1
|
de Albuquerque Dias R, Balbinot KM, da Silva KD, Gomes APN, Mosconi C, de Mendonça EF, Tarquinio SBC, Alves Junior SDM, de Aguiar MCF, Viana Pinheiro JDJ. Are hypoxia-related proteins associated with the invasiveness of glandular odontogenic cysts? A multicenter study. Arch Oral Biol 2025; 171:106151. [PMID: 39644628 DOI: 10.1016/j.archoralbio.2024.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE The study aimed to investigate the expression of hypoxia markers associated with invadopodia in glandular odontogenic cysts and to explore an association between this expression with the aggressive biological behaviour of this odontogenic cyst. DESIGN Immunohistochemistry was employed to assess the expression of hypoxia-inducible factor 1 alpha (HIF-1α), notch homologous protein of the neurogenic locus 1 (NOTCH-1), disintegrin and metalloproteinase-12 (ADAM-12), and heparin-binding epidermal growth factor (HB-EGF) in 17 samples of glandular odontogenic cysts, 10 samples of calcifying odontogenic cysts, and 10 samples of dental follicles. RESULTS The glandular odontogenic cyst samples exhibited increased expression of HIF-1α, NOTCH-1, ADAM-12 and HBEGF proteins compared with calcifying odontogenic cyst and dental follicle samples. HIF-1α demonstrated localization primarily within the nuclei of cystic epithelial cells of the glandular odontogenic cyst. NOTCH-1 and ADAM-12 exhibited expression in the cytoplasm and nuclei of epithelial and mucous cells of the glandular odontogenic cyst, of whereas HB-EGF was predominantly expressed in the cytoplasm. Weak labeling of these proteins was observed in the odontogenic epithelium of the calcifying odontogenic cyst and dental follicle samples. CONCLUSIONS The hypoxia-related signaling proteins are overexpressed in glandular odontogenic cyst when compared with calcifying odontogenic cyst and dental follicle. The reported aggressiveness of glandular odontogenic cyst can be partially explained by the expression of these proteins.
Collapse
Affiliation(s)
- Rafaela de Albuquerque Dias
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Universidade Federal do Pará, Belém, Pará, Brazil.
| | - Karolyny Martins Balbinot
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Universidade Federal do Pará, Belém, Pará, Brazil.
| | - Karine Duarte da Silva
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Ana Paula Neutzling Gomes
- Department of Semiology and Clinics, School of Dentistry, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| | - Carla Mosconi
- Department of Oral Pathology, School of Dentistry, Universidade Federal de Goiás, Goiás, Goiânia, Brazil.
| | | | - Sandra Beatriz Chaves Tarquinio
- Department of Semiology and Clinics, School of Dentistry, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| | - Sérgio de Melo Alves Junior
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Universidade Federal do Pará, Belém, Pará, Brazil.
| | - Maria Cássia Ferreira de Aguiar
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - João de Jesus Viana Pinheiro
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Universidade Federal do Pará, Belém, Pará, Brazil.
| |
Collapse
|
2
|
Zhang H, Yang B. ADAM12 Silencing Mediated by FOXC2 Represses Meningioma Progression Through Inactivating the JAK1/STAT3/VEGFA Pathway. Biochem Genet 2024:10.1007/s10528-024-10893-4. [PMID: 39066954 DOI: 10.1007/s10528-024-10893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Meningioma is a prevalently intracranial tumor, and the malignant type is aggressive with high recurrence. A Disintegrin and Metalloprotease 12 (ADAM12) is a common oncogene and differentially expressed in meningioma. However, its roles and mechanisms in meningioma development remain obscure. The differentially expressed genes in meningioma were analyzed by GEO (GSE77259 and GSE43290) datasets and weighted gene co-expression network analysis (WGCNA) based on GSE16581. ADAM12 expression was measured via qRT-PCR and western blot. The correlation between ADAM12 and FOXC2 was predicted through JASPER tool and identified via luciferase reporter analysis. Cell proliferation, migration and invasion were investigated using CCK-8, EdU, transwell assays. The JAK1/STAT3/VEGFA signaling was activated by IL-6, and analyzed via western blot. The differentially expressed ADAM12 in meningioma was screened by WGCNA and GEO analyses. ADAM12 silencing repressed meningioma cell proliferation, and decreased migration and invasion. The transcription factor FOXC2 expression was enhanced in meningioma based on GSE77259 and GSE43290 datasets, and positively induced ADAM12 transcription. The JAK1/STAT3/VEGFA signaling was inactivated due to ADAM12 silencing and activated via IL-6. Upregulation of FOXC2 promoted cell proliferation, migration and invasion, and these effects were reversed by silencing ADAM12. ADAM12 knockdown mediated via FOXC2 silencing restrained proliferation, migration and invasion of meningioma cells through inactivating the JAK1/STAT3/VEGFA pathway.
Collapse
Affiliation(s)
- Huaming Zhang
- Department of Neurosurgery, China Resources Wisco General Hospital, Wuhan University of Science and Technology, No. 209 Yejin Avenue, Qingshan District, Wuhan, 430080, Hubei, China.
| | - Bing Yang
- Department of Neurology, Wuhan Eighth Hospital, Wuhan, 430014, Hubei, China
| |
Collapse
|
3
|
Fang F, Quach B, Lawrence KG, van Dongen J, Marks JA, Lundgren S, Lin M, Odintsova VV, Costeira R, Xu Z, Zhou L, Mandal M, Xia Y, Vink JM, Bierut LJ, Ollikainen M, Taylor JA, Bell JT, Kaprio J, Boomsma DI, Xu K, Sandler DP, Hancock DB, Johnson EO. Trans-ancestry epigenome-wide association meta-analysis of DNA methylation with lifetime cannabis use. Mol Psychiatry 2024; 29:124-133. [PMID: 37935791 PMCID: PMC11078760 DOI: 10.1038/s41380-023-02310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cannabis is widely used worldwide, yet its links to health outcomes are not fully understood. DNA methylation can serve as a mediator to link environmental exposures to health outcomes. We conducted an epigenome-wide association study (EWAS) of peripheral blood-based DNA methylation and lifetime cannabis use (ever vs. never) in a meta-analysis including 9436 participants (7795 European and 1641 African ancestry) from seven cohorts. Accounting for effects of cigarette smoking, our trans-ancestry EWAS meta-analysis revealed four CpG sites significantly associated with lifetime cannabis use at a false discovery rate of 0.05 ( p < 5.85 × 10 - 7 ) : cg22572071 near gene ADGRF1, cg15280358 in ADAM12, cg00813162 in ACTN1, and cg01101459 near LINC01132. Additionally, our EWAS analysis in participants who never smoked cigarettes identified another epigenome-wide significant CpG site, cg14237301 annotated to APOBR. We used a leave-one-out approach to evaluate methylation scores constructed as a weighted sum of the significant CpGs. The best model can explain 3.79% of the variance in lifetime cannabis use. These findings unravel the DNA methylation changes associated with lifetime cannabis use that are independent of cigarette smoking and may serve as a starting point for further research on the mechanisms through which cannabis exposure impacts health outcomes.
Collapse
Affiliation(s)
- Fang Fang
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA.
| | - Bryan Quach
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jesse A Marks
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Sara Lundgren
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Mingkuan Lin
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
| | - Veronika V Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ricardo Costeira
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Linran Zhou
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Meisha Mandal
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Yujing Xia
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jacqueline M Vink
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Laura J Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Dana B Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Eric O Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Piotrowski KB, Blasco LP, Samsøe-Petersen J, Eefsen RL, Illemann M, Oria VO, Campos KIA, Lopresti AM, Albrechtsen R, Sørensen CS, Sun XF, Kveiborg M, Gnosa S. ADAM12 expression is upregulated in cancer cells upon radiation and constitutes a prognostic factor in rectal cancer patients following radiotherapy. Cancer Gene Ther 2023; 30:1369-1381. [PMID: 37495855 PMCID: PMC10581903 DOI: 10.1038/s41417-023-00643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
Radiotherapy is one of the most common cancer treatments, yet, some patients require high doses to respond. Therefore, the development of new strategies leans toward personalizing therapy to avoid unnecessary burden on cancer patients. This approach prevents the administration of ineffective treatments or uses combination strategies to increase the sensitivity of cancer cells. ADAM12 has been shown to be upregulated in many cancers and correlate with poor survival and chemoresistance, thus making it a potential candidate responsible for radioresistance. Here, we show that ADAM12 expression is upregulated in response to irradiation in both mouse and human cancer cells in vitro, as well as in tumor tissues from rectal cancer patients. Interestingly, the expression of ADAM12 following radiotherapy correlates with the initial disease stage and predicts the response of rectal cancer patients to the treatment. While we found no cell-autonomous effects of ADAM12 on the response of colon cancer cells to irradiation in vitro, depletion of ADAM12 expression markedly reduced the tumor growth of irradiated cancer cells when subcutaneously transplanted in syngeneic mice. Interestingly, loss of cancer cell-derived ADAM12 expression increased the number of CD31+FAP- cells in murine tumors. Moreover, conditioned medium from ADAM12-/- colon cancer cells led to increased tube formation when added to endothelial cell cultures. Thus, it is tempting to speculate that altered tumor vascularity may be implicated in the observed effect of ADAM12 on response to radiotherapy in rectal cancer. We conclude that ADAM12 represents a promising prognostic factor for stratification of rectal cancer patients receiving radiotherapy and suggest that targeting ADAM12 in combination with radiotherapy could potentially improve the treatment response.
Collapse
Affiliation(s)
| | - Laia Puig Blasco
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jacob Samsøe-Petersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Illemann
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Victor Oginga Oria
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Alexia Mélanie Lopresti
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Reidar Albrechtsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Sebastian Gnosa
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- Minerva Imaging, Lyshøjvej 21, Ølstykke, Denmark.
| |
Collapse
|
5
|
Li K, Quan L, Huang F, Li Y, Shen Z. ADAM12 promotes the resistance of lung adenocarcinoma cells to EGFR-TKI and regulates the immune microenvironment by activating PI3K/Akt/mTOR and RAS signaling pathways. Int Immunopharmacol 2023; 122:110580. [PMID: 37418984 DOI: 10.1016/j.intimp.2023.110580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023]
Abstract
Lung adenocarcinoma (LUAD) is a malignant respiratory disease, resulting in a heavy social burden. Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance and tumor immune microenvironment are important directions in the treatment of LUAD. In this study, we confirmed the role of ADAM metallopeptidase domain 12 (ADAM12) in LUAD development and progression. Our bioinformatic analysis was conducted to screen ADAM12 was correlated with EGFR-TKI and immune infiltration in LUAD patients. Our results showed that the transcription and post-transcription level of ADAM12 is significantly increased in tumor samples compared to normal samples, and ADAM12 correlated with poor prognosis in LUAD patients. High level of ADAM12 accelerated the LUAD progression via promoting proliferation, cell cycle, apoptosis escaping, immune escaping, EGFR-TKI resistance, angiogenesis, invasion and migration based on experiment validation in vitro and in vivo, which could be attenuated by ADAM12 knockdown. Further mechanistic studies suggested that the PI3K/Akt/mTOR and RAS signaling pathways were activated after ADAM12 knockdown. Therefore, ADAM12 might be validated as a possible molecular therapy target and prognostic marker for patients with LUAD.
