1
|
Rezatofighi SE. Exogenous interactome analysis of bovine viral diarrhea virus-host using network based-approach and identification of hub genes and important pathways involved in virus pathogenesis. Biochem Biophys Rep 2024; 40:101825. [PMID: 39318471 PMCID: PMC11421936 DOI: 10.1016/j.bbrep.2024.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Bovine viral diarrhea (BVD) is one of the most important diseases in livestock, caused by BVD virus (BVDV). During the pathogenesis of the virus, many interactions occur between host and viral proteins. Studying these interactions can help better understand the pathogenesis of the virus, identify putative functional proteins, and find new treatment and prevention strategies. To this aim, a BVDV-host protein-protein interaction (PPI) network map was constructed using Cytoscape and analyzed with cytoHubba, Kyoto Encyclopedia of Genes and Genomics (KEGG), Gene Ontology (GO), and Protein Analysis Through Evolutionary Relationships (PANTHER). Npro with 125 connections had the greatest number of interactions with host proteins. CD46, EEF-2, and TXN genes were detected as hub genes using different ranking algorithms in cytoHubba. BVDV interactions with its host mainly focus on targeting translation, protein synthesis, and cellular metabolism pathways. Different classes of proteins including translational proteins, nucleic acid metabolism proteins, metabolite interconversion enzymes, and protein-modifying enzymes are affected by BVDV. These findings improve our understanding of the effects of the virus on the cell. Hub genes and key pathways identified in the present study can serve as targets for novel BVDV prevention or treatment strategies.
Collapse
|
2
|
Vuono E, Ramirez-Medina E, Silva E, Berggren K, Rai A, Espinoza N, Borca MV, Gladue DP. The Interaction between the DOCK7 Protein and the E2 Protein of Classical Swine Fever Virus Is Not Involved with Viral Replication or Pathogenicity. Viruses 2023; 16:70. [PMID: 38257770 PMCID: PMC10821278 DOI: 10.3390/v16010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The classical swine fever virus (CSFV) particle consists of three glycoproteins, all of which have been shown to be important proteins involved in many virus functions, including interaction with several host proteins. One of these proteins, E2, has been shown to be directly involved with adsorption to the host cell and important for virus virulence. Using the yeast two-hybrid system, we have previously shown that CSFV E2 specifically interacts with the (DOCK7) dedicator of cytokinesis, a scaffolding protein. In this report, the interaction between E2 and DOCK7 was evaluated. To confirm the yeast two-hybrid results and to determine that DOCK7 interacts in swine cells with E2, we performed co-immunoprecipitation and proximity ligation assay (PLA). After demonstrating the protein interaction in swine cells, E2 amino acid residues Y65, V283, and T149 were determined to be critical for interaction with Dock7 by using a random mutated library of E2 and a reverse yeast two-hybrid approach. That disruption of these three residues with mutations Y65F, V283D, and T149A abrogated the Dock7-E2 protein interaction. These mutations were then introduced into a recombinant CSFV, E2DOCK7v, by a reverse genomics approach using the highly virulent CSFV Brescia isolate as a backbone. E2DOCKv was shown to have similar growth kinetics in swine primary macrophages and SK6 cell cultures to the parental Brescia strain. Similarly, E2DOCK7v demonstrated a similar level of virulence to the parental Brescia when inoculated in domestic pigs. Animals intranasally inoculated with 105 TCID50 developed a lethal form of clinical disease with virological and hematological kinetics changes indistinguishable from that produced by the parental strain. Therefore, interaction between CSFV E2 and host DOCK7 is not critically involved in the process of virus replication and disease production.
Collapse
Affiliation(s)
- Elizabeth Vuono
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (E.V.); (E.R.-M.); (E.S.); (K.B.); (A.R.); (N.E.)
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (E.V.); (E.R.-M.); (E.S.); (K.B.); (A.R.); (N.E.)
- National Bio-and Agro-Defense Facility (NBAF), Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| | - Ediane Silva
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (E.V.); (E.R.-M.); (E.S.); (K.B.); (A.R.); (N.E.)
- National Bio-and Agro-Defense Facility (NBAF), Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| | - Keith Berggren
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (E.V.); (E.R.-M.); (E.S.); (K.B.); (A.R.); (N.E.)
| | - Ayushi Rai
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (E.V.); (E.R.-M.); (E.S.); (K.B.); (A.R.); (N.E.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (E.V.); (E.R.-M.); (E.S.); (K.B.); (A.R.); (N.E.)
- National Bio-and Agro-Defense Facility (NBAF), Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| | - Manuel V. Borca
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (E.V.); (E.R.-M.); (E.S.); (K.B.); (A.R.); (N.E.)
- National Bio-and Agro-Defense Facility (NBAF), Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| | - Douglas P. Gladue
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (E.V.); (E.R.-M.); (E.S.); (K.B.); (A.R.); (N.E.)
