1
|
Li J, Zhang M, Yu CQ, Xue M, Hu PP. Early diagnosis of Parkinson's disease: biomarker study. Front Aging Neurosci 2025; 17:1495769. [PMID: 40416739 PMCID: PMC12098601 DOI: 10.3389/fnagi.2025.1495769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/28/2025] [Indexed: 05/27/2025] Open
Abstract
Parkinson's disease (PD) is a common chronic degenerative disease with age-dependent increasing prevalence in the elderly. Non-motor symptoms include sensory deficiencies, autonomic dysfunction, psychological and cognitive abnormalities; while motor symptoms are bradykinesia, myotonia, resting tremor, and postural balance difficulties. The clinical diagnosis of PD depends mainly on patients' medical history and physical examination. It is highly important to realize early detection of PD, and biomarkers are a valuable tool in this regard. The present study reviewed the findings of researches from the last few years, involving the advancements in the study of PD biomarkers in blood, cerebrospinal fluid, saliva, urine, tears, imaging, and pathology.
Collapse
Affiliation(s)
- Jing Li
- Department of Neurology, The First Hospital of Anhui University of Science and Technology (Huainan First People’s Hospital), Huainan, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mei Zhang
- Department of Neurology, The First Hospital of Anhui University of Science and Technology (Huainan First People’s Hospital), Huainan, China
| | - Chuan-Qing Yu
- Department of Neurology, The First Hospital of Anhui University of Science and Technology (Huainan First People’s Hospital), Huainan, China
| | - Min Xue
- Department of Neurology, The First Hospital of Anhui University of Science and Technology (Huainan First People’s Hospital), Huainan, China
| | - Pan-Pan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Swann P, Mirza-Davies A, O'Brien J. Associations Between Neuropsychiatric Symptoms and Inflammation in Neurodegenerative Dementia: A Systematic Review. J Inflamm Res 2024; 17:6113-6141. [PMID: 39262651 PMCID: PMC11389708 DOI: 10.2147/jir.s385825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Background Neuropsychiatric symptoms are common in dementia and linked to adverse outcomes. Inflammation is increasingly recognized as playing a role as a driver of early disease progression in Alzheimer's disease (AD) and related dementias. Inflammation has also been linked to primary psychiatric disorders, however its association with neuropsychiatric symptoms in neurodegenerative dementias remains uncertain. Methods We conducted a systematic literature review investigating associations between inflammation and neuropsychiatric symptoms in neurodegenerative dementias, including AD, Lewy body, Frontotemporal, Parkinson's (PD) and Huntington's disease dementias. Results Ninety-nine studies met our inclusion criteria, and the majority (n = 59) investigated AD and/or mild cognitive impairment (MCI). Thirty-five studies included PD, and only 6 investigated non-AD dementias. Inflammation was measured in blood, CSF, by genotype, brain tissue and PET imaging. Overall, studies exhibited considerable heterogeneity and evidence for specific inflammatory markers was inconsistent, with lack of replication and few longitudinal studies with repeat biomarkers. Depression was the most frequently investigated symptom. In AD, some studies reported increases in peripheral IL-6, TNF-a associated with depressive symptoms. Preliminary investigations using PET measures of microglial activation found an association with agitation. In PD, studies reported positive associations between TNF-a, IL-6, CRP, MCP-1, IL-10 and depression. Conclusion Central and peripheral inflammation may play a role in neuropsychiatric symptoms in neurodegenerative dementias; however, the evidence is inconsistent. There is a need for multi-site longitudinal studies with detailed assessments of neuropsychiatric symptoms combined with replicable peripheral and central markers of inflammation.
Collapse
Affiliation(s)
- Peter Swann
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - Anastasia Mirza-Davies
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - John O'Brien
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
3
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
4
|
Blood Biomarkers in Patients with Parkinson's Disease: A Review in Context of Anesthetic Care. Diagnostics (Basel) 2023; 13:diagnostics13040693. [PMID: 36832181 PMCID: PMC9955162 DOI: 10.3390/diagnostics13040693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Parkinson's disease (PD) is the second most common inflammatory neurodegenerative disorder after dementia. Preclinical and epidemiological data strongly suggest that chronic neuroinflammation slowly induces neuronal dysfunction. Activated microglia secrete several neurotoxic substances, such as chemokines and proinflammatory cytokines, which may promote blood-brain barrier (BBB) permeabilization. CD4+ T cells comprise proinflammatory cells such as T helper (Th) 1 and Th17 cells, as well as anti-inflammatory cells such as Th2 and T regulatory cells (Tregs). Th1 and Th17 cells can be detrimental to dopamine neurons, whereas Th2 and Tregs are neuroprotective. The results of studies on the serum levels of cytokines such as IFN-γ and TNF-α secreted by Th1 T cells, IL-8 and IL-10 secreted by Th2 T cells, and IL-17 secreted by Th17 cells in PD patients are not uniform. In addition, the relationships between serum cytokine levels and motor and non-motor symptoms of PD are controversial. Surgical stress and anesthesia induce inflammatory responses by disturbing the balance between pro- and anti-inflammatory cytokines, which may exacerbate the neuroinflammatory response in PD patients. Here we review studies on blood inflammatory biomarkers in PD patients and discuss the roles of surgery and anesthesia in PD progression.