Collapse
Affiliation(s)
- Keyu Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine Central South University, Changsha 410008, China
| | - Lingli Quan
- Department of Pulmonary and Critical Care Medicine 1, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Central South University, Zhuzhou 412000, China
| | - Fang Huang
- Department of General Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine Central South University, Changsha 410008, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Central South University, Zhuzhou 412000, China.
| | - Zhenyu Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, China.
| |
Collapse
|
6
|
Chang Z, Duan Q, Yu C, Li D, Jiang H, Ge F, Xu G. Proteomics and Biochemical Analyses of Secreted Proteins Revealed a Novel Mechanism by Which ADAM12S Regulates the Migration of Gastric Cancer Cells. J Proteome Res 2022; 21:2160-2172. [PMID: 35926154 DOI: 10.1021/acs.jproteome.2c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gastric cancer is one of the cancers with the highest morbidity and mortality. Although several therapeutic approaches have been developed to treat this disease, the overall survival rate is still very low due to metastasis, drug resistance, and so forth. Therefore, it is necessary to discover new regulatory molecules and signaling pathways that modulate the metastasis of gastric cancer cells. A Disintegrin And Metalloprotease 12 (ADAM12) was highly expressed in gastric cancer tissues and presented in the patient urine. However, it is unclear whether and how ADAM12 regulates the migration of gastric cancer cells. In this work, we used the secretome protein enrichment with click sugars (SPECS) method to purify the secreted glycosylated proteins and performed quantitative proteomics to identify the secreted proteins that were differentially regulated by ADAM12S, the short and secreted form of ADAM12. Our proteomic and biochemical analyses revealed that ADAM12S upregulated the cell surface glycoprotein CD146, a cell adhesion molecule and melanoma marker, which was dependent on the catalytic residue of ADAM12S. Furthermore, we discovered that the ADAM12S-enhanced migration of gastric cancer cells was, at least partially, mediated by CD146. This work may help to evaluate whether ADAM12 could be a potential therapeutic target for the treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Zenghui Chang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qianqian Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Chenyi Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Dan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Fei Ge
- Department of Oncology, Department of Gastroenterology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Łukaszewicz-Zając M, Pączek S, Mroczko B. A Disintegrin and Metalloproteinase (ADAM) Family-Novel Biomarkers of Selected Gastrointestinal (GI) Malignancies? Cancers (Basel) 2022; 14:cancers14092307. [PMID: 35565436 PMCID: PMC9101749 DOI: 10.3390/cancers14092307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023] Open
Abstract
The global burden of gastrointestinal (GI) cancers is expected to increase. Therefore, it is vital that novel biomarkers useful for the early diagnosis of these malignancies are established. A growing body of data has linked secretion of proteolytic enzymes, such as metalloproteinases (MMPs), which destroy the extracellular matrix, to pathogenesis of GI tumours. A disintegrin and metalloproteinase (ADAM) proteins belong to the MMP family but have been proven to be unique due to both proteolytic and adhesive properties. Recent investigations have demonstrated that the expression of several ADAMs is upregulated in GI cancer cells. Thus, the objective of this review is to present current findings concerning the role of ADAMs in the pathogenesis of GI cancers, particularly their involvement in the development and progression of colorectal, pancreatic and gastric cancer. Furthermore, the prognostic significance of selected ADAMs in patients with GI tumours is also presented. It has been proven that ADAM8, 9, 10, 12, 15, 17 and 28 might stimulate the proliferation and invasion of GI malignancies and may be associated with unfavourable survival. In conclusion, this review confirms the role of selected ADAMs in the pathogenesis of the most common GI cancers and indicates their promising significance as potential prognostic biomarkers as well as therapeutic targets for GI malignancies. However, due to their non-specific nature, future research on ADAM biology should be performed to elucidate new strategies for the diagnosis of these common and deadly malignancies and treatment of patients with these diseases.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence:
| | - Sara Pączek
- Department of Biochemical Diagnostics, University Hospital of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland
| |
Collapse
|
8
|
Zhang Z, Cheng X, Jiang H, Gu J, Yin Y, Shen Z, Xu C, Pu Z, Li JB, Xu G. Quantitative proteomic analysis of glycosylated proteins enriched from urine samples with magnetic ConA nanoparticles identifies potential biomarkers for small cell lung cancer. J Pharm Biomed Anal 2021; 206:114352. [PMID: 34509662 DOI: 10.1016/j.jpba.2021.114352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/28/2021] [Indexed: 01/08/2023]
Abstract
Lung cancer has high morbidity and mortality and small cell lung cancer (SCLC) is a highly invasive malignant tumor with a very unfavorable survival rate. Early diagnosis and treatment can result in better prognosis for the SCLC patients but current diagnostic methods are either invasive or incapable for large-scale screen. Therefore, discovering biomarkers for early diagnosis of SCLC is of importance. In this work, we covalently coupled Concanavalin A (ConA) to functionalized magnetic nanoparticles to obtain magnetic ConA-nanoparticles (ConA-NPs) for the enrichment of glycosylated proteins. We then purified glycosylated proteins in 36 urine samples from 9 healthy controls, 9 SCLC patients, 9 lung adenocarcinoma (LUAD) patients, and 9 lung squamous cell carcinoma (LUSC) patients. The purified glycosylated proteins were digested and analyzed by LC-MS/MS for identification and quantification. Among the 398 identified proteins, 20, 15, and 1 glycosylated protein(s), respectively, were upregulated in the urine of SCLC, LUAD, and LUSC patients. Immunoblotting experiments further demonstrated that cathepsin C and transferrin were significantly upregulated in the ConA-NP purified urine of SCLC patients. This work suggests that glycosylated cathepsin C and transferrin might be able to serve as potential biomarkers for the noninvasive diagnosis of SCLC patients.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Xinyu Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jingyu Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yunfei Yin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhijia Shen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Changgang Xu
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
9
|
Yu C, You M, Zhang P, Zhang S, Yin Y, Zhang X. A five-gene signature is a prognostic biomarker in pan-cancer and related with immunologically associated extracellular matrix. Cancer Med 2021; 10:4629-4643. [PMID: 34121340 PMCID: PMC8267129 DOI: 10.1002/cam4.3986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is related to extracellular matrix (ECM) dynamics and has a broad fundamental and mechanistic role in tumorigenesis and cancer progression. We hypothesized that ECM regulators might play an essential role in pan-cancer attribution by causing a generic effect through its regulation of the dynamics of ECM alteration. By analyzing data from TCGA using GSEA and univariate Cox regression analysis, we found that ECM regulator genes were significantly enriched and contributed to mortality in various cancer types. Notably, UMAP analysis revealed that ECM regulator genes dominated the differences between tumor and adjacent normal tissues based on 59 or 31 pan-survival-related ECM gene sets. Subsequently, a five-gene signature consisting of the predominant ECM regulators ADAM12, MMP1, SERPINE1, PLOD3, and P4HA3 was identified. We found that this five-gene signature was pro-mortality in 18 types of cancer in TCGA, and validated eleven other cancer types in TCGA and seven types in the TARGET and CoMMpass databases using overall survival analysis. KEGG pathway enrichment and Pearson correlation analysis indicated that these five component genes that were correlated with specific ECM proteins involved in tumorigenesis from the ECM receptor interaction gene set. Additionally, the fitted results of a linear model were applied to strengthen the discovery, demonstrating that the five genes were correlated with immune infiltration score and especially associated with typically immunologically "cold" tumors. We thus conclude that the ADAM12, MMP1, SERPINE1, PLOD3, and P4HA3 signature showed a close association with a pan-cancer effect on prognosis and is related to ECM proteins in the TME which corresponding with immunologically "cold" cancer types.
Collapse
Affiliation(s)
- Chunlai Yu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Mingliang You
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang ProvinceHangzhou Cancer InstituteAffiliated Hangzhou Cancer HospitalZhejiang University School of MedicineHangzhouChina
| | - Peizhen Zhang
- Department of Obstetrics and GynecologyThird Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Sheng Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Yuzhu Yin
- Department of Obstetrics and GynecologyThird Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Xiao Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciencesand Guangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
10
|
A Disintegrin and Metalloprotease 12 Promotes Tumor Progression by Inhibiting Apoptosis in Human Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13081927. [PMID: 33923541 PMCID: PMC8073784 DOI: 10.3390/cancers13081927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary A disintegrin and metalloprotease 12 (ADAM12) has been associated with tumor development and progression. The aim of the current study was to evaluate the impact of ADAM12 on cancer progression, prognosis, and therapeutic targets in colorectal cancer (CRC). Our results show that ADAM12 overexpression enhanced proliferation, inhibited apoptosis, and acted as a positive regulator of cell cycle progression in CRC cells. Phosphorylation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was decreased and that of Akt was increased by ADAM12 overexpression. These results were reversed upon ADAM12 knockdown. ADAM12 overexpression was significantly associated with the cancer stage, depth of invasion, lymph node metastasis, distant metastasis, and poor survival in CRC patients. In a mouse xenograft model, tumor area, volume, and weight were significantly greater for the ADAM12 overexpression group and significantly lower for the ADAM12 knockdown group. In conclusion, ADAM12 may serve as a promising biomarker and/or therapeutic target in CRC. Abstract A disintegrin and metalloprotease 12 (ADAM12) has been implicated in cell growth, tumor formation, and metastasis. Therefore, we evaluated the role of ADAM12 in colorectal cancer (CRC) progression and prognosis, and elucidated whether targeted downregulation of ADAM12 could lead to therapeutic sensitization. The effect of ADAM12 on tumor cell behavior was assessed in CRC cell lines, CRC tissues, and a mouse xenograft model. ADAM12 overexpression enhanced proliferation, inhibited apoptosis, and acted as positive regulator of cell cycle progression in CRC cells. Phosphorylation of PTEN was decreased and that of Akt was increased by ADAM12 overexpression. These results were reversed upon ADAM12 knockdown. ADAM12 overexpression was significantly associated with the cancer stage, depth of invasion, lymph node metastasis, distant metastasis, and poor survival in CRC patients. In a mouse xenograft model, tumor area, volume, and weight were significantly greater for the ADAM12-pcDNA6-myc-transfected group than for the empty-pcDNA6-myc-transfected group, and significantly lower for the ADAM12-pGFP-C-shLenti-transfected group than for the scrambled pGFP-C-shLenti-transfected group. In conclusion, ADAM12 overexpression is essential for the growth and progression of CRC. Furthermore, ADAM12 knockdown reveals potent anti-tumor activity in a mouse xenograft model. Thus, ADAM12 may serve as a promising biomarker and/or therapeutic target in CRC.