- National Bio-and Agro-Defense Facility (NBAF), Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
3
|
Vuono E, Ramirez-Medina E, Silva E, Berggren K, Rai A, Espinoza N, Gladue DP, Borca MV. Classical Swine Fever Virus Structural Glycoprotein E2 Interacts with Host Protein ACADM during the Virus Infectious Cycle. Viruses 2023; 15:v15051036. [PMID: 37243123 DOI: 10.3390/v15051036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
The E2 glycoprotein is one of the four structural proteins of the classical swine fever virus (CSFV) particle. E2 has been shown to be involved in many virus functions, including adsorption to host cells, virus virulence and interaction with several host proteins. Using a yeast two-hybrid screen, we have previously shown that the CSFV E2 specifically interacts with swine host protein medium-chain-specific acyl-Coenzyme A dehydrogenase (ACADM), an enzyme that catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway. Here, we show that interaction between ACADM and E2 also happens in swine cells infected with CSFV using two different procedures: coimmunoprecipitation and a proximity ligation assay (PLA). In addition, the amino acid residues in E2 critically mediating the interaction with ACADM, M49 and P130 were identified via a reverse yeast two-hybrid screen using an expression library composed of randomly mutated versions of E2. A recombinant CSFV, E2ΔACADMv, harboring substitutions at residues M49I and P130Q in E2, was developed via reverse genomics from the highly virulent Brescia isolate. E2ΔACADMv was shown to have the same kinetics growth in swine primary macrophages and SK6 cell cultures as the parental Brescia strain. Similarly, E2ΔACADMv demonstrated a similar level of virulence when inoculated to domestic pigs as the parental Brescia. Animals intranasally inoculated with 105 TCID50 developed a lethal form of clinical disease with virological and hematological kinetics changes undistinguishable from those produced by the parental strain. Therefore, interaction between CSFV E2 and host ACADM is not critically involved in the processes of virus replication and disease production.
Collapse
Affiliation(s)
- Elizabeth Vuono
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- Department of Pathobiology and Population Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | - Keith Berggren
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Ayushi Rai
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | - Douglas P Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| | - Manuel V Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
| |
Collapse
|
4
|
Structural Glycoprotein E2 of Classical Swine Fever Virus Critically Interacts with Host Protein Torsin-1A during the Virus Infectious Cycle. J Virol 2021; 95:JVI.00314-21. [PMID: 33827941 DOI: 10.1128/jvi.00314-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
The classical swine fever virus (CSFV) glycoprotein E2 is the major structural component of the virus particle. E2 is involved in several functions, such as virus adsorption to the cell, the elicitation of protective immune responses, and virus virulence in swine. Using a yeast two-hybrid system, we previously identified the swine host protein Torsin-1A, an ATPase protein residing in the endoplasmic reticulum and inner nucleus membrane of the cell, as a specific binding partner for E2. The interaction between Torsin-1A and E2 proteins was confirmed to occur in CSFV-infected swine cells using three independent methods: coimmunoprecipitation, confocal microscopy, and proximity ligation assay (PLA). Furthermore, the E2 residue critical to mediate the protein-protein interaction with Torsin-1A was identified by a reverse yeast two-hybrid assay using a randomly mutated E2 library. A recombinant CSFV E2 mutant protein with a Q316L substitution failed to bind swine Torsin-1A in the yeast two-hybrid model. In addition, a CSFV infectious clone harboring the E2 Q316L substitution, although expressing substantial levels of E2 protein, repetitively failed to produce virus progeny when the corresponding RNA was transfected into susceptible SK6 cells. Importantly, PLA analysis of the transfected cells demonstrated an abolishment of the interaction between E2 Q316L and Torsin-1A, indicating a critical role for that interaction during CSFV replication.IMPORTANCE Structural glycoprotein E2 is an important structural component of the CSFV particle. E2 is involved in several virus functions, particularly virus-host interactions. Here, we characterized the interaction between CSFV E2 and swine protein Torsin-1A during virus infection. The critical amino acid residue in E2 mediating the interaction with Torsin-1A was identified and the effect of disrupting the E2-Torsin-1A protein-protein interaction was studied using reverse genetics. It is shown that the amino acid substitution abrogating E2-Torsin-1A interaction constitutes a lethal mutation, demonstrating that this virus-host protein-protein interaction is a critical factor during CSFV replication. This highlights the potential importance of the E2-Torsin-1A protein-protein interaction during CSFV replication and provides a potential pathway toward blocking virus replication, an important step toward the potential development of novel virus countermeasures.
Collapse
|
5
|
Fan J, Liao Y, Zhang M, Liu C, Li Z, Li Y, Li X, Wu K, Yi L, Ding H, Zhao M, Fan S, Chen J. Anti-Classical Swine Fever Virus Strategies. Microorganisms 2021; 9:microorganisms9040761. [PMID: 33917361 PMCID: PMC8067343 DOI: 10.3390/microorganisms9040761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious swine disease with high morbidity and mortality, which has caused significant economic losses to the pig industry worldwide. Biosecurity measures and vaccination are the main methods for prevention and control of CSF since no specific drug is available for the effective treatment of CSF. Although a series of biosecurity and vaccination strategies have been developed to curb the outbreak events, it is still difficult to eliminate CSF in CSF-endemic and re-emerging areas. Thus, in addition to implementing enhanced biosecurity measures and exploring more effective CSF vaccines, other strategies are also needed for effectively controlling CSF. Currently, more and more research about anti-CSFV strategies was carried out by scientists, because of the great prospects and value of anti-CSFV strategies in the prevention and control of CSF. Additionally, studies on anti-CSFV strategies could be used as a reference for other viruses in the Flaviviridae family, such as hepatitis C virus, dengue virus, and Zika virus. In this review, we aim to summarize the research on anti-CSFV strategies. In detail, host proteins affecting CSFV replication, drug candidates with anti-CSFV effects, and RNA interference (RNAi) targeting CSFV viral genes were mentioned and the possible mechanisms related to anti-CSFV effects were also summarized.