Collapse
|
5
|
Zhang S, Ma Y. Emerging role of psychosis in Parkinson's disease: From clinical relevance to molecular mechanisms. World J Psychiatry 2022; 12:1127-1140. [PMID: 36186499 PMCID: PMC9521528 DOI: 10.5498/wjp.v12.i9.1127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/12/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Psychosis is one of the common psychiatric presentations in the natural course of PD. PD psychosis is an important non-motor symptom, which is strongly correlated with a poor prognosis. Increasing attention is being given to PD psychosis. In this opinion review, we summarized and analyzed the identification, screening, epidemiology, mechanisms, risk factors, and therapeutic approaches of PD psychosis based on the current clinical evidence. PD psychosis tends to have a negative effect on patients' quality of life and increases the burden of family caregiving. Screening and identification in the early stage of disease is crucial for establishing tailored therapeutic strategies and predicting the long-term outcome. Development of PD psychosis is believed to involve a combination of exogenous and endogenous mechanisms including imbalance of neurotransmitters, structural and network changes, genetic profiles, cognitive impairment, and antiparkinsonian medications. The therapeutic strategy for PD psychosis includes reducing or ceasing the use of dopaminergic drug, antipsychotics, cholinesterase inhibitors, and non-pharmacological interventions. Ongoing clinical trials are expected to provide new insights for tailoring therapy for PD psychosis. Future research based on novel biomarkers and genetic factors may help inform individualized therapeutic strategies.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yan Ma
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
6
|
Angelopoulou E, Bougea A, Papageorgiou SG, Villa C. Psychosis in Parkinson's Disease: A Lesson from Genetics. Genes (Basel) 2022; 13:genes13061099. [PMID: 35741861 PMCID: PMC9222985 DOI: 10.3390/genes13061099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
Psychosis in Parkinson's disease (PDP) represents a common and debilitating condition that complicates Parkinson's disease (PD), mainly in the later stages. The spectrum of psychotic symptoms are heterogeneous, ranging from minor phenomena of mild illusions, passage hallucinations and sense of presence to severe psychosis consisting of visual hallucinations (and rarely, auditory and tactile or gustatory) and paranoid delusions. PDP is associated with increased caregiver stress, poorer quality of life for patients and carers, reduced survival and risk of institutionalization with a significant burden on the healthcare system. Although several risk factors for PDP development have been identified, such as aging, sleep disturbances, long history of PD, cognitive impairment, depression and visual disorders, the pathophysiology of psychosis in PD is complex and still insufficiently clarified. Additionally, several drugs used to treat PD can aggravate or even precipitate PDP. Herein, we reviewed and critically analyzed recent studies exploring the genetic architecture of psychosis in PD in order to further understand the pathophysiology of PDP, the risk factors as well as the most suitable therapeutic strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Sokratis G. Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: ; Tel.: +39-02-6448-8138
| |
Collapse
|
7
|
Zhang N, Zuo Y, Jiang L, Peng Y, Huang X, Zuo L. Epstein-Barr Virus and Neurological Diseases. Front Mol Biosci 2022; 8:816098. [PMID: 35083281 PMCID: PMC8784775 DOI: 10.3389/fmolb.2021.816098] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is a double-stranded DNA virus that is ubiquitous in 90–95% of the population as a gamma herpesvirus. It exists in two main states, latent infection and lytic replication, each encoding viral proteins with different functions. Human B-lymphocytes and epithelial cells are EBV-susceptible host cells. EBV latently infects B cells and nasopharyngeal epithelial cells throughout life in most immunologically active individuals. EBV-infected cells, free viruses, their gene products, and abnormally elevated EBV titers are observed in the cerebrospinal fluid. Studies have shown that EBV can infect neurons directly or indirectly via infected