Collapse
|
11
|
Wang Y, Zhang J, Cao H, Han F, Zhang H, Xu E. Methylation status of ADAM12 promoter are associated with its expression levels in colorectal cancer. Pathol Res Pract 2021; 221:153449. [PMID: 33930608 DOI: 10.1016/j.prp.2021.153449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a kind of malignant tumor of digestive system severely affecting human health. The occurrence of CRC is a polygenic and multi-step complex process involving genetic and epigenetic alterations. ADAM12 (a disintegrin and metalloproteases 12), is a gene that was commonly hypermethylated in esophageal cancer using whole-genome methylation microarray in our previous study. METHODS We detected the methylation frequencies of the CpG island in ADAM12 promoter using bisulfite-pyrosequencing in CRC cell lines and tissue samples. The expression of ADAM12 was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). A systematic and comprehensive analysis of relationship of DNA hypermethylation and ADAM12 expression in CRC was performed in our samples and TCGA database. RESULTS The expression of ADAM12 in hypermethylated cell lines was significantly lower than that in hypomethylated cell lines, and demethylation agent 5-Aza-dC could demethylate ADAM12 promoter region and reactivate ADAM12 expression effectively. In 74 pairs of colorectal cancer and normal tissues, bisulfite-pyrosequencing results showed significantly hypermethylation of ADAM12 in CRC compared with adjacent normal mucosa, accompanied with lower expression of ADAM12 in CRC tissues compared to that of the normal tissues. In addition, there was a statistically significant negative correlation between ADAM12 protein expression and methylation levels (rho =-0.28, p = 0.015). CONCLUSION Promoter hypermethylation was probably a mechanism of ADAM12 epigenetic silencing in CRC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jing Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Pathology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China.
| | - Hui Cao
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Pathology and Pathophysiology, Cheng Du Medical College, Chengdu 610500, China.
| | - Fengyan Han
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Enping Xu
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Shi Y, Chang D, Li W, Zhao F, Ren X, Hou B. Identification of core genes and clinical outcomes in tumors originated from endoderm (gastric cancer and lung carcinoma) via bioinformatics analysis. Medicine (Baltimore) 2021; 100:e25154. [PMID: 33761685 PMCID: PMC10545272 DOI: 10.1097/md.0000000000025154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT During last decade, bioinformatics analysis has provided an effective way to study the relationship between various genes and biological processes. In this study, we aimed to identify potential core candidate genes and underlying mechanisms of progression of lung and gastric carcinomas which both originated from endoderm. The expression profiles, GSE54129 (gastric carcinoma) and GSE27262 (lung carcinoma), were collected from GEO database. One hundred eleven patients with gastric carcinoma and 21 health people were included in this research. Meanwhile, there were 25 lung carcinoma patients. Then, 75 differentially expressed genes were selected via GEO2R online tool and Venn software, including 31 up-regulated genes and 44 down-regulated genes. Next, we used Database for Annotation, Visualization, and Integrated Discovery and Metascpe software to analyze Kyoto Encyclopedia of Gene and Genome pathway and gene ontology. Furthermore, Cytoscape software and MCODE App were performed to construct complex of these differentially expressed genes . Twenty core genes were identified, which mainly enriched in extracellular matrix-receptor interaction, focal adhesion, and PI3K-Akt pathway (P < .01). Finally, the significant difference of gene expression between cancer tissues and normal tissues in both lung and gastric carcinomas was examined by Gene Expression Profiling Interactive Analysis database. Twelve candidate genes with positive statistical significance (P < .01), COMP CTHRC1 COL1A1 SPP1 COL11A1 COL10A1 CXCL13 CLDN3 CLDN1 matrix metalloproteinases 7 ADAM12 PLAU, were picked out to further analysis. The Kaplan-Meier plotter website was applied to examine relationship among these genes and clinical outcomes. We found 4 genes (ADAM12, SPP1, COL1A1, COL11A1) were significantly associated with poor prognosis in both lung and gastric carcinoma patients (P < .05). In conclusion, these candidate genes may be potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Yewen Shi
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University
| | - Dongmin Chang
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University
| | - Wenhan Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital
- The Third Affiliated Hospital, the School of Medicine Xi’an Jiaotong University
| | - FengYu Zhao
- Department of Surgical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University
| | - Xiaoyong Ren
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University
| | - Bin Hou
- The Third Affiliated Hospital, the School of Medicine Xi’an Jiaotong University
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
13
|
Ness C, Katta K, Garred Ø, Kumar T, Olstad OK, Petrovski G, Moe MC, Noer A. Integrated differential DNA methylation and gene expression of formalin-fixed paraffin-embedded uveal melanoma specimens identifies genes associated with early metastasis and poor prognosis. Exp Eye Res 2020; 203:108426. [PMID: 33387485 DOI: 10.1016/j.exer.2020.108426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Uveal melanoma (UM) is an aggressive malignancy, in which nearly 50% of the patients die from metastatic disease. Aberrant DNA methylation is recognized as an important epigenomic event in carcinogenesis. Formalin-fixed paraffin-embedded (FFPE) samples represent a valuable source of tumor tissue, and recent technology has enabled the use of these samples in genome-wide DNA methylation analyses. Our aim was to investigate differential DNA methylation in relation to histopathological classification and survival data. In addition we sought to identify aberrant DNA methylation of genes that could be associated with metastatic disease and poor survival. METHODS FFPE samples from UM patients (n = 23) who underwent enucleation of the eye in the period 1976-1989 were included. DNA methylation was assessed using the Illumina Infinium HumanMethylation450 array and coupled to histopathological data, Cancer Registry of Norway- (registered UM metastasis) and Norwegian Cause of Death Registry- (time and cause of death) data. Differential DNA methylation patterns contrasting histological classification, survival data and clustering properties were investigated. Survival groups were defined as "Early metastasis" (metastases and death within 2-5 years after enucleation, n = 8), "Late metastasis" (metastases and death within 9-21 years after enucleation, n = 7) and "No metastasis" (no detected metastases ≥18 years after enucleation, n = 8). A subset of samples were selected based on preliminary multi-dimensional scaling (MDS) plots, histopathological classification, chromosome 3 status, survival status and clustering properties; "Subset Early metastasis" (n = 4) vs "Subset No metastasis" (n = 4). Bioinformatics analyses were conducted in the R statistical software. Differentially methylated positions (DMPs) and differentially methylated regions (DMRs) in various comparisons were assessed. Gene expression of relevant subgroups was determined by microarray analysis and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). RESULTS DNA methylation analyses identified 2 clusters that separated the samples according to chromosome 3 status. Cluster 1 consisted of samples (n = 5) with chromosome 3 disomy (D3), while Cluster 2 was comprised of samples (n = 15) with chromosome 3 monosomy (M3). 1212 DMRs and 9386 DMPs were identified in M3 vs D3. No clear clusters were formed based on our predefined survival groups ("Early", "Late", "No") nor histopathological classification (Epithelioid, Mixed, Spindle). We identified significant changes in DNA methylation (beta FC ≥ 0.2, adjusted p < 0.05) between two sample subsets (n = 8). "Subset Early metastasis" (n = 4) vs "Subset No metastasis" (n = 4) identified 348 DMPs and 36 DMRs, and their differential gene expression by microarray showed that 14 DMPs and 2 DMRs corresponded to changes in gene expression (FC ≥ 1.5, p < 0.05). RNF13, ZNF217 and HYAL1 were hypermethylated and downregulated in "Subset Early metastasis" vs "Subset No metastasis" and could be potential tumor suppressors. TMEM200C, RGS10, ADAM12 and PAM were hypomethylated and upregulated in "Subset Early metastasis vs "Subset No metastasis" and could be potential oncogenes and thus markers of early metastasis and poor prognosis in UM. CONCLUSIONS DNA methylation profiling showed differential clustering of samples according to chromosome 3 status: Cluster 1 (D3) and Cluster 2 (M3). Integrated differential DNA methylation and gene expression of two subsets of samples identified genes associated with early metastasis and poor prognosis. RNF13, ZNF217 and HYAL1 are hypermethylated and candidate tumor suppressors, while TMEM200C, RGS10, ADAM12 and PAM are hypomethylated and candidate oncogenes linked to early metastasis. UM FFPE samples represent a valuable source for methylome studies and enable long-time follow-up.
Collapse
Affiliation(s)
- Charlotte Ness
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kirankumar Katta
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Øystein Garred
- Department of Pathology, Oslo University Hospital, Norway
| | - Theresa Kumar
- Department of Pathology, Oslo University Hospital, Norway
| | | | - Goran Petrovski
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Morten C Moe
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Agate Noer
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
14
|
Ren X, Dong Y, Duan M, Zhang H, Gao P. Abnormal expression of HNRNPA3 in multistep hepatocarcinogenesis. Oncol Lett 2020; 21:46. [PMID: 33281957 PMCID: PMC7709557 DOI: 10.3892/ol.2020.12307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocarcinogenesis is a multistep process involving progression from cirrhosis, to low-grade dysplastic nodule, to high-grade dysplastic nodule (HGDN) and, eventually, to hepatocellular carcinoma (HCC). Early detection of HCC is challenging as the differential diagnosis between HGDN and early HCC (eHCC) is difficult. The aim of the present study was to identify a novel biomarker to specifically differentiate between HGDN and eHCC, which may facilitate early diagnosis of HCC. Immunohistochemistry was performed to determine the expression of heterogeneous nuclear ribonucleoprotein A3 (HNRNPA3) in cirrhosis, dysplastic nodules (DNs), well-differentiated HCC and progressed HCC. The staining was evaluated by assigning a staining intensity score of 0–3 and a percentage of positively stained cells score of 0–4. Receiver operator characteristic (ROC) curve analysis was used to assess the ability of HNRNPA3 expression to differentiate between DNs and HCC. HNRNPA3 expression increased in a stepwise trend in non-tumor hepatic tissue, DNs, eHCC and progressed HCC. ROC curves revealed that HNRNPA3 expression could be used to differentiate between HGDN and eHCC, particularly in combination with glypican 3 (GPC3), with a specificity of 100%. Moreover, HNRNPA3 expression was associated with HCC differentiation. In addition, high expression of HNRNPA3 was found to be associated with poor survival rates in patients with HCC. These findings demonstrated that HNRNPA3 combined with GPC3 is a helpful diagnostic biomarker in the differential diagnosis during the multistep process of hepatocarcinogenesis, particularly in the differential diagnosis between HGDN and eHCC. To the best of our knowledge, this is the first study to report the significance of HNRNPA3 in hepatocarcinogenesis and its potential role in carcinogenesis.
Collapse
Affiliation(s)
- Xinlu Ren
- Department of Clinical Medicine, Queen Mary College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yi Dong
- Key Laboratory for Experimental Teratology of The Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Miao Duan
- Key Laboratory for Experimental Teratology of The Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui Zhang
- Key Laboratory for Experimental Teratology of The Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of The Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
15
|
Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020; 9:E1313. [PMID: 32466129 PMCID: PMC7290391 DOI: 10.3390/cells9051313] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The metalloproteinase (MP) family of zinc-dependent proteases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteases (ADAMs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) plays a crucial role in the extracellular matrix (ECM) remodeling and degradation activities. A wide range of substrates of the MP family includes ECM components, chemokines, cell receptors, and growth factors. Metalloproteinases activities are tightly regulated by proteolytic activation and inhibition via their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the imbalance of the activation and inhibition is responsible in progression or inhibition of several diseases, e.g., cancer, neurological disorders, and cardiovascular diseases. We provide an overview of the structure, function, and the multifaceted role of MMPs, ADAMs, and TIMPs in several diseases via their cellular functions such as proteolysis of other cell signaling factors, degradation and remodeling of the ECM, and other essential protease-independent interactions in the ECM. The significance of MP inhibitors targeting specific MMP or ADAMs with high selectivity is also discussed. Recent advances and techniques used in developing novel MP inhibitors and MP responsive drug delivery tools are also reviewed.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Chemical and Materials Engineering Department, University of Nevada, Reno, NV 89557, USA; (L.D.D.); (B.G.H.)
| | | | | |
Collapse
|
16
|
de Mendonça RP, Chemelo GP, Mitre GP, Branco DC, da Costa NMM, Tuji FM, da Silva Kataoka MS, Mesquita RA, de Melo Alves Júnior S, de Jesus Viana Pinheiro J. Role of hypoxia-related proteins in adenoid cystic carcinoma invasion. Diagn Pathol 2020; 15:47. [PMID: 32386517 PMCID: PMC7210690 DOI: 10.1186/s13000-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Among cancers affecting the oral cavity, adenoid cystic carcinoma (ACC) is a relatively common malignant neoplasm. It has high rates of metastasis and recurrence and is associated with significant morbidity. During the progression of ACC, the oxygen concentration is reduced in specific areas of the tumour microenvironment, leading to intratumoural hypoxia. The expression of NOTCH1, a disintegrin and metalloproteinase 12 (ADAM-12), hypoxia-inducible factor 1 alpha (HIF-1α), and heparin-binding epidermal growth factor (HB-EGF) under hypoxic conditions has been implicated in invadopodia formation, tumour invasiveness, and metastasis. The aim of this study was to analyse the expression of these proteins to elucidate the mechanisms underlying ACC invasiveness. METHODS Fifteen ACC samples and 10 normal-looking salivary gland (SG) samples were used to investigate the expression of these proteins by immunohistochemistry. Primary antibodies against NOTCH1, ADAM-12, HIF-1α, and HB-EGF were used. RESULTS The immunoexpression of all proteins was higher in ACC samples than in SG samples (p < 0.05). CONCLUSIONS There was increased expression of proteins associated with hypoxia and tumour invasiveness in ACC samples, which indicates a possible role of these proteins in the biological behaviour of this tumour.
