1
|
Roman-Rodriguez F, Kim J, Parker D, Boyd JM. An effective response to respiratory inhibition by a Pseudomonas aeruginosa excreted quinoline promotes Staphylococcus aureus fitness and survival in co-culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642861. [PMID: 40161799 PMCID: PMC11952440 DOI: 10.1101/2025.03.12.642861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are primary bacterial pathogens isolated from the airways of cystic fibrosis patients. P. aeruginosa produces secondary metabolites that negatively impact the fitness of S. aureus, allowing P. aeruginosa to become the most prominent bacterium when the species are co-cultured. Some of these metabolites inhibit S. aureus respiration. SrrAB is a staphylococcal two-component regulatory system (TCRS) that responds to alterations in respiratory status and helps S. aureus transition between fermentative and respiratory metabolisms. We used P. aeruginosa mutant strains and chemical genetics to demonstrate that P. aeruginosa secondary metabolites, HQNO in particular, inhibit S. aureus respiration, resulting in modified SrrAB stimulation. Metabolomic analyses found that the ratio of NAD+ to NADH increased upon prolonged culture with HQNO. Consistent with this, the activity of the Rex transcriptional regulator, which senses and responds to alterations in the NAD+ / NADH ratio, had altered activity upon HQNO treatment. The presence of SrrAB increased fitness when cultured with HQNO and increased survival when challenged with P. aeruginosa. S. aureus strains with a decreased ability to maintain redox homeostasis via fermentation had decreased fitness when challenged with HQNO and decreased survival when challenged with P. aeruginosa. These findings led to a model wherein P. aeruginosa secreted HQNO inhibits S. aureus respiration, stimulating SrrAB, which promotes fitness and survival by increasing carbon flux through fermentative pathways to maintain redox homeostasis.
Collapse
Affiliation(s)
- Franklin Roman-Rodriguez
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Baker EJ, Allcott G, Cox JAG. Polymicrobial infection in cystic fibrosis and future perspectives for improving Mycobacterium abscessus drug discovery. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:38. [PMID: 39843836 PMCID: PMC11721438 DOI: 10.1038/s44259-024-00060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/03/2024] [Indexed: 01/24/2025]
Abstract
Polymicrobial communities inhabit the cystic fibrosis (CF) airway, whereby microbial interactions can occur. One prominent CF pathogen is Mycobacterium abscessus, whose treatment is largely unsuccessful. This creates a need to discover novel antimicrobial agents to treat M. abscessus, however the methods used within antibiotic discovery are typically monomicrobial. This review will discuss this pathogen whilst considering the CF polymicrobial environment, to highlight future perspectives to improve M. abscessus drug discovery.
Collapse
Affiliation(s)
- Emily J Baker
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Gemma Allcott
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jonathan A G Cox
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
3
|
Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhance interspecies antagonism. mBio 2024; 15:e0095624. [PMID: 39105585 PMCID: PMC11389416 DOI: 10.1128/mbio.00956-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili (TFP)-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of TFP motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. Reduced invasion leads to the formation of denser and thicker S. aureus colonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies expand our understanding of how P. aeruginosa TFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCE The polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation of Pseudomonas aeruginosa and Staphylococcus aureus from airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils that P. aeruginosa is attracted to S. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition of P. aeruginosa motility and thus invasion, S. aureus colony architecture changes dramatically, whereby S. aureus is protected from P. aeruginosa antagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition.
Collapse
Affiliation(s)
- Andrea Sánchez-Peña
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James B. Winans
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dominique H. Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Giedraitis E, Neve RL, Phelan VV. Iron content of commercial mucin contributes to compositional stability of a cystic fibrosis airway synthetic microbiota community. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611695. [PMID: 39282275 PMCID: PMC11398496 DOI: 10.1101/2024.09.06.611695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
In vitro culture models of mucosal environments are used to elucidate the mechanistic roles of the microbiota in human health. These models often include commercial mucins to reflect the in-situ role of mucins as an attachment site and nutrient source for the microbiota. Two types of mucins are commercially available: porcine gastric mucin (PGM) and bovine submaxillary mucin (BSM). These commercial mucins have been shown to contain iron, an essential element required by the microbiota as a co-factor for a variety of metabolic functions. In these mucin preparations, the concentration of available iron can exceed physiological concentrations present in the native environment. This unexpected source of iron influences experimental outcomes, including shaping the interactions between co-existing microbes in synthetic microbial communities used to elucidate the multispecies interactions within native microbiota. In this work, we leveraged the well-characterized iron-dependent production of secondary metabolites by the opportunistic pathogen Pseudomonas aeruginosa to aid in the development of a simple, low-cost, reproducible workflow to remove iron from commercial mucins. Using the mucosal environment of the cystic fibrosis (CF) airway as a model system, we show that P. aeruginosa is canonically responsive to iron concentration in the chemically defined synthetic CF medium complemented with semi-purified PGM, and community composition of a clinically relevant, synthetic CF airway microbial community is modulated, in part, by iron concentration in PGM.
Collapse
Affiliation(s)
- Emily Giedraitis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rachel L. Neve
- Department of Immunology and Microbiology, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Vanessa V. Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
5
|
Burford-Gorst CM, Kidd SP. Phenotypic Variation in Staphylococcus aureus during Colonisation Involves Antibiotic-Tolerant Cell Types. Antibiotics (Basel) 2024; 13:845. [PMID: 39335018 PMCID: PMC11428495 DOI: 10.3390/antibiotics13090845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus is a bacterial species that is commonly found colonising healthy individuals but that presents a paradoxical nature: simultaneously, it can migrate within the body and cause a range of diseases. Many of these become chronic by resisting immune responses, antimicrobial treatment, and medical intervention. In part, this ability to persist can be attributed to the adoption of multiple cell types within a single cellular population. These dynamics in the S. aureus cell population could be the result of its interplay with host cells or other co-colonising bacteria-often coagulase-negative Staphylococcal (CoNS) species. Further understanding of the unique traits of S. aureus alternative cell types, the drivers for their selection or formation during disease, as well as their presence even during non-pathological colonisation could advance the development of diagnostic tools and drugs tailored to target specific cells that are eventually responsible for chronic infections.
Collapse
Affiliation(s)
- Chloe M Burford-Gorst
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Diseases (RCID), The University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Diseases (RCID), The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
6
|
Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhances interspecies antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588010. [PMID: 38617332 PMCID: PMC11014535 DOI: 10.1101/2024.04.03.588010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of type IV pilus motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. P. aeruginosa reduced invasion leads to the formation of denser and thicker S. aureus colonies with significantly increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate the effective treatment of infections. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies build on our understanding of how P. aeruginosa type IV pili-mediated interspecies chemotaxis mediates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities.
Collapse
Affiliation(s)
- Andrea Sánchez-Peña
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James B Winans
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dominique H Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
7
|
Subsomwong P, Teng W, Ishiai T, Narita K, Sukchawalit R, Nakane A, Asano K. Extracellular vesicles from Staphylococcus aureus promote the pathogenicity of Pseudomonas aeruginosa. Microbiol Res 2024; 281:127612. [PMID: 38244256 DOI: 10.1016/j.micres.2024.127612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Co-infections with Staphylococcus aureus and Pseudomonas aeruginosa are common in patients with chronic wounds, but little is known about their synergistic effect mediated by extracellular vesicles (EVs). In this study, we investigated the effect of EVs derived from S. aureus (SaEVs) on the pathogenicity of P. aeruginosa. By using lipophilic dye, we could confirm the fusion between SaEV and P. aeruginosa membranes. However, SaEVs did not alter the growth and antibiotic susceptible pattern of P. aeruginosa. Differential proteomic analysis between SaEV-treated and non-treated P. aeruginosa was performed, and the results revealed that lipopolysaccharide (LPS) biosynthesis protein in P. aeruginosa significantly increased after SaEV-treatment. Regarding this result, we also found that SaEVs promoted LPS production, biofilm formation, and expression of polysaccharide polymerization-related genes in P. aeruginosa. Furthermore, invasion of epithelial cells by SaEV-pretreated P. aeruginosa was enhanced. On the other hand, uptake of P. aeruginosa by RAW 264.7 macrophages was impaired after pretreatment P. aeruginosa with SaEVs. Proteomic analysis SaEVs revealed that SaEVs contain the proteins involving in host cell colonization, inhibition of host immune response, anti-phagocytosis of the macrophages, and protein translocation and iron uptake of S. aureus. In conclusion, SaEVs serve as a mediator that promote P. aeruginosa pathogenicity by enhancing LPS biosynthesis, biofilm formation, epithelial cell invasion, and macrophage uptake impairment.
