1
|
Kelly CL, Wydrzynska M, Phelan MM, Osharovich S, Delikatny EJ, Sée V, Poptani H. Hypoxia Dependent Inhibition of Glioblastoma Cell Proliferation, Invasion, and Metabolism by the Choline-Kinase Inhibitor JAS239. Metabolites 2025; 15:76. [PMID: 39997701 PMCID: PMC11857610 DOI: 10.3390/metabo15020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Elevated choline kinase alpha (ChoK) levels are observed in most solid tumors, including glioblastomas (GBM), and ChoK inhibitors have demonstrated limited efficacy in GBM models. Given that hypoxia is associated with resistance to GBM therapy, we hypothesized that tumor hypoxia could be responsible for the limited response. Therefore, we evaluated the effects of hypoxia on the function of JAS239, a potent ChoK inhibitor in four GBM cell lines. Methods: Rodent (F98 and 9L) and human (U-87 MG and U-251 MG) GBM cell lines were subjected to 72 h of hypoxic conditioning and treated with JAS239 for 24 h. NMR metabolomic measurements and analyses were performed to evaluate the signaling pathways involved. In addition, cell proliferation, cell cycle progression, and cell invasion parameters were measured in 2D cell monolayers as well as in 3D cell spheroids, with or without JAS239 treatment, in normoxic or hypoxic cells to assess the effect of hypoxia on JAS239 function. Results: Hypoxia and JAS239 treatment led to significant changes in the cellular metabolic pathways, specifically the phospholipid and glycolytic pathways, associated with a reduction in cell proliferation via induced cell cycle arrest. Interestingly, JAS239 also impaired GBM invasion. However, effects from JAS239 were variable depending on the cell line, reflecting the inherent heterogeneity of GBMs. Conclusions: Our findings indicate that JAS239 and hypoxia can deregulate cellular metabolism, inhibit cell proliferation, and alter cell invasion. These results may be useful for designing new therapeutic strategies based on ChoK inhibition, which can act on multiple pro-tumorigenic features.
Collapse
Affiliation(s)
- Claire Louise Kelly
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK;
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool L69 7BE, UK;
| | - Martyna Wydrzynska
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool L69 7BE, UK;
| | - Marie M. Phelan
- High Field NMR Facility, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Sofya Osharovich
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (E.J.D.)
| | - Edward J. Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (E.J.D.)
| | - Violaine Sée
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool L69 7BE, UK;
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
2
|
Rani S, Trivedi R, Ansari MN, Saeedan AS, Kumar D, Singh SK, Mukherjee A, Singh M, Kaithwas G. A novel quinazoline derivative exhibits potent anticancer cytotoxicity via apoptosis and inhibition of angiogenesis in DMBA-induced mammary gland carcinoma. J Biochem Mol Toxicol 2024; 38:e70016. [PMID: 39425456 DOI: 10.1002/jbt.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Mammary gland carcinoma is one of the most prevalent and deadly diseases among women globally. It is a type of solid malignant tumor. In this malignant tumor, the microenvironment becomes hypoxic in rapidly proliferating cancer cells. These cells undergo adaptive changes through the expression of hypoxia-inducible factor-1alpha (HIF-1α) which is regulated by factor inhibiting HIF-1α (FIH-1). Considering this, we hypothesized that the chemical activation of FIH-1 would inhibit the hypoxic activity of HIF-1α in mammary gland carcinoma. A library of 67,609 chemical compounds was virtually screened against FIH-1 based on Lipinski's rule from the ZINC database. The BBAP-8 has been selected based on an excellent docking score (-8.352 Kcal/mol), favorable ADMET, and potential FIH-1 activator profile. Further, its in-vitro cytotoxicity and apoptotic activity were scrutinized against MCF-7 cells and in-vivo activity against 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary gland carcinoma in Wistar rats. It exhibited significant cytotoxicity (IC50 = 16.59 ± 0.49 μM) and activated apoptosis when scrutinized through DAPI, AO/EB, and JC-1 staining. Also, oral administration of BBAP-8 restored hemodynamic changes, normalized tissue architecture, and corrected metabolic abnormalities. The western blot analysis and mRNA expression analysis validated that BBAP-8 has the potential to activate FIH-1 with the downregulation of GLUT-1, VEGF, and Twist-1. Moreover, BBAP-8 fostered apoptosis, when evaluated through BCL-2, BAX, Caspase-8, and Caspase-3. Based on research findings, this implies that BBAP-8 activates FIH-1 and can be effective in chemotherapeutic treatment of mammary gland carcinoma.
Collapse
Affiliation(s)
- Soniya Rani
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Rimjhim Trivedi
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sunil Kumar Singh
- Department of Pharmaceutical Sciences, United Institute of Pharmacy, United Group of Institutions, Prayagraj, India
| | - Alok Mukherjee
- Department of Pharmaceutical Sciences, United Institute of Pharmacy, United Group of Institutions, Prayagraj, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| |
Collapse
|
3
|
Ting KKY. Revisiting the role of hypoxia-inducible factors and nuclear factor erythroid 2-related factor 2 in regulating macrophage inflammation and metabolism. Front Cell Infect Microbiol 2024; 14:1403915. [PMID: 39119289 PMCID: PMC11306205 DOI: 10.3389/fcimb.2024.1403915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The recent birth of the immunometabolism field has comprehensively demonstrated how the rewiring of intracellular metabolism is critical for supporting the effector functions of many immune cell types, such as myeloid cells. Among all, the transcriptional regulation mediated by Hypoxia-Inducible Factors (HIFs) and Nuclear factor erythroid 2-related factor 2 (NRF2) have been consistently shown to play critical roles in regulating the glycolytic metabolism, redox homeostasis and inflammatory responses of macrophages (Mφs). Although both of these transcription factors were first discovered back in the 1990s, new advances in understanding their function and regulations have been continuously made in the context of immunometabolism. Therefore, this review attempts to summarize the traditionally and newly identified functions of these transcription factors, including their roles in orchestrating the key events that take place during glycolytic reprogramming in activated myeloid cells, as well as their roles in mediating Mφ inflammatory responses in various bacterial infection models.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
VAGELI DIMITRAP, DOUKAS PANAGIOTISG, GOUPOU KERASIA, BENOS ANTONIOSD, ASTARA KYRIAKI, ZACHAROULI KONSTANTINA, SOTIRIOU SOTIRIS, IOANNOU MARIA. Hypoxia-inducible factor 1alpha and vascular endothelial growth factor in Glioblastoma Multiforme: a systematic review going beyond pathologic implications. Oncol Res 2024; 32:1239-1256. [PMID: 39055895 PMCID: PMC11267112 DOI: 10.32604/or.2024.052130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation. Hypoxic conditions in the tissue microenvironment are considered a pivotal player leading tumor progression. Specifically, hypoxia is known to activate inducible factors, such as hypoxia-inducible factor 1alpha (HIF-1α), which in turn can stimulate tumor neo-angiogenesis through activation of various downward mediators, such as the vascular endothelial growth factor (VEGF). Here, we aimed to explore the role of HIF-1α/VEGF immunophenotypes alone and in combination with other prognostic markers or clinical and image analysis data, as potential biomarkers of GBM prognosis and treatment efficacy. We performed a systematic review (Medline/Embase, and Pubmed database search was completed by 16th of April 2024 by two independent teams; PRISMA 2020). We evaluated methods of immunoassays, cell viability, or animal or patient survival methods of the retrieved studies to assess unbiased data. We used inclusion criteria, such as the evaluation of GBM prognosis based on HIF-1α/VEGF expression, other biomarkers or clinical and imaging manifestations in GBM related to HIF-1α/VEGF expression, application of immunoassays for protein expression, and evaluation of the effectiveness of GBM therapeutic strategies based on HIF-1α/VEGF expression. We used exclusion criteria, such as data not reporting both HIF-1α and VEGF or prognosis. We included 50 studies investigating in total 1319 GBM human specimens, 18 different cell lines or GBM-derived stem cells, and 6 different animal models, to identify the association of HIF-1α/VEGF immunophenotypes, and with other prognostic factors, clinical and macroscopic data in GBM prognosis and therapeutic approaches. We found that increased HIF-1α/VEGF expression in GBM correlates with oncogenic factors, such as miR-210-3p, Oct4, AKT, COX-2, PDGF-C, PLDO3, M2 polarization, or ALK, leading to unfavorable survival. Reduced HIF-1α/VEGF expression correlates with FIH-1, ADNP, or STAT1 upregulation, as well as with clinical manifestations, like epileptogenicity, and a favorable prognosis of GBM. Based on our data, HIF-1α or VEGF immunophenotypes may be a useful tool to clarify MRI-PET imaging data distinguishing between GBM tumor progression and pseudoprogression. Finally, HIF-1α/VEGF immunophenotypes can reflect GBM treatment efficacy, including combined first-line treatment with histone deacetylase inhibitors, thimerosal, or an active metabolite of irinotecan, as well as STAT3 inhibitors alone, and resulting in a favorable tumor prognosis and patient survival. These data were supported by a combination of variable methods used to evaluate HIF-1α/VEGF immunophenotypes. Data limitations may include the use of less sensitive detection methods in some cases. Overall, our data support HIF-1α/VEGF's role as biomarkers of GBM prognosis and treatment efficacy.