Collapse
Affiliation(s)
- Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yingxin Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mengru Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Chenchen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| |
Collapse
|
6
|
SERTA Domain Containing Protein 1 (SERTAD1) Interacts with Classical Swine Fever Virus Structural Glycoprotein E2, Which Is Involved in Virus Virulence in Swine. Viruses 2020; 12:v12040421. [PMID: 32283651 PMCID: PMC7232485 DOI: 10.3390/v12040421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
E2 is the major structural glycoprotein of the classical swine fever virus (CSFV). E2 has been shown to be involved in important virus functions such as replication and virulence in swine. Using the yeast two-hybrid system, we previously identified several host proteins specifically interacting with CSFV E2. Here, we analyze the protein interaction of E2 with SERTA domain containing protein 1 (SERTAD1), a factor involved in the stimulation of the transcriptional activities of different host genes. We have confirmed that the interaction between these two proteins occurs in CSFV-infected swine cells by using a proximity ligation assay and confocal microscopy. Amino acid residues in the CSFV E2 protein that are responsible for mediating the interaction with SERTAD1 were mapped by a yeast two-hybrid approach using a randomly mutated E2 library. Using that information, a recombinant CSFV mutant (E2ΔSERTAD1v) that harbors substitutions in those residues mediating the protein-interaction with SERTAD1 was developed and used to study the role of the E2-SERTAD1 interaction in viral replication and virulence in swine. CSFV E2ΔSERTAD1v, when compared to the parental BICv, showed a clearly decreased ability to replicate in the SK6 swine cell line and a more severe replication defect in primary swine macrophage cultures. Importantly, 80% of animals infected with E2ΔSERTAD1v survived infection, remaining clinically normal during the 21-day observational period. This result would indicate that the ability of CSFV E2 to bind host SERTAD1 protein during infection plays a critical role in virus virulence.
Collapse
|
7
|
Swine Host Protein Coiled-Coil Domain-Containing 115 (CCDC115) Interacts with Classical Swine Fever Virus Structural Glycoprotein E2 during Virus Replication. Viruses 2020; 12:v12040388. [PMID: 32244508 PMCID: PMC7232474 DOI: 10.3390/v12040388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 01/15/2023] Open
Abstract
Interactions between the major structural glycoprotein E2 of classical swine fever virus (CSFV) with host proteins have been identified as important factors affecting virus replication and virulence. Previously, using the yeast two-hybrid system, we identified swine host proteins specifically interacting with CSFV E2. In this report, we use a proximity ligation assay to demonstrate that swine host protein CCDC115 interacts with E2 in CSFV-infected swine cells. Using a randomly mutated E2 library in the context of a yeast two-hybrid methodology, specific amino acid mutations in the CSFV E2 protein responsible for disrupting the interaction with CCDC115 were identified. A recombinant CSFV mutant (E2ΔCCDC115v) harboring amino acid changes disrupting the E2 protein interaction with CCDC115 was produced and used as a tool to assess the role of the E2–CCDC115 interaction in viral replication and virulence in swine. CSFV E2ΔCCDC115v showed a slightly decreased ability to replicate in the SK6 swine cell line and a greater replication defect in primary swine macrophage cultures. A decreased E2–CCDC115 interaction detected by PLA is observed in cells infected with E2ΔCCDC115v. Importantly, animals intranasally infected with 105 TCID50 of E2ΔCCDC115v experienced a significantly longer survival period when compared with those infected with the parental Brescia strain. This result would indicate that the ability of CSFV E2 to bind host CCDC115 protein during infection plays an important role in virus replication in swine macrophages and in virus virulence during the infection in domestic swine.
Collapse
|
8
|
Ramírez-Medina E, Vuono EA, Velazquez-Salinas L, Silva E, Rai A, Pruitt S, Berggren KA, Zhu J, Borca MV, Gladue DP. The MGF360-16R ORF of African Swine Fever Virus Strain Georgia Encodes for a Nonessential Gene That Interacts with Host Proteins SERTAD3 and SDCBP. Viruses 2020; 12:E60. [PMID: 31947814 PMCID: PMC7020080 DOI: 10.3390/v12010060] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs with significant economic consequences to the swine industry. The ASFV genome encodes for more than 160 genes, but only a few of them have been studied in detail. Here we report the characterization of open reading frame (ORF) MGF360-16R. Kinetic studies of virus RNA transcription demonstrated that the MGF360-16R gene is transcribed as a late virus protein. Analysis of host-protein interactions for the MGF360-16R gene using a yeast two-hybrid screen identified SERTA domain containing 3 (SERTAD3) and syndecan-binding protein (SDCBP) as host protein binding partners. SERTAD3 and SDCBP are both involved in nuclear transcription and SDCBP has been shown to be involved in virus traffic inside the host cell. Interaction between MGF360-16R and SERTAD3 and SDCBP host proteins was confirmed in eukaryotic cells transfected with plasmids expressing MGF360-16R and SERTAD3 or SDCBP fused to fluorescent tags. A recombinant ASFV lacking the MGF360-16R gene (ASFV-G-ΔMGF360-16R) was developed from the highly virulent field isolate Georgia2007 (ASFV-G) and was used to show that MGF360-16R is a nonessential gene. ASFV-G-ΔMGF360-16R had a similar replication ability in primary swine macrophage cell cultures when compared to its parental virus ASFV-G. Experimental infection of domestic pigs showed that ASFV-G-ΔMGF360-16R is as virulent as the parental virus ASFV-G.