Collapse
Affiliation(s)
- Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takahito Ishiai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
8
|
Liu Y, McQuillen EA, Rana PSJB, Gloag ES, Parsek MR, Wozniak DJ. A bacterial pigment provides cross-species protection from H 2O 2- and neutrophil-mediated killing. Proc Natl Acad Sci U S A 2024; 121:e2312334121. [PMID: 38170744 PMCID: PMC10786307 DOI: 10.1073/pnas.2312334121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Bacterial infections are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus cause chronic co-infections, which are more problematic than mono-species infections. Understanding the mechanisms of their interactions is crucial for treating co-infections. Staphyloxanthin (STX), a yellow pigment synthesized by the S. aureus crt operon, promotes S. aureus resistance to oxidative stress and neutrophil-mediated killing. We found that STX production by S. aureus, either as surface-grown macrocolonies or planktonic cultures, was elevated when exposed to the P. aeruginosa exoproduct, 2-heptyl-4-hydroxyquinoline N-oxide (HQNO). This was observed with both mucoid and non-mucoid P. aeruginosa strains. The induction phenotype was found in a majority of P. aeruginosa and S. aureus clinical isolates examined. When subjected to hydrogen peroxide or human neutrophils, P. aeruginosa survival was significantly higher when mixed with wild-type (WT) S. aureus, compared to P. aeruginosa alone or with an S. aureus crt mutant deficient in STX production. In a murine wound model, co-infection with WT S. aureus, but not the STX-deficient mutant, enhanced P. aeruginosa burden and disease compared to mono-infection. In conclusion, we identified a role for P. aeruginosa HQNO mediating polymicrobial interactions with S. aureus by inducing STX production, which consequently promotes resistance to the innate immune effectors H2O2 and neutrophils. These results further our understanding of how different bacterial species cooperatively cause co-infections.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Microbiology, Ohio State University, Columbus, OH43210
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
| | - Eleanor A. McQuillen
- Department of Health and Rehabilitation Sciences, Ohio State University College of Medicine, Columbus, OH43210
| | - Pranav S. J. B. Rana
- Department of Microbiology, Ohio State University, Columbus, OH43210
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
| | - Erin S. Gloag
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA24060
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
| | - Daniel J. Wozniak
- Department of Microbiology, Ohio State University, Columbus, OH43210
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
| |
Collapse
|
9
|
Trognon J, Rima M, Lajoie B, Roques C, El Garah F. NaCl-induced modulation of species distribution in a mixed P. aeruginosa / S. aureus / B.cepacia biofilm. Biofilm 2023; 6:100153. [PMID: 37711514 PMCID: PMC10497989 DOI: 10.1016/j.bioflm.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia are notorious pathogens known for their ability to form resilient biofilms, particularly within the lung environment of cystic fibrosis (CF) patients. The heightened concentration of NaCl, prevalent in the airway liquid of CF patients' lungs, has been identified as a factor that promotes the growth of osmotolerant bacteria like S. aureus and dampens host antibacterial defenses, thereby fostering favorable conditions for infections. In this study, we aimed to investigate how increased NaCl concentrations impact the development of multi-species biofilms in vitro, using both laboratory strains and clinical isolates of P. aeruginosa, S. aureus, and B. cepacia co-cultures. Employing a low-nutrient culture medium that fosters biofilm growth of the selected species, we quantified biofilm formation through a combination of adherent CFU counts, qPCR analysis, and confocal microscopy observations. Our findings reaffirmed the challenges faced by S. aureus in establishing growth within 1:1 mixed biofilms with P. aeruginosa when cultivated in a minimal medium. Intriguingly, at an elevated NaCl concentration of 145 mM, a symbiotic relationship emerged between S. aureus and P. aeruginosa, enabling their co-existence. Notably, this hyperosmotic environment also exerted an influence on the interplay of these two bacteria with B. cepacia. We demonstrated that elevated NaCl concentrations play a pivotal role in orchestrating the distribution of these three species within the biofilm matrix. Furthermore, our study unveiled the beneficial impact of NaCl on the biofilm growth of clinically relevant mucoid P. aeruginosa strains, as well as two strains of methicillin-sensitive and methicillin-resistant S. aureus. This underscores the crucial role of the microenvironment during the colonization and infection processes. The results suggest that hyperosmotic conditions could hold the key to unlocking a deeper understanding of the genesis and behavior of CF multi-species biofilms.
Collapse
Affiliation(s)
- Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maya Rima
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Barbora Lajoie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie Hygiène, Toulouse, France
| | - Fatima El Garah
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
10
|
Al-Wrafy FA, Alariqi R, Noman EA, Al-Gheethi AA, Mutahar M. Pseudomonas aeruginosa behaviour in polymicrobial communities: The competitive and cooperative interactions conducting to the exacerbation of infections. Microbiol Res 2023; 268:127298. [PMID: 36610273 DOI: 10.1016/j.micres.2022.127298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is mostly associated with persistent infections and antibiotic resistance as a result of several factors, biofilms one of them. Microorganisms within the polymicrobial biofilm (PMB) reveal various transcriptional profiles and affect each other which might influence their pathogenicity and antibiotic tolerance and subsequent worsening of the biofilm infection. P. aeruginosa within PMB exhibits various behaviours toward other microorganisms, which may enhance or repress the virulence of these microbes. Microbial neighbours, in turn, may affect P. aeruginosa's virulence either positively or negatively. Such interactions among microorganisms lead to emerging persistent and antibiotic-resistant infections. This review highlights the relationship between P. aeruginosa and its microbial neighbours within the PMB in an attempt to better understand the mechanisms of polymicrobial interaction and the correlation between increased exacerbations of infection and the P. aeruginosa-microbe interaction. Researching in the literature that was carried out in vitro either in co-cultures or in the models to simulate the environment at the site of infection suggested that the interplay between P. aeruginosa and other microorganisms is one main reason for the worsening of the infection and which in turn requires a treatment approach different from that followed with P. aeruginosa mono-infection.
Collapse
Affiliation(s)
- Fairoz Ali Al-Wrafy
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen.
| | - Reem Alariqi
- Microbiology Department, Faculty of Medicine and Health Sciences, Sana'a University, 1247 Sana'a, Yemen
| | - Efaq Ali Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen
| | - Adel Ali Al-Gheethi
- Civil Department, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
| | - Mahdi Mutahar
- Faculty of Science & Health, University of Portsmouth Dental Academy, PO1 2QG Portsmouth, United Kingdom
| |
Collapse
|
11
|
Synthetic peptides that form nanostructured micelles have potent antibiotic and antibiofilm activity against polymicrobial infections. Proc Natl Acad Sci U S A 2023; 120:e2219679120. [PMID: 36649429 PMCID: PMC9942841 DOI: 10.1073/pnas.2219679120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The emergence of multidrug-resistant bacterial pathogens is a growing threat to global public health. Here, we report the development and characterization of a panel of nine-amino acid residue synthetic peptides that display potent antibacterial activity and the ability to disrupt preestablished microbial biofilms. The lead peptide (Peptide K6) showed bactericidal activity against Pseudomonas aeruginosa and Staphylococcus aureus in culture and in monocultures and mixed biofilms in vitro. Biophysical analysis revealed that Peptide K6 self-assembled into nanostructured micelles that correlated with its strong antibiofilm activity. When surface displayed on the outer membrane protein LamB, two copies of the Peptide K6 were highly bactericidal to Escherichia coli. Peptide K6 rapidly increased the permeability of bacterial cells, and resistance to this toxic peptide occurred less quickly than that to the potent antibiotic gentamicin. Furthermore, we found that Peptide K6 was safe and effective in clearing mixed P. aeruginosa-S. aureus biofilms in a mouse model of persistent infection. Taken together, the properties of Peptide K6 suggest that it is a promising antibiotic candidate and that design of additional short peptides that form micelles represents a worthwhile approach for the development of antimicrobial agents.
Collapse
|
12
|
Liu Y, McQuillen EA, Rana PSJB, Gloag ES, Wozniak DJ. Cross-Species Protection to Innate Immunity Mediated by A Bacterial Pigment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524085. [PMID: 36711503 PMCID: PMC9882196 DOI: 10.1101/2023.01.15.524085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bacterial infections are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus cause chronic co-infections, which are more problematic than mono-species infections. We found that the production of S. aureus membrane-bound pigment staphyloxanthin (STX), was induced by the P. aeruginosa exoproduct, 2-heptyl-4-hydroxyquinoline N-oxide (HQNO). The induction phenotype was conserved in P. aeruginosa and S. aureus clinical isolates examined. When subjected to hydrogen peroxide or human neutrophils, P. aeruginosa survival was significantly higher when mixed with wild-type (WT) S. aureus , compared to a mutant deficient in STX production or P. aeruginosa alone. In a murine wound model, co-infection with WT S. aureus , but not the STX-deficient mutant, enhanced P. aeruginosa burden and disease compared to mono-infection. In conclusion, we discovered a novel role for P. aeruginosa HQNO mediating polymicrobial interactions with S. aureus by inducing STX production, which consequently promotes resistance of both pathogens to innate immune effectors. These results further our understanding of how different bacterial species cooperatively cause co-infections.