Collapse
Affiliation(s)
- DIMITRA P. VAGELI
- Department of Surgery, Yale University, New Haven, CT 06510, USA
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - PANAGIOTIS G. DOUKAS
- Department of Medicine, Rutgers/Saint Peter’s University Hospital, New Brunswick, NJ08901, USA
| | - KERASIA GOUPOU
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - ANTONIOS D. BENOS
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - KYRIAKI ASTARA
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
- Department of Neurology, Army Share Fund Hospital (NIMTS), Athens, 11521, Greece
| | - KONSTANTINA ZACHAROULI
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - SOTIRIS SOTIRIOU
- Laboratory of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - MARIA IOANNOU
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| |
Collapse
|
5
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Wang XW, Fu H, Zhang YM. HIF-1α facilitates glioma proliferation and invasion by activating pyroptosis signaling axis. Chin Neurosurg J 2024; 10:14. [PMID: 38734702 PMCID: PMC11088077 DOI: 10.1186/s41016-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND HIF-1α is thought to be a novel regulator which contributes to carcinogenesis. However, the mechanism underlying the effect of HIF-1α in gliomas remains largely unknown. METHODS In the research, we demonstrate that HIF-lα mRNA and protein levels are elevated in glioma cells. The colony formation assays, transwell assays, and wound-healing assays showed that overexpression of HIF-1α promoted proliferation and invasion of glioma cells. RESULTS Overexpression of HIF-lα also increased the expression of inflammatory factors related to pyrolysis (TNF-α, IL-10, and IL-1β) and protein related to pyrolysis signal pathway (NLRP3, ASC, caspase-1, GSDMD, and GSDME). CONCLUSIONS Therefore, we speculate that HIF-1α promotes the proliferation and invasion of glial cells by regulating pyrolysis pathway. These results might provide a novel strategy and target for treatment of glioma.
Collapse
Affiliation(s)
- Xin-Wei Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300142, China
| | - Hao Fu
- Department of General Medicine, Characteristic Medical Center of PAP, Tianjin, 300162, China
| | - Ya-Min Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300142, China.
| |
Collapse
|
7
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
8
|
Sun M, Baker TL, Wilson CT, Brady RD, Yamakawa GR, Wright DK, Mychasiuk R, Vo A, Wilson T, Allen J, McDonald SJ, Shultz SR. Treatment with the vascular endothelial growth factor-A antibody, bevacizumab, has sex-specific effects in a rat model of mild traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:542-555. [PMID: 37933736 PMCID: PMC10981407 DOI: 10.1177/0271678x231212377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Mild traumatic brain injury (mTBI) involves damage to the cerebrovascular system. Vascular endothelial growth factor-A (VEGF-A) is an important modulator of vascular health and VEGF-A promotes the brain's ability to recover after more severe forms of brain injury; however, the role of VEGF-A in mTBI remains poorly understood. Bevacizumab (BEV) is a monoclonal antibody that binds to VEGF-A and neutralises its actions. To better understand the role of VEGF-A in mTBI recovery, this study examined how BEV treatment affected outcomes in rats given a mTBI. Adult Sprague-Dawley rats were assigned to sham-injury + vehicle treatment (VEH), sham-injury + BEV treatment, mTBI + VEH treatment, mTBI + BEV treatment groups. Treatment was administered intracerebroventricularly via a cannula beginning at the time of injury and continuing until the end of the study. Rats underwent behavioral testing after injury and were euthanized on day 11. In both females and males, BEV had a negative impact on cognitive function. mTBI and BEV treatment increased the expression of inflammatory markers in females. In males, BEV treatment altered markers related to hypoxia and vascular health. These novel findings of sex-specific responses to BEV and mTBI provide important insights into the role of VEGF-A in mTBI.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tamara L Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Campbell T Wilson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada
| |
Collapse
|
9
|
Louise Kelly C, Wydrzynska M, Phelan MM, Osharovich S, Delikatny EJ, Sée V, Poptani H. Inhibition of glioblastoma cell proliferation and invasion by the choline-kinase inhibitor JAS239 varies with cell type and hypoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576078. [PMID: 38293093 PMCID: PMC10827177 DOI: 10.1101/2024.01.17.576078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Elevated choline kinase alpha (ChoK) is observed in most solid tumours including glioblastomas (GBM), yet until recently, inhibitors of ChoK have demonstrated limited efficacy in GBM models. Given that hypoxia is associated with GBM therapy resistance, we hypothesised that tumour hypoxia could be responsible for such limitations. We therefore evaluated in GBM cells, the effect of hypoxia on the function of JAS239, a potent ChoK inhibitor. Methods Rodent (F98 and 9L) and human (U-87 MG and U-251 MG) GBM cell lines were subjected to 72 hours of hypoxia conditioning and treated with JAS239 for 24 hours. NMR metabolomic measurements and analyses were performed to evaluate the signalling pathways involved. In addition, cell proliferation, cell cycle progression and cell invasion were measured in cell monolayers and 3D spheroids, with or without JAS239 treatment in normoxic or hypoxic cells to assess how hypoxia affects JAS239 function. Results Hypoxia and JAS239 treatment led to significant changes in the cellular metabolic pathways, specifically the phospholipid and glycolytic pathways associated with a reduction in cell proliferation via induced cell cycle arrest. Interestingly, JAS239 also impaired GBM invasion. However, JAS239 effects were variable depending on the cell line, reflecting the inherent heterogeneity observed in GBMs. Conclusion Our findings indicate that JAS239 and hypoxia can deregulate cellular metabolism, inhibit proliferation and alter cell invasion. These results may be useful for the design of new therapeutic strategies based on ChoK inhibition that can act on multiple pro-tumorigenic features.