Collapse
Affiliation(s)
- Raíssa Pinheiro de Mendonça
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Giordanna Pereira Chemelo
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Geovanni Pereira Mitre
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Dimitra Castelo Branco
- Multiprofessional Residency Program, Universidade Estadual do Pará, Rua do Una, 156, Belem, Para, 66050-540, Brazil
| | - Natacha Malu Miranda da Costa
- Department of Periodontology, School of Dentistry, Universidade de São Paulo, Avenida do Café, Subsetor Oeste, 11, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Fabrício Mesquita Tuji
- Department of Oral Radiology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Maria Sueli da Silva Kataoka
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sérgio de Melo Alves Júnior
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - João de Jesus Viana Pinheiro
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil. .,School of Dentistry, Cell Culture Laboratory, Universidade Federal do Pará (UFPA), Institute of Health Sciences, Avenida Augusto Correa, 01, Belem, PA, 66075-110, Brazil.
| |
Collapse
|
17
|
Abstract
Alternative splicing of precursor mRNA is a key mediator of gene expression regulation leading to greater diversity of the proteome in complex organisms. Systematic sequencing of the human genome and transcriptome has led to our understanding of how alternative splicing of critical genes leads to multiple pathological conditions such as cancer. For many years, proteases were known only for their roles as proteolytic enzymes, acting to regulate/process proteins associated with diverse cellular functions. However, the differential expression and altered function of various protease isoforms, such as (i) anti-apoptotic activities, (ii) mediating intercellular adhesion, and (iii) modifying the extracellular matrix, are evidence of their specific contribution towards shaping the tumor microenvironment. Revealing the alternative splicing of protease genes and characterization of their protein products/isoforms with distinct and opposing functions creates a platform to understand how protease isoforms contribute to specific cancer hallmarks. Here, in this review, we address cancer-specific isoforms produced by the alternative splicing of proteases and their distinctive roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
18
|
Li D, Yun Y, Gao R. Oxygenated Polycyclic aromatic hydrocarbons (Oxy-PAHs) facilitate lung cancer metastasis by epigenetically regulating the epithelial-to-mesenchymal transition (EMT). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113261. [PMID: 31580991 DOI: 10.1016/j.envpol.2019.113261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Oxygenated Polycyclic aromatic hydrocarbons (Oxy-PAHs) are widely distributed in the atmosphere, water, soil and sediments. Oxy-PAHs have been proved more carcinogenic than their parent PAHs, while there still lack of studies about the toxicological mechanism of Oxy-PAHs in epigenetic regulation. Our study revealed that exposure to Oxy-PAHs induced the invasion and migration of lung epithelial cells by the activation of epithelial-to-mesenchymal transition (EMT), including the up-regulation of Vimentin and alpha-smooth muscle actin (α-SMA) and the down-regulation of E-cadherin (E-cad). The reactive oxygen species (ROS) promoted histone acetylation mediated-Snail regulating the expression of E-cad after Oxy-PAHs treatment. Meanwhile, DNA methylation was also involved in epigenetic regulation of EMT. These results demonstrated a potential mechanism about Oxy-PAHs facilitate lung carcinogenesis by epigenetic regulation and suggested new ways for the treatment, improvement, and prevention of lung cancer caused by Oxy-PAHs environmental exposure.
Collapse
Affiliation(s)
- Dan Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
19
|
Yue C, Ma H, Zhou Y. Identification of prognostic gene signature associated with microenvironment of lung adenocarcinoma. PeerJ 2019; 7:e8128. [PMID: 31803536 PMCID: PMC6886493 DOI: 10.7717/peerj.8128] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background Lung cancer has the highest morbidity and mortality worldwide, and lung adenocarcinoma (LADC) is the most common pathological subtype. Accumulating evidence suggests the tumor microenvironment (TME) is correlated with the tumor progress and the patient’s outcome. As the major components of TME, the tumor-infiltrated immune cells and stromal cells have attracted more and more attention. In this study, differentially expressed immune and stromal signature genes were used to construct a TME-related prognostic model for predicting the outcomes of LADC patients. Methods The expression profiles of LADC samples with clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) related to the TME of LADC were identified using TCGA dataset by Wilcoxon rank sum test. The prognostic effects of TME-related DEGs were analyzed using univariate Cox regression. Then, the least absolute shrinkage and selection operator (LASSO) regression was performed to reduce the overfit and the number of genes for further analysis. Next, the prognostic model was constructed by step multivariate Cox regression and risk score of each sample was calculated. Then, survival and Receiver Operating Characteristic (ROC) analyses were conducted to validate the model using TCGA and GEO datasets, respectively. The Kyoto Encyclopedia of Genes and Genomes analysis of gene signature was performed using Gene Set Enrichment Analysis (GSEA). Finally, the overall immune status, tumor purity and the expression profiles of HLA genes of high- and low-risk samples was further analyzed to reveal the potential mechanisms of prognostic effects of the model. Results A total of 93 TME-related DEGs were identified, of which 23 DEGs were up-regulated and 70 DEGs were down-regulated. The univariate cox analysis indicated that 23 DEGs has the prognostic effects, the hazard ratio ranged from 0.65 to 1.25 (p < 0.05). Then, seven genes were screened out from the 23 DEGs by LASSO regression method and were further analyzed by step multivariate Cox regression. Finally, a three-gene (ADAM12, Bruton Tyrosine Kinase (BTK), ERG) signature was constructed, and ADAM12, BTK can be used as independent prognostic factors. The three-gene signature well stratified the LADC patients in both training (TCGA) and testing (GEO) datasets as high-risk and low-risk groups, the 3-year area under curve (AUC) of ROC curves of three GEO sets were 0.718 (GSE3141), 0.646 (GSE30219) and 0.643 (GSE50081). The GSEA analysis indicated that highly expressed ADAM12, BTK, ERG mainly correlated with the activation of pathways involving in focal adhesion, immune regulation. The immune analysis indicated that the low-risk group has more immune activities and higher expression of HLA genes than that of the high-risk group. In sum, we identified and constructed a three TME-related DEGs signature, which could be used to predict the prognosis of LADC patients.
Collapse
Affiliation(s)
- Cheng Yue
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Hongtao Ma
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Yubai Zhou
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
20
|
Naciri I, Laisné M, Ferry L, Bourmaud M, Gupta N, Di Carlo S, Huna A, Martin N, Peduto L, Bernard D, Kirsh O, Defossez PA. Genetic screens reveal mechanisms for the transcriptional regulation of tissue-specific genes in normal cells and tumors. Nucleic Acids Res 2019; 47:3407-3421. [PMID: 30753595 PMCID: PMC6468300 DOI: 10.1093/nar/gkz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The proper tissue-specific regulation of gene expression is essential for development and homeostasis in metazoans. However, the illegitimate expression of normally tissue-restricted genes—like testis- or placenta-specific genes—is frequently observed in tumors; this promotes transformation, but also allows immunotherapy. Two important questions are: how is the expression of these genes controlled in healthy cells? And how is this altered in cancer? To address these questions, we used an unbiased approach to test the ability of 350 distinct genetic or epigenetic perturbations to induce the illegitimate expression of over 40 tissue-restricted genes in primary human cells. We find that almost all of these genes are remarkably resistant to reactivation by a single alteration in signaling pathways or chromatin regulation. However, a few genes differ and are more readily activated; one is the placenta-expressed gene ADAM12, which promotes invasion. Using cellular systems, an animal model, and bioinformatics, we find that a non-canonical but druggable TGF-β/KAT2A/TAK1 axis controls ADAM12 induction in normal and cancer cells. More broadly, our data show that illegitimate gene expression in cancer is an heterogeneous phenomenon, with a few genes activatable by simple events, and most genes likely requiring a combination of events to become reactivated.
Collapse
Affiliation(s)
- Ikrame Naciri
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Marthe Laisné
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Laure Ferry
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Morgane Bourmaud
- INSERM U1132 and USPC Paris-Diderot, Hôpital Lariboisière, Paris, France
| | - Nikhil Gupta
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Selene Di Carlo
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - Anda Huna
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Lucie Peduto
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Olivier Kirsh
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Pierre-Antoine Defossez
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| |
Collapse
|
21
|
Saha N, Robev D, Himanen JP, Nikolov DB. ADAM proteases: Emerging role and targeting of the non-catalytic domains. Cancer Lett 2019; 467:50-57. [PMID: 31593799 DOI: 10.1016/j.canlet.2019.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
ADAM proteases are multi domain transmembrane metalloproteases that cleave a range of cell surface proteins and activate signaling pathways implicated in tumor progression, including those mediated by Notch, EFGR, and the Eph receptors. Consequently, they have emerged as key therapeutic targets in the efforts to inhibit tumor initiation and progression. To that end, two main approaches have been taken to develop ADAM antagonists: (i) small molecule inhibitors, and (ii) monoclonal antibodies. In this mini-review we describe the distinct features of ADAM proteases, particularly of ADAM10 and ADAM17, their domain organization, conformational rearrangements, regulation, as well as their emerging importance as therapeutic targets in cancer. Further, we highlight an anti-ADAM10 monoclonal antibody that we have recently developed, which has shown significant promise in inhibiting Notch signaling and deterring growth of solid tumors in pre-clinical settings.
Collapse
Affiliation(s)
- Nayanendu Saha
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, 10065, USA.
| | - Dorothea Robev
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, 10065, USA
| | - Juha P Himanen
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, 10065, USA
| | - Dimitar B Nikolov
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
22
|
Adamalysines as Biomarkers and a Potential Target of Therapy in Colorectal Cancer Patients: Preliminary Results. DISEASE MARKERS 2019; 2019:5035234. [PMID: 31565100 PMCID: PMC6745173 DOI: 10.1155/2019/5035234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 01/18/2023]
Abstract
Colorectal cancer is one of the most common cancers in the world. Due to its still undetermined pathogenesis, we are searching for signaling pathways that are important in the development of colorectal cancer. In this article, we present results of study on the role of ADAM proteins in colorectal cancer. The study included 85 adult colorectal cancer patients (48 men, 37 women) and 25 patients in the control group (after diagnostic colonoscopy-without cancer). During hospitalization, a serum sample (3 cm3) was collected from the study and control group, anthropometric measurements were conducted and others clinical data were analyzed. In the serum ADAM10, 12, 17, and 28, protein concentrations were determined and, in the next step, examined the relationship between ADAMs concentrations and selected clinical parameters in both groups. The analysis showed that serum levels of ADAM10 and ADAM28 are significantly higher in patients with colorectal cancer and correlate with histopathological grading and with presence of distant metastases. Moreover, noticed the trend to correlate concentrations of adamalysines with higher BMI score. One of the functions of adamalysines is the activation of growth factors involved in cancer, including IGF and TNFα. The increased activity of adamalysines in patients may play a role in the pathogenesis of colorectal cancer. Our study highlights the prevalence of metabolic disorders in the group of patients with diagnosed CRC, and this cancer seems to be a further complication of obesity.