B-lymphocytes, induce neuroinflammation and demyelination, promote the proliferation, degeneration, and necrosis of glial cells, promote proliferative disorders of B- and T-lymphocytes, and contribute to the occurrence and development of nervous system diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, acute cerebellar ataxia, meningitis, acute disseminated encephalomyelitis, and brain tumors. However, the specific underlying molecular mechanisms are unclear. In this paper, we review the mechanisms underlying the role of EBV in the development of central nervous system diseases, which could bebeneficial in providing new research ideas and potential clinical therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
- Hunan Dongkou People’s Hospital, Shaoyang, China
| | - Yuxin Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Liping Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Yu Peng
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Xu Huang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Lielian Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Lielian Zuo,
| |
Collapse
|
8
|
Zimmermann M, Brockmann K. Blood and Cerebrospinal Fluid Biomarkers of Inflammation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S183-S200. [PMID: 35661021 PMCID: PMC9535573 DOI: 10.3233/jpd-223277] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Given the clear role of inflammation in the pathogenesis of Parkinson's disease (PD) and its impact on incidence and phenotypical characteristics, this review provides an overview with focus on inflammatory biofluid markers in blood and cerebrospinal fluid (CSF) in PD patient cohorts. In preparation for clinical trials targeting the immune system, we specifically address the following questions: 1) What evidence do we have for pro-inflammatory profiles in blood and in CSF of sporadic and genetic PD patients? 2) Is there a role of anti-inflammatory mediators in blood/CSF? 3) Do inflammatory profiles in blood reflect those in CSF indicative of a cross-talk between periphery and brain? 4) Do blood/CSF inflammatory profiles change over the disease course as assessed in repeatedly taken biosamples? 5) Are blood/CSF inflammatory profiles associated with phenotypical trajectories in PD? 6) Are blood/CSF inflammatory profiles associated with CSF levels of neurodegenerative/PD-specific biomarkers? Knowledge on these questions will inform future strategies for patient stratification and cohort enrichment as well as suitable outcome measures for clinical trials.
Collapse
Affiliation(s)
- Milan Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
9
|
Sawada H, Oeda T, Kohsaka M, Tomita S, Umemura A, Park K, Yamamoto K, Kiyohara K. Early-start vs delayed-start donepezil against cognitive decline in Parkinson disease: a randomized clinical trial. Expert Opin Pharmacother 2020; 22:363-371. [PMID: 32867552 DOI: 10.1080/14656566.2020.1814255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cholinergic neurotransmission regulates neuroinflammation in Parkinson disease (PD). RESEARCH DESIGN AND METHODS The authors conducted a delayed-start study of donepezil for cognitive decline in non-demented PD patients. The study consisted of a 96-week randomized placebo-controlled double-blind phase 1, followed by a 24-week donepezil extension phase 2. The primary outcome measure was a change in the Mini-Mental State Examination (MMSE) at week 120. RESULTS A total of 98 patients were randomly allocated to the early-start (donepezil-to-donepezil) and delayed-start (placebo-to-donepezil) groups. Mean (SD) of the baseline MMSE was 27.6 (2.0) and 28.0 (2.1), respectively. MMSE change at week 120 was better in the early-start group than in the delayed-start group, but the difference was not significant. The MMSE declined in apolipoprotein ε4 carriers, but not in non-carriers, and the factor interaction (intervention × ε4 genotype) was highly significant (P < 0.001). Analyzed with the interaction, the difference was significant (group difference 1.95 [0.33 to 3.57], P = 0.018). The MMSE decline slope in phase 1 was significantly better in the early-start group than in the delayed-start group (P = 0.048). CONCLUSIONS Cognitive function deteriorated in ε4 carriers, but not in non-carriers, and early-start donepezil may postpone cognitive decline in the former.