Collapse
Affiliation(s)
- Elizabeth Ramírez-Medina
- Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (L.V.-S.); (E.S.); (A.R.); (S.P.); (K.A.B.); (J.Z.)
- Department of Pathobiology, University of Connecticut, Storrs, CT 06268, USA
| | - Elizabeth A. Vuono
- Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (L.V.-S.); (E.S.); (A.R.); (S.P.); (K.A.B.); (J.Z.)
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39762, USA
| | - Lauro Velazquez-Salinas
- Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (L.V.-S.); (E.S.); (A.R.); (S.P.); (K.A.B.); (J.Z.)
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Ediane Silva
- Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (L.V.-S.); (E.S.); (A.R.); (S.P.); (K.A.B.); (J.Z.)
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39762, USA
| | - Ayushi Rai
- Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (L.V.-S.); (E.S.); (A.R.); (S.P.); (K.A.B.); (J.Z.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Sarah Pruitt
- Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (L.V.-S.); (E.S.); (A.R.); (S.P.); (K.A.B.); (J.Z.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Keith A. Berggren
- Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (L.V.-S.); (E.S.); (A.R.); (S.P.); (K.A.B.); (J.Z.)
| | - James Zhu
- Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (L.V.-S.); (E.S.); (A.R.); (S.P.); (K.A.B.); (J.Z.)
| | - Manuel V. Borca
- Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (L.V.-S.); (E.S.); (A.R.); (S.P.); (K.A.B.); (J.Z.)
| | - Douglas P. Gladue
- Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (L.V.-S.); (E.S.); (A.R.); (S.P.); (K.A.B.); (J.Z.)
| |
Collapse
|
9
|
Borca MV, Vuono EA, Ramirez-Medina E, Azzinaro P, Berggren KA, Singer M, Rai A, Pruitt S, Silva EB, Velazquez-Salinas L, Carrillo C, Gladue DP. Structural Glycoprotein E2 of Classical Swine Fever Virus Interacts with Host Protein Dynactin Subunit 6 (DCTN6) during the Virus Infectious Cycle. J Virol 2019; 94:e01642-19. [PMID: 31597779 PMCID: PMC6912105 DOI: 10.1128/jvi.01642-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
The E2 protein in classical swine fever (CSF) virus (CSFV) is the major virus structural glycoprotein and is an essential component of the viral particle. E2 has been shown to be involved in several functions, including virus adsorption, induction of protective immunity, and virulence in swine. Using the yeast two-hybrid system, we previously identified a swine host protein, dynactin subunit 6 (DCTN6) (a component of the cell dynactin complex), as a specific binding partner for E2. We confirmed the interaction between DCTN6 and E2 proteins in CSFV-infected swine cells by using two additional independent methodologies, i.e., coimmunoprecipitation and proximity ligation assays. E2 residues critical for mediating the protein-protein interaction with DCTN6 were mapped by a reverse yeast two-hybrid approach using a randomly mutated E2 library. A recombinant CSFV mutant, E2ΔDCTN6v, harboring specific substitutions in those critical residues was developed to assess the importance of the E2-DCTN6 protein-protein interaction for virus replication and virulence in swine. CSFV E2ΔDCTN6v showed reduced replication, compared with the parental virus, in an established swine cell line (SK6) and in primary swine macrophage cultures. Remarkably, animals infected with CSFV E2ΔDCTN6v remained clinically normal during the 21-day observation period, which suggests that the ability of CSFV E2 to bind host DCTN6 protein efficiently during infection may play a role in viral virulence.IMPORTANCE Structural glycoprotein E2 is an important component of CSFV due to its involvement in many virus activities, particularly virus-host interactions. Here, we present the description and characterization of the protein-protein interaction between E2 and the swine host protein DCTN6 during virus infection. The E2 amino acid residues mediating the interaction with DCTN6 were also identified. A recombinant CSFV harboring mutations disrupting the E2-DCTN6 interaction was created. The effect of disrupting the E2-DCTN6 protein-protein interaction was studied using reverse genetics. It was shown that the same amino acid substitutions that abrogated the E2-DCTN6 interaction in vitro constituted a critical factor in viral virulence in the natural host, domestic swine. This highlights the potential importance of the E2-DCTN6 protein-protein interaction in CSFV virulence and provides possible mechanisms of virus attenuation for the development of improved CSF vaccines.
Collapse
Affiliation(s)
- M V Borca
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
| | - E A Vuono
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - E Ramirez-Medina
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, USA
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
| | - P Azzinaro
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
| | - K A Berggren
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
| | - M Singer
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
| | - A Rai
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - S Pruitt
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - E B Silva
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA
| | - L Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - C Carrillo
- Plum Island Animal Disease Center, Animal and Plant Health Inspection Service, USDA, Greenport, New York, USA
| | - D P Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, USA
| |
Collapse
|
10
|
Abstract
This work is devoted to pig spleen proteome study. Spleens were taken from Duroc pigs (females, 145 - 160 days old) and typical two-dimensional electrophoregrams were obtained. On proteomic maps after visualization and image analysis there were detected 600 fractions, including organ-specific proteins - 3 62 fractions. Among the identified constitutive fractions, the highest expression was observed (Vol spots more than 3.0E + 07) four protein spots S1, S9, S12 and S21, which are supposedly Annexin A1 (MW 38.76 kDa), Ectonucleoside triphosphate diphosphohydrolase 1 (MW 57.75 kDa) Pro-cathepsin H CD59 (MW 37.45 kDa) and glycoprotein (MW 13.79 kDa), respectively. Obtained electrophoregrams analysis using information resources made it possible to identify different active compounds in spleen with various functions, mainly immunoregulatory - glycoprotein CD59 (Mm 13.79 kDa) and ATP-dependent RNA helicase (Mm 107.58 kDa); the intensely expressed LIM-domain of the actin-binding protein (Mm 83.99 kDa). The results obtained are a prospect for immunomodulating biologic development based on animal raw materials for farm animals.