Collapse
|
23
|
Duan Q, Li D, Xiong L, Chang Z, Xu G. SILAC Quantitative Proteomics and Biochemical Analyses Reveal a Novel Molecular Mechanism by Which ADAM12S Promotes the Proliferation, Migration, and Invasion of Small Cell Lung Cancer Cells through Upregulating Hexokinase 1. J Proteome Res 2019; 18:2903-2914. [DOI: 10.1021/acs.jproteome.9b00208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qianqian Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lipeng Xiong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zenghui Chang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
24
|
van Mackelenbergh MG, Stroes CI, Spijker R, van Eijck CHJ, Wilmink JW, Bijlsma MF, van Laarhoven HWM. Clinical Trials Targeting the Stroma in Pancreatic Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2019; 11:E588. [PMID: 31035512 PMCID: PMC6562438 DOI: 10.3390/cancers11050588] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment plays an important role in the initiation and progression of pancreatic adenocarcinoma (PDAC). In this systematic review, we provide an overview of clinical trials with stroma-targeting agents. We systematically searched MEDLINE/PubMed and the EMBASE database, using the PRISMA guidelines, for eligible clinical trials. In total, 2330 records were screened, from which we have included 106 articles. A meta-analysis could be performed on 51 articles which describe the targeting of the vascular endothelial growth factor (VEGF) pathway, and three articles which describe the targeting of hyaluronic acid. Anti-VEGF therapies did not show an increase in median overall survival (OS) with combined hazard ratios (HRs) of 1.01 (95% confidence interval (CI) 0.90-1.13). Treatment with hyaluronidase PEGPH20 showed promising results, but, thus far, only in combination with gemcitabine and nab-paclitaxel in selected patients with hyaluronic acid (HA)high tumors: An increase in median progression free survival (PFS) of 2.9 months, as well as a HR of 0.51 (95% CI 0.26-1.00). In conclusion, we found that anti-angiogenic therapies did not show an increased benefit in median OS or PFS in contrast to promising results with anti-hyaluronic acid treatment in combination with gemcitabine and nab-paclitaxel. The PEGPH20 clinical trials used patient selection to determine eligibility based on tumor biology, which underlines the importance to personalize treatment for pancreatic cancer patients.
Collapse
Affiliation(s)
- Madelaine G van Mackelenbergh
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Charlotte I Stroes
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
- Cochrane Netherlands, Julius Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, The Netherlands.
| | - Johanna W Wilmink
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Maarten F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Yang H, Wu J, Zhang J, Yang Z, Jin W, Li Y, Jin L, Yin L, Liu H, Wang Z. Integrated bioinformatics analysis of key genes involved in progress of colon cancer. Mol Genet Genomic Med 2019; 7:e00588. [PMID: 30746900 PMCID: PMC6465657 DOI: 10.1002/mgg3.588] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 12/26/2022] Open
Abstract
Background Colon cancer is one of most malignant cancers around worldwide. Nearly 20% patients were diagnosed at colon cancer with metastasis. However, the lack of understanding regarding its pathogenesis brings difficulties to study it. Methods In this study, we acquired high‐sequence data from GEO dataset, and performed integrated bioinformatic analysis including differently expressed genes, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways analysis, protein–protein analysis, survival analysis to analyze the development of colon cancer. Results By comparing the colon cancer tissues with normal colon tissues, 109 genes were dysregulated; among them, 83 genes were downregulated and 26 genes were upregulated. Two clusters were founded based on the STRING database and MCODE plugin of cytoscape software. Then, six genes with prognostic value were filtered out in UALCAN website. Conclusion We found that SPP1, VIP, COL11A1, CA2, ADAM12, INHBA could provide great significant prognostic value for colon cancer.
Collapse
Affiliation(s)
- Haojie Yang
- Department of colo-proctology, Yueyang Hospital of Integratd Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiong Wu
- Department of colo-proctology, Yueyang Hospital of Integratd Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Zhang
- Department of colo-proctology, Yueyang Hospital of Integratd Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhigang Yang
- Department of colo-proctology, Yueyang Hospital of Integratd Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Jin
- Department of colo-proctology, Yueyang Hospital of Integratd Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Li
- Department of colo-proctology, Yueyang Hospital of Integratd Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Jin
- Department of colo-proctology, Yueyang Hospital of Integratd Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Yin
- Shanghai Changning Maternity & Infant Health Hospital, Shanghai, China
| | - Hua Liu
- Department of colo-proctology, Yueyang Hospital of Integratd Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyi Wang
- Department of colo-proctology, Yueyang Hospital of Integratd Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Liu J, Zhao W, Ammous F, Turner ST, Mosley TH, Zhou X, Smith JA. Longitudinal analysis of epigenome-wide DNA methylation reveals novel smoking-related loci in African Americans. Epigenetics 2019; 14:171-184. [PMID: 30764717 PMCID: PMC6557606 DOI: 10.1080/15592294.2019.1581589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 10/27/2022] Open
Abstract
Changes in DNA methylation may be a potential mechanism that mediates the effects of smoking on physiological function and subsequent disease risk. Given the dynamic nature of the epigenome, longitudinal studies are indispensable for investigating smoking-induced methylation changes over time. Using blood samples collected approximately five years apart in 380 African Americans (mean age 60.7 years) from the Genetic Epidemiology Network of Arteriopathy (GENOA) study, we measured DNA methylation levels using Illumina HumanMethylation BeadChips. We evaluated the association between Phase 1 smoking status and rate of methylation change, using generalized estimating equation models. Among the 6958 CpG sites examined, smoking status was associated with methylation change for 22 CpGs (false discovery rate q < 0.1), with the majority (91%) becoming less methylated over time. Methylation change was greater in ever smokers than never smokers, and the absolute differences in rates of change ranged from 0.18 to 0.77 per decade in M value, equivalent to a β value change of 0.013 to 0.047 per decade. Significant enrichment was observed for CpG islands, enhancers, and DNAse hypersensitivity sites (p < 0.05). Although biological pathway analyses were not significant, most of the 22 CpGs were within genes known to be associated with cardiovascular disease, cancers, and aging. In conclusion, we identified epigenetic signatures for cigarette smoking that may have been missed in cross-sectional analyses, providing insight into the epigenetic effect of smoking and highlighting the importance of longitudinal analysis in understanding the dynamic human epigenome.
Collapse
Affiliation(s)
- Jiaxuan Liu
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Stephen T. Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma. Proc Natl Acad Sci U S A 2019; 116:2237-2242. [PMID: 30670657 PMCID: PMC6369811 DOI: 10.1073/pnas.1820459116] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) has a dismal prognosis, and survival benefits of recent multimodality treatments remain small. Cancer-associated fibroblasts (CAFs) are known to contribute to poor outcome by conferring therapy resistance to various cancer types, but this has not been explored in EAC. Importantly, a targeted strategy to circumvent CAF-induced resistance has yet to be identified. By using EAC patient-derived CAFs, organoid cultures, and xenograft models we identified IL-6 as the stromal driver of therapy resistance in EAC. IL-6 activated epithelial-to-mesenchymal transition in cancer cells, which was accompanied by enhanced treatment resistance, migratory capacity, and clonogenicity. Inhibition of IL-6 restored drug sensitivity in patient-derived organoid cultures and cell lines. Analysis of patient gene expression profiles identified ADAM12 as a noninflammation-related serum-borne marker for IL-6-producing CAFs, and serum levels of this marker predicted unfavorable responses to neoadjuvant chemoradiation in EAC patients. These results demonstrate a stromal contribution to therapy resistance in EAC. This signaling can be targeted to resensitize EAC to therapy, and its activity can be measured using serum-borne markers.
Collapse
|
28
|
ADAM12 is a circulating marker for stromal activation in pancreatic cancer and predicts response to chemotherapy. Oncogenesis 2018; 7:87. [PMID: 30442938 PMCID: PMC6237826 DOI: 10.1038/s41389-018-0096-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma that harbors tumor-promoting properties. No good biomarkers exist to monitor the effect of stromal targeting therapies or to predict response. We set out to identify such non-invasive markers for PDAC stroma and predict response to therapy. Gene expression datasets, co-culture experiments, xenografts, and patient samples were analyzed. Serum samples were measured from a cohort of 58 resected patients, and 87 metastatic or locally advanced PDAC patients. Baseline and follow-up levels were assessed in 372 additional metastatic PDAC patients who received nab-paclitaxel with gemcitabine (n = 184) or gemcitabine monotherapy (n = 188) in the phase III MPACT trial. Increased levels of ADAM12 were found in PDAC patients compared to healthy controls (p < 0.0001, n = 157 and n = 38). High levels of ADAM12 significantly associated with poor outcome in resected PDAC (HR 2.07, p = 0.04). In the MPACT trial survival was significantly longer for patients who received nab-paclitaxel and had undetectable ADAM12 levels before treatment (OS 12.3 m vs 7.9 m p = 0.0046). Consistently undetectable or decreased ADAM12 levels during treatment significantly associated with longer survival as well (OS 14.4 m and 11.2 m, respectively vs 8.3, p = 0.0054). We conclude that ADAM12 is a blood-borne proxy for stromal activation, the levels of which have prognostic significance and correlate with treatment benefit.
Collapse
|
29
|
Latini G, De Felice C, Barducci A, Dipaola L, Gentile M, Andreassi MG, Correale M, Bianciardi G. Clinical biomarkers for cancer recognition and prevention: A novel approach with optical measurements. Cancer Biomark 2018; 22:179-198. [PMID: 29689703 DOI: 10.3233/cbm-170050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is the most important cause of death worldwide, and early cancer detection is the most fundamental factor for efficacy of treatment, prognosis, and increasing survival rate. Over the years great effort has been devoted to discovering and testing new biomarkers that can improve its diagnosis, especially at an early stage. Here we report the potential usefulness of new, easily applicable, non-invasive and relatively low-cost clinical biomarkers, based on abnormalities of oral mucosa spectral reflectance and fractal geometry of the vascular networks in several different tissues, for identification of hereditary non-polyposis colorectal cancer carriers as well for detection of other tumors, even at an early stage. In the near future the methodology/technology of these procedures should be improved, thus making possible their applicability worldwide as screening tools for early recognition and prevention of cancer.
Collapse
Affiliation(s)
- Giuseppe Latini
- Neonatal Intensive Care Unit, Perrino Hospital Brindisi-Italy, Brindisi, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Policlinico "Le Scotte" viale Bracci, Siena, Italy
| | | | - Lucia Dipaola
- Research Unit of Lecce, Clinical Physiology Institute, National Research Council of Italy, Rome, Italy
| | - Mattia Gentile
- Medical Genetics Unit, IRCCS S. De Bellis, Castellana Grotte, Bari, Italy
| | - Maria Grazia Andreassi
- Genetics Research Unit, Clinical Physiology Institute, National Research Council of Italy, Rome, Italy
| | - Mario Correale
- Clinical Pathology Unit, IRCCS S. De Bellis, Castellana Grotte, Bari, Italy
| | - Giorgio Bianciardi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
30
|
Li Y, Ren Z, Wang Y, Dang YZ, Meng BX, Wang GD, Zhang J, Wu J, Wen N. ADAM17 promotes cell migration and invasion through the integrin β1 pathway in hepatocellular carcinoma. Exp Cell Res 2018; 370:373-382. [PMID: 29966664 DOI: 10.1016/j.yexcr.2018.06.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
ADAM17 is believed to promote tumor development by facilitating both cell proliferation and migration. In this study, we investigated the involvement of ADAM17 and the activation of the integrin pathway in the regulation of the malignant properties of hepatocellular carcinoma cells and tissues. ADAM17 was positively correlated with active integrin β1, which was determined using a human tissue microarray and an N-nitrosodiethylamine-induced HCC mouse model. We found elevated ADAM17 and active integrin β1 levels in HCC tissues compared with adjacent liver tissues, and the active integrin β1 levels were associated with tumor size and TNM grade. High ADAM17 and active integrin β1 levels in tumor tissues were significantly associated with poor survival of HCC patients. RNAi-mediated ADAM17 knockdown and integrin β1 blockade significantly attenuated the migration and invasion of HCC cells, and overexpression of ADAM17 showed the reverse effects. ADAM17 interference attenuated the intrahepatic growth and metastasis of HCC cells in an orthotopic xenograft model. ADAM17-knockdown cells showed diminished levels of active integrin β1, p-FAK, p-AKT, MMP-2 and MMP-9. ADAM17 knockdown significantly attenuated the translocation of the Notch1 intracellular domain into the nucleus, whereas overexpression of the Notch1 intracellular domain rescued the translocation and enhanced the activation of integrin β1. Our data provide evidence for ADAM17 as an important determinant of malignant properties via regulation of integrin β1 activation and Notch1 signaling. Inhibition of ADAM17 may provide viable therapeutic potential for preventing HCC metastasis.
