single large dose or very large total dose delivered over a long period. Finally, we performed numerical experiments in the setting of head and neck tumors including several normal tissues to reveal the effect of parameter uncertainty on optimal schedules and to evaluate the sensitivity of the solutions to the choice of key model parameters.
Collapse
Affiliation(s)
- Hamidreza Badri
- Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
44
|
Smalley KSM, Fedorenko IV. Inhibition of BRAF and BRAF+MEK drives a metastatic switch in melanoma. Mol Cell Oncol 2015; 2:e1008291. [PMID: 27308505 PMCID: PMC4905349 DOI: 10.1080/23723556.2015.1008291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 06/06/2023]
Abstract
Recent analyses by our group and others showed that the majority of melanoma patients who fail BRAF inhibitor therapy do so at new disease sites. Using phosphoproteomics we showed that BRAF inhibition mediates a switch to an aggressive/metastatic melanoma phenotype that is driven by ligand-independent erythropoietin-producing hepatocellular receptor A2 (EphA2) signaling.
Collapse
Affiliation(s)
- Keiran SM Smalley
- Department of Tumor Biology; The Moffitt Cancer Center & Research Institute; Tampa, FL, USA
- Department of Cutaneous Oncology; The Moffitt Cancer Center & Research Institute; Tampa, FL, USA
| | - Inna V Fedorenko
- Department of Tumor Biology; The Moffitt Cancer Center & Research Institute; Tampa, FL, USA
| |
Collapse
|
45
|
Long E, Ilie M, Lassalle S, Butori C, Poissonnet G, Washetine K, Mouroux J, Lespinet V, Lacour J, Taly V, Laurent-Puig P, Bahadoran P, Hofman V, Hofman P. Why and how immunohistochemistry should now be used to screen for the BRAFV600E status in metastatic melanoma? The experience of a single institution (LCEP, Nice, France). J Eur Acad Dermatol Venereol 2015; 29:2436-43. [DOI: 10.1111/jdv.13332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/07/2015] [Indexed: 12/15/2022]
Affiliation(s)
- E. Long
- Laboratory of Clinical and Experimental Pathology; Pasteur Hospital; Nice Cedex France
- Institute for Research on Cancer and Aging; Nice (IRCAN) CNRS UMR 7284/Inserm U1081; University of Nice Sophia Antipolis; Nice France
| | - M. Ilie
- Laboratory of Clinical and Experimental Pathology; Pasteur Hospital; Nice Cedex France
- Institute for Research on Cancer and Aging; Nice (IRCAN) CNRS UMR 7284/Inserm U1081; University of Nice Sophia Antipolis; Nice France
| | - S. Lassalle
- Laboratory of Clinical and Experimental Pathology; Pasteur Hospital; Nice Cedex France
- Institute for Research on Cancer and Aging; Nice (IRCAN) CNRS UMR 7284/Inserm U1081; University of Nice Sophia Antipolis; Nice France
| | - C. Butori
- Laboratory of Clinical and Experimental Pathology; Pasteur Hospital; Nice Cedex France
| | - G. Poissonnet
- Department of Surgery; CLCC Antoine Lacassagne Center; Nice France
| | - K. Washetine
- Laboratory of Clinical and Experimental Pathology; Pasteur Hospital; Nice Cedex France
- Nice Hospital-Related Biobank BB-0033-00025; Pasteur Hospital; Nice France
| | - J. Mouroux
- Institute for Research on Cancer and Aging; Nice (IRCAN) CNRS UMR 7284/Inserm U1081; University of Nice Sophia Antipolis; Nice France
- Department of Thoracic Surgery; Pasteur Hospital; Nice France
| | - V. Lespinet
- Laboratory of Clinical and Experimental Pathology; Pasteur Hospital; Nice Cedex France
| | - J.P. Lacour
- Department of Dermatology; Archet Hospital; Nice France
| | - V. Taly
- INSERM UMR-S1147; Centre Universitaire des Saints-Pères; University Paris Sorbonne Cité; Paris France
| | - P. Laurent-Puig
- INSERM UMR-S1147; Centre Universitaire des Saints-Pères; University Paris Sorbonne Cité; Paris France
| | - P. Bahadoran
- Department of Dermatology; Archet Hospital; Nice France