Collapse
|
13
|
Jean-Pierre V, Boudet A, Sorlin P, Menetrey Q, Chiron R, Lavigne JP, Marchandin H. Biofilm Formation by Staphylococcus aureus in the Specific Context of Cystic Fibrosis. Int J Mol Sci 2022; 24:ijms24010597. [PMID: 36614040 PMCID: PMC9820612 DOI: 10.3390/ijms24010597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen whose characteristics support its success in various clinical settings including Cystic Fibrosis (CF). In CF, S. aureus is indeed the most commonly identified opportunistic pathogen in children and the overall population. S. aureus colonization/infection, either by methicillin-susceptible or methicillin-resistant strains, will become chronic in about one third of CF patients. The persistence of S. aureus in CF patients' lungs, despite various eradication strategies, is favored by several traits in both host and pathogen. Among the latter, living in biofilm is a highly protective way to survive despite deleterious environmental conditions, and is a common characteristic shared by the main pathogens identified in CF. This is why CF has earned the status of a biofilm-associated disease for several years now. Biofilm formation by S. aureus, and the molecular mechanisms governing and regulating it, have been extensively studied but have received less attention in the specific context of CF lungs. Here, we review the current knowledge on S. aureus biofilm in this very context, i.e., the importance, study methods, molecular data published on mono- and multi-species biofilm and anti-biofilm strategies. This focus on studies including clinical isolates from CF patients shows that they are still under-represented in the literature compared with studies based on reference strains, and underlines the need for such studies. Indeed, CF clinical strains display specific characteristics that may not be extrapolated from results obtained on laboratory strains.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
| | - Agathe Boudet
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Pauline Sorlin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34093 Montpellier, France
| | - Quentin Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, 59000 Lille, France
| | - Raphaël Chiron
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Philippe Lavigne
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Hélène Marchandin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
14
|
Pütz E, Gazanis A, Keltsch NG, Jegel O, Pfitzner F, Heermann R, Ternes TA, Tremel W. Communication Breakdown: Into the Molecular Mechanism of Biofilm Inhibition by CeO 2 Nanocrystal Enzyme Mimics and How It Can Be Exploited. ACS NANO 2022; 16:16091-16108. [PMID: 36174231 DOI: 10.1021/acsnano.2c04377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial biofilm formation is a huge problem in industry and medicine. Therefore, the discovery of anti-biofilm agents may hold great promise. Biofilm formation is usually a consequence of bacterial cell-cell communication, a process called quorum sensing (QS). CeO2 nanocrystals (NCs) have been established as haloperoxidase (HPO) mimics and ecologically beneficial biofilm inhibitors. They were suggested to interfere with QS, a mechanism termed quorum quenching (QQ), but their molecular mechanism remained elusive. We show that CeO2 NCs are effective QQ agents, inactivating QS signals by bromination. Catalytic bromination of 3-oxo-C12-AHL a QS signaling compound used by Pseudomonas aeruginosa, was detected in the presence of CeO2 NCs, bromide ions, and hydrogen peroxide. Brominated acyl-homoserine lactones (AHLs) no longer act as QS signals but were not detected in the bacterial cultures. Externally added brominated AHLs also disappeared in P. aeruginosa cultures within minutes of their addition, indicating that they are rapidly degraded by the bacteria. Moreover, we detected the catalytic bromination of 2-heptyl-1-hydroxyquinolin-4(1H)-one (HQNO), a multifunctional non-AHL QS signal from P. aeruginosa with antibacterial and algicidal properties controlling the expression of many virulence genes. Brominated HQNO was not degraded by the bacteria in vivo. The repression of the Pseudomonas quinolone signal (PQS) production and biofilm formation in P. aeruginosa through the catalytic formation of Br-HQNO on surfaces with coatings containing CeO2 enzyme mimics validates the non-toxic strategy for the development of anti-infectives.
Collapse
Affiliation(s)
- Eva Pütz
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Athanasios Gazanis
- Mikrobiologie und Biotechnologie, Institut für Molekulare PhysiologieJohannes Gutenberg-Universität Mainz, Biozentrum II, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Nils Gert Keltsch
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Olga Jegel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Felix Pfitzner
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Ralf Heermann
- Mikrobiologie und Biotechnologie, Institut für Molekulare PhysiologieJohannes Gutenberg-Universität Mainz, Biozentrum II, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Thomas A Ternes
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Wolfgang Tremel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
15
|
Keim KC, George IK, Reynolds L, Smith AC. The Clinical Significance of Staphylococcus aureus Small Colony Variants. Lab Med 2022; 54:227-234. [PMID: 36226897 DOI: 10.1093/labmed/lmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
A burdensome, atypical phenotype of Staphylococcus aureus (SA) called S aureus small colony variant (SA-SCV) has been identified, which is induced as a result of a combination of environmental stressors, including polymicrobial interactions. The SA-SCVs exhibit altered phenotypes as a result of metabolic dormancy caused by electron transport deficiency, leading to increased biofilm production and alterations to antimicrobial susceptibility. The SA-SCVs typically exhibit altered colony morphology and biochemical reactions compared with wild-type SA, making them difficult to detect via routine diagnostics. The SA-SCVs have been found to contribute to chronic or recurrent infections, including skin and soft-tissue infections, foreign-body associated infection, cystic fibrosis, and sepsis. There is evidence that SA-SCVs contribute to patient morbidity and mortality as a result of diagnostic difficulties and limited treatment options. New detection methods may need to be developed that can be incorporated into routine diagnostics, which would allow for better assessment of specimens and introduce new considerations for treatment.
Collapse
Affiliation(s)
- Klara C Keim
- Department of Immunology and Microbiology, School of Medicine, Anschutz Medical Campus, University of Colorado , Aurora, CO , USA
| | - Isaiah K George
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| | - Landrye Reynolds
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| | - Allie C Smith
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| |
Collapse
|
16
|
Investigation of the Mechanism and Chemistry Underlying Staphylococcus aureus ' Ability to Inhibit Pseudomonas aeruginosa Growth In Vitro. J Bacteriol 2022; 204:e0017422. [PMID: 36218351 DOI: 10.1128/jb.00174-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa inhibits or eradicates Staphylococcus aureus in most in vitro settings. Nonetheless, P. aeruginosa and S. aureus are commonly isolated from chronically infected, nonhealing wounds and lungs of people with cystic fibrosis (CF). Therefore, we hypothesized that S. aureus could protect itself from P. aeruginosa through glucose-derived metabolites, such as small organic acids, preventing it from being eradicated. This in vitro study demonstrated that S. aureus populations, in the presence of glucose, secrete one or more substances that efficiently eradicate P. aeruginosa in a concentration-dependent manner. These substances had a molecular mass lower than three kDa, were hydrophilic, heat- and proteinase-resistant, and demonstrated a pH-dependent effect. Nuclear magnetic resonance analysis identified acetoin, acetic acid, and oligopeptides or cyclic peptides in glucose-grown S. aureus supernatants. All the tested wild-type and clinical S. aureus strain inhibited P. aeruginosa growth. Thus, we proposed a model in which a cocktail of these compounds, produced by established S. aureus populations in glucose presence, facilitated these two species' coexistence in chronic infections. IMPORTANCE Chronic infections affect a growing part of the population and are associated with high societal and personal costs. Multiple bacterial species are often present in these infections, and multispecies infections are considered more severe than single-species infections. Staphylococcus aureus and Pseudomonas aeruginosa often coexist in chronic infections. However, the interactions between these two species and their coexistence in chronic infections are not fully understood. By exploring in vitro interactions, we found a novel S. aureus-mediated inhibition of P. aeruginosa, and we suggested a model of the coexistence of the two species in chronic infections. With this study, we enhanced our understanding of the pathogenesis of chronic multispecies infections, which is crucial to paving the way for developing improved treatment strategies.
Collapse
|
17
|
Magalhães AP, França A, Pereira MO, Cerca N. Unveiling Co-Infection in Cystic Fibrosis Airways: Transcriptomic Analysis of Pseudomonas aeruginosa and Staphylococcus aureus Dual-Species Biofilms. Front Genet 2022; 13:883199. [PMID: 35873457 PMCID: PMC9298864 DOI: 10.3389/fgene.2022.883199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andreia Patrícia Magalhães
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,LABBELS-Associate Laboratory, Braga, Portugal
| | - Angela França
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,LABBELS-Associate Laboratory, Braga, Portugal
| | - Maria Olívia Pereira
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,LABBELS-Associate Laboratory, Braga, Portugal
| | - Nuno Cerca
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,LABBELS-Associate Laboratory, Braga, Portugal
| |
Collapse
|
18
|
Strain-specific interspecies interactions between co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization. Sci Rep 2022; 12:3374. [PMID: 35233050 PMCID: PMC8888623 DOI: 10.1038/s41598-022-07018-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/09/2022] [Indexed: 01/20/2023] Open
Abstract
Dual species interactions in co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization were examined. The genetic and phenotypic diversity between the isolates was high making the interactions detected strain-specific. Despite this, and the clinical origin of the strains, some interactions were common between some co-isolated pairs. For most pairs, P. aeruginosa exoproducts affected biofilm formation and reduced growth in vitro in its S. aureus counterpart. Conversely, S. aureus did not impair biofilm formation and stimulated swarming motility in P. aeruginosa. Co-culture in a medium that mimics respiratory mucus promoted coexistence and favored mixed microcolony formation within biofilms. Under these conditions, key genes controlled by quorum sensing were differentially regulated in both species in an isolate-dependent manner. Finally, co-infection in the acute infection model in Galleria mellonella larvae showed an additive effect only in the co-isolated pair in which P. aeruginosa affected less S. aureus growth. This work contributes to understanding the complex interspecies interactions between P. aeruginosa and S. aureus by studying strains isolated during acute infection.
Collapse
|
19
|
Biswas L, Götz F. Molecular Mechanisms of Staphylococcus and Pseudomonas Interactions in Cystic Fibrosis. Front Cell Infect Microbiol 2022; 11:824042. [PMID: 35071057 PMCID: PMC8770549 DOI: 10.3389/fcimb.2021.824042] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/16/2021] [Indexed: 11/15/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder that is characterized by recurrent and chronic infections of the lung predominantly by the opportunistic pathogens, Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. While S. aureus is the main colonizing bacteria of the CF lungs during infancy and early childhood, its incidence declines thereafter and infections by P. aeruginosa become more prominent with increasing age. The competitive and cooperative interactions exhibited by these two pathogens influence their survival, antibiotic susceptibility, persistence and, consequently the disease progression. For instance, P. aeruginosa secretes small respiratory inhibitors like hydrogen cyanide, pyocyanin and quinoline N-oxides that block the electron transport pathway and suppress the growth of S. aureus. However, S. aureus survives this respiratory attack by adapting to respiration-defective small colony variant (SCV) phenotype. SCVs cause persistent and recurrent infections and are also resistant to antibiotics, especially aminoglycosides, antifolate antibiotics, and to host antimicrobial peptides such as LL-37, human β-defensin (HBD) 2 and HBD3; and lactoferricin B. The interaction between P. aeruginosa and S. aureus is multifaceted. In mucoid P. aeruginosa strains, siderophores and rhamnolipids are downregulated thus enhancing the survival of S. aureus. Conversely, protein A from S. aureus inhibits P. aeruginosa biofilm formation while protecting both P. aeruginosa and S. aureus from phagocytosis by neutrophils. This review attempts to summarize the current understanding of the molecular mechanisms that drive the competitive and cooperative interactions between S. aureus and P. aeruginosa in the CF lungs that could influence the disease outcome.