Collapse
Affiliation(s)
- Hideyuki Sawada
- Department of Neurology, Utano National Hospital, National Hospital Organization , Kyoto, Japan
| | - Tomoko Oeda
- Department of Neurology, Utano National Hospital, National Hospital Organization , Kyoto, Japan
| | - Masayuki Kohsaka
- Department of Neurology, Utano National Hospital, National Hospital Organization , Kyoto, Japan
| | - Satoshi Tomita
- Department of Neurology, Utano National Hospital, National Hospital Organization , Kyoto, Japan
| | - Atsushi Umemura
- Department of Neurology, Utano National Hospital, National Hospital Organization , Kyoto, Japan
| | - Kwiyoung Park
- Department of Neurology, Utano National Hospital, National Hospital Organization , Kyoto, Japan
| | - Kenji Yamamoto
- Department of Neurology, Utano National Hospital, National Hospital Organization , Kyoto, Japan
| | - Kosuke Kiyohara
- Department of Public Health, Tokyo Women's Medical University , Tokyo, Japan
| |
Collapse
|
10
|
Santos-García D, de Deus Fonticoba T, Suárez Castro E, Aneiros Díaz A, Paz González JM, Feal Panceiras MJ, García Sancho C, Jesús S, Mir P, Aguilar M, Pastor P, Hernández Vara J, de Fábregues-Boixar O, Puente V, Crespo Cuevas A, González-Aramburu I, Infante J, Carrillo Padilla F, Pueyo M, Escalante S, Bernardo N, Solano B, Cots Foraster A, Martinez-Martin P. High ultrasensitive serum C-reactive protein may be related to freezing of gait in Parkinson's disease patients. J Neural Transm (Vienna) 2019; 126:1599-1608. [PMID: 31673927 DOI: 10.1007/s00702-019-02096-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
C-reactive protein (CRP) is a biomarker of systemic inflammation that has been linked to accelerated decline in walking speed in older adults. The aim of the present study was to compare the CRP levels of PD patients with vs patients without freezing of gait (FOG). Patients and controls participating in the COPPADIS-2015 study that performed blood extraction for determining molecular serum biomarkers were included. Patients with FOG were identified as those with a score of 1 or greater on item-3 of the Freezing of Gait Questionnaire (FOG-Q). Immunoassay was used for determining ultrasensitive CRP (US-CRP) level (mg/dL). In the PD group (n = 225; 61.8 ± 9.5 years old, 61.8% males), 32% of the patients presented FOG but none in the control group (n = 65; 60.3 ± 6.1 years old, 56.9% males) (p < 0.0001). Differences in US-CRP level were significant in patients with FOG vs patients without FOG and vs controls (0.31 ± 0.52 vs 0.16 ± 0.21 vs 0.21 ± 0.22; p = 0.04). Significant differences were also observed between patients with vs without FOG (p = 0.001) but not between patients and controls (p = 0.163). US-CRP level was related to FOG (OR = 4.369; 95% CI 1.105-17.275; p = 0.036) along with H&Y (OR = 2.974; 95% CI 1.113-7.943; p = 0.030) and non-motor symptoms burden (NMSS total score; OR = 1.017; 95% CI 1.005-1.029; p = 0.006) after adjusting for age, gender, disease duration, equivalent daily levodopa dose, number of non-antiparkinsonian drugs per day, motor fluctuations, cognition, motor phenotype, and chronic use of anti-inflammatory drugs. The present study suggests that serum US-CRP level is related to FOG in PD patients. Inflammation could be linked to FOG development.
Collapse
Affiliation(s)
- Diego Santos-García
- Section of Neurology, CHUAC, Complejo Hospitalario Universitario de A Coruña, A Coruña, HUAC, C/As Xubias 84, 15006, A Coruña, Spain.
| | - T de Deus Fonticoba
- Hospital Arquitecto Marcide y Hospital Naval, Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain
| | - E Suárez Castro
- Hospital Arquitecto Marcide y Hospital Naval, Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain
| | - A Aneiros Díaz
- Hospital Arquitecto Marcide y Hospital Naval, Complejo Hospitalario Universitario de Ferrol (CHUF), Ferrol, A Coruña, Spain
| | - J M Paz González
- Section of Neurology, CHUAC, Complejo Hospitalario Universitario de A Coruña, A Coruña, HUAC, C/As Xubias 84, 15006, A Coruña, Spain
| | - M J Feal Panceiras
- Section of Neurology, CHUAC, Complejo Hospitalario Universitario de A Coruña, A Coruña, HUAC, C/As Xubias 84, 15006, A Coruña, Spain
| | - C García Sancho
- Section of Neurology, CHUAC, Complejo Hospitalario Universitario de A Coruña, A Coruña, HUAC, C/As Xubias 84, 15006, A Coruña, Spain
| | - S Jesús
- Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla/CSIC, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - P Mir
- Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla/CSIC, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - M Aguilar
- Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - P Pastor
- Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | | | | | - V Puente
- Hospital del Mar, Barcelona, Spain
| | | | - I González-Aramburu
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - J Infante
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - F Carrillo Padilla
- Hospital Universitario de Canarias, San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
| | - M Pueyo
- Hospital Universitario de Canarias, San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
| | - S Escalante
- Hospital de Tortosa Verge de la Cinta (HTVC), Tortosa, Tarragona, Spain
| | - N Bernardo
- Hospital de Tortosa Verge de la Cinta (HTVC), Tortosa, Tarragona, Spain
| | - B Solano
- Institut d'Assistència Sanitària (IAS), Instituí Cátala de la Salud, Girona, Spain