| | - V. Hofman
- Laboratory of Clinical and Experimental Pathology; Pasteur Hospital; Nice Cedex France
- Institute for Research on Cancer and Aging; Nice (IRCAN) CNRS UMR 7284/Inserm U1081; University of Nice Sophia Antipolis; Nice France
- Nice Hospital-Related Biobank BB-0033-00025; Pasteur Hospital; Nice France
| | - P. Hofman
- Laboratory of Clinical and Experimental Pathology; Pasteur Hospital; Nice Cedex France
- Institute for Research on Cancer and Aging; Nice (IRCAN) CNRS UMR 7284/Inserm U1081; University of Nice Sophia Antipolis; Nice France
- Nice Hospital-Related Biobank BB-0033-00025; Pasteur Hospital; Nice France
| |
Collapse
|
46
|
Grimaldi AM, Simeone E, Ascierto PA. Vemurafenib plus cobimetinib in the treatment of mutated metastatic melanoma: the CoBRIM trial. Melanoma Manag 2015; 2:209-215. [PMID: 30190850 DOI: 10.2217/mmt.15.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The concomitant inhibition of both BRAF and MEK can produce a more durable and greater tumor response than BRAF monotherapy while reducing BRAF inhibitor-related toxicity. Further evidence of the benefits of combined MEK and BRAF inhibition have been provided by the CoBRIM trial in which median progression-free survival was significantly increased with vemurafenib plus cobimetinib compared with vemurafenib alone (9.9 vs 6.2 months; hazard ratio for death or progression: 0.51; 95% CI: 0.39-0.68; p < 0.001) in 495 patients with advanced BRAF-mutated melanoma. Overall survival data in the CoBRIM trial were immature at time of final progression-free survival analysis but showed an hazard ratio for death of 0.65 (95% CI: 0.42-1.00; p = 0.046; boundary p < 0.0000037). Combination therapy was well tolerated with a reduced incidence of cutaneous squamous-cell carcinoma/keratoacanthoma. This combination may be a starting point for novel combination strategies with immunotherapies and other targeted therapies.
Collapse
Affiliation(s)
- Antonio M Grimaldi
- Melanoma, Cancer Immunotherapy & Innovative Therapies Unit, Istituto Nazionale Tumori Fondazione "G Pascale", Napoli, Italy
| | - Ester Simeone
- Melanoma, Cancer Immunotherapy & Innovative Therapies Unit, Istituto Nazionale Tumori Fondazione "G Pascale", Napoli, Italy
| | - Paolo A Ascierto
- Melanoma, Cancer Immunotherapy & Innovative Therapies Unit, Istituto Nazionale Tumori Fondazione "G Pascale", Napoli, Italy
| |
Collapse
|
47
|
Ward A, Sivakumar G, Kanjeekal S, Hamm C, Labute BC, Shum D, Hudson JW. The deregulated promoter methylation of the Polo-like kinases as a potential biomarker in hematological malignancies. Leuk Lymphoma 2015; 56:2123-33. [PMID: 25347426 DOI: 10.3109/10428194.2014.971407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Deregulation of Polo-like kinase (PLK) transcription via promoter methylation results in perturbations at the protein level, which has been associated with oncogenesis. Our objective was to further characterize the methylation profile for PLK1-4 in bone marrow aspirates displaying blood neoplasms as well as in cells grown in vitro. Clinically, we have determined that more than 70% of lymphoma and myelodysplastic syndrome (MDS)/leukemia bone marrow extracts display a hypermethylated PLK4 promoter region in comparison to the normal. Decreased PLK4 protein expression due to promoter hypermethylation was negatively correlated with JAK2 overexpression, a common occurrence in hematological malignancies. In vitro examination of the PLKs under biologically relevant condition of 5% O2 revealed that the highly conserved PLKs respond to lower oxygen tension at both the DNA and the protein level. These findings suggest that PLK promoter methylation status correlates with disease and tumorigenesis in blood neoplasms and could serve as a biomarker.