Collapse
Affiliation(s)
- Yong Li
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, China; Department of Oncology, PLA 323 Hospital, Xi'an, Shaanxi, China
| | - Zhen Ren
- Ultrasound Department, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Wang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ya-Zheng Dang
- Department of Oncology, PLA 323 Hospital, Xi'an, Shaanxi, China
| | | | - Guo-Dong Wang
- Department of Oncology, PLA 323 Hospital, Xi'an, Shaanxi, China
| | - Jing Zhang
- Department of Oncology, PLA 323 Hospital, Xi'an, Shaanxi, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China; Department of Cell Biology, Air Force Medical University, Xi'an 710032, China.
| | - Ning Wen
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
31
|
Genetic and developmental origins of a unique foraging adaptation in a Lake Malawi cichlid genus. Proc Natl Acad Sci U S A 2018; 115:7063-7068. [PMID: 29915062 PMCID: PMC6142203 DOI: 10.1073/pnas.1719798115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Biologists have long been captivated by novel traits because they provide insights into both the origin of and constraints on morphological variation. The iconic adaptive radiations of cichlid fishes have led to incredible diversity of form, including some species with an exaggerated snout. This novelty is mechanically integrated with the upper jaw, appears to be under directional selection, and is found in one of the most ecologically successful cichlid lineages. We used protein manipulation, gene expression, and genetic mapping to implicate the Tgfβ pathway in the development of this unusual trait. Given the functions of Tgfβ signaling in tissue proliferation, migration, invasion, and organ fibrosis, this represents an example of the cooption of existing pathways in the evolution of novelty. Phenotypic novelties are an important but poorly understood category of morphological diversity. They can provide insights into the origins of phenotypic variation, but we know relatively little about their genetic origins. Cichlid fishes display remarkable diversity in craniofacial anatomy, including several novelties. One aspect of this variation is a conspicuous, exaggerated snout that has evolved in a single Malawi cichlid lineage and is associated with foraging specialization and increased ecological success. We examined the developmental and genetic origins for this phenotype and found that the snout is composed of two hypertrophied tissues: the intermaxillary ligament (IML), which connects the right and left sides of the upper jaw, and the overlying loose connective tissue. The IML is present in all cichlids, but in its exaggerated form it interdigitates with the more superficial connective tissue and anchors to the epithelium, forming a unique ligament–epithelial complex. We examined the Transforming growth factor β (Tgfβ) → Scleraxis (Scx) candidate pathway and confirmed a role for these factors in snout development. We demonstrate further that experimental up-regulation of Tgfβ is sufficient to produce an expansion of scx expression and concomitant changes in snout morphology. Genetic and genomic mapping show that core members of canonical Tgfβ signaling segregate with quantitative trait loci (QTL) for snout variation. These data also implicate a candidate for ligament development, adam12, which we confirm using the zebrafish model. Collectively, these data provide insights into ligament morphogenesis, as well as how an ecologically relevant novelty can arise at the molecular level.
Collapse
|
32
|
Salgia R, Mambetsariev I, Hewelt B, Achuthan S, Li H, Poroyko V, Wang Y, Sattler M. Modeling small cell lung cancer (SCLC) biology through deterministic and stochastic mathematical models. Oncotarget 2018; 9:26226-26242. [PMID: 29899855 PMCID: PMC5995226 DOI: 10.18632/oncotarget.25360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Mathematical cancer models are immensely powerful tools that are based in part on the fractal nature of biological structures, such as the geometry of the lung. Cancers of the lung provide an opportune model to develop and apply algorithms that capture changes and disease phenotypes. We reviewed mathematical models that have been developed for biological sciences and applied them in the context of small cell lung cancer (SCLC) growth, mutational heterogeneity, and mechanisms of metastasis. The ultimate goal is to develop the stochastic and deterministic nature of this disease, to link this comprehensive set of tools back to its fractalness and to provide a platform for accurate biomarker development. These techniques may be particularly useful in the context of drug development research, such as combination with existing omics approaches. The integration of these tools will be important to further understand the biology of SCLC and ultimately develop novel therapeutics.
Collapse
Affiliation(s)
- Ravi Salgia
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | - Isa Mambetsariev
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | - Blake Hewelt
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | | | - Haiqing Li
- City of Hope, Center for Informatics, Duarte 91010, CA, USA
| | - Valeriy Poroyko
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | - Yingyu Wang
- City of Hope, Center for Informatics, Duarte 91010, CA, USA
| | - Martin Sattler
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston 02215, MA, USA.,Harvard Medical School, Department of Medicine, Boston 02115, MA, USA
| |
Collapse
|
33
|
Xiong L, Yan W, Zubia E, Zhou Y, Zhang Y, Duan Q, Narayan M, Xu G. Quantitative proteomics and biochemical analyses reveal the role of endoplasmin in the regulation of the expression and secretion of A Disintegrin And Metalloproteinase 12. J Proteomics 2018; 182:34-44. [PMID: 29729432 DOI: 10.1016/j.jprot.2018.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
A Disintegrin And Metalloproteinase 12 (ADAM12) is highly expressed in multiple cancers such as breast and cervical cancers and its high expression reduces the overall patient survival rate. ADAM12 has two major splicing variants, the long membrane-anchored form ADAM12L and the short secreted form ADAM12S. However, how they are regulated and whether they are modulated similarly or differently in cells are not clear. Here, we use affinity purification and mass spectrometry to identify the ADAM12S-interacting proteins. Spectral counting and MaxQuant label-free quantification reveal that ADAM12S but not ADAM12L specifically interacts with a subset of endoplasmic reticulum proteins, such as endoplasmin (GRP94), 78 kDa glucose-regulated protein (GRP78), and UDP-glucose:glycoprotein glucosyltransferase I (UGGT1), that regulate the folding and processing of secreted proteins. Further biochemical experiments validate the interaction between ADAM12S and several of its interacting proteins. Computational docking analysis demonstrates that GRP94 preferentially interacts with ADAM12S over ADAM12L. The data also suggest that both the protein expression level and the secretion of ADAM12S are regulated by GRP94 expression and knockdown. Our results reveal a link between these two proteins that are highly expressed in cancer cells. Furthermore, our studies define a new ADAM12S-specific regulator that may contribute to the cancer development. SIGNIFICANCE A Disintegrin And Metalloproteinase 12 (ADAM12) is highly expressed in many cancers such as lung, breast, and cervical cancers. ADAM12 has two major splicing variants, the long membrane-anchored form ADAM12L and the short secreted form ADAM12S. However, how they are regulated and whether they are modulated similarly or differently are not completely understood. We use affinity purification and label-free quantitative proteomics to identify the ADAM12S-interacting proteins. Our results reveal that ADAM12S specifically interacts with a subset of endoplasmic reticulum proteins, including endoplasmin (GRP94), UDP-glucose:glycoprotein glucosyltransferase I (UGGT1), and neutral α-glucosidase AB (GANAB). Computer modeling reveals that ADAM12S interacts with the surface amino acids of GRP94 more strongly than ADAM12L. Biochemical experiments further reveal that GRP94 regulates both the protein level and the secretion of ADAM12S. Database mining finds that both GRP94 and ADAM12 are highly expressed in multiple cancers and their high expression is correlated with poor patient survival rate. Taken together, our work discovers a new upstream regulator for ADAM12S, which may contribute to its distinct functions in the regulation of the migration and invasion of cancer cells.
Collapse
Affiliation(s)
- Lipeng Xiong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Wenwen Yan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Emmanuel Zubia
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Yanqing Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qianqian Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
34
|
Liu J, Liu F, Shi Y, Tan H, Zhou L. Identification of key miRNAs and genes associated with stomach adenocarcinoma from The Cancer Genome Atlas database. FEBS Open Bio 2018; 8:279-294. [PMID: 29435418 PMCID: PMC5794471 DOI: 10.1002/2211-5463.12365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/13/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Stomach adenocarcinoma (STAD) is the second leading cause of cancer death and a fuller understanding of its molecular basis is needed to develop new therapeutic targets. miRNA and mRNA data were downloaded from The Cancer Genome Atlas database, and the differentially expressed miRNAs and genes were identified. The target genes of differentially expressed miRNAs were screened by prediction tools. Furthermore, the biological function of these target genes was investigated. Several key miRNAs and their target genes were selected for validation using quantitative real-time polymerase chain reaction (qRT-PCR). The Gene Expression Omnibus (GEO) dataset was used to verify the expression of selected miRNAs and target genes. The diagnostic value of identified miRNAs and genes was accessed by receiver operating characteristic analysis. A total of 1248 differentially expressed genes were identified in STAD. Additionally, nine differentially expressed miRNAs were identified and 160 target genes of these nine miRNAs were identified via target gene detection. Interestingly, they were remarkably enriched in the calcium signaling pathway and bile secretion. qRT-PCR confirmed the expression of several key miRNAs and their target genes. The expression levels of hsa-miR-145-3p, hsa-miR-145-5p, ADAM12,ACAN,HOXC11 and MMP11 in the GEO database were compatible with the bioinformatics results. hsa-miR-139-5p, hsa-miR-145-3p and MMP11 have a potential diagnostic value for STAD. Differential expression of the mature form of miRNAs (hsa-miR-139-5p, hsa-miR-145-3p, hsa-miR-145-5p and hsa-miR-490-3p) and genes including ADAM12,ACAN,HOXC11 and MMP11 and calcium and bile secretion signaling pathways may play important roles in the development of STAD.
Collapse
Affiliation(s)
- Jixi Liu
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Fang Liu
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Yanfen Shi
- Department of PathologyChina‐Japan Friendship HospitalBeijingChina
| | - Huangying Tan
- Department of Integrative OncologyChina‐Japan Friendship HospitalBeijingChina
| | - Lei Zhou
- Department of General SurgeryChina‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
35
|
Xu H, Gong Z, Shen Y, Fang Y, Zhong S. Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics 2018; 10:187-197. [PMID: 29334253 DOI: 10.2217/epi-2017-0109] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM We aimed to explore the roles of circular RNAs (circRNAs) in extracellular vesicles (EVs) isolated from serum of patients with endometrial cancer. MATERIALS & METHODS EVs were isolated from serum samples of three patients with stage III adenocarcinoma aged 50-60 years and three matched healthy controls. RNA was extracted from the EVs and analyzed using RNA-seq technique. RESULTS We got 209 upregulated circRNAs and 66 downregulated circRNAs. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the differentially expressed circRNAs were enriched in five pathways. The expression level of hsa_circ_0109046 and hsa_circ_0002577 was confirmed using real-time quantitative PCR. CONCLUSION We identified 275 differentially expressed circRNAs and the expression level of two circRNAs was confirmed using real-time quantitative PCR.
Collapse
Affiliation(s)
- Hanzi Xu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, PR China
| | - Zhen Gong
- Department of Gynecology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China
| | - Yang Shen
- Department of Gynecological Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, PR China
| | - Yichen Fang
- Department of Gynecological Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, PR China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, PR China
| |
Collapse
|
36
|
Extracellular Matrix Stiffness Exists in a Feedback Loop that Drives Tumor Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:57-67. [PMID: 30368748 DOI: 10.1007/978-3-319-95294-9_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells communicate constantly with their surrounding extracellular matrix (ECM) to maintain homeostasis, using both mechanical and chemical signals. In cancer, abnormal signaling leads to stiffening of the ECM. A stiff microenvironment affects many aspects of the cell, including internal molecular signaling as well as behaviors such as motility and proliferation. Thus, cells and ECM interact in a feedback loop to drive matrix deposition and cross-linking, which alter the mechanical properties of the tissue. Stiffer tissue enhances the invasive potential of a tumor and decreases therapeutic efficacy. This chapter describes how specific molecular effects caused by an abnormally stiff tissue drive macroscopic changes that help determine disease outcome. A complete understanding may foster the generation of new cancer therapies.