| | - A Cots Foraster
- Institut d'Assistència Sanitària (IAS), Instituí Cátala de la Salud, Girona, Spain
| | - P Martinez-Martin
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
11
|
Qiu X, Xiao Y, Wu J, Gan L, Huang Y, Wang J. C-Reactive Protein and Risk of Parkinson's Disease: A Systematic Review and Meta-Analysis. Front Neurol 2019; 10:384. [PMID: 31057478 PMCID: PMC6478798 DOI: 10.3389/fneur.2019.00384] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/29/2019] [Indexed: 01/11/2023] Open
Abstract
Background: C-reactive protein (CRP) has been identified as a common inflammation-related cytokine. Although publications indicate that CRP is associated with the pathogenesis of neurological disorders and deemed to be a "risk factor" for Parkinson's disease (PD), the evidence exists still indefinitely. Here, we performed a systematic review with meta-analysis synthesizing all the eligible studies on serum, plasma, and cerebrospinal fluid (CSF) CRP levels and PD risk to investigate the potential relevance. Methods: A systematical search up to October 2018 was performed via PubMed, Embase, Science Direct, ISI Web of Science as well as three Chinese medical databases: China National Knowledge Infrastructure database (CNKI), VIP database and WanFang database. Risk was assessed by standardized mean difference (SMD) with 95% confidence interval (CI) to investigate the involvement of CRP levels in PD patients. Results: Twenty-three eligible case-control studies involving 4,598 individuals (2,646 PD patients and 1,932 healthy controls) were incorporated into this meta-analysis. Results have indicated significant increase of CRP levels in PD subjects when compared with control groups in serum (SMD = 1.115, 95% CI 0.619-1.61, P < 0.001), CSF (SMD = 1.127, 95% CI 0.133-2.120, P = 0.026) as well as whole blood (SMD = 1.071, 95% CI 0.715-1.426, P < 0.001). Conclusions: This meta-analysis revealed that PD is associated with an increase of CRP levels. CRP might be a risk factor for PD or PD leads to an inflammatory response.
Collapse
Affiliation(s)
- Xiaohui Qiu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingjing Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Gan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanning Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Abstract
Few studies have investigated the role of inflammation in Lewy body dementia (LBD) and variable results have been found. We systematically reviewed the literature for evidence of systemic inflammatory changes in dementia with Lewy bodies and Parkinson disease dementia. Owing to the low number of studies we also included Parkinson disease. Key terms were used to search the relevant databases. Titles and abstracts were screened and potentially relevant articles were reviewed in full. References of included studies and relevant reviews were searched. The database search returned 2166 results, 46 of which were finally included in the systematic review. These studies showed a general increase in inflammatory markers in the peripheral blood, most notably interleukin-1β (IL-1β), tumor necrosis factor-α, IL-6, and IL-10. Studies examining cerebrospinal fluid found IL-1β, IL-6, and transforming growth factor-β1 to be particularly increased, and interferon-γ decreased. C-reactive protein levels were increased, particularly in Parkinson disease dementia. These results provide evidence that LBD is associated with an increased inflammatory response. Furthermore, there may be a stronger general inflammatory response in LBD than in Parkinson disease, while complex changes occur in the individual cytokines.
Collapse
|
13
|
Objective Measurement and Monitoring of Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017. [PMID: 28802925 DOI: 10.1016/bs.irn.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The comprehensive evaluation of nonmotor symptoms (NMS) in Parkinson's disease (PD) starts with the awareness of physicians, patients, and caregivers on their nature, clinical presentation, and effect on patient's daily activities and quality of life. This awareness can be better achieved if the symptoms can be visualized, measured, and monitored. As NMS are largely subjective in nature, a majority of them cannot be visualized (unlike tremor, which is easily seen), making their identification and quantification difficult. While symptoms are nonmotor, it does not mean that they are not measurable, as many NMS are integral to motor symptoms of Parkinson's, yet often neglected. In this review, we attempt to provide the most up-to-date and comprehensive literature review on the objective measurement and monitoring of NMS in PD. The aim is to make it clinically relevant by approaching NMS by domains as identified in the NMS Questionnaire. A section on the assessment of nonmotor fluctuations is also included, providing prospects for future objective monitoring. With the advances of technology, it is likely that many NMS will have objective outcomes, thus making these symptoms easily measurable and hopefully lead to future clinical trials that incorporate nonmotor outcomes. Nevertheless, it still requires a physician's judgment to determine which method, scales, objective measures, or monitoring devices or a combination of these is most appropriate to the individual patient in order to answer a particular clinical question.