Collapse
Affiliation(s)
- Claire Louise Kelly
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool, UK
| | - Martyna Wydrzynska
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool, UK
| | - Marie M Phelan
- High field NMR facility, Department of Biochemistry & Systems Biology, University of Liverpool, UK
| | - Sofya Osharovich
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Edward J. Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Violaine Sée
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Saviuk M, Sleptsova E, Redkin T, Turubanova V. Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research. Cancers (Basel) 2023; 15:5539. [PMID: 38067243 PMCID: PMC10705208 DOI: 10.3390/cancers15235539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023] Open
Abstract
Approximately 30% of glioma patients are able to survive beyond one year postdiagnosis. And this short time is often overshadowed by glioma-associated epilepsy. This condition severely impairs the patient's quality of life and causes great suffering. The genetic, molecular and cellular mechanisms underlying tumour development and epileptogenesis remain incompletely understood, leading to numerous unanswered questions. The various types of gliomas, namely glioblastoma, astrocytoma and oligodendroglioma, demonstrate distinct seizure susceptibility and disease progression patterns. Patterns have been identified in the presence of IDH mutations and epilepsy, with tumour location in cortical regions, particularly the frontal lobe, showing a more frequent association with seizures. Altered expression of TP53, MGMT and VIM is frequently detected in tumour cells from individuals with epilepsy associated with glioma. However, understanding the pathogenesis of these modifications poses a challenge. Moreover, hypoxic effects induced by glioma and associated with the HIF-1a factor may have a significant impact on epileptogenesis, potentially resulting in epileptiform activity within neuronal networks. We additionally hypothesise about how the tumour may affect the functioning of neuronal ion channels and contribute to disruptions in the blood-brain barrier resulting in spontaneous depolarisations.
Collapse
Affiliation(s)
- Mariia Saviuk
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ekaterina Sleptsova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Tikhon Redkin
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Victoria Turubanova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| |
Collapse
|
11
|
Ting KK, Yu P, Dow R, Floro E, Ibrahim H, Scipione CA, Hyduk SJ, Polenz CK, Zaslaver O, Karmaus PW, Fessler MB, Rӧst HL, Ohh M, Tsai S, Winer DA, Woo M, Rocheleau J, Jongstra-Bilen J, Cybulsky MI. Oxidized Low-Density Lipoprotein Accumulation Suppresses Glycolysis and Attenuates the Macrophage Inflammatory Response by Diverting Transcription from the HIF-1α to the Nrf2 Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1561-1577. [PMID: 37756544 PMCID: PMC10873122 DOI: 10.4049/jimmunol.2300293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.
Collapse
Affiliation(s)
- Kenneth K.Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Pei Yu
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Riley Dow
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Eric Floro
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hisham Ibrahim
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Corey A. Scipione
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sharon J. Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Chanele K. Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Olga Zaslaver
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1
| | - Peer W.F. Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Michael B. Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Hannes L. Rӧst
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2RS, Canada
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Minna Woo
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Jonathan Rocheleau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Jenny Jongstra-Bilen
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Myron I. Cybulsky
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| |
Collapse
|
12
|
García-del Río A, Prieto-Fernández E, Egia-Mendikute L, Antoñana-Vildosola A, Jimenez-Lasheras B, Lee SY, Barreira-Manrique A, Zanetti SR, de Blas A, Velasco-Beltrán P, Bosch A, Aransay AM, Palazon A. Factor-inhibiting HIF (FIH) promotes lung cancer progression. JCI Insight 2023; 8:e167394. [PMID: 37707961 PMCID: PMC10619494 DOI: 10.1172/jci.insight.167394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Factor-inhibiting HIF (FIH) is an asparagine hydroxylase that acts on hypoxia-inducible factors (HIFs) to control cellular adaptation to hypoxia. FIH is expressed in several tumor types, but its impact in tumor progression remains largely unexplored. We observed that FIH was expressed on human lung cancer tissue. Deletion of FIH in mouse and human lung cancer cells resulted in an increased glycolytic metabolism, consistent with increased HIF activity. FIH-deficient lung cancer cells exhibited decreased proliferation. Analysis of RNA-Seq data confirmed changes in the cell cycle and survival and revealed molecular pathways that were dysregulated in the absence of FIH, including the upregulation of angiomotin (Amot), a key component of the Hippo tumor suppressor pathway. We show that FIH-deficient tumors were characterized by higher immune infiltration of NK and T cells compared with FIH competent tumor cells. In vivo studies demonstrate that FIH deletion resulted in reduced tumor growth and metastatic capacity. Moreover, high FIH expression correlated with poor overall survival in non-small cell lung cancer (NSCLC). Our data unravel FIH as a therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ana García-del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Borja Jimenez-Lasheras
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Adrián Barreira-Manrique
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Samanta Romina Zanetti
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ander de Blas
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Paloma Velasco-Beltrán
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Alexandre Bosch
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ana M. Aransay
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
13
|
Sun K, Li X, Scherer PE. Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr Physiol 2023; 13:4387-4407. [PMID: 36715281 PMCID: PMC9957663 DOI: 10.1002/cphy.c220020] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis in adipose tissue is a major driver of obesity-related metabolic dysregulation. It is characterized by an overaccumulation of extracellular matrix (ECM) during unhealthy expansion of adipose tissue in response to over nutrition. In obese adipose-depots, hypoxia stimulates multiple pro-fibrotic signaling pathways in different cell populations, thereby inducing the overproduction of the ECM components, including collagens, noncollagenous proteins, and additional enzymatic components of ECM synthesis. As a consequence, local fibrosis develops. The result of fibrosis-induced mechanical stress not only triggers cell necrosis and inflammation locally in adipose tissue but also leads to system-wide lipotoxicity and insulin resistance. A better understanding of the mechanisms underlying the obesity-induced fibrosis will help design therapeutic approaches to reduce or reverse the pathological changes associated with obese adipose tissue. Here, we aim to summarize the major advances in the field, which include newly identified fibrotic factors, cell populations that contribute to the fibrosis in adipose tissue, as well as novel mechanisms underlying the development of fibrosis. We further discuss the potential therapeutic strategies to target fibrosis in adipose tissue for the treatment of obesity-linked metabolic diseases and cancer. © 2023 American Physiological Society. Compr Physiol 13:4387-4407, 2023.
Collapse
Affiliation(s)
- Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
14
|
Yasir M, Park J, Han ET, Park WS, Han JH, Kwon YS, Lee HJ, Hassan M, Kloczkowski A, Chun W. Exploration of Flavonoids as Lead Compounds against Ewing Sarcoma through Molecular Docking, Pharmacogenomics Analysis, and Molecular Dynamics Simulations. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010414. [PMID: 36615603 PMCID: PMC9823950 DOI: 10.3390/molecules28010414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Ewing sarcoma (ES) is a highly malignant carcinoma prevalent in children and most frequent in the second decade of life. It mostly occurs due to t(11;22) (q24;q12) translocation. This translocation encodes the oncogenic fusion protein EWS/FLI (Friend leukemia integration 1 transcription factor), which acts as an aberrant transcription factor to deregulate target genes essential for cancer. Traditionally, flavonoids from plants have been investigated against viral and cancerous diseases and have shown some promising results to combat these disorders. In the current study, representative flavonoid compounds from various subclasses are selected and used to disrupt the RNA-binding motif of EWS, which is required for EWS/FLI fusion. By blocking the RNA-binding motif of EWS, it might be possible to combat ES. Therefore, molecular docking experiments validated the binding interaction patterns and structural behaviors of screened flavonoid compounds within the active region of the Ewing sarcoma protein (EWS). Furthermore, pharmacogenomics analysis was used to investigate potential drug interactions with Ewing sarcoma-associated genes. Finally, molecular dynamics simulations were used to investigate the stability of the best selected docked complexes. Taken together, daidzein, kaempferol, and genistein exhibited a result comparable to ifosfamide in the proposed in silico study and can be further analyzed as possible candidate compounds in biological in vitro studies against ES.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Hee-Jae Lee
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
- Correspondence: ; Tel.: +82-33-250-8853
| |
Collapse
|
15
|
Regulation of Transactivation at C-TAD Domain of HIF-1α by Factor-Inhibiting HIF-1α (FIH-1): A Potential Target for Therapeutic Intervention in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2407223. [PMID: 35592530 PMCID: PMC9113874 DOI: 10.1155/2022/2407223] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 12/31/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1α) is a major transcription factor that adapts to low oxygen homeostasis and regulates the expression of several hypoxic genes, which aid in cancer survival and development. It has recently piqued the interest of translational researchers in the disciplines of cancer sciences. Hypoxia triggers an ample adaptive mechanism mediated via the HIF-1α transcriptional domain. Anaerobic glycolysis, angiogenesis, metastasis, and mitophagy are adaptive mechanisms that support tumor survival by promoting oxygen supply and regulating oxygen demand in hypoxic tumor cells. Throughout this pathway, the factor-inhibiting HIF-1α is a negative regulator of HIF-1α leading to its hydroxylation at the C-TAD domain of HIF-1α under normoxia. Thus, hydroxylated HIF-1α is unable to proceed with the transcriptional events due to interference in binding of C-TAD and CBP/p300. From this review, we can hypothesize that remodeling of FIH-1 activity is a unique mechanism that decreases the transcriptional activity of HIF-1α and, as a result, all of its hypoxic consequences. Hence, this review manuscript details the depth of knowledge of FIH-1 on hypoxia-associated cellular and molecular events, a potential strategy for targeting hypoxia-induced malignancies.