Collapse
Affiliation(s)
- Lalitha Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Mixed Populations and Co-Infection: Pseudomonas aeruginosa and Staphylococcus aureus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:397-424. [DOI: 10.1007/978-3-031-08491-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Michalet S, Allard PM, Commun C, Ngoc VTN, Nouwade K, Gioia B, Dijoux-Franca MG, Wolfender JL, Doléans-Jordheim A. Alkyl-Quinolones derivatives as potential biomarkers for Pseudomonas aeruginosa infection chronicity in Cystic Fibrosis. Sci Rep 2021; 11:20722. [PMID: 34671079 PMCID: PMC8528811 DOI: 10.1038/s41598-021-99467-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 09/17/2021] [Indexed: 01/20/2023] Open
Abstract
In Cystic Fibrosis (CF), a rapid and standardized definition of chronic infection would allow a better management of Pseudomonas aeruginosa (Pa) infections, as well as a quick grouping of patients during clinical trials allowing better comparisons between studies. With this purpose, we compared the metabolic profiles of 44 in vitro cultures of Pa strains isolated from CF patients at different stages of infection in order to identify metabolites differentially synthetized according to these clinical stages. Compounds produced and secreted by each strain in the supernatant of a liquid culture were analysed by metabolomic approaches (UHPLC-DAD-ESI/QTOF, UV and UPLC-Orbitrap, MS). Multivariate analyses showed that first colonization strains could be differentiated from chronic colonization ones, by producing notably more Alkyl-Quinolones (AQs) derivatives. Especially, five AQs were discriminant: HQC5, HQNOC7, HQNOC7:1, db-PQS C9 and HQNOC9:1. However, the production of HHQ was equivalent between strain types. The HHQ/HQNOC9:1 ratio was then found to be significantly different between chronic and primo-colonising strains by using both UV (p = 0.003) and HRMS data (p = 1.5 × 10-5). Our study suggests that some AQ derivatives can be used as biomarkers for an improved management of CF patients as well as a better definition of the clinical stages of Pa infection.
Collapse
Affiliation(s)
- Serge Michalet
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Environmental Multiresistance and Bacterial Efflux, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France
| | - Pierre-Marie Allard
- grid.8591.50000 0001 2322 4988School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneve 4, Switzerland
| | - Carine Commun
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Bacterial Opportunistic Pathogens and Environment, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France
| | - Van Thanh Nguyen Ngoc
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Environmental Multiresistance and Bacterial Efflux, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France
| | - Kodjo Nouwade
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Environmental Multiresistance and Bacterial Efflux, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France
| | - Bruna Gioia
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,EA 4446, Molécules bioactives et chimie médicinale (B2MC), ISPB-Faculté de Pharmacie, Lyon, France
| | - Marie-Geneviève Dijoux-Franca
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Environmental Multiresistance and Bacterial Efflux, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France
| | - Jean-Luc Wolfender
- grid.8591.50000 0001 2322 4988School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneve 4, Switzerland
| | - Anne Doléans-Jordheim
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Lyon, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Lyon, France ,grid.7849.20000 0001 2150 7757Research Group on Bacterial Opportunistic Pathogens and Environment, UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, ISPB, Villeurbanne, France ,grid.413852.90000 0001 2163 3825Laboratoire de Bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
22
|
Magalhães AP, Grainha T, Sousa AM, França Â, Cerca N, Pereira MO. Viable but non-cultivable state: a strategy for Staphylococcus aureus survivable in dual-species biofilms with Pseudomonas aeruginosa? Environ Microbiol 2021; 23:5639-5649. [PMID: 34423890 DOI: 10.1111/1462-2920.15734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent respiratory pathogens in cystic fibrosis patients. Both organisms often cause chronic and recalcitrant infections, in large part due to their ability to form biofilms, being these mixed-species infections correlated with poor clinical outcomes. In this study, the hypothesis that S. aureus adopts phenotypes allowing its coexistence with P. aeruginosa during biofilm growth was put forward. We noticed that S. aureus undergoes a viable but non-cultivable (VBNC) state in the dominated P. aeruginosa dual-species consortia, whatsoever the strains used to form the biofilms. Moreover, an increased expression of genes associated with S. aureus virulence was detected suggesting that the phenotypic switching to VBNC state might account for S. aureus pathogenicity and, in turn, influence the clinical outcome of the mixed-species infection. Thus, P. aeruginosa seems to induce both phenotypic and transcriptomic changes in S. aureus, helping its survival and coexistence in the dual-species biofilms. Overall, our findings illustrate how interspecies interactions can modulate bacterial virulence in vitro, contributing to a better understanding of the behaviour of P. aeruginosa-S. aureus dual-species biofilms.
Collapse
Affiliation(s)
- Andreia Patrícia Magalhães
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Tânia Grainha
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Ângela França
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Maria Olívia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
23
|
Warrier A, Satyamoorthy K, Murali TS. Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiol 2021; 16:1003-1021. [PMID: 34414776 DOI: 10.2217/fmb-2020-0301] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic polymicrobial wound infections are often characterized by the presence of bacterial biofilms. They show considerable structural and functional heterogeneity, which influences the choice of antimicrobial therapy and wound healing dynamics. The hallmarks of biofilm-associated bacterial infections include elevated antibiotic resistance and extreme pathogenicity. Biofilm helps bacteria to evade the host defense mechanisms and persist longer in the host. Quorum-sensing (QS)-mediated cell signaling primarily regulates biofilm formation in chronic infections and plays a major role in eliciting virulence. This review focuses on the QS mechanisms of two major bacterial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa and explains how they interact in the wound microenvironment to regulate biofilm development and virulence. The review also provides an insight into the treatment modalities aimed at eradicating polymicrobial biofilms. This information will help us develop better diagnostic modalities and devise effective treatment regimens to successfully manage and overcome severe life-threatening bacterial infections.
Collapse
Affiliation(s)
- Anjali Warrier
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Manipal Center for Infectious Diseases (MAC ID), Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
24
|
Monteiro R, Magalhães AP, Pereira MO, Sousa AM. Long-term coexistence of Pseudomonas aeruginosa and Staphylococcus aureus using an in vitro cystic fibrosis model. Future Microbiol 2021; 16:879-893. [PMID: 34319132 DOI: 10.2217/fmb-2021-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role of pre-established Staphylococcus aureus on Pseudomonas aeruginosa adaptation and antibiotic tolerance. Materials & methods: Bacteria were cultured mimicking the sequential pattern of lung colonization and exposure to ciprofloxacin. Results: In the absence of ciprofloxacin exposure, S. aureus and P. aeruginosa coexisted supported by the physicochemical characteristics of the artificial sputum medium. S. aureus had no role in P. aeruginosa tolerance against ciprofloxacin and did not select P. aeruginosa small-colony variants during antibiotic treatment. rhlR and psqE were downregulated after the contact with S. aureus indicating that P. aeruginosa attenuated its virulence potential. Conclusion: P. aeruginosa and S. aureus can cohabit in cystic fibrosis airway environment for long-term without significant impact on P. aeruginosa adaptation and antibiotic tolerance.
Collapse
Affiliation(s)
- Rosana Monteiro
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Patrícia Magalhães
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
25
|
Reece E, Bettio PHDA, Renwick J. Polymicrobial Interactions in the Cystic Fibrosis Airway Microbiome Impact the Antimicrobial Susceptibility of Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10070827. [PMID: 34356747 PMCID: PMC8300716 DOI: 10.3390/antibiotics10070827] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most dominant pathogens in cystic fibrosis (CF) airway disease and contributes to significant inflammation, airway damage, and poorer disease outcomes. The CF airway is now known to be host to a complex community of microorganisms, and polymicrobial interactions have been shown to play an important role in shaping P. aeruginosa pathogenicity and resistance. P. aeruginosa can cause chronic infections that once established are almost impossible to eradicate with antibiotics. CF patients that develop chronic P. aeruginosa infection have poorer lung function, higher morbidity, and a reduced life expectancy. P. aeruginosa adapts to the CF airway and quickly develops resistance to several antibiotics. A perplexing phenomenon is the disparity between in vitro antimicrobial sensitivity testing and clinical response. Considering the CF airway is host to a diverse community of microorganisms or 'microbiome' and that these microorganisms are known to interact, the antimicrobial resistance and progression of P. aeruginosa infection is likely influenced by these microbial relationships. This review combines the literature to date on interactions between P. aeruginosa and other airway microorganisms and the influence of these interactions on P. aeruginosa tolerance to antimicrobials.