Collapse
|
14
|
Lenka A, Herath P, Christopher R, Pal PK. Psychosis in Parkinson's disease: From the soft signs to the hard science. J Neurol Sci 2017; 379:169-176. [PMID: 28716235 DOI: 10.1016/j.jns.2017.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/30/2017] [Accepted: 06/11/2017] [Indexed: 01/06/2023]
Abstract
Patients with Parkinson's disease (PD) may develop a wide spectrum of non-motor symptoms during the course of illness. Psychosis is one such commonly observed non-motor symptoms of PD. Although several studies based on neuroimaging, genetics, retinal imaging, and neuropsychological evaluations have explored the pathogenesis of psychosis in PD; exact neural correlates are yet to be understood. Identification of factors related to psychosis in PD is important, as psychosis has been reported to be associated with higher rates of mortality, caregiver distress, and nursing home placements. This review highlights the potential of the previous studies to gain further insights into the soft signs and hard science related to psychosis in PD. Studies based on neuropsychological evaluations have revealed significant dysfunction in attention, executive and visuospatial functions in patients with PD and psychosis. Neuroimaging studies reveal grey matter atrophy in regions of the brain corresponding to both dorsal and ventral visual pathways, hippocampus, and cholinergic structures. Meanwhile, functional imaging studies suggest existence of an aberrant top-to-bottom visual processing system, which dominates the normal bottom-to-top system in patients with PD and visual hallucinations. Although nucleotide polymorphisms of several genes have been studied in PD patients with psychosis, those on -45C>T polymorphisms of cholecystokinin gene (CCK) have shown the greatest promise because of its association with psychosis in PD. All these taken together, cohesively unfold the current status of research in patients with PD and psychosis. This paper also highlights the missing links and discusses the approach to future research in this field.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of Clinical Neurosciences, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India; Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Priyantha Herath
- Department of Neurology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
15
|
Chang A, Fox SH. Psychosis in Parkinson's Disease: Epidemiology, Pathophysiology, and Management. Drugs 2017; 76:1093-118. [PMID: 27312429 DOI: 10.1007/s40265-016-0600-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychotic symptoms are common in Parkinson's disease (PD) and are associated with poorer quality of life and increased caregiver burden. PD psychosis is correlated with several factors, such as more advanced disease, cognitive impairment, depression, and sleep disorders. The underlying causes of psychosis in PD thus involve a complex interplay between exogenous (e.g., drugs, intercurrent illnesses) and endogenous (e.g., PD disease pathology) factors. Current theories of the pathophysiology of PD psychosis have come from several neuropathological and neuroimaging studies that implicate pathways involving visual processing and executive function, including temporo-limbic structures and neocortical gray matter with altered neurotransmitter functioning (e.g., dopamine, serotonin, and acetylcholine). Treatment of PD psychosis requires a step-wise process, including initial careful investigation of treatable triggering conditions and a comprehensive evaluation with adjustment of PD medications and/or initiation of specific antipsychotic therapies. Clozapine remains the only recommended drug for the treatment of PD psychosis; however, because of regular blood monitoring, quetiapine is usually first-line therapy, although less efficacious. Emerging studies have focused on agents involving other neurotransmitters, including the serotonin 5-HT2A receptor inverse agonist pimavanserin, cholinesterase inhibitors, and antidepressants and anxiolytics.
Collapse
Affiliation(s)
- Anna Chang
- Morton and Gloria Shulman Movement Disorder Clinic, University of Toronto, Toronto Western Hospital, 7th Floor, McLaughlin Pavilion, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Susan H Fox
- Morton and Gloria Shulman Movement Disorder Clinic, University of Toronto, Toronto Western Hospital, 7th Floor, McLaughlin Pavilion, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
16
|
Buoli M, Caldiroli A, Altamura AC. Psychiatric Conditions in Parkinson Disease: A Comparison With Classical Psychiatric Disorders. J Geriatr Psychiatry Neurol 2016; 29:72-91. [PMID: 26377851 DOI: 10.1177/0891988715606233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Psychiatric conditions often complicate the outcome of patients affected by Parkinson disease (PD), but they differ from classical psychiatric disorders in terms of underlying biological mechanisms, clinical presentation, and treatment response. The purpose of the present review is to illustrate the biological and clinical aspects of psychiatric conditions associated with PD, with particular reference to the differences with respect to classical psychiatric disorders. A careful search of articles on main databases was performed in order to obtain a comprehensive review about the main psychiatric conditions associated with PD. A manual selection of the articles was then performed in order to consider only those articles that concerned with the topic of the review. Psychiatric conditions in patients with PD present substantial differences with respect to classical psychiatric disorders. Their clinical presentation does not align with the symptom profiles represented by Diagnostic and Statistical Manual for Mental Disorders and International Classification of Diseases. Furthermore, psychiatry treatment guidelines are of poor help in managing psychiatric symptoms of patients with PD. Specific diagnostic tools and treatment guidelines are needed to allow early diagnosis and adequate treatment of psychiatric conditions in comorbidity with PD.