Collapse
|
16
|
Xu J, Li X, Zhang P, Luo J, Mou E, Liu S. miR-143-5p suppresses breast cancer progression by targeting the HIF-1α-related GLUT1 pathway. Oncol Lett 2022; 23:147. [PMID: 35350590 PMCID: PMC8941519 DOI: 10.3892/ol.2022.13268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is a commonly identified life-threatening type of cancer and a major cause of death among women worldwide. Several microRNAs (miRs), including miR-143-5p, have been reported to be vital for regulating hallmarks of cancer; however, the effect of miR-143-5p on BC requires further exploration. The present study performed bioinformatics analysis on GSE42072 and GSE41922 datasets from the National Center for Biotechnology Information Gene Expression Omnibus (GEO) database to identify miR-143-5p expression patterns. Furthermore, miR-143-5p expression was detected in BC cell lines and tissues via reverse transcription-quantitative PCR. Post-transfection with miR-143-5p mimics, Cell Counting Kit-8, colony formation and Transwell assays were performed to explore the effects of miR-143-5p on BC cell proliferation, colony formation, and migration. The association of miR-143-5p with the hypoxia-inducible factor-1α (HIF-1α)-associated glucose transporter 1 (GLUT1) pathway was explored via western blotting, immunofluorescence and dual-luciferase reporter assay. The present study detected high expression of miR-143-5p in BC tissue of the GSE42072 and serum of the GSE41922 datasets by GEO chip analysis. Additionally, the expression levels of miR-143-5p were decreased in BC tissues compared with those in adjacent healthy tissues, and low miR-143-5p expression was associated with a poorer prognosis and shorter survival time in patients with BC. In vitro, miR-143-5p expression levels were decreased in BC cells, and transfection with miR-143-5p mimics suppressed BC cell proliferation, colony formation, migration. Furthermore, miR-143-5p targeted the HIF-1α-related GLUT1 pathway, and inhibited HIF-1α and GLUT1 expression. Additionally, HIF-1α agonists reversed the miR-143-5p-induced inhibition during tumorigenesis. In conclusion, miR-143-5p exhibited low expression in BC tissues, and suppressed BC cell proliferation, colony formation, migration. Moreover, the antitumor effects of miR-143-5p targeted the HIF-1α-related GLUT1 pathway.
Collapse
Affiliation(s)
- Jia Xu
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Xi Li
- Department of Plastic Surgery, Chengdu First People's Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Purong Zhang
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jie Luo
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Exian Mou
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shiwei Liu
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Scherschinski L, Prem M, Kremenetskaia I, Tinhofer I, Vajkoczy P, Karbe AG, Onken JS. Regulation of the Receptor Tyrosine Kinase AXL in Response to Therapy and Its Role in Therapy Resistance in Glioblastoma. Int J Mol Sci 2022; 23:ijms23020982. [PMID: 35055167 PMCID: PMC8781963 DOI: 10.3390/ijms23020982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The receptor tyrosine kinase AXL (RTK-AXL) is implicated in therapy resistance and tumor progression in glioblastoma multiforme (GBM). Here, we investigated therapy-induced receptor modifications and how endogenous RTK-AXL expression and RTK-AXL inhibition contribute to therapy resistance in GBM. GBM cell lines U118MG and SF126 were exposed to temozolomide (TMZ) and radiation (RTX). Receptor modifications in response to therapy were investigated on protein and mRNA levels. TMZ-resistant and RTK-AXL overexpressing cell lines were exposed to increasing doses of TMZ and RTX, with and without RTK-AXL tyrosine kinase inhibitor (TKI). Colorimetric microtiter (MTT) assay and colony formation assay (CFA) were used to assess cell viability. Results showed that the RTK-AXL shedding product, C-terminal AXL (CT-AXL), rises in response to repeated TMZ doses and under hypoxia, acts as a surrogate marker for radio-resistance. Endogenous RTX-AXL overexpression leads to therapy resistance, whereas combination therapy of TZM and RTX with TKI R428 significantly increases therapeutic effects. This data proves the role of RTK-AXL in acquired and intrinsic therapy resistance. By demonstrating that therapy resistance may be overcome by combining AXL TKI with standard treatments, we have provided a rationale for future study designs investigating AXL TKIs in GBM.
Collapse
Affiliation(s)
- Lea Scherschinski
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.S.); (M.P.); (I.K.); (P.V.); (A.-G.K.)
| | - Markus Prem
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.S.); (M.P.); (I.K.); (P.V.); (A.-G.K.)
- Department of Neurosurgery, Technische Universität Dresden, 01069 Dresden, Germany
| | - Irina Kremenetskaia
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.S.); (M.P.); (I.K.); (P.V.); (A.-G.K.)
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung–DKTK), Partner Site Berlin, 10115 Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.S.); (M.P.); (I.K.); (P.V.); (A.-G.K.)
| | - Anna-Gila Karbe
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.S.); (M.P.); (I.K.); (P.V.); (A.-G.K.)
| | - Julia Sophie Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.S.); (M.P.); (I.K.); (P.V.); (A.-G.K.)
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung–DKTK), Partner Site Berlin, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-450-660253
| |
Collapse
|
18
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel) 2021; 13:1795. [PMID: 33918704 PMCID: PMC8069979 DOI: 10.3390/cancers13081795] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| |
Collapse
|
19
|
Crake RLI, Burgess ER, Royds JA, Phillips E, Vissers MCM, Dachs GU. The Role of 2-Oxoglutarate Dependent Dioxygenases in Gliomas and Glioblastomas: A Review of Epigenetic Reprogramming and Hypoxic Response. Front Oncol 2021; 11:619300. [PMID: 33842321 PMCID: PMC8027507 DOI: 10.3389/fonc.2021.619300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Gliomas are a heterogeneous group of cancers that predominantly arise from glial cells in the brain, but may also arise from neural stem cells, encompassing low-grade glioma and high-grade glioblastoma. Whereas better diagnosis and new treatments have improved patient survival for many cancers, glioblastomas remain challenging with a highly unfavorable prognosis. This review discusses a super-family of enzymes, the 2-oxoglutarate dependent dioxygenase enzymes (2-OGDD) that control numerous processes including epigenetic modifications and oxygen sensing, and considers their many roles in the pathology of gliomas. We specifically describe in more detail the DNA and histone demethylases, and the hypoxia-inducible factor hydroxylases in the context of glioma, and discuss the substrate and cofactor requirements of the 2-OGDD enzymes. Better understanding of how these enzymes contribute to gliomas could lead to the development of new treatment strategies.