Collapse
|
37
|
Wang T, Chen X, Qiao W, Kong L, Sun D, Li Z. Transcription factor E2F1 promotes EMT by regulating ZEB2 in small cell lung cancer. BMC Cancer 2017; 17:719. [PMID: 29115924 PMCID: PMC5678576 DOI: 10.1186/s12885-017-3701-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 10/22/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is an early event in tumour invasion and metastasis, and widespread and distant metastasis at early stages is the typical biological behaviour in small cell lung cancer (SCLC). Our previous reports showed that high expression of the transcription factor E2F1 was involved in the invasion and metastasis of SCLC, but the role of E2F1 in the process of EMT in SCLC is unknown. METHODS Immunohistochemistry was performed to evaluate the expressions of EMT related markers. Immunofluorescence was used to detect the expressions of cytoskeletal proteins and EMT related markers when E2F1 was silenced in SCLC cell lines. Adenovirus containing shRNA against E2F1 was used to knock down the E2F1 expression, and the dual luciferase reporter system was employed to clarify the regulatory relationship between E2F1 and ZEB2. RESULTS In this study, we observed the remodelling of cytoskeletal proteins when E2F1 was silenced in SCLC cell lines, indicating that E2F1 was involved in the EMT in SCLC. Depletion of E2F1 promoted the expression of epithelial markers (CDH1 and CTNNB1) and inhibited the expression of mesenchymal markers (VIM and CDH2) in SCLC cell lines, verifying that E2F1 promotes EMT occurrence. Next, the mechanism by which E2F1 promoted EMT was explored. Among the CDH1 related inhibitory transcriptional regulators ZEB1, ZEB2, SNAI1 and SNAI2, the expression of ZEB2 was the highest in SCLC tissue samples and was highly consistent with E2F1 expression. ChIP-seq data and dual luciferase reporter system analysis confirmed that E2F1 could regulate ZEB2 gene expression. CONCLUSION Our data supports that E2F1 promotes EMT by regulating ZEB2 gene expression in SCLC.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, 264003 China
| | - Xufang Chen
- Oncology Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264199 China
| | - Weiwei Qiao
- Department of Diagnostics, Binzhou Medical University, Yantai, 264003 China
| | - Lijun Kong
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, 264003 China
| | - Daqing Sun
- Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Zunling Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, 264003 China
| |
Collapse
|
38
|
ADAM12-L confers acquired 5-fluorouracil resistance in breast cancer cells. Sci Rep 2017; 7:9687. [PMID: 28852196 PMCID: PMC5575004 DOI: 10.1038/s41598-017-10468-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
5-FU-based combinatory chemotherapeutic regimens have been routinely used for many years for the treatment of breast cancer patients. Recurrence and chemotherapeutic drug resistance are two of the most prominent factors that underpin the high mortality rates associated with most breast cancers (BC). Increasing evidence indicates that overexpression of ADAMs could correlate with cancer progression. However, the role of ADAMs in the chemoresistance of cancer cells has rarely been reported. In this study, we observed that 5-FU induces expression of the ADAM12 isoform ADAM12-L but not ADAM12-S in BC cells and in recurrent BC tissues. The overexpression of ADAM12-L in BC cells following 5-FU treatment results in the acquisition of resistance to 5-FU. ADAM12-L overexoression also resulted in increased levels of p-Akt but not p-ERK. These alterations enhanced BC cell growth and invasive abilities. Conversely, ADAM12 knockdown attenuated the levels of p-Akt and restored 5-FU sensitivity in 5-FU-resistant BC cells. ADAM12 knockdown also reduced BC cell survival and invasive abilities. These findings suggest that ADAM12-L mediates chemoresistance to 5-FU and 5-FU-induced recurrence of BC by enhancing PI3K/Akt signaling. The results of this study suggest that specific ADAM12-L inhibition could optimize 5-FU-based chemotherapy of BC, thereby preventing BC recurrence in patients.
Collapse
|
39
|
Roy R, Dagher A, Butterfield C, Moses MA. ADAM12 Is a Novel Regulator of Tumor Angiogenesis via STAT3 Signaling. Mol Cancer Res 2017; 15:1608-1622. [PMID: 28765266 DOI: 10.1158/1541-7786.mcr-17-0188] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/26/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
ADAM12, (ADisintegrin and metalloproteinase domain-containing protein 12), is upregulated in epithelial cancers and contributes to increased tumor proliferation, metastasis, and endocrine resistance. However, its role in tumor angiogenesis is unknown. Here, we report that ADAM12 is upregulated in the vessels of aggressive breast tumors and exerts key regulatory functions. ADAM12 significantly increases bFGF-mediated angiogenesis in vivo and ADAM12 levels are upregulated in tumors that have undergone a switch to the angiogenic phenotype. Importantly, ADAM12-overexpressing breast tumors display a higher microvessel density (MVD). Our goal was to identify the mechanisms by which tumor-associated ADAM12 promotes angiogenesis. ADAM12 expression in breast tumor cells correlated with a significant upregulation of proangiogenic factors such as VEGF and MMP-9 and downregulation of antiangiogenic factors such as Thrombospondin-1 (THBS1/TSP1) and Tissue Inhibitor of Metalloproteinases-2 (TIMP-2). Co-culture with ADAM12-expressing tumor cells promoted endothelial cell (EC) recruitment and capillary tube formation. Conversely, downregulation of endogenous ADAM12 in breast cancer cell lines resulted in reduction of pro-angiogenic factors and EC recruitment. These ADAM12-mediated effects are driven by the activation of EGFR, STAT3 and Akt signaling. Blockade of EGFR/STAT3 or silencing of ADAM12 reversed the proangiogenic tumor phenotype, significantly downregulated pro-angiogenic mitogens and reduced EC recruitment. In human breast cancer tissues, ADAM12 expression was significantly positively correlated with pro-angiogenic factors including VEGF and MMP-9 but negatively associated with TSP1.Implications: These novel findings suggest that ADAM12 regulates EC function and facilitates a proangiogenic microenvironment in a STAT3-dependent manner. A combined approach of targeting ADAM12 and STAT3 signaling in breast cancer may represent a promising strategy to inhibit tumor neovascularization. Mol Cancer Res; 15(11); 1608-22. ©2017 AACR.
Collapse
Affiliation(s)
- Roopali Roy
- The Program in Vascular Biology, Boston Children's Hospital, Boston, Massachusetts. .,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Adelle Dagher
- The Program in Vascular Biology, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Catherine Butterfield
- The Program in Vascular Biology, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Marsha A Moses
- The Program in Vascular Biology, Boston Children's Hospital, Boston, Massachusetts. .,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Yan X, Mai L, Lin C, He W, Yin G, Yu J, Huang L, Pan S. CSF-Based Analysis for Identification of Potential Serum Biomarkers of Neural Tube Defects. Neurosci Bull 2017; 33:436-444. [PMID: 28695418 DOI: 10.1007/s12264-017-0154-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/10/2017] [Indexed: 01/14/2023] Open
Abstract
The protein composition of cerebrospinal fluid (CSF) in neural tube defects (NTDs) remains unknown. We investigated the protein composition of CSF from 9 infants with NTDs using isobaric tags for relative and absolute quantitation (iTRAQ). We identified 568 proteins in the CSF of infants with spina bifida, which is the most common type of NTD. Among these, 18 proteins were associated with neural tube closure in the CSF during human embryonic neurulation and 5 were involved in NTDs. Based on these results, an animal model was further utilized to investigate early serum biomarkers for NTDs. We found that the myristoylated alanine-rich C-kinase substrate, Kunitz-type protease inhibitor 2, and apolipoprotein B-100 protein levels were decreased in both embryos and the sera of pregnant Sprague-Dawley rats carrying embryos with NTDs. CSF proteins may be useful in the discovery of potential serum biomarkers for NTDs.
Collapse
Affiliation(s)
- Xinyu Yan
- Department of Anatomy, Medical College of Jinan University, Guangzhou, 510632, China
| | - Lixin Mai
- Department of Anatomy, Medical College of Jinan University, Guangzhou, 510632, China
| | - Changchun Lin
- Department of Anatomy, Medical College of Jinan University, Guangzhou, 510632, China
| | - Wenji He
- Department of Anatomy, Medical College of Jinan University, Guangzhou, 510632, China.,Department of Anatomy, Gannan Medical University, Ganzhou, 341000, China
| | - Gengsheng Yin
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiakang Yu
- Department of Pediatric Surgery, Guangzhou Children's Hospital, Guangzhou, 510623, China
| | - Lian Huang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Sanqiang Pan
- Department of Anatomy, Medical College of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
41
|
Tan Q, Li F, Wang G, Xia W, Li Z, Niu X, Ji W, Yuan H, Xu Q, Luo Q, Zhang J, Lu S. Identification of FGF19 as a prognostic marker and potential driver gene of lung squamous cell carcinomas in Chinese smoking patients. Oncotarget 2017; 7:18394-402. [PMID: 26943773 PMCID: PMC4951296 DOI: 10.18632/oncotarget.7817] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
Comprehensive genomic characterizations of lung squamous cell carcinoma (LSCC) have been performed, but the differences between smokers (S-LSCC) and never smokers (NS-LSCC) are not clear, as NS-LSCC could be considered as a different disease from S-LSCC. In this study we delineated genomic alterations in a cohort of 21 NS-LSCC and 16 S-LSCC patients, and identified common gene mutations and amplifications as previously reported. Inclusion of more NS-LSCC patients enabled us to identify unreported S-LSCC- or NS-LSCC-specific alterations. Importantly, an amplification region containing FGF19, FGF3, FGF4 and CCND1 was found five-times more frequent in S-LSCC than in NS-LSCC. Amplification of FGF19 was validated in independent LSCC samples. Furthermore, FGF19 stimulated LSCC cell growth in vitro. These data implicate FGF19 as a potential driver gene in LSCC with clinic characteristics as smoking.
Collapse
Affiliation(s)
- Qiang Tan
- Shanghai Lung Cancer Center, Lung Cancer Research Laboratory, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fan Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guan Wang
- Genomics Center, WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Lung Cancer Research Laboratory, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaomin Niu
- Shanghai Lung Cancer Center, Lung Cancer Research Laboratory, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Lung Cancer Research Laboratory, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China.,State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hong Yuan
- Shanghai Lung Cancer Center, Lung Cancer Research Laboratory, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China.,State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiang Xu
- Jiahui International Hospital, Shanghai 200120, China
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Lung Cancer Research Laboratory, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Zhang
- Shanghai Lung Cancer Center, Lung Cancer Research Laboratory, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Lung Cancer Research Laboratory, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
42
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
43
|
Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol 2016; 419:199-216. [PMID: 27640086 DOI: 10.1016/j.ydbio.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Li Z, Wang Y, Kong L, Yue Z, Ma Y, Chen X. Expression of ADAM12 is regulated by E2F1 in small cell lung cancer. Oncol Rep 2016; 34:3231-7. [PMID: 26503019 DOI: 10.3892/or.2015.4317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Our previous study reported that ADAM12 was highly expressed in small cell lung cancer (SCLC) and could be an effective marker for diagnosis and prognosis. Yet, the reason for the high expression of ADAM12 in SCLC requires further elucidation. Transcription factor E2F1 has been receiving increasing attention due to the complexity and diversity of its function in cancer. In the present study, the expression of ADAM12 was significantly decreased following silencing of E2F1 expression by siRNA, thus indicating that E2F1 may regulate the expression of ADAM12 at the level of transcription. Chromatin immunoprecipitation-to-sequence analysis identified three binding sites for E2F1 in the locus for ADAM12. They were Chr10: 128010444-128011026, located in the intron of ADAM12, named seq0; Chr10: 128076927‑128078127, located in the promoter of ADAM12, named seq1; and Chr10: 128086195‑128086876, located in the upstream 20 kb from the transcription start site of ADAM12, named: seq2. Dual‑luciferase reporter experiments revealed that seq1 not seq0 and seq2 was able to promote the expression of luciferase. Notably, co-transfection of E2F1 significantly increased the activity of seq1 not seq0 and seq2, but quantitative polymerase chain reaction results showed that seq0, seq1 and seq2 could recruit E2F1, indicating that the influence of E2F1 in regulating the expression of ADAM12 was complex. Sequence analysis clarified that seq1 was a part of the ADAM12 promoter, yet the functions of seq0 and seq2 were unknown. Fusion fragments containing seq0-seq1 or seq2-seq1 were analyzed in luciferase constructs. Compared with seq1 alone, the activities of these fusion fragments were non-significantly reduced. The activities of fusion fragments were significantly decreased following co-transfection with E2F1. Thus, the present findings support the conclusion that the E2F1 transcription factor regulates the expression of ADAM12 by binding differential cis-acting elements.