Collapse
Affiliation(s)
- Massimiliano Buoli
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alice Caldiroli
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfredo Carlo Altamura
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
17
|
Umemura A, Oeda T, Yamamoto K, Tomita S, Kohsaka M, Park K, Sugiyama H, Sawada H. Baseline Plasma C-Reactive Protein Concentrations and Motor Prognosis in Parkinson Disease. PLoS One 2015; 10:e0136722. [PMID: 26308525 PMCID: PMC4550234 DOI: 10.1371/journal.pone.0136722] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023] Open
Abstract
Background C-reactive protein (CRP), a blood inflammatory biomarker, is associated with the development of Alzheimer disease. In animal models of Parkinson disease (PD), systemic inflammatory stimuli can promote neuroinflammation and accelerate dopaminergic neurodegeneration. However, the association between long-term systemic inflammations and neurodegeneration has not been assessed in PD patients. Objective To investigate the longitudinal effects of baseline CRP concentrations on motor prognosis in PD. Design, Setting, and Participants Retrospective analysis of 375 patients (mean age, 69.3 years; mean PD duration, 6.6 years). Plasma concentrations of high-sensitivity CRP were measured in the absence of infections, and the Unified Parkinson’s Disease Rating Scale Part III (UPDRS-III) scores were measured at five follow-up intervals (Days 1–90, 91–270, 271–450, 451–630, and 631–900). Main Outcome Measure Change of UPDRS-III scores from baseline to each of the five follow-up periods. Results Change in UPDRS-III scores was significantly greater in PD patients with CRP concentrations ≥0.7 mg/L than in those with CRP concentrations <0.7 mg/L, as determined by a generalized estimation equation model (P = 0.021) for the entire follow-up period and by a generalized regression model (P = 0.030) for the last follow-up interval (Days 631–900). The regression coefficients of baseline CRP for the two periods were 1.41 (95% confidence interval [CI] 0.21–2.61) and 2.62 (95% CI 0.25–4.98), respectively, after adjusting for sex, age, baseline UPDRS-III score, dementia, and incremental L-dopa equivalent dose. Conclusion Baseline plasma CRP levels were associated with motor deterioration and predicted motor prognosis in patients with PD. These associations were independent of sex, age, PD severity, dementia, and anti-Parkinsonian agents, suggesting that subclinical systemic inflammations could accelerate neurodegeneration in PD.
Collapse
Affiliation(s)
- Atsushi Umemura
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Tomoko Oeda
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Kenji Yamamoto
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Satoshi Tomita
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Masayuki Kohsaka
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Kwiyoung Park
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Hideyuki Sawada
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
- * E-mail:
| |
Collapse
|
18
|
The association between infectious burden and Parkinson's disease: A case-control study. Parkinsonism Relat Disord 2015; 21:877-81. [DOI: 10.1016/j.parkreldis.2015.05.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/16/2015] [Accepted: 05/25/2015] [Indexed: 11/21/2022]
|
19
|
Sawada H, Oeda T, Umemura A, Tomita S, Kohsaka M, Park K, Yamamoto K, Sugiyama H. Baseline C-Reactive Protein Levels and Life Prognosis in Parkinson Disease. PLoS One 2015. [PMID: 26218286 PMCID: PMC4517917 DOI: 10.1371/journal.pone.0134118] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background C-reactive protein (CRP) is a biomarker of inflammation, and high levels of CRP correlate with vascular death. Chronic inflammation is considered to be involved in neurodegeneration, although there is no evidence linking it with the process of neurodegenerative diseases. Objective To determine the role of baseline CRP levels in the prognosis of patients with Parkinson disease (PD). Methods A cohort of 313 patients with a mean age of 69.1 and mean PD duration of 7.9 years was retrospectively followed for a mean observation time of 1,753 days. CRP was measured when patients were not diagnosed with any infections, and levels were repetitively measured to investigate a tendency of “regression to mean.” The primary outcome measure was a survival time from study enrollment to death. Results During the observation period 56 patients died. Baseline CRP was log-linearly associated with a risk of death in PD. Mean survival time was 3,149 (95% confidence interval; 3,009-3,289) days in patients with CRP ≤ 0.8mg/L (lower two thirds) and 2,620 (2,343-2,897) days in those with CRP > 0.8 mg/L (top third, p < 0.001, log-rank test). The adjusted hazard ratio (HR) per two-fold higher CRP concentration for all deaths was 1.29 (1.10-1.52), and after excluding PD-unrelated deaths, such as cancer or stroke, HR was 1.23 (1.01-1.49) (adjusted for age, sex, PD duration, modified Hohen-Yahr stages, MMSE scores, and serum albumin). Conclusions Baseline CRP concentrations were associated with the risk of death and predicted life prognosis of patients with PD. The associations were independent from PD duration, PD severity, cognitive function, ages, and nutritional conditions, suggesting the possibility that subclinical chronic inflammation is associated with a neurodegenerative process in PD.