Collapse
|
11
|
Vuono EA, Ramirez-Medina E, Holinka LG, Baker-Branstetter R, Borca MV, Gladue DP. Interaction of Structural Glycoprotein E2 of Classical Swine Fever Virus with Protein Phosphatase 1 Catalytic Subunit Beta (PPP1CB). Viruses 2019; 11:v11040307. [PMID: 30934875 PMCID: PMC6521620 DOI: 10.3390/v11040307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Classical swine fever virus (CSFV) E2 protein, the major virus structural glycoprotein, is an essential component of the viral envelope. E2 is involved in virus absorption, induction of a protective immune response and is critical for virulence in swine. Using the yeast two-hybrid system, we identified protein phosphatase 1 catalytic subunit beta (PPP1CB), which is part of the Protein Phosphatase 1 (PP1) complex, as a specific binding host partner for E2. We further confirmed the occurrence of this interaction in CSFV-infected swine cells by using two independent methodologies: Co-immunoprecipitation and Proximity Ligation Assay. In addition, we demonstrated that pharmacological activation of the PP1 pathway has a negative effect on CSFV replication while inhibition of the PP1 pathway or knockdown of PPP1CB by siRNA had no observed effect. Overall, our data suggests that the CSFV E2 and PPP1CB protein interact in infected cells, and that activation of the PP1 pathway decreases virus replication.
Collapse
Affiliation(s)
- Elizabeth A Vuono
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA.
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Lauren G Holinka
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - Ryan Baker-Branstetter
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA.
| | - Manuel V Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - Douglas P Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| |
Collapse
|
12
|
Identification of structural glycoprotein E2 domain critical to mediate replication of Classical Swine Fever Virus in SK6 cells. Virology 2018; 526:38-44. [PMID: 30340154 DOI: 10.1016/j.virol.2018.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022]
Abstract
Envelope glycoprotein E2 of Classical Swine Fever Virus (CSFV) is involved in several critical virus functions. To analyze the role of E2 in virus replication, a series of recombinant CSFVs harboring chimeric forms of E2 CSFV and Bovine viral diarrhea virus (BVDV) were created and tested for their ability to infect swine or bovine cell lines. Substitution of native CSFV E2 by BVDV E2 abrogates virus replication in both cell lines. Substitution of individual domains in CSFV Brescia E2 by the homologous from BVDV produces chimeras that efficiently replicate in SK6 cells with the exception of a chimera harboring BVDV E2 residues 93-168. Further mapping revealed a critical area in E2 required for CSFV replication in SK6 cells between protein residues 136-156. This is the first report categorically defining a discrete portion of E2 as essential to pestivirus infection in susceptible cells.
Collapse
|
13
|
Classical Swine Fever Virus p7 Protein Interacts with Host Protein CAMLG and Regulates Calcium Permeability at the Endoplasmic Reticulum. Viruses 2018; 10:v10090460. [PMID: 30154321 PMCID: PMC6165257 DOI: 10.3390/v10090460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
We have previously shown that Classical Swine Fever Virus (CSFV) p7 is an essential nonstructural protein with a viroporin activity, a critical function in the progression of virus infection. We also identified p7 domains and amino acid residues critical for pore formation. Here, we describe how p7 specifically interacts with host protein CAMLG, an integral ER transmembrane protein involved in intracellular calcium release regulation and signal response generation. Detection of interaction as well as the identification of p7 areas mediating interaction with CAMLG was performed by yeast two-hybrid. p7-CAMLG interaction was further confirmed by confocal microscopy in eukaryotic cells, co-expressing both proteins. Mutant forms of p7 having substituted native residues identified as mediating interaction with CAMLG showed a decreased co-localization compared with the native forms of p7. Furthermore, it is shown that native p7, but not the mutated forms of p7 that fail to interact with CAMLG, efficiently mediates calcium permeability in the ER. Interestingly, viruses harboring some of those mutated forms of p7 have been previously shown to have a significantly decreased virulence in swine.
Collapse
|
14
|
The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with the host protein IL-1β. Virus Res 2018; 249:116-123. [PMID: 29605728 DOI: 10.1016/j.virusres.2018.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/01/2023]
Abstract
African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs causing significant economic consequences to the swine industry. The ASFV genome encodes for more than 150 genes, but only a few of them have been studied in detail. Here we report the characterization of open reading frame L83L which encodes a highly conserved protein across all ASFV isolates. A recombinant ASFV harboring a HA tagged L83L protein was developed (ASFV-G-L83L-HA) and used to demonstrate that L83L is a transiently expressed early virus protein. A recombinant ASFV lacking the L83L gene (ASFV-G-ΔL83L) was developed from the highly virulent field isolate Georgia2007 (ASFV-G) and was used to show that L83L is a non-essential gene. ASFV-G-ΔL83L had similar replication in primary swine macrophage cells when compared to its parental virus ASFV-G. Analysis of host-protein interactions for L83L identified IL-1β as its host ligand. Experimental infection of domestic pigs showed that ASFV-G-ΔL83L is as virulent as the parental virus ASFV-G.