Collapse
Affiliation(s)
- Rebekah L. I. Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A. Royds
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
20
|
Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. Int J Mol Sci 2021; 22:ijms22020843. [PMID: 33467722 PMCID: PMC7830156 DOI: 10.3390/ijms22020843] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors—CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Barbara Gawrońska-Szklarz
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
21
|
Samec M, Liskova A, Koklesova L, Mersakova S, Strnadel J, Kajo K, Pec M, Zhai K, Smejkal K, Mirzaei S, Hushmandi K, Ashrafizadeh M, Saso L, Brockmueller A, Shakibaei M, Büsselberg D, Kubatka P. Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers (Basel) 2021; 13:E130. [PMID: 33401572 PMCID: PMC7794792 DOI: 10.3390/cancers13010130] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor hypoxia is described as an oxygen deprivation in malignant tissue. The hypoxic condition is a consequence of an imbalance between rapidly proliferating cells and a vascularization that leads to lower oxygen levels in tumors. Hypoxia-inducible factor 1 (HIF-1) is an essential transcription factor contributing to the regulation of hypoxia-associated genes. Some of these genes modulate molecular cascades associated with the Warburg effect and its accompanying pathways and, therefore, represent promising targets for cancer treatment. Current progress in the development of therapeutic approaches brings several promising inhibitors of HIF-1. Flavonoids, widely occurring in various plants, exert a broad spectrum of beneficial effects on human health, and are potentially powerful therapeutic tools against cancer. Recent evidences identified numerous natural flavonoids and their derivatives as inhibitors of HIF-1, associated with the regulation of critical glycolytic components in cancer cells, including pyruvate kinase M2(PKM2), lactate dehydrogenase (LDHA), glucose transporters (GLUTs), hexokinase II (HKII), phosphofructokinase-1 (PFK-1), and pyruvate dehydrogenase kinase (PDK). Here, we discuss the results of most recent studies evaluating the impact of flavonoids on HIF-1 accompanied by the regulation of critical enzymes contributing to the Warburg phenotype. Besides, flavonoid effects on glucose metabolism via regulation of HIF-1 activity represent a promising avenue in cancer-related research. At the same time, only more-in depth investigations can further elucidate the mechanistic and clinical connections between HIF-1 and cancer metabolism.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic;
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, 1477893855 Tehran, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, 1419963114 Tehran, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
22
|
McAleese CE, Choudhury C, Butcher NJ, Minchin RF. Hypoxia-mediated drug resistance in breast cancers. Cancer Lett 2020; 502:189-199. [PMID: 33278499 DOI: 10.1016/j.canlet.2020.11.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Tissue hypoxia in solid tumors is caused by several pathological changes associated with tumor growth, including altered microvasculature structure, increased diffusional distances, and tumor-associated anemia. As the oxygen tension decreases, tumor cells adapt to the limited oxygen supply. Previous studies have shown that such adaptation leads to an aggressive phenotype that is resistant to many anti-cancer therapies. Induction of hypoxia inducible factors (HIFs) mediates many proteomic and genomic changes associated with tumor hypoxia. In breast cancers, HIFs not only predict poor prognosis, but also promote metastasis and drug resistance. Several studies have proposed HIF-1α as a druggable target in drug-resistant breast cancers, leading to the synthesis and development of small molecule inhibitors. Disappointingly, however, none of these small molecule inhibitors have progressed to clinical use. In this review, we briefly discuss the role of HIF-1α in breast cancer drug resistance and summarize the current and future approaches to targeting this transcription factor in breast cancer treatment.
Collapse
Affiliation(s)
- Courtney E McAleese
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Chandra Choudhury
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
23
|
Braun LA, Varpetyan EE, Zav’yalov GA, Kulikov FV, Marievskii VE, Tyul’ganova DA, Shishnenko AO, Stepanova DS, Shimanovskii NL. Metabolic Enzymes: New Targets for the Design of Antitumor Drugs. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02238-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Naghavi AO, Kim Y, Yang GQ, Ahmed KA, Caudell JJ. Alterations in genetic pathways following radiotherapy for head and neck cancer. Head Neck 2019; 42:312-320. [PMID: 31833149 DOI: 10.1002/hed.26004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Radiotherapy (RT) is an integral component in the treatment of head and neck cancer (HNC).We hypothesized there would be alterations in gene-expression and pathway activity in HNC samples obtained in recurrent HNC that were previously treated with RT, when compared to RT-naïve disease. METHODS Patient data was abstracted from a prospectively maintained database. Linear-microarray analysis and supervised gene-set enrichment-analysis were employed to compare RT-naive and recurrent disease after prior-RT. RESULTS A total of 157 patients were analyzed, 96 (61%) were RT-naive and 61 (39%) had RT.After radiation, there was upregulation of genes associated with angiogenesis, protein-translation-machinery, cell-cycle regulation, and growth factors, and downregulation associated with Myc activity, and hypoxic response (all P < .001).Previously irradiated HNC was associated with downregulation in 19/42 genes in the Wnt/B-catenin-pathway (P = .045)and 119/199 genes involved in the MYC target pathway (P = .024). CONCLUSION Patients with recurrences salvaged surgically post-RT had significant alterations in gene-expression and in Wnt/B-catenin and MYC-target pathways. These pathways may represent potential targets to prevent development of resistance to RT.
Collapse
Affiliation(s)
- Arash O Naghavi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - George Q Yang
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kamran A Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
25
|
Wang P, Guan D, Zhang XP, Liu F, Wang W. Modeling the regulation of p53 activation by HIF-1 upon hypoxia. FEBS Lett 2019; 593:2596-2611. [PMID: 31282018 DOI: 10.1002/1873-3468.13525] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
As a famous tumor suppressor, p53 is also activated under hypoxic conditions. Hypoxia-inducuble factor 1, HIF-1, is involved in the activation of p53 upon hypoxia. However, how p53 is modulated by the HIF-1 pathway to decide cell fate is less understood. In this work, we developed a network model including p53 and HIF-1 pathways to clarify the mechanism of cell fate decision in response to hypoxia. We found that HIF-1α and p53 are activated under different conditions. Under moderate hypoxia, HIF-1α is activated to induce glycolysis or angiogenesis, and promotes partial accumulation of p53 by inducing PNUTS. Under severe hypoxia, p53 rises to high levels due to ATR-dependent stabilization and promotes Mdm2-dependent HIF-1α degradation. As a result, fully activated p53 triggers apoptosis. Of note, competition for p300 between HIF-1α and p53 plays a key role in regulating their transcriptional activities. This work may advance the understanding of the mechanism for p53 regulation by HIF-1 in the hypoxic response.
Collapse
Affiliation(s)
- Ping Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, China
| | - Di Guan
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, China
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, China.,Institute for Brain Sciences, Nanjing University, China
| | - Feng Liu
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, China.,Institute for Brain Sciences, Nanjing University, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, China.,Institute for Brain Sciences, Nanjing University, China
| |
Collapse
|
26
|
Hyperglycemia-Associated Dysregulation of O-GlcNAcylation and HIF1A Reduces Anticancer Action of Metformin in Ovarian Cancer Cells (SKOV-3). Int J Mol Sci 2018; 19:ijms19092750. [PMID: 30217067 PMCID: PMC6163973 DOI: 10.3390/ijms19092750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/22/2023] Open
Abstract
Although cancer cells need more glucose than normal cells to maintain energy demand, chronic hyperglycemia induces metabolic alteration that may dysregulate signaling pathways, including the O-GlcNAcylation and HIF1A (Hypoxia-inducible factor 1-alpha) pathways. Metformin was demonstrated to evoke metabolic stress and induce cancer cell death. The aim of this study was to determine the cytotoxic efficiency of metformin on SKOV-3 cells cultured in hyperglycemia and normoglycemia. To identify the potential mechanism, we assessed the expression of O-linked β-N-acetlyglucosamine transferase (OGT) and glycoside hydrolase O-GlcNAcase (OGA), as well as hypoxia-inducible factor 1-alpha (HIF1A) and glucose transporters (GLUT1, GLUT3). SKOV-3 cells were cultured in normoglycaemia (NG, 5 mM) and hyperglycemia (HG, 25 mM) with and without 10 mM metformin for 24, 48, and 72 h. The proliferation rate, apoptotic and necrotic SKOV-3 cell death were evaluated. Real-Time qPCR was employed to determine mRNA expression of OGT, OGA, GLUT1, GLUT3, and HIF1A. Metformin significantly reduced the proliferation of SKOV-3 cells under normal glucose conditions. Whereas, the efficacy of metformin to induce SKOV-3 cell death was reduced in hyperglycemia. Both hyperglycemia and metformin induced changes in the expression of genes involved in the O-GlcNAcylation status and HIF1A pathway. The obtained results suggest that dysregulation of O-GlcNAcylation, and the related HIF1A pathway, via hyperglycemia, is responsible for the decreased cytotoxic efficiency of metformin in human ovarian cancer cells.