Collapse
|
26
|
Association of Diverse Staphylococcus aureus Populations with Pseudomonas aeruginosa Coinfection and Inflammation in Cystic Fibrosis Airway Infection. mSphere 2021; 6:e0035821. [PMID: 34160233 PMCID: PMC8265651 DOI: 10.1128/msphere.00358-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is one of the most common pathogens isolated from the airways of cystic fibrosis (CF) patients and often persists for extended periods. There is limited knowledge about the diversity of S. aureus in CF. We hypothesized that increased diversity of S. aureus would impact CF lung disease. Therefore, we conducted a 1-year observational prospective study with 14 patients with long-term S. aureus infection. From every sputum, 40 S. aureus isolates were chosen and characterized in terms of phenotypic appearance (size, hemolysis, mucoidy, and pigmentation), important virulence traits such as nuclease activity, biofilm formation, and molecular typing by spa sequence typing. Data about coinfection with Pseudomonas aeruginosa and clinical parameters such as lung function, exacerbation, and inflammatory markers in blood (C-reactive protein [CRP], interleukin 6 [IL-6], and S100A8/9 [calprotectin]) were collected. From 58 visits of 14 patients, 2,319 S. aureus isolates were distinguished into 32 phenotypes (PTs) and 50 spa types. The Simpson diversity index (SDI) was used to calculate the phenotypic and genotypic diversity, revealing a high diversity of PTs ranging from 0.19 to 0.87 among patients, while the diversity of spa types of isolates was less pronounced. The SDI of PTs was positively associated with P. aeruginosa coinfection and inflammatory parameters, with IL-6 being the most sensitive parameter. Also, coinfection with P. aeruginosa was associated with mucoid S. aureus and S. aureus with high nuclease activity. Our analyses showed that in CF patients with long-term S. aureus airway infection, a highly diverse and dynamic S. aureus population was present and associated with P. aeruginosa coinfection and inflammation. IMPORTANCE Staphylococcus aureus can persist for extended periods in the airways of people with cystic fibrosis (CF) in spite of antibiotic therapy and high numbers of neutrophils, which fail to eradicate this pathogen. Therefore, S. aureus needs to adapt to this hostile niche. There is only limited knowledge about the diversity of S. aureus in respiratory specimens. We conducted a 1-year prospective study with 14 patients with long-term S. aureus infection and investigated 40 S. aureus isolates from every sputum in terms of phenotypic appearance, nuclease activity, biofilm formation, and molecular typing. Data about coinfection with Pseudomonas aeruginosa and clinical parameters such as lung function, exacerbation, and inflammatory markers in blood were collected. Thirty-two phenotypes (PTs) and 50 spa types were distinguished. Our analyses revealed that in CF patients with long-term S. aureus airway infection, a highly diverse and dynamic S. aureus population was associated with P. aeruginosa coinfection and inflammation.
Collapse
|
27
|
Minkiewicz-Zochniak A, Jarzynka S, Iwańska A, Strom K, Iwańczyk B, Bartel M, Mazur M, Pietruczuk-Padzik A, Konieczna M, Augustynowicz-Kopeć E, Olędzka G. Biofilm Formation on Dental Implant Biomaterials by Staphylococcus aureus Strains Isolated from Patients with Cystic Fibrosis. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2030. [PMID: 33920743 PMCID: PMC8073800 DOI: 10.3390/ma14082030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Implants made of ceramic and metallic elements, which are used in dentistry, may either promote or hinder the colonization and adhesion of bacteria to the surface of the biomaterial to varying degrees. The increased interest in the use of dental implants, especially in patients with chronic systemic diseases such as cystic fibrosis (CF), is caused by an increase in disease complications. In this study, we evaluated the differences in the in vitro biofilm formation on the surface of biomaterials commonly used in dentistry (Ti-6Al-4V, cobalt-chromium alloy (CoCr), and zirconia) by Staphylococcus aureus isolated from patients with CF. We demonstrated that S. aureus adherence and growth depends on the type of material used and its surface topography. Weaker bacterial biofilm formation was observed on zirconia surfaces compared to titanium and cobalt-chromium alloy surfaces. Moreover, scanning electron microscopy showed clear differences in bacterial aggregation, depending on the type of biomaterial used. Over the past several decades, S. aureus strains have developed several mechanisms of resistance, especially in patients on chronic antibiotic treatment such as CF. Therefore, the selection of an appropriate implant biomaterial with limited microorganism adhesion characteristics can affect the occurrence and progression of oral cavity infections, particularly in patients with chronic systemic diseases.
Collapse
Affiliation(s)
- Anna Minkiewicz-Zochniak
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Agnieszka Iwańska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.I.); (E.A.-K.)
| | - Kamila Strom
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Bartłomiej Iwańczyk
- The Chair and Department of Oral Surgery, Medical University of Lublin, Karmelicka 7, 20-081 Lublin, Poland;
| | - Marta Bartel
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.B.); (M.M.)
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.B.); (M.M.)
| | - Anna Pietruczuk-Padzik
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Małgorzata Konieczna
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.I.); (E.A.-K.)
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| |
Collapse
|
28
|
A Pseudomonas aeruginosa Antimicrobial Affects the Biogeography but Not Fitness of Staphylococcus aureus during Coculture. mBio 2021; 12:mBio.00047-21. [PMID: 33785630 PMCID: PMC8092195 DOI: 10.1128/mbio.00047-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many human infections result from the action of multispecies bacterial communities. Within these communities, bacteria have been proposed to directly interact via physical and chemical means, resulting in increased disease and antimicrobial tolerance. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common coinfecting bacteria in human infections, including the cystic fibrosis (CF) lung. There is emerging evidence that coinfection with these microbes enhances disease severity and antimicrobial tolerance through direct interactions. However, one of the challenges to studying microbial interactions relevant to human infection is the lack of experimental models with the versatility to investigate complex interaction dynamics while maintaining biological relevance. Here, we developed a model based on an in vitro medium that mimics human CF lung secretions (synthetic CF sputum medium [SCFM2]) and allows time-resolved assessment of fitness and community spatial structure at the micrometer scale. Our results reveal that P. aeruginosa and S. aureus coexist as spatially structured communities in SCFM2 under static growth conditions, with S. aureus enriched at a distance of 3.5 μm from P. aeruginosa. Multispecies aggregates were rare, and aggregate (biofilm) sizes resembled those in human CF sputum. Elimination of P. aeruginosa’s ability to produce the antistaphylococcal small molecule HQNO (2-heptyl-4-hydroxyquinoline N-oxide) had no effect on bacterial fitness but altered the spatial structure of the community by increasing the distance of S. aureus from P. aeruginosa to 7.6 μm. Lastly, we show that coculture with P. aeruginosa sensitizes S. aureus to killing by the antibiotic tobramycin compared to monoculture growth despite HQNO enhancing tolerance during coculture. Our findings reveal that SCFM2 is a powerful model for studying P. aeruginosa and S. aureus and that HQNO alters S. aureus biogeography and antibiotic susceptibility without affecting fitness.
Collapse
|
29
|
Camus L, Briaud P, Vandenesch F, Moreau K. How Bacterial Adaptation to Cystic Fibrosis Environment Shapes Interactions Between Pseudomonas aeruginosa and Staphylococcus aureus. Front Microbiol 2021; 12:617784. [PMID: 33746915 PMCID: PMC7966511 DOI: 10.3389/fmicb.2021.617784] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are the two most prevalent bacteria species in the lungs of cystic fibrosis (CF) patients and are associated with poor clinical outcomes. Co-infection by the two species is a frequent situation that promotes their interaction. The ability of P. aeruginosa to outperform S. aureus has been widely described, and this competitive interaction was, for a long time, the only one considered. More recently, several studies have described that the two species are able to coexist. This change in relationship is linked to the evolution of bacterial strains in the lungs. This review attempts to decipher how bacterial adaptation to the CF environment can induce a change in the type of interaction and promote coexisting interaction between P. aeruginosa and S. aureus. The impact of coexistence on the establishment and maintenance of a chronic infection will also be presented, by considering the latest research on the subject.
Collapse
Affiliation(s)
- Laura Camus
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - Paul Briaud
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| |
Collapse
|
30
|
Ramos AF, Woods DF, Shanahan R, Cano R, McGlacken GP, Serra C, O'Gara F, Reen FJ. A structure-function analysis of interspecies antagonism by the 2-heptyl-4-alkyl-quinolone signal molecule from Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2020; 166:169-179. [PMID: 31860435 DOI: 10.1099/mic.0.000876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the alkyl-quinolone molecular framework has already provided a rich source of bioactivity for the development of novel anti-infective compounds. Based on the quorum-sensing signalling molecules 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS) from the nosocomial pathogen Pseudomonas aeruginosa, modifications have been developed with markedly enhanced anti-biofilm bioactivity towards important fungal and bacterial pathogens, including Candida albicans and Aspergillus fumigatus. Here we show that antibacterial activity of HHQ against Vibrionaceae is species-specific and it requires an exquisite level of structural fidelity within the alkyl-quinolone molecular framework. Antibacterial activity was demonstrated against the serious human pathogens Vibrio vulnificus and Vibrio cholerae as well as a panel of bioluminescent squid symbiont Allivibrio fischeri isolates. In contrast, Vibrio parahaemolyticus growth and biofilm formation was unaffected in the presence of HHQ and all the structural variants tested. In general, modification to almost all of the molecule except the alkyl-chain end, led to loss of activity. This suggests that the bacteriostatic activity of HHQ requires the concerted action of the entire framework components. The only exception to this pattern was deuteration of HHQ at the C3 position. HHQ modified with a terminal alkene at the quinolone alkyl chain retained bacteriostatic activity and was also found to activate PqsR signalling comparable to the native agonist. The data from this integrated analysis provides novel insights into the structural flexibility underpinning the signalling activity of the complex alkyl-quinolone molecular communication system.