Collapse
|
15
|
Mei Y, Yue F, Ning HM, Zhou JJ, Wang XN. Identification of the linear ligand epitope on classical swine fever virus that interacts with porcine kidney 15 cells. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2017; 81:186-191. [PMID: 28725108 PMCID: PMC5508384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/13/2017] [Indexed: 06/07/2023]
Abstract
Binding of the viral ligand to a specific receptor is the first step of virus entry into target cells. The envelope proteins Erns, E1, and E2 of classical swine fever virus (CSFV) are involved in the interaction with host cell receptors to mediate CSFV infection. The aim of this investigation was to identify epitopes that bind to porcine kidney (PK)-15 cells to prevent CSFV infection. Ten peptides representing Erns, E1, and E2 were synthesized. Immunohistochemical study showed that the SE24 peptide, which is derived from the E2 amino acid sequence, could effectively bind to PK-15 cells. Similarly, a flow cytometry assay demonstrated that SE24 binding to PK-15 cells could be blocked by CSFV. The binding of SE24 with PK-15 cells leads to decreased CSFV infection of PK-15 cells in a dose-dependent manner. These results suggest a potential new strategy for the prevention and control of CSFV infection that requires further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Xuan-nian Wang
- Address all correspondence to Dr. Xuan-nian Wang; telephone: +86-373-3682111; fax: +86-373-3683344; e-mail:
| |
Collapse
|
16
|
Huang T, Sun J, Zhou S, Gao J, Liu Y. Identification of Direct Activator of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by Structure-Based Virtual Screening and Molecular Docking Approach. Int J Mol Sci 2017; 18:ijms18071408. [PMID: 28665353 PMCID: PMC5535900 DOI: 10.3390/ijms18071408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/25/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in the regulation of energy metabolism and has been targeted for drug development of therapeutic intervention in Type II diabetes and related diseases. Recently, there has been renewed interest in the development of direct β1-selective AMPK activators to treat patients with diabetic nephropathy. To investigate the details of AMPK domain structure, sequence alignment and structural comparison were used to identify the key amino acids involved in the interaction with activators and the structure difference between β1 and β2 subunits. Additionally, a series of potential β1-selective AMPK activators were identified by virtual screening using molecular docking. The retrieved hits were filtered on the basis of Lipinski’s rule of five and drug-likeness. Finally, 12 novel compounds with diverse scaffolds were obtained as potential starting points for the design of direct β1-selective AMPK activators.
Collapse
Affiliation(s)
- Tonghui Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jie Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Shanshan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
17
|
Borca MV, O'Donnell V, Holinka LG, Rai DK, Sanford B, Alfano M, Carlson J, Azzinaro PA, Alonso C, Gladue DP. The Ep152R ORF of African swine fever virus strain Georgia encodes for an essential gene that interacts with host protein BAG6. Virus Res 2016; 223:181-9. [PMID: 27497620 DOI: 10.1016/j.virusres.2016.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 11/29/2022]
Abstract
African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The viral genome encodes for more than 150 genes, and only a select few of these genes have been studied in some detail. Here we report the characterization of open reading frame Ep152R that has a predicted complement control module/SCR domain. This domain is found in Vaccinia virus proteins that are involved in blocking the immune response during viral infection. A recombinant ASFV harboring a HA tagged version of the Ep152R protein was developed (ASFV-G-Ep152R-HA) and used to demonstrate that Ep152R is an early virus protein. Attempts to construct recombinant viruses having a deleted Ep152R gene were consistently unsuccessful indicating that Ep152R is an essential gene. Interestingly, analysis of host-protein interactions for Ep152R using a yeast two-hybrid screen, identified BAG6, a protein previously identified as being required for ASFV replication. Furthermore, fluorescent microscopy analysis confirms that Ep152R-BAG6 interaction actually occurs in cells infected with ASFV.
Collapse
Affiliation(s)
- Manuel V Borca
- Agricultural Research Service and Department of Homeland Security, Plum Island Animal Disease Center, Greenport, NY 11944, USA
| | - Vivian O'Donnell
- Agricultural Research Service and Department of Homeland Security, Plum Island Animal Disease Center, Greenport, NY 11944, USA; Departments of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Lauren G Holinka
- Agricultural Research Service and Department of Homeland Security, Plum Island Animal Disease Center, Greenport, NY 11944, USA
| | - Devendra K Rai
- Agricultural Research Service and Department of Homeland Security, Plum Island Animal Disease Center, Greenport, NY 11944, USA; Departments of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Brenton Sanford
- Department of Homeland Security, Plum Island Animal Disease Center, Greenport, NY 11944, USA
| | - Marialexia Alfano
- Agricultural Research Service and Department of Homeland Security, Plum Island Animal Disease Center, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37831, USA
| | - Jolene Carlson
- Agricultural Research Service and Department of Homeland Security, Plum Island Animal Disease Center, Greenport, NY 11944, USA; Biosecurity Research Institute and Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Paul A Azzinaro
- Agricultural Research Service and Department of Homeland Security, Plum Island Animal Disease Center, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37831, USA
| | - Covadonga Alonso
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Douglas P Gladue
- Agricultural Research Service and Department of Homeland Security, Plum Island Animal Disease Center, Greenport, NY 11944, USA.