Collapse
|
27
|
Hypermethylated gene ANKDD1A is a candidate tumor suppressor that interacts with FIH1 and decreases HIF1α stability to inhibit cell autophagy in the glioblastoma multiforme hypoxia microenvironment. Oncogene 2018; 38:103-119. [PMID: 30082910 PMCID: PMC6318269 DOI: 10.1038/s41388-018-0423-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 01/28/2023]
Abstract
Ectopic epigenetic mechanisms play important roles in facilitating tumorigenesis. Here, we first demonstrated that ANKDD1A is a functional tumor suppressor gene, especially in the hypoxia microenvironment. ANKDD1A directly interacts with FIH1 and inhibits the transcriptional activity of HIF1α by upregulating FIH1. In addition, ANKDD1A decreases the half-life of HIF1α by upregulating FIH1, decreases glucose uptake and lactate production, inhibits glioblastoma multiforme (GBM) autophagy, and induces apoptosis in GBM cells under hypoxia. Moreover, ANKDD1A is highly frequently methylated in GBM. The tumor-specific methylation of ANKDD1A indicates that it could be used as a potential epigenetic biomarker as well as a possible therapeutic target.
Collapse
|
28
|
The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia. Cell Metab 2018; 27:898-913.e7. [PMID: 29617647 PMCID: PMC5887987 DOI: 10.1016/j.cmet.2018.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/29/2017] [Accepted: 02/20/2018] [Indexed: 01/16/2023]
Abstract
Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia.
Collapse
|
29
|
Zhang J, Xu D, Li N, Li Y, He Y, Hu X, Lyu L, He L. Downregulation of microRNA-31 inhibits proliferation and induces apoptosis by targeting HIF1AN in human keloid. Oncotarget 2017; 8:74623-74634. [PMID: 29088812 PMCID: PMC5650367 DOI: 10.18632/oncotarget.20284] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
microRNAs (miRNAs) play a pivotal role in the regulation of cell proliferation and apoptosis in keloid scarring. Integrative analysis of the previous miRNA microarray revealed miRNA-31 was among the most frequently altered miRNAs in keloid and hypertrophic scar. Using qRT-PCR, we further validated miRNA-31 was increased in keloid tissues and keloid-derived fibroblasts. Moreover, downregulation of miRNA-31 inhibited the cell proliferation, induced the cell apoptosis and disturbed the cell cycle progression by targeting HIF1AN, a negative modulator of hypoxia inducible factor 1. Through the luciferase reporter assay, HIF1AN was confirmed to be a target of miRNA-31. Further studies demonstrated that miRNA-31 regulated proliferation, apoptosis and cell cycle of keloid-derived fibroblasts by mediating HIF1AN/VEGF signaling pathway. Overall, our findings shed new light on miRNA-31 as a promising therapeutic target in keloid scarring.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Physiology, Kunming Medical University, Kunming, China
| | - Dan Xu
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Na Li
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Li
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongjing He
- Department of Plastic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingbo Hu
- Department of Orthopedics, the First People's Hospital of Kunming, Kunming, China
| | - Lechun Lyu
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Physiology, Kunming Medical University, Kunming, China
| | - Li He
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
30
|
Martin AR, Ronco C, Demange L, Benhida R. Hypoxia inducible factor down-regulation, cancer and cancer stem cells (CSCs): ongoing success stories. MEDCHEMCOMM 2017; 8:21-52. [PMID: 30108689 PMCID: PMC6071925 DOI: 10.1039/c6md00432f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
In cancers, hypoxia inducible factor 1 (HIF-1) is an over-expressed transcription factor, which regulates a large set of genes involved in tumour vascularization, metastases, and cancer stem cells (CSCs) formation and self-renewal. This protein has been identified as a relevant target in oncology and several HIF-1 modulators are now marketed or in advanced clinical trials. The purpose of this review is to summarize the advances in the understanding of its regulation and its inhibition, from the medicinal chemist point of view. To this end, we selected in the recent literature relevant examples of "hit" compounds, including small-sized organic molecules, pseudopeptides and nano-drugs, exhibiting in vitro and/or in vivo both anti-HIF-1 and anti-tumour activities. Whenever possible, a particular emphasis has been dedicated to compounds that selectively target CSCs.
Collapse
Affiliation(s)
- Anthony R Martin
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Cyril Ronco
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Luc Demange
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
- UFR des Sciences Pharmaceutiques , Université Paris Descartes , Sorbonne Paris Cité , 4 avenue de l'Observatoire , Paris Fr-75006 , France
- UFR Biomédicale des Saints Pères , 45 rue des Saints Pères , Paris Fr-75006 , France
| | - Rachid Benhida
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| |
Collapse
|
31
|
Sharpe MA, Baskin DS. Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3. Oncotarget 2016; 7:3379-93. [PMID: 26689994 PMCID: PMC4823113 DOI: 10.18632/oncotarget.6582] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Monoamine oxidases A and B (MAOA and MAOB) are highly expressed in many cancers. Here we investigated the level of MAOB in gliomas and confirmed its high expression. We found that MAOB levels correlated with tumor grade and hypoxia-inducible factor 1-alpha (HiF-1α) expression. HiF-1α was localized to the nuclei in high-grade gliomas, but it was primarily cytosolic in low-grade gliomas and normal human astrocytes. Expression of both glial fibrillary acidic protein (GFAP) and MAOB are correlated to HiF-1α expression levels. Levels of MAOB are correlated by the levels of transcription factor Sp3 in the majority of GBM examined, but this control of MAOB expression by Sp3 in low grade astrocytic gliomas is significantly different from control in the in the majority of glioblastomas. The current findings support previous suggestions that MAOB can be exploited for the killing of cancer cells. Selective cell toxicity can be achieved by designing non-toxic prodrugs that require MAOB for their catalytic conversion into mature cytotoxic chemotherapeutics.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Department of Neurosurgery, Kenneth R. Peak Brain and Pituitary Tumor Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | - David S Baskin
- Department of Neurosurgery, Kenneth R. Peak Brain and Pituitary Tumor Center, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
32
|
LncRNA and mRNA expression profiles of glioblastoma multiforme (GBM) reveal the potential roles of lncRNAs in GBM pathogenesis. Tumour Biol 2016; 37:14537-14552. [DOI: 10.1007/s13277-016-5299-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/31/2016] [Indexed: 12/28/2022] Open
|
33
|
Molecular response and association analysis of Megalobrama amblycephala fih-1 with hypoxia. Mol Genet Genomics 2016; 291:1615-24. [PMID: 27112926 DOI: 10.1007/s00438-016-1208-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
Abstract
Hypoxia is one of the most important environmental factors which affect fish growth, development and survival, but regulation mechanisms of hypoxia in fish remain unclear. Therefore, to further understand molecular functions of factor inhibiting HIF-1 (Fih-1), an essential hypoxia sensor, the full-length cDNA of fih-1 was cloned from Megalobrama amblycephala, a hypoxia-sensitive cyprinid fish. The deduced amino acid sequence showed high homology with that of other vertebrates, and all structural and functional domains were highly conserved. The mRNA level in different tissues and developmental stages indicated that M. amblycephala fih-1 expression was higher in liver and muscle, followed by gill, intestine and spleen. During embryogenesis, the fih-1 mRNA was highly expressed in the early embryonic development, then decreased to a very low level, and maintained a relative high level of expression after hatching. In most tissues, the fih-1 mRNA was down-regulated at 2 h but up-regulated at 4 h after hypoxia treatment. In addition, the promoter sequence of M. amblycephala fih-1 was obtained using thermal asymmetric interlaced PCR. Three single nucleotide polymorphism (SNP) sites were found in the cDNA and promoter sequences, and identified significant association with hypoxia trait by correlation analysis in hypoxia-sensitive group and hypoxia-tolerant group. These results demonstrated that M. amblycephala fih-1 plays important roles in embryo development and hypoxia response, which will contribute to systematic understanding of the molecular mechanisms of fish in response to hypoxia, and provide help for fish genetic breeding with hypoxia-tolerant strains or breeds.