Collapse
Affiliation(s)
- Hideyuki Sawada
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
- * E-mail:
| | - Tomoko Oeda
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Atsushi Umemura
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Satoshi Tomita
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Masayuki Kohsaka
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Kwiyoung Park
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Kenji Yamamoto
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| |
Collapse
|
20
|
Barnum CJ, Chen X, Chung J, Chang J, Williams M, Grigoryan N, Tesi RJ, Tansey MG. Peripheral administration of the selective inhibitor of soluble tumor necrosis factor (TNF) XPro®1595 attenuates nigral cell loss and glial activation in 6-OHDA hemiparkinsonian rats. JOURNAL OF PARKINSONS DISEASE 2015; 4:349-60. [PMID: 25061061 DOI: 10.3233/jpd-140410] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a complex multi-system age-related neurodegenerative disorder. Targeting the ongoing neuroinflammation in PD patients is one strategy postulated to slow down or halt disease progression. Proof-of-concept studies from our group demonstrated that selective inhibition of soluble Tumor Necrosis Factor (solTNF) by intranigral delivery of dominant negative TNF (DN-TNF) inhibitors reduced neuroinflammation and nigral dopamine (DA) neuron loss in endotoxin and neurotoxin rat models of nigral degeneration. OBJECTIVE As a next step toward human clinical trials, we aimed to determine the extent to which peripherally administered DN-TNF inhibitor XPro®1595 could: i) cross the blood-brain-barrier in therapeutically relevant concentrations, ii) attenuate neuroinflammation (microglia and astrocyte), and iii) mitigate loss of nigral DA neurons in rats receiving a unilateral 6-hydroxydopamine (6-OHDA) striatal lesion. METHODS Rats received unilateral 6-OHDA (20 μg into the right striatum). Three or 14 days after lesion, rats were dosed with XPro®1595 (10 mg/kg in saline, subcutaneous) every third day for 35 days. Forelimb asymmetry was used to assess motor deficits after the lesion; brains were harvested 35 days after the lesion for analysis of XPro®1595 levels, glial activation and nigral DA neuron number. RESULTS Peripheral subcutaneous dosing of XPro®1595 achieved plasma levels of 1-8 microgram/mL and CSF levels of 1-6 ng/mL depending on the time the rats were killed after final XPro®1595 injection. Irrespective of start date, XPro®1595 significantly reduced microglia and astrocyte number in SNpc whereas loss of nigral DA neurons was attenuated when drug was started 3, but not 14 days after the 6-OHDA lesion. CONCLUSIONS Our data suggest that systemically administered XPro®1595 may have disease-modifying potential in PD patients where inflammation is part of their pathology.
Collapse
Affiliation(s)
| | - Xi Chen
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jaegwon Chung
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Martha Williams
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nelly Grigoryan
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Bountouni I, Zis P, Chaudhuri KR, Schrag A. Psychosis in Parkinson’s Disease. NEUROPSYCHIATRIC SYMPTOMS OF MOVEMENT DISORDERS 2015. [DOI: 10.1007/978-3-319-09537-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Broadstock M, Ballard C, Corbett A. Novel pharmaceuticals in the treatment of psychosis in Parkinson’s disease. Expert Rev Clin Pharmacol 2014; 7:779-86. [DOI: 10.1586/17512433.2014.966814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Gama RL, Bruin VMSD, Bruin PFCD, Távora DGF, Lopes EMS, Jorge IF, Bittencourt LRA, Tufik S. Risk factors for visual hallucinations in patients with Parkinson’s disease. Neurol Res 2014; 37:112-6. [DOI: 10.1179/1743132814y.0000000418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|