| |
Collapse
|
18
|
Abstract
Porcine circovirus type 2 (PCV2) is the primary infectious agent of PCV-associated disease (PCVAD) in swine. ORF4 protein is a newly identified viral protein of PCV2 and is involved in virus-induced apoptosis. However, the molecular mechanisms of ORF4 protein regulation of apoptosis remain unclear, especially given there is no information regarding any cellular partners of the ORF4 protein. Here, we have utilized the yeast two-hybrid assay and identified four host proteins (FHC, SNRPN, COX8A and Lamin C) interacting with the ORF4 protein. Specially, FHC was chosen for further characterization due to its important role in apoptosis. GST pull-down, subcellular co-location and co-immunoprecipitation assays confirmed that the PCV2 ORF4 protein indeed interacted with the heavy-chain ferritin, which is an interesting clue that will allow us to determine the role of the ORF4 protein in apoptosis.
Collapse
|
19
|
Ostachuk A. Bovine viral diarrhea virus structural protein E2 as a complement regulatory protein. Arch Virol 2016; 161:1769-82. [PMID: 27038454 DOI: 10.1007/s00705-016-2835-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus, family Flaviviridae, and is one of the most widely distributed viruses in cattle worldwide. Approximately 60 % of cattle in endemic areas without control measures are infected with BVDV during their lifetime. This wide prevalence of BVDV in cattle populations results in significant economic losses. BVDV is capable of establishing persistent infections in its host due to its ability to infect fetuses, causing immune tolerance. However, this cannot explain how the virus evades the innate immune system. The objective of the present work was to test the potential activity of E2 as a complement regulatory protein. E2 glycoprotein, produced both in soluble and transmembrane forms in stable CHO-K1 cell lines, was able to reduce complement-mediated cell lysis up to 40 % and complement-mediated DNA fragmentation by 50 %, in comparison with cell lines not expressing the glycoprotein. This work provides the first evidence of E2 as a complement regulatory protein and, thus, the finding of a mechanism of immune evasion by BVDV. Furthermore, it is postulated that E2 acts as a self-associated molecular pattern (SAMP), enabling the virus to avoid being targeted by the immune system and to be recognized as self.
Collapse
Affiliation(s)
- Agustín Ostachuk
- Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Argentina.
- Universidad Nacional de San Martín (UNSAM), San Martín, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Zhou N, Xing G, Zhou J, Jin Y, Liang C, Gu J, Hu B, Liao M, Wang Q, Zhou J. In Vitro Coinfection and Replication of Classical Swine Fever Virus and Porcine Circovirus Type 2 in PK15 Cells. PLoS One 2015; 10:e0139457. [PMID: 26431319 PMCID: PMC4592061 DOI: 10.1371/journal.pone.0139457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/13/2015] [Indexed: 11/20/2022] Open
Abstract
Increasing clinical lines of evidence have shown the coinfection/superinfection of porcine circovirus type 2 (PCV2) and classical swine fever virus (CSFV). Here, we investigated whether PCV2 and CSFV could infect the same cell productively by constructing an in vitro coinfection model. Our results indicated that PCV2-free PK15 cells but not ST cells were more sensitive to PCV2, and the PK15 cell line could stably harbor replicating CSFV (PK15-CSFV cells) with a high infection rate. Confocal and super-resolution microscopic analysis showed that PCV2 and CSFV colocalized in the same PK15-CSFV cell, and the CSFV E2 protein translocated from the cytoplasm to the nucleus in PK15-CSFV cells infected with PCV2. Moreover, PCV2-CSFV dual-positive cells increased gradually in PK15-CSFV cells in a PCV2 dose-dependent manner. In PK15-CSFV cells, PCV2 replicated well, and the production of PCV2 progeny was not influenced by CSFV infection. However, CSFV reproduction decreased in a PCV2 dose-dependent manner. In addition, cellular apoptosis was not strengthened in PK15-CSFV cells infected with PCV2 in comparison with PCV2-infected PK15 cells. Moreover, using this coinfection model we further demonstrated PCV2-induced apoptosis might contribute to the impairment of CSFV HCLV strain replication in coinfected cells. Taken together, our results demonstrate for the first time the coinfection/superinfection of PCV2 and CSFV within the same cell, providing an in vitro model to facilitate further investigation of the underlying mechanism of CSFV and PCV2 coinfection.
Collapse
Affiliation(s)
- Niu Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Gang Xing
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Jianwei Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Yulan Jin
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Cuiqin Liang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Jinyan Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Boli Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Qin Wang
- China Institute of Veterinary Drug and Control, Beijing, PR China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, PR China
- * E-mail:
| |
Collapse
|
21
|
Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters. Viruses 2015; 7:3506-29. [PMID: 26131960 PMCID: PMC4517112 DOI: 10.3390/v7072783] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.