Collapse
|
34
|
Vakil L, Najafipour R, Rakhshani N, Zamani F, Morakabati A, Javadi A. Investigation of FIH-1 and SOCS3 expression in KRAS mutant and wild-type patients with colorectal cancer. Tumour Biol 2016; 37:8841-8. [PMID: 26749281 DOI: 10.1007/s13277-015-4723-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/21/2015] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer (CRC) is a multistep process based on the accumulation of somatic mutations in genes such as APC and KRAS. Data on the presence of mutations in KRAS gene in CRC and its relationship with clinicopathological parameters and expression of genes involved in tumor progression are scarce. We unbiasedly examined the KRAS status in samples from 99 patients and its correlation with clinicopathological parameters such as age, sex, tumor location, lymph node metastasis, tumor stage, tumor grade, and vascular invasion. Consistent with reports of other researchers, 38.4 % of our samples harbored KRAS mutation in their genomes with preferential mutation in codon 12 (89.4 %). Nevertheless, unlike previous reports, we were not able to correlate KRAS status with clinicopathological parameters (P > 0.05) except for vascular invasion. Patients with KRAS mutation have more vascular invasion compared with patient having wild-type KRAS. Next, we investigated the expression of two tumor suppressor genes, factor-inhibiting hypoxia-inducible factor 1 (FIH-1) and suppressor of cytokine signaling (SOCS3), in both KRAS mutant and wild-type groups and looked for any correlation between their expression and clinicopathological parameters. Although the expression of both genes was not regular, none of the clinicopathological parameters were associated with the expressions of FIH-1 and SOCS3 at mRNA level (P > 0.05). However, decline in FIH-1 expression at protein level in KRAS mutant group was correlated with stage IV and grade 2 of tumor (P ≤ 0.05). Our results demonstrated that there is no or low correlation between KRAS status, FIH-1, and SOCS3 expression with epidemiologic and clinicpathological characteristics in CRC.
Collapse
Affiliation(s)
- Ladan Vakil
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, IR, Iran.,Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, IR, Iran.,GI and Liver Disease Research Center, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Najafipour
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, IR, Iran. .,Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, IR, Iran.
| | - Nasser Rakhshani
- GI and Liver Disease Research Center, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Farhad Zamani
- GI and Liver Disease Research Center, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arman Morakabati
- Molecular Pathology Department of Mehr General Hospital, Tehran, Iran
| | - Amir Javadi
- Departments of Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Karsy M, Guan J, Jensen R, Huang LE, Colman H. The Impact of Hypoxia and Mesenchymal Transition on Glioblastoma Pathogenesis and Cancer Stem Cells Regulation. World Neurosurg 2015; 88:222-236. [PMID: 26724617 DOI: 10.1016/j.wneu.2015.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with potential for wide dissemination and resistance to standard treatments. Although GBM represents a single histopathologic diagnosis under current World Health Organization criteria, data from multiplatform molecular profiling efforts, including The Cancer Genome Atlas, indicate that multiple subgroups with distinct markers and biology exist. It remains unclear whether treatment resistance differs based on subgroup. Recent evidence suggests that hypoxia, or absence of normal tissue oxygenation, is important in generating tumor resistance through a signaling cascade driven by hypoxia-inducible factors and vascular endothelial growth factor. Hypoxia can result in isolation of tumor cells from therapeutic agents and activation of downstream tumor protective mechanisms. In addition, there are links between hypoxia and the phenomenon of mesenchymal transition in gliomas. Mesenchymal transformation in gliomas resembles at many levels the epithelial-mesenchymal transition that has been described in other solid tumors in which epithelial cells lose their epithelial characteristics and take on a more mesenchymal phenotype, but the mesenchymal transition in brain tumors is also distinct, perhaps related to the unique cell types and cellular organization in the brain and brain tumors. Cancer stem cells, which are specific cell populations involved in self-renewal, differentiation, and GBM pathophysiology, are also importantly regulated by hypoxia signaling pathways. In this review, we discuss the interplay of hypoxia and mesenchymal signaling in GBM including the key pathway regulators and downstream genes, the effect of these processes in regulation of the tumor microenvironment and cancer stem cells, and their role in treatment resistance.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA
| | - Jian Guan
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA
| | - Randy Jensen
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA; Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - L Eric Huang
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Howard Colman
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA; Huntsman Cancer Institute, Salt Lake City, Utah, USA.
| |
Collapse
|
36
|
Comparative transcriptomics reveals similarities and differences between astrocytoma grades. BMC Cancer 2015; 15:952. [PMID: 26673168 PMCID: PMC4682229 DOI: 10.1186/s12885-015-1939-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/01/2015] [Indexed: 11/23/2022] Open
Abstract
Background Astrocytomas are the most common primary brain tumors distinguished into four histological grades. Molecular analyses of individual astrocytoma grades have revealed detailed insights into genetic, transcriptomic and epigenetic alterations. This provides an excellent basis to identify similarities and differences between astrocytoma grades. Methods We utilized public omics data of all four astrocytoma grades focusing on pilocytic astrocytomas (PA I), diffuse astrocytomas (AS II), anaplastic astrocytomas (AS III) and glioblastomas (GBM IV) to identify similarities and differences using well-established bioinformatics and systems biology approaches. We further validated the expression and localization of Ang2 involved in angiogenesis using immunohistochemistry. Results Our analyses show similarities and differences between astrocytoma grades at the level of individual genes, signaling pathways and regulatory networks. We identified many differentially expressed genes that were either exclusively observed in a specific astrocytoma grade or commonly affected in specific subsets of astrocytoma grades in comparison to normal brain. Further, the number of differentially expressed genes generally increased with the astrocytoma grade with one major exception. The cytokine receptor pathway showed nearly the same number of differentially expressed genes in PA I and GBM IV and was further characterized by a significant overlap of commonly altered genes and an exclusive enrichment of overexpressed cancer genes in GBM IV. Additional analyses revealed a strong exclusive overexpression of CX3CL1 (fractalkine) and its receptor CX3CR1 in PA I possibly contributing to the absence of invasive growth. We further found that PA I was significantly associated with the mesenchymal subtype typically observed for very aggressive GBM IV. Expression of endothelial and mesenchymal markers (ANGPT2, CHI3L1) indicated a stronger contribution of the micro-environment to the manifestation of the mesenchymal subtype than the tumor biology itself. We further inferred a transcriptional regulatory network associated with specific expression differences distinguishing PA I from AS II, AS III and GBM IV. Major central transcriptional regulators were involved in brain development, cell cycle control, proliferation, apoptosis, chromatin remodeling or DNA methylation. Many of these regulators showed directly underlying DNA methylation changes in PA I or gene copy number mutations in AS II, AS III and GBM IV. Conclusions This computational study characterizes similarities and differences between all four astrocytoma grades confirming known and revealing novel insights into astrocytoma biology. Our findings represent a valuable resource for future computational and experimental studies. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1939-9) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Fan R, Hou WJ, Zhao YJ, Liu SL, Qiu XS, Wang EH, Wu GP. Overexpression of HPV16 E6/E7 mediated HIF-1α upregulation of GLUT1 expression in lung cancer cells. Tumour Biol 2015; 37:4655-63. [PMID: 26508030 DOI: 10.1007/s13277-015-4221-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022] Open
Abstract
High-risk human papillomavirus (HPV) infection may play an important role in non-small cell lung carcinoma (NSCLC) development. However, some recent studies have proved that it was not directly associated with lung cancer. The aim of this study was to evaluate the underlying molecular mechanism that HPV16 regulate the expression of GLUT1 and may promote the development of lung cancer. HPV16, HIF-1α, and GLUT1 were detected in pleural effusions of patients with lung cancer (n = 95) and with benign lung disease (n = 55) by immunocytochemistry. Western blotting and qRT-PCR were used to detect the expression chances of HPV16 E6/E7, HIF-1α, and GLUT1 in lung cancer cells. HPV16, HIF-1α, and GLUT1 were significantly more likely to be expressed in the malignant group than in the benign group as detected by immunocytochemistry (ICC), and HIF-1α was significantly correlated with HPV16 or GLUT1 in the malignant group (P < 0.01). Expression changes of E6 and E7 significantly promoted the protein expression of HIF-1α, the expression of both protein and mRNA of GLUT1, but had no effect on the expression of HIF-1α mRNA in lung cancer cells. After inhibition of HIF-1α, it obviously downregulated the expression of both protein and mRNA of GLUT1 in lung cancer cells. E6 and E7 regulated the expression of GLUT1 may be due to the mediation of HIF-1α in lung cancer cells. These results suggest that both E6 and E7 play the important role in the regulation of Warburg effect and may be a valuable therapeutic target for HPV-related cancer.