Collapse
Affiliation(s)
- Ana F Ramos
- CIIMAR, -Centro Interdisciplinar de Investigação Marinha e Ambiental University of Porto, Porto Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Rachel Shanahan
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Rafael Cano
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Gerard P McGlacken
- SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland.,School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Claudia Serra
- CIIMAR, -Centro Interdisciplinar de Investigação Marinha e Ambiental University of Porto, Porto Matosinhos, Portugal
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Telethon Kids Institute, Perth Children's Hospital, PerthWA 6009, Australia.,SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland.,School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, PerthWA, Australia
| | - F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Burkholderia thailandensis Methylated Hydroxyalkylquinolines: Biosynthesis and Antimicrobial Activity in Cocultures. Appl Environ Microbiol 2020; 86:AEM.01452-20. [PMID: 33008823 DOI: 10.1128/aem.01452-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023] Open
Abstract
The bacterium Burkholderia thailandensis produces an arsenal of secondary metabolites that have diverse structures and roles in the ecology of this soil-dwelling bacterium. In coculture experiments, B. thailandensis strain E264 secretes an antimicrobial that nearly eliminates another soil bacterium, Bacillus subtilis strain 168. To identify the antimicrobial, we used a transposon mutagenesis approach. This screen identified antimicrobial-defective mutants with insertions in the hmqA, hmqC, and hmqF genes involved in biosynthesis of a family of 2-alkyl-4(1H)-quinolones called 4-hydroxy-3-methyl-2-alkenylquinolines (HMAQs), which are closely related to the Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs). Insertions also occurred in the previously uncharacterized gene BTH_II1576 ("hmqL"). The results confirm that BTH_II1576 is involved in generating N-oxide derivatives of HMAQs (HMAQ-NOs). Synthetic HMAQ-NO is active against B. subtilis 168, showing ∼50-fold more activity than HMAQ. Both the methyl group and the length of the carbon side chain account for the high activity of HMAQ-NO. The results provide new information on the biosynthesis and activities of HMAQs and reveal new insight into how these molecules might be important for the ecology of B. thailandensis IMPORTANCE The soil bacterium Burkholderia thailandensis produces 2-alkyl-4(1H)-quinolones that are mostly methylated 4-hydroxyalkenylquinolines, a family of relatively unstudied metabolites similar to molecules also synthesized by Pseudomonas aeruginosa Several of the methylated 4-hydroxyalkenylquinolines have antimicrobial activity against other species. We show that Bacillus subtilis strain 168 is particularly susceptible to N-oxidated methylalkenylquinolines (HMAQ-NOs). We confirmed that HMAQ-NO biosynthesis requires the previously unstudied protein HmqL. These results provide new information about the biology of 2-alkyl-4(1H)-quinolones, particularly the methylated 4-hydroxyalkenylquinolines, which are unique to B. thailandensis This study also has importance for understanding B. thailandensis secondary metabolites and has implications for potential therapeutic development.
Collapse
|
32
|
Trizna EY, Yarullina MN, Baidamshina DR, Mironova AV, Akhatova FS, Rozhina EV, Fakhrullin RF, Khabibrakhmanova AM, Kurbangalieva AR, Bogachev MI, Kayumov AR. Bidirectional alterations in antibiotics susceptibility in Staphylococcus aureus-Pseudomonas aeruginosa dual-species biofilm. Sci Rep 2020; 10:14849. [PMID: 32908166 PMCID: PMC7481796 DOI: 10.1038/s41598-020-71834-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
In mixed infections, the bacterial susceptibility differs significantly compared to monocultures of bacteria, and generally the concentrations of antibiotics required for the treatment increases drastically. For S. aureus and P. aeruginosa dual species biofilms, it has been numerously reported that P. aeruginosa decreases S. aureus susceptibility to a broad range of antibiotics, including beta-lactams, glycopeptides, aminoglycosides, macrolides, while sensitizes to quinolones via secretion of various metabolites. Here we show that S. aureus also modulates the susceptibility of P. aeruginosa to antibiotics in mixed cultures. Thus, S. aureus-P. aeruginosa consortium was characterized by tenfold increase in susceptibility to ciprofloxacin and aminoglycosides compared to monocultures. The same effect could be also achieved by the addition of cell-free culture of S. aureus to P. aeruginosa biofilm. Moreover, similar increase in antibiotics efficacy could be observed following addition of S. aureus suspension to the P. aeruginosa mature biofilm, compared to P. aeruginosa monoculture, and vice versa. These findings open promising perspectives to increase the antimicrobial treatment efficacy of the wounds infected with nosocomial pathogens by the transplantation of the skin residential microflora.
Collapse
Affiliation(s)
- Elena Y Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Maria N Yarullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Diana R Baidamshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Anna V Mironova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Farida S Akhatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Elvira V Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Rawil F Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Alsu M Khabibrakhmanova
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Almira R Kurbangalieva
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Mikhail I Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, St. Petersburg, Russian Federation
| | - Airat R Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation.
| |
Collapse
|
33
|
Multiple Compounds Secreted by Pseudomonas aeruginosa Increase the Tolerance of Staphylococcus aureus to the Antimicrobial Metals Copper and Silver. mSystems 2020; 5:5/5/e00746-20. [PMID: 32900873 PMCID: PMC7483513 DOI: 10.1128/msystems.00746-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alternative antimicrobials, such as metals, are one of the methods currently used to help mitigate antibiotic resistance. Metal-based antimicrobials such as copper and silver are used currently both to prevent and to treat infections. Although the efficacy of these antimicrobials has been determined in single-species culture, bacteria rarely exist in a single-species group in the environment. Both Pseudomonas aeruginosa and Staphylococcus aureus are often found associated with each other in severe chronic infections displaying increased virulence and antibiotic tolerance. In this study, we determined that multiple compounds secreted by P. aeruginosa are able to increase the tolerance of S. aureus to both copper and silver. This work demonstrates the expansive chemical communication occurring in polymicrobial infections between bacteria. Metal-based antimicrobials have been used for thousands of years to treat and prevent bacterial infections. Currently, both silver and copper are used in health care and industry to prevent and treat the spread of harmful bacteria. However, like most antimicrobial agents, their efficacy against polymicrobial infections has not been fully elucidated. Coinfection with Pseudomonas aeruginosa and Staphylococcus aureus and the resulting interactions have been implicated in higher virulence, antibiotic resistance, and increased chronic infections. Here, the influence of secreted compounds from P. aeruginosa on metal antimicrobial tolerance in S. aureus was examined. This study determined that multiple compounds from P. aeruginosa increase the tolerance of S. aureus to copper and/or silver when cultured in simulated wound fluid. The presence of these secreted compounds from P. aeruginosa during exposure of S. aureus to copper or silver increased the MIC from 500 μM to 2,000 μM for copper and 16 to 63 μM for silver. The contribution of specific compounds to S. aureus tolerance was determined using gene deletion and disruption mutants, and metabolite analysis. Compounds identified as potential contributors were then individually added to S. aureus during metal exposure. Copper tolerance in S. aureus was found to be increased by amino acids and dihydroaeruginoate (Dha) secreted by P. aeruginosa. The silver tolerance provided to S. aureus was influenced only by two amino acids, serine and threonine, as well as the Pseudomonas quinolone signal (PQS) molecules from P. aeruginosa. IMPORTANCE Alternative antimicrobials, such as metals, are one of the methods currently used to help mitigate antibiotic resistance. Metal-based antimicrobials such as copper and silver are used currently both to prevent and to treat infections. Although the efficacy of these antimicrobials has been determined in single-species culture, bacteria rarely exist in a single-species group in the environment. Both Pseudomonas aeruginosa and Staphylococcus aureus are often found associated with each other in severe chronic infections displaying increased virulence and antibiotic tolerance. In this study, we determined that multiple compounds secreted by P. aeruginosa are able to increase the tolerance of S. aureus to both copper and silver. This work demonstrates the expansive chemical communication occurring in polymicrobial infections between bacteria.
Collapse
|
34
|
Ramadan M, Solyman S, Yones M, Abdallah Y, Halaby H, Hanora A. Skin Microbiome Differences in Atopic Dermatitis and Healthy Controls in Egyptian Children and Adults, and Association with Serum Immunoglobulin E. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:247-260. [PMID: 31100040 DOI: 10.1089/omi.2019.0011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis (AD) is a complex, multifactorial, chronic pruritic inflammatory skin disease. We report the first microbiome study and new insights on the relationship between skin microbiota variation and AD susceptibility in a population sample from Egypt. We characterized the skin microbiome in 75 patients with AD and 20 healthy controls using Illumina MiSeq sequencing of 16S rRNA gene. Overall, bacterial diversity of skin microbiome in patients with AD was less than those of the healthy subjects. Genus level analysis revealed significant abundance variations by age, disease severity, locality, or immune response. Among these genera, Streptococcus, Cutibacterium, and Corynebacterium appeared to be specific signatures for AD in children, adolescents, and adults, respectively, while Staphylococcus was noted as a potential biomarker candidate for AD. Additionally, functional potential of metagenomes shifted the overall metabolic pathways to participate in the exacerbation of disease. Total immunoglobulin E (IgE) levels were positively correlated with relative enrichment of certain Staphylococcus aureus subspecies. Finally, AD-related differences in skin bacterial diversity appeared to be in part linked to the serum IgE level. These new observations attest to the promise of microbiome science and metagenomic analysis in AD specifically, and clinical dermatology broadly.