Collapse
|
22
|
Thioredoxin 2 Is a Novel E2-Interacting Protein That Inhibits the Replication of Classical Swine Fever Virus. J Virol 2015; 89:8510-24. [PMID: 26041303 DOI: 10.1128/jvi.00429-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The E2 protein of classical swine fever virus (CSFV) is an envelope glycoprotein that is involved in virus attachment and entry. To date, the E2-interacting cellular proteins and their involvement in viral replication have been poorly documented. In this study, thioredoxin 2 (Trx2) was identified to be a novel E2-interacting partner using yeast two-hybrid screening from a porcine macrophage cDNA library. Trx2 is a mitochondrion-associated protein that participates in diverse cellular events. The Trx2-E2 interaction was further confirmed by glutathione S-transferase (GST) pulldown, in situ proximity ligation, and laser confocal assays. The thioredoxin domain of Trx2 and the asparagine at position 37 (N37) in the E2 protein were shown to be critical for the interaction. Silencing of the Trx2 expression in PK-15 cells by small interfering RNAs significantly promotes CSFV replication, and conversely, overexpression of Trx2 markedly inhibits viral replication of the wild-type (wt) CSFV and to a greater extent that of the CSFV N37D mutant, which is defective in binding Trx2. The wt CSFV but not the CSFV N37D mutant was shown to reduce the Trx2 protein expression in PK-15 cells. Furthermore, we demonstrated that Trx2 increases nuclear factor kappa B (NF-κB) promoter activity by promoting the nuclear translocation of the p65 subunit of NF-κB. Notably, activation of the NF-κB signaling pathway induced by tumor necrosis factor alpha (TNF-α) significantly inhibits CSFV replication in PK-15 cells, whereas blocking the NF-κB activation in Trx2-overexpressing cells no longer suppresses CSFV replication. Taken together, our findings reveal that Trx2 inhibits CSFV replication via the NF-κB signaling pathway. IMPORTANCE Thioredoxin 2 (Trx2) is a mitochondrion-associated protein that participates in diverse cellular events, such as antioxidative and antiapoptotic processes and the modulation of transcription factors. However, little is known about the involvement of Trx2 in viral replication. Here, we investigated, for the first time, the role of Trx2 in the replication of classical swine fever virus (CSFV), a devastating pestivirus of pigs. By knockdown and overexpression, we showed that Trx2 negatively regulates CSFV replication. Notably, we demonstrated that Trx2 inhibits CSFV replication by promoting the nuclear translocation of the p65 subunit of NF-κB, a key regulator of the host's innate immunity and inflammatory response. Our findings reveal a novel role of Trx2 in the host's antiviral response and provide new insights into the complex mechanisms by which CSFV interacts with the host cell.
Collapse
|
23
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
24
|
Ji W, Guo Z, Ding NZ, He CQ. Studying classical swine fever virus: Making the best of a bad virus. Virus Res 2015; 197:35-47. [DOI: 10.1016/j.virusres.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/04/2023]
|
25
|
Dudha N, Rana J, Rajasekharan S, Gabrani R, Gupta A, Chaudhary VK, Gupta S. Host-pathogen interactome analysis of Chikungunya virus envelope proteins E1 and E2. Virus Genes 2015; 50:200-9. [PMID: 25563600 DOI: 10.1007/s11262-014-1161-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/16/2014] [Indexed: 02/05/2023]
Abstract
The envelope proteins of Chikungunya virus (CHIKV) are known to play crucial roles in viral infection and spread. Although the role of envelope proteins in viral infection has been studied, the cellular interactors of these proteins are still elusive. In the present study, the ectodomains of CHIKV envelope proteins (E1 and E2) have been used for a high throughput yeast two-hybrid (Y2H) screening to identify the interacting host protein partners. Following a comparative analysis between the viral-host protein interaction data generated from Y2H and computational approach, five host proteins interacting with E1 and three host proteins interacting with E2 common to both datasets were identified. These associations were further verified independently by pull down and protein interaction ELISA. The identified interactions shed light on the possible cellular machinery that CHIKV might be employing during viral entry, trafficking, and evasion of immune system.
Collapse
Affiliation(s)
- Namrata Dudha
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, UP, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Gladue DP, O'Donnell V, Fernandez-Sainz IJ, Fletcher P, Baker-Branstetter R, Holinka LG, Sanford B, Carlson J, Lu Z, Borca MV. Interaction of structural core protein of classical swine fever virus with endoplasmic reticulum-associated degradation pathway protein OS9. Virology 2014; 460-461:173-9. [PMID: 25010283 DOI: 10.1016/j.virol.2014.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/09/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Classical swine fever virus (CSFV) Core protein is involved in virus RNA protection, transcription regulation and virus virulence. To discover additional Core protein functions a yeast two-hybrid system was used to identify host proteins that interact with Core. Among the identified host proteins, the osteosarcoma amplified 9 protein (OS9) was further studied. Using alanine scanning mutagenesis, the OS9 binding site in the CSFV Core protein was identified, between Core residues (90)IAIM(93), near a putative cleavage site. Truncated versions of Core were used to show that OS9 binds a polypeptide representing the 12 C-terminal Core residues. Cells transfected with a double-fluorescent labeled Core construct demonstrated that co-localization of OS9 and Core occurred only on unprocessed forms of Core protein. A recombinant CSFV containing Core protein where residues (90)IAIM(93) were substituted by alanines showed no altered virulence in swine, but a significant decreased ability to replicate in cell cultures.
Collapse
Affiliation(s)
- D P Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - V O'Donnell
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | | | - P Fletcher
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - R Baker-Branstetter
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; Plum Island Animal Disease Center, DHS, Greenport, NY 11944, USA.
| | - L G Holinka
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - B Sanford
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - J Carlson
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - Z Lu
- Plum Island Animal Disease Center, DHS, Greenport, NY 11944, USA.
| | - M V Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| |
Collapse
|