Collapse
Affiliation(s)
- Rong Fan
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Wei-Jian Hou
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Yu-Jie Zhao
- Center of Biochip, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Shu-Li Liu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Xue-Shan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - En-Hua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Guang-Ping Wu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
38
|
Womeldorff M, Gillespie D, Jensen RL. Hypoxia-inducible factor-1 and associated upstream and downstream proteins in the pathophysiology and management of glioblastoma. Neurosurg Focus 2015; 37:E8. [PMID: 25581937 DOI: 10.3171/2014.9.focus14496] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with an exceptionally poor patient outcome despite aggressive therapy including surgery, radiation, and chemotherapy. This aggressive phenotype may be associated with intratumoral hypoxia, which probably plays a key role in GBM tumor growth, development, and angiogenesis. A key regulator of cellular response to hypoxia is the protein hypoxia-inducible factor–1 (HIF-1). An examination of upstream hypoxic and nonhypoxic regulation of HIF-1 as well as a review of the downstream HIF-1– regulated proteins may provide further insight into the role of this transcription factor in GBM pathophysiology. Recent insights into upstream regulators that intimately interact with HIF-1 could provide potential therapeutic targets for treatment of this tumor. The same is potentially true for HIF-1–mediated pathways of glycolysis-, angiogenesis-, and invasion-promoting proteins. Thus, an understanding of the relationship between HIF-1, its upstream protein regulators, and its downstream transcribed genes in GBM pathogenesis could provide future treatment options for the care of patients with these tumors.
Collapse
|
39
|
Hirose Y, Johnson ZI, Schoepflin ZR, Markova DZ, Chiba K, Toyama Y, Shapiro IM, Risbud MV. FIH-1-Mint3 axis does not control HIF-1 transcriptional activity in nucleus pulposus cells. J Biol Chem 2015; 289:20594-605. [PMID: 24867948 DOI: 10.1074/jbc.m114.565101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to determine the role of FIH-1 in regulating HIF-1 activity in the nucleus pulposus (NP) cells and the control of this regulation by binding and sequestration of FIH-1 by Mint3. FIH-1 and Mint3 were both expressed in the NP and were shown to strongly co-localize within the cell nucleus. Although both mRNA and protein expression of FIH-1 decreased in hypoxia, only Mint3 protein levels were hypoxiasensitive. Overexpression of FIH-1 was able to reduce HIF-1 function, as seen by changes in activities of hypoxia response element-luciferase reporter and HIF-1-C-TAD and HIF-2-TAD. Moreover, co-transfection of either full-length Mint3 or the N terminus of Mint3 abrogated FIH-1-dependent reduction in HIF-1 activity under both normoxia and hypoxia. Nuclear levels of FIH-1 and Mint3 decreased in hypoxia, and the use of specific nuclear import and export inhibitors clearly showed that cellular compartmentalization of overexpressed FIH-1 was critical for its regulation of HIF-1 activity in NP cells. Interestingly, microarray results after stable silencing of FIH-1 showed no significant changes in transcripts of classical HIF-1 target genes. However, expression of several other transcripts, including those of the Notch pathway, changed in FIH-1-silenced cells. Moreover, co-transfection of Notch-ICD could restore suppression of HIF-1-TAD activity by exogenous FIH-1. Taken together, these results suggest that, possibly due to low endogenous levels and/or preferential association with substrates such as Notch, FIH-1 activity does not represent a major mechanism by which NP cells control HIF-1-dependent transcription, a testament to their adaptation to a unique hypoxic niche.
Collapse
|
40
|
Chen T, Ren Z, Ye LC, Zhou PH, Xu JM, Shi Q, Yao LQ, Zhong YS. Factor inhibiting HIF1α (FIH-1) functions as a tumor suppressor in human colorectal cancer by repressing HIF1α pathway. Cancer Biol Ther 2015; 16:244-252. [PMID: 25602156 PMCID: PMC4622465 DOI: 10.1080/15384047.2014.1002346] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/13/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The molecular mechanisms underlying CRC development involve a multistep process with the accumulation of both genetic and epigenetic changes. To deeply understand CRC tumorigenesis and progression, advances in identification of novel mechanisms and key factors are therefore in an urgent need. Here, we examined the correlation of factor inhibiting HIF-1α (FIH-1) expression with clinicopathological features of CRC. The finding that FIH-1 was not only significantly decreased in tumor tissue but also was significantly correlated with tumor invading depth, lymph node involvement, and metastasis suggested the role of FIH-1 as a tumor suppressor in CRC development. To further support the above hypothesis, we performed both in vitro and in vivo experiments to identify the role of FIH-1 in CRC development. FIH-1 was found to inhibit CRC cell proliferation, migration, invasion, and colony formation in vitro. FIH-1 was also shown to repress LOVO xenograft tumor growth in vivo. To decipher the mechanism, we examined the expression level of HIF-1α and its target genes. We found that FIH-1 was able to inhibit HIF1α mediated transcription of GLUT1 and VEGF in CRC cells. The above observation points to the possibility that loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF1α and an alteration of HIF-1 targets such as GLUT-1 and VEGF. These findings highlight the critical role of FIH-1 in CRC and indicate FIH-1 functions as a tumor suppressor in human CRC by repressing HIF1α pathway.
Collapse
Affiliation(s)
- Tao Chen
- Endoscopy Center; Zhongshan Hospital of Fudan University; Shanghai, China
| | - Zhong Ren
- Endoscopy Center; Zhongshan Hospital of Fudan University; Shanghai, China
| | - Le-Chi Ye
- Department of Oncological Surgery; The First Affiliated Hospital of Wenzhou Medical University; Wenzhou, China
| | - Ping-Hong Zhou
- Endoscopy Center; Zhongshan Hospital of Fudan University; Shanghai, China
| | - Jian-Min Xu
- Department of General Surgery; Zhongshan Hospital of Fudan University; Shanghai, China
| | - Qiang Shi
- Endoscopy Center; Zhongshan Hospital of Fudan University; Shanghai, China
| | - Li-Qing Yao
- Endoscopy Center; Zhongshan Hospital of Fudan University; Shanghai, China
| | - Yun-Shi Zhong
- Endoscopy Center; Zhongshan Hospital of Fudan University; Shanghai, China
| |
Collapse
|