Collapse
Affiliation(s)
- Mohammed Ramadan
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Samar Solyman
- 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismaillia, Egypt
| | - Mamdouh Yones
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Yasser Abdallah
- 3 Department of Dermatology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Hamada Halaby
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Amro Hanora
- 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismaillia, Egypt
| |
Collapse
|
35
|
Lee J, Zilm PS, Kidd SP. Novel Research Models for Staphylococcus aureus Small Colony Variants (SCV) Development: Co-pathogenesis and Growth Rate. Front Microbiol 2020; 11:321. [PMID: 32184775 PMCID: PMC7058586 DOI: 10.3389/fmicb.2020.00321] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus remains a great burden on the healthcare system. Despite prescribed treatments often seemingly to be successful, S. aureus can survive and cause a relapsing infection which cannot be cleared. These infections are in part due to quasi-dormant sub-population which is tolerant to antibiotics and able to evade the host immune response. These include Small Colony Variants (SCVs). Because SCVs readily revert to non-SCV cell types under laboratory conditions, the characterization of SCVs has been problematic. This mini-review covers the phenotypic and genetic changes in stable SCVs including the selection of SCVs by and interactions with other bacterial species.
Collapse
Affiliation(s)
- James Lee
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia.,Research Centre for Infectious Diseases, Adelaide, SA, Australia.,Australian Centre for Antimicrobial Resistance Ecology, Adelaide, SA, Australia
| | - Peter S Zilm
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia.,Research Centre for Infectious Diseases, Adelaide, SA, Australia.,Australian Centre for Antimicrobial Resistance Ecology, Adelaide, SA, Australia
| |
Collapse
|
36
|
Rieger B, Thierbach S, Ommer M, Dienhart FSV, Fetzner S, Busch KB. Pseudomonas Quinolone Signal molecule PQS behaves like a B Class inhibitor at the I Q site of mitochondrial complex I. FASEB Bioadv 2020; 2:188-202. [PMID: 32161908 PMCID: PMC7059627 DOI: 10.1096/fba.2019-00084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 10/17/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram‐negative bacterium of the proteobacteria class, and one of the most common causes of nosocomial infections. For example, it causes chronic pneumonia in cystic fibrosis patients. Patient sputum contains 2‐heptyl‐4‐hydroxyquinoline N‐oxide [HQNO] and Pseudomonas quorum sensing molecules such as the Pseudomonas quinolone signal [PQS]. It is known that HQNO inhibits the enzyme activity of mitochondrial and bacterial complex III at the Qi (quinone reduction) site, but the target of PQS is not known. In this work we have shown that PQS has a negative effect on mitochondrial respiration in HeLa and A549 cells. It specifically inhibits the complex I of the respiratory chain. In vitro analyses showed a partially competitive inhibition with respect to ubiquinone at the IQ site. In competing studies with Rotenone, PQS suppressed the ROS‐promoting effect of Rotenone, which is typical for a B‐type inhibitor. Prolonged incubation with PQS also had an effect on the activity of complex III.
Collapse
Affiliation(s)
- Bettina Rieger
- Institute of Molecular Cell Biology Faculty of Biology University of Muenster Muenster Germany
| | - Sven Thierbach
- Institute for Molecular Microbiology and Biotechnology Faculty of Biology University of Muenster Muenster Germany
| | - Miriam Ommer
- Institute of Molecular Cell Biology Faculty of Biology University of Muenster Muenster Germany
| | - Finja S V Dienhart
- Institute of Molecular Cell Biology Faculty of Biology University of Muenster Muenster Germany
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology Faculty of Biology University of Muenster Muenster Germany
| | - Karin B Busch
- Institute of Molecular Cell Biology Faculty of Biology University of Muenster Muenster Germany
| |
Collapse
|
37
|
Millette G, Langlois JP, Brouillette E, Frost EH, Cantin AM, Malouin F. Despite Antagonism in vitro, Pseudomonas aeruginosa Enhances Staphylococcus aureus Colonization in a Murine Lung Infection Model. Front Microbiol 2019; 10:2880. [PMID: 31921058 PMCID: PMC6923662 DOI: 10.3389/fmicb.2019.02880] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/29/2019] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are prevalent lung pathogens in cystic fibrosis (CF). Whereas co-infection worsens the clinical outcome, prototypical strains are usually antagonistic in vitro. We sought to resolve the discrepancy between these in vitro and in vivo observations. In vitro, growth kinetics for co-cultures of co-isolates from CF patients showed that not all P. aeruginosa strains affected S. aureus viability. On solid media, S. aureus slow-growing colonies were visualized around some P. aeruginosa strains whether or not S. aureus viability was reduced in liquid co-cultures. The S. aureus-P. aeruginosa interactions were then characterized in a mouse lung infection model. Lung homogenates were plated on selective media allowing colony counts of either bacterium. Overall, 35 P. aeruginosa and 10 S. aureus strains (clinical, reference, and mutant strains), for a total of 200 co-infections, were evaluated. We observed that S. aureus colonization of lung tissues was promoted by P. aeruginosa and even by strains showing antagonism in vitro. Promotion was proportional to the extent of P. aeruginosa colonization, but no correlation was found with the degree of myeloperoxidase quantification (as marker of inflammation) or with specific virulence-associated factors using known mutant strains of S. aureus and P. aeruginosa. On the other hand, P. aeruginosa significantly increased the expression of two possible cell receptors for S. aureus, i.e., ICAM-1 and ITGA-5 (marker for integrin α5β1) in lung tissue, while mono-infections by S. aureus did not. This study provides insights on polymicrobial interactions that may influence the progression of CF-associated pulmonary infections.
Collapse
Affiliation(s)
- Guillaume Millette
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Langlois
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Brouillette
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H Frost
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et de Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André M Cantin
- Service de Pneumologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Malouin
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
38
|
Magalhães AP, Jorge P, Pereira MO. Pseudomonas aeruginosa and Staphylococcus aureus communication in biofilm infections: insights through network and database construction. Crit Rev Microbiol 2019; 45:712-728. [DOI: 10.1080/1040841x.2019.1700209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andreia Patrícia Magalhães
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Jorge
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
39
|
Ji Y, Bolhuis A, Watson ML. Staphylococcus aureus products subvert the Burkholderia cenocepacia-induced inflammatory response in airway epithelial cells. J Med Microbiol 2019; 68:1813-1822. [PMID: 31674896 DOI: 10.1099/jmm.0.001100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction. Chronic pulmonary infection is associated with colonization with multiple micro-organisms but host-microbe and microbe-microbe interactions are poorly understood.Aim. This study aims to investigate the differences in host responses to mono- and co-infection with S. aureus and B. cenocepacia in human airway epithelial cells.Methodology. We assessed the effect of co-infection with B. cenocepacia and S. aureus on host signalling and inflammatory responses in the human airway epithelial cell line 16HBE, using ELISA and western blot analysis.Results. The results show that B. cenocepacia activates MAPK and NF-κB signalling pathways, subsequently eliciting robust interleukin (IL)-8 production. However, when airway epithelial cells were co-treated with live B. cenocepacia bacteria and S. aureus supernatants (conditioned medium), the pro-inflammatory response was attenuated. This anti-inflammatory effect was widely exhibited in the S. aureus isolates tested and was mediated via reduced MAPK and NF-κB signalling, but not via IL-1 receptor or tumour necrosis factor receptor modulation. The staphylococcal effectors were characterized as small, heat-stable, non-proteinaceous and not cell wall-related factors.Conclusion. This study demonstrates for the first time the host response in a S. aureus/B. cenocepacia co-infection model and provides insight into a staphylococcal immune evasion mechanism, as well as a therapeutic intervention for excessive inflammation.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| | - Malcolm L Watson
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| |
Collapse
|
40
|
O’Brien TJ, Welch M. A Continuous-Flow Model for in vitro Cultivation of Mixed Microbial Populations Associated With Cystic Fibrosis Airway Infections. Front Microbiol 2019; 10:2713. [PMID: 31824471 PMCID: PMC6883238 DOI: 10.3389/fmicb.2019.02713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
The airways of people with cystic fibrosis (CF) provide a nutrient-rich environment which favours colonisation by a variety of bacteria and fungi. Although the dominant pathogen associated with CF airway infections is Pseudomonas aeruginosa, it is becoming increasingly clear that inter-species interactions between P. aeruginosa and other colonists in the airways may have a large impact on microbial physiology and virulence. However, there are currently no suitable experimental models that permit long-term co-culture of P. aeruginosa with other CF-associated pathogens. Here, we redress this problem by describing a "3R's-compliant" continuous-flow in vitro culture model which enables long-term co-culture of three representative CF-associated microbes: P. aeruginosa, Staphylococcus aureus and Candida albicans. Although these species rapidly out-compete one another when grown together or in pairs in batch culture, we show that in a continuously-fed setup, they can be maintained in a very stable, steady-state community. We use our system to show that even numerically (0.1%) minor species can have a major impact on intercellular signalling by P. aeruginosa. Importantly, we also show that co-culturing does not appear to influence species mutation rates, further reinforcing the notion that the system favours stability rather than divergence. The model is experimentally tractable and offers an inexpensive yet robust means of investigating inter-species interactions between CF pathogens.