Collapse
|
45
|
Quantitative proteomics identifies myoferlin as a novel regulator of A Disintegrin and Metalloproteinase 12 in HeLa cells. J Proteomics 2016; 148:94-104. [PMID: 27432471 DOI: 10.1016/j.jprot.2016.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED A Disintegrin and Metalloproteinase 12 (ADAM12) is expressed significantly higher in multiple tumors than in normal tissues and has been used as a prognostic marker for the evaluation of cancer progression. Although several ADAM12 substrates have been identified biochemically and its proteolytic function has been explored, the upstream regulators and the interacting proteins have not been systematically investigated. Here, we use immunoprecipitation and mass spectrometry (MS)-based quantitative proteomic approaches to identify 28 interacting partners for the long form of ADAM12 (ADAM12-L) in HeLa cells. Proteins that regulate cell proliferation, invasion, and epithelial to mesenchymal transition are among the identified ADAM12-interacting proteins. Further biochemical experiments discover that the protein level and the stability of ADAM12 are upregulated by one of its interacting proteins, myoferlin. In addition, myoferlin also increases the proteolytic activity of ADAM12, leading to the reduction of an ADAM12 substrate, E-cadherin. This result implies that ADAM12 and its interacting proteins might converge to certain signaling pathways in the regulation of cancer cell progression. The information obtained here might be useful in the development of new strategies for modulating cell proliferation and invasion involved in the regulation between ADAM12 and its interacting partners. MS data are available via ProteomeXchange with identifier PXD003560. BIOLOGICAL SIGNIFICANCE Regulation of the proliferation and invasion of cancer cells is important in cancer treatment. ADAM12 has been found to play important roles in regulating these processes and identification of its interacting partners will improve our understanding of its biological functions and provide basis for functional modulation. Through mass spectrometry-based quantitative proteomic approaches, we identify the interacting partners for ADAM12 in a human cancer cell line and find many proteins that are involved in the proliferation and invasion of cancer cells. A novel regulator, myoferlin, of ADAM12 is discovered and this protein increases ADAM12 expression level, stability, and its enzymatic activity, leading to the reduction of its substrate, E-cadherin, which plays important roles in the regulation of cell adhesion and tumor metastasis. This result provides a connection for two highly expressed proteins in cancer cells and may shed light on the regulation of their biological functions in cancer progression.
Collapse
|
46
|
da Costa NMM, Fialho ADV, Proietti CC, da Silva Kataoka MS, Jaeger RG, de Alves-Júnior SM, de Jesus Viana Pinheiro J. Role of hypoxia-related proteins in invasion of ameloblastoma cells: crosstalk between NOTCH1, hypoxia-inducible factor 1α, a disintegrin and metalloproteinase 12, and heparin-binding epidermal growth factor. Histopathology 2016; 69:99-106. [PMID: 26707922 DOI: 10.1111/his.12922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/20/2015] [Indexed: 12/17/2022]
Abstract
AIMS Ameloblastoma AME is a benign tumour characterized by local invasiveness, high recurrence rates, and diverse histological patterns. The oxygen concentration is reduced in specific areas of the tumour microenvironment, which leads to intratumoral hypoxia. Crosstalk between NOTCH1, a disintegrin and metalloproteinase 12 (ADAM-12), hypoxia-inducible factor 1α (HIF-1α) and heparin-binding epidermal growth factor (HB-EGF) under hypoxic conditions has been implicated in invadopodia formation, tumour invasiveness, and metastasis development. The aim of this study was to analyse the expression of these proteins, in order to further elucidate the mechanisms underlying AME invasiveness. METHODS AND RESULTS Twenty cases of AME, eight calcifying cystic odontogenic tumours CCOTs and 10 samples of dental follicle were used to investigate the expression of these proteins by immunohistochemistry with the primary antibodies anti-NOTCH1, anti-ADAM-12, anti-HIF-1α, and anti-HB-EGF. Immunostaining results were expressed as the percentage of stained area in images acquired in an AxioScope microscope equipped with an AxioCamHRc camera and a × 40 objective. The results showed that immunoexpression of all proteins was higher in the AME samples than in the CCOT and dental follicle samples (P < 0.05). CONCLUSIONS AME showed an increased presence of proteins associated with tumour invasiveness, which indicates a possible role of these proteins in the biological behaviour of this tumour.
Collapse
Affiliation(s)
| | | | | | | | - Ruy Gastaldoni Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
47
|
Gu J, Chen J, Feng J, Liu Y, Xue Q, Mao G, Gai L, Lu X, Zhang R, Cheng J, Hu Y, Shao M, Shen H, Huang J. Overexpression of ADAMTS5 can regulate the migration and invasion of non-small cell lung cancer. Tumour Biol 2016; 37:8681-9. [PMID: 26738863 DOI: 10.1007/s13277-015-4573-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the major cause of cancer-related lethality among human cancer patients globally, and the poor prognosis of this cancer is mainly explained by metastasis, so it is essential to find out the molecule mechanisms and a novel therapeutic for NSCLC. A disintegrin and metalloprotease with thrombospondin motif 5 (ADAMTS5) belongs to the protease family. It has been reported to participate in tumor migration and invasion. In this study, we showed that the expression of ADAMTS5 was higher in lung cancer tissues by Western blot. The immunohistochemistry analysis was performed in 140 NSCLC cases, and the result indicated that ADAMTS5 was significantly associated with clinical pathologic variables. The Kaplan-Meier curve showed that the high expression of ADAMTS5 was related to poor prognosis of lung cancer patients. Wound healing assays and transwell migration assays revealed that the high expression of ADAMTS5 promoted the migration and invasion of NSCLC. In a word, our findings suggest that ADAMTS5 can regulate the migration and invasion of NSCLC and it may be a useful target of therapy in NSCLC.
Collapse
Affiliation(s)
- Jun Gu
- Department of Respiratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Respiratory, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Chen
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, China
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Feng
- Department of Respiratory, Affiliated Hospital of Nantong University, Nantong, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qun Xue
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Guoxin Mao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ling Gai
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoning Lu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Rui Zhang
- Department of Respiratory, Affiliated Hospital of Nantong University, Nantong, China
| | - Jialin Cheng
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanxia Hu
- Department of Respiratory, Affiliated Hospital of Nantong University, Nantong, China
| | - Mengting Shao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hong Shen
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianan Huang
- Department of Respiratory, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
48
|
The Disintegrin and Metalloprotease ADAM12 Is Associated with TGF-β-Induced Epithelial to Mesenchymal Transition. PLoS One 2015; 10:e0139179. [PMID: 26407179 PMCID: PMC4583281 DOI: 10.1371/journal.pone.0139179] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022] Open
Abstract
The increased expression of the Disintegrin and Metalloprotease ADAM12 has been associated with human cancers, however its role remain unclear. We have previously reported that ADAM12 expression is induced by the transforming growth factor, TGF-β and promotes TGF-β-dependent signaling through interaction with the type II receptor of TGF-β. Here we explore the implication of ADAM12 in TGF-β-mediated epithelial to mesenchymal transition (EMT), a key process in cancer progression. We show that ADAM12 expression is correlated with EMT markers in human breast cancer cell lines and biopsies. Using a non-malignant breast epithelial cell line (MCF10A), we demonstrate that TGF-β-induced EMT increases expression of the membrane-anchored ADAM12L long form. Importantly, ADAM12L overexpression in MCF10A is sufficient to induce loss of cell-cell contact, reorganization of actin cytoskeleton, up-regulation of EMT markers and chemoresistance. These effects are independent of the proteolytic activity but require the cytoplasmic tail and are specific of ADAM12L since overexpression of ADAM12S failed to induce similar changes. We further demonstrate that ADAM12L-dependent EMT is associated with increased phosphorylation of Smad3, Akt and ERK proteins. Conversely, inhibition of TGF-β receptors or ERK activities reverses ADAM12L-induced mesenchymal phenotype. Together our data demonstrate that ADAM12L is associated with EMT and contributes to TGF-β-dependent EMT by favoring both Smad-dependent and Smad-independent pathways.
Collapse
|
49
|
Moss ML, Koller G, Bartsch JW, Rakow S, Schlomann U, Rasmussen FH. A colorimetric-based amplification system for proteinases including MMP2 and ADAM8. Anal Biochem 2015; 484:75-81. [DOI: 10.1016/j.ab.2015.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/01/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
|
50
|
Pedroza-Díaz J, Röthlisberger S. Advances in urinary protein biomarkers for urogenital and non-urogenital pathologies. Biochem Med (Zagreb) 2015; 25:22-35. [PMID: 25672464 PMCID: PMC4401308 DOI: 10.11613/bm.2015.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/14/2014] [Indexed: 01/18/2023] Open
Abstract
The discovery of protein biomarkers that reflect the biological state of the body is of vital importance to disease management. Urine is an ideal source of biomarkers that provides a non-invasive approach to diagnosis, prognosis and prediction of diseases. Consequently, the study of the human urinary proteome has increased dramatically over the last 10 years, with many studies being published. This review focuses on urinary protein biomarkers that have shown potential, in initial studies, for diseases affecting the urogenital tract, specifically chronic kidney disease and prostate cancer, as well as other non-urogenital pathologies such as breast cancer, diabetes, atherosclerosis and osteoarthritis. PubMed was searched for peer-reviewed literature on the subject, published in the last 10 years. The keywords used were "urine, biomarker, protein, and/or prostate cancer/breast cancer/chronic kidney disease/diabetes/atherosclerosis/osteoarthritis". Original studies on the subject, as well as a small number of reviews, were analysed including the strengths and weaknesses, and we summarized the performance of biomarkers that demonstrated potential. One of the biggest challenges found is that biomarkers are often shared by several pathologies so are not specific to one disease. Therefore, the trend is shifting towards implementing a panel of biomarkers, which may increase specificity. Although there have been many advances in urinary proteomics, these have not resulted in similar advancements in clinical practice due to high costs and the lack of large data sets. In order to translate these potential biomarkers to clinical practice, vigorous validation is needed, with input from industry or large collaborative studies.
Collapse
Affiliation(s)
- Johanna Pedroza-Díaz
- Instituto Tecnologico Metropolitano, Facultad de Ciencias Exactas y Aplicadas, Medellin, Colombia
| | - Sarah Röthlisberger
- Instituto Tecnologico Metropolitano, Facultad de Ciencias Exactas y Aplicadas, Medellin, Colombia
| |
Collapse
|