Collapse
Affiliation(s)
- Alejandra Ward
- Department of Biology, University of Windsor , Windsor, ON , Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Queirolo P, Picasso V, Spagnolo F. Combined BRAF and MEK inhibition for the treatment of BRAF-mutated metastatic melanoma. Cancer Treat Rev 2015; 41:519-26. [PMID: 25944484 DOI: 10.1016/j.ctrv.2015.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 02/07/2023]
Abstract
Combined BRAF and MEK inhibition out-performed BRAF inhibitor monotherapy in 3 randomized Phase 3 studies for BRAF-mutated metastatic melanoma patients and the combination of BRAF inhibitor dabrafenib with MEK inhibitor trametinib is now an FDA-approved treatment in this setting. Nevertheless, the majority of patients face progressive disease even when treated with the combination. Mechanisms of resistance to BRAF inhibition have been extensively investigated, whilst less is known about the specific mechanisms of resistance to combined therapy. The aim of this paper is to review the efficacy and safety of the combination of BRAF plus MEK inhibitors compared with BRAF inhibitor monotherapy and immunotherapy, as well as to discuss the existing evidence for the mechanisms of resistance to combined therapy and assess future treatment strategies to improve outcome based on data provided by clinical and translational research studies.
Collapse
Affiliation(s)
- Paola Queirolo
- Department of Medical Oncology, IRCCS San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Virginia Picasso
- Department of Medical Oncology, IRCCS San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Francesco Spagnolo
- Department of Plastic and Reconstructive Surgery, IRCCS San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy.
| |
Collapse
|
49
|
Abstract
INTRODUCTION Aberrant MAPK pathway signaling is a hallmark of melanoma. Mitogen/extracellular signal-regulated kinase (MEK) 1/2 are integral components of MAPK signaling. Several MEK inhibitors have demonstrated activity as single agents and in combination with other therapies. Trametinib was the first MEK inhibitor approved for use in treatment of advanced BRAF(V600) mutant melanoma as a single agent and in combination with BRAF inhibitor, dabrafenib. AREAS COVERED In this article, we discuss the underlying biology of MEK inhibition and its rationale in melanoma treatment with special emphasis on the clinical development of trametinib, from initial Phase I studies to randomized Phase II and III studies, both as monotherapy and in combination with other therapeutics. Furthermore, we briefly comment on trametinib for NRAS mutant and other non-BRAF mutant subsets of melanoma. EXPERT OPINION Trametinib is a novel oral MEK inhibitor with clinical activity in BRAF(V600) mutant metastatic melanoma alone and in combination with dabrafenib. Trametinib is currently being explored in other genetic subsets as well, particularly those with NRAS mutations or atypical BRAF alterations. Furthermore, to maximize efficacy and overcome acquired resistance, studies evaluating the combination of trametinib with other targeted agents and immunotherapy are underway.
Collapse
Affiliation(s)
- Ramya Thota
- Vanderbilt University Medical Center, Department of Medicine , 777 PRB, 2220 Pierce Ave, Nashville, TN 37232 , USA +1 615 322 8131 ; +1 615 343 7602 ;
| | | | | |
Collapse
|
50
|
Synthesis, radiolabeling and preliminary in vivo evaluation of multimodal radiotracers for PET imaging and targeted radionuclide therapy of pigmented melanoma. Eur J Med Chem 2015; 92:818-38. [DOI: 10.1016/j.ejmech.2015.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 12/27/2022]
|