Collapse
Affiliation(s)
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Hermansen GMM, Sazinas P, Kofod D, Millard A, Andersen PS, Jelsbak L. Transcriptomic profiling of interacting nasal staphylococci species reveals global changes in gene and non-coding RNA expression. FEMS Microbiol Lett 2019; 365:4794939. [PMID: 29325106 DOI: 10.1093/femsle/fny004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022] Open
Abstract
Interspecies interactions between bacterial pathogens and the commensal microbiota can influence disease outcome. In the nasal cavities, Staphylococcus epidermidis has been shown to be a determining factor for Staphylococcus aureus colonization and biofilm formation. However, the interaction between S. epidermidis and S. aureus has mainly been described by phenotypic analysis, and little is known about how this interaction modulates gene expression. This study aimed to determine the interactome of nasal S. aureus and S. epidermidis isolates to understand the molecular effect of interaction. After whole-genome sequencing of two nasal staphylococcal isolates, an agar-based RNA sequencing setup was utilized to identify interaction-induced transcriptional alterations in surface-associated populations. Our results revealed differential expression of several virulence genes in both species. We also identified putative non-coding RNAs (ncRNAs) and, interestingly, detected a putative ncRNA transcribed antisense to esp, the serine protease of S. epidermidis, that has previously been shown to inhibit nasal colonization of S. aureus. In our study, the gene encoding Esp and the antisense ncRNA are both downregulated during interaction with S. aureus. Our findings contribute to a better understanding of pathogen physiology in the context of interactions with the commensal microbiota, and may provide targets for future therapeutics.
Collapse
Affiliation(s)
- Grith M M Hermansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Pavelas Sazinas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Ditte Kofod
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Andrew Millard
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK
| | - Paal Skytt Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
42
|
Reen FJ, McGlacken GP, O'Gara F. The expanding horizon of alkyl quinolone signalling and communication in polycellular interactomes. FEMS Microbiol Lett 2019; 365:4953739. [PMID: 29718276 DOI: 10.1093/femsle/fny076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/25/2018] [Indexed: 02/07/2023] Open
Abstract
Population dynamics within natural ecosystems is underpinned by microbial diversity and the heterogeneity of host-microbe and microbe-microbe interactions. Small molecule signals that intersperse between species have been shown to govern many virulence-related processes in established and emerging pathogens. Understanding the capacity of microbes to decode diverse languages and adapt to the presence of 'non-self' cells will provide an important new direction to the understanding of the 'polycellular' interactome. Alkyl quinolones (AQs) have been described in the ESKAPE pathogen Pseudomonas aeruginosa, the primary agent associated with mortality in patients with cystic fibrosis and the third most prevalent nosocomial pathogen worldwide. The role of these molecules in governing the physiology and virulence of P. aeruginosa and other pathogens has received considerable attention, while a role in interspecies and interkingdom communication has recently emerged. Herein we discuss recent advances in our understanding of AQ signalling and communication in the context of microbe-microbe and microbe-host interactions. The integrated knowledge from these systems-based investigations will facilitate the development of new therapeutics based on the AQ framework that serves to disarm the pathogenesis of P. aeruginosa and competing pathogens.
Collapse
Affiliation(s)
- F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard P McGlacken
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, USA
| |
Collapse
|
43
|
Anaerobiosis influences virulence properties of Pseudomonas aeruginosa cystic fibrosis isolates and the interaction with Staphylococcus aureus. Sci Rep 2019; 9:6748. [PMID: 31043640 PMCID: PMC6494883 DOI: 10.1038/s41598-019-42952-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
The airways of individuals with cystic fibrosis (CF) are abundantly colonised by Staphylococcus aureus and Pseudomonas aeruginosa. Co-infecting hypoxic regions of static mucus within CF airways, together with decreases in pulmonary function, mucus plugging and oxygen consumption by host neutrophils gives rise to regions of anoxia. This study determined the impact of anaerobiosis upon S. aureus-P. aeruginosa interactions in planktonic co-culture and mixed species biofilms in vitro. Whilst anoxia reduced the ability for P. aeruginosa CF isolates to dominate over S. aureus, this occurred in an isolate dependent manner. Investigations into the underlying mechanisms suggest that the anti-staphylococcal compound facilitating P. aeruginosa dominance under normoxia and anoxia is greater than 3 kDa in size and is heat-stable. Not all interspecies interactions studied were antagonistic, as S. aureus exoproducts were shown to restore and enhance P. aeruginosa motility under normoxia and anoxia in an isolate dependent manner. Collectively, this study suggests changes in oxygen availability within regions of the CF lung is likely to influence interspecies interactions and in turn, potentially influence disease progression.
Collapse
|
44
|
Proctor R. Respiration and Small Colony Variants of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0069-2019. [PMID: 31198131 PMCID: PMC11257146 DOI: 10.1128/microbiolspec.gpp3-0069-2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Indexed: 12/16/2022] Open
Abstract
Respiratory mutants, both naturally occurring and genetically constructed, have taught us about the importance of metabolism in influencing virulence factor production, persistence, and antibiotic resistance. As we learn more about small colony variants, we find that Staphylococcus aureus has many pathways to produce small colony variants, although the respiratory variants are the best described clinically and in the laboratory.
Collapse
Affiliation(s)
- Richard Proctor
- Department of Medical Microbiology and Immunology University of Wisconsin School of Medicine and Public Health Madison, WI 53705
| |
Collapse
|
45
|
Gautam V, Kaza P, Mathew JL, Kaur V, Sharma M, Ray P. Review of a 7-year record of the bacteriological profile of airway secretions of children with cystic fibrosis in North India. Indian J Med Microbiol 2019; 37:203-209. [PMID: 31745020 DOI: 10.4103/ijmm.ijmm_18_424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Cystic fibrosis (CF) is now a recognised entity in India, with prevalence rates between 1/10,000 and 1/50,000. However, no data were available with regard to the profile of respiratory pathogens in the Indian setting. Materials and Methods The records of respiratory secretion bacterial cultures of children with CF in a tertiary care hospital in North India from January 2010 to December 2016 were reviewed. Culture data were evaluated; the organisms were noted and their antimicrobial susceptibilities were analysed. The microbiological profile and antimicrobial susceptibility pattern of CF patients were evaluated. Results A total of 445 samples from 146 children were processed, of which 246 (55%) samples showed bacterial growth. Mixed infections 48 (19.5%) were common in older children. Children aged 3-6 months (62.5%) showed the highest culture positivity. The most commonly isolated organisms were Pseudomonas aeruginosa (52.6%) and Staphylococcus aureus. Children with initial cultures positive for P. aeruginosa had 55% of their subsequent cultures showing polymicrobial infections. P. aeruginosa was most susceptible to ciprofloxacin (89%) and piperacillin-tazobactum (88%). Among the staphylococcal isolates, 38% were methicillin-resistant S. aureus (MRSA). The percentage of MRSA increased from 66% in 2010 to 75% in 2012, followed by a decline to 24% in 2016. Conclusions The pattern of airway colonisation in the Indian setting is different from the Caucasian population, and P. aeruginosa and Burkholderia cepacia complex appear early. Colonisation with P. aeruginosa benefits from therapy. In case of infection, care must be taken while initiating empiric therapy. It should be based on local antibiograms to prevent the emergence of resistant microbes.
Collapse
Affiliation(s)
- Vikas Gautam
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Parinitha Kaza
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Joseph L Mathew
- Department of Paediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Varpreet Kaur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Megha Sharma
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
46
|
Cao T, Morales-Soto N, Jia J, Baig NF, Dunham SJB, Ellis J, Sweedler JV, Shrout JD, Bohn PW. Spatiotemporal Dynamics of Molecular Messaging in Bacterial Co-Cultures Studied by Multimodal Chemical Imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10863:108630A. [PMID: 33790492 PMCID: PMC8009051 DOI: 10.1117/12.2501349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Microbial community behavior is coupled to a set of genetically-regulated chemical signals that correlate with cell density - the quorum sensing (QS) system - and there is growing appreciation that the QS-regulated behavior of bacteria is chemically, spatially, and temporally complex. In addition, while it has been known for some time that different species use different QS networks, we are beginning to appreciate that different strains of the same bacterial species also differ in their QS networks. Here we combine mass spectrometric imaging (MSI) and confocal Raman microscopy (CRM) approaches to investigate co-cultures involving different strains (FRD1 and PAO1C) of the same species (Pseudomonas aeruginosa) as well as those involving different species (P. aeruginosa and E. coli). Combining MSI and CRM makes it possible to supersede the limits imposed by individual imaging approaches and enables the spatial mapping of individual bacterial species and their microbial products within a mixed bacterial community growing in situ on surfaces. MSI is used to delineate the secretion of a specific rhamnolipid surfactant as well as alkyl quinolone (AQ) messengers between FRD1 and PAO1C strains of P. aeruginosa, showing that the spatial distribution and production rate of AQ messengers in PAO1C far outstrips that of FRD1. In the case of multiple species, CRM is used to show that the prolific secretion of AQs by the PAO1C strain of P. aeruginosa is used to mediate its interaction with co-cultured E. coli.
Collapse
Affiliation(s)
- Tianyuan Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Nydia Morales-Soto
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jin Jia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Nameera F Baig
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
| | - Sage J B Dunham
- Entech Instruments, 2207 Agate Court, Simi Valley, CA 93065
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Joseph Ellis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
47
|
Tognon M, Köhler T, Luscher A, van Delden C. Transcriptional profiling of Pseudomonas aeruginosa and Staphylococcus aureus during in vitro co-culture. BMC Genomics 2019; 20:30. [PMID: 30630428 PMCID: PMC6327441 DOI: 10.1186/s12864-018-5398-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/19/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Co-colonization by Pseudomonas aeruginosa and Staphylococcus aureus is frequent in cystic fibrosis patients. Polymicrobial infections involve both detrimental and beneficial interactions between different bacterial species. Such interactions potentially indirectly impact the human host through virulence, antibiosis and immunomodulation. RESULTS Here we explored the responses triggered by the encounter of these two pathogens to identify early processes that are important for survival when facing a potential competitor. Transcriptional profiles of both bacteria were obtained after 3 h co-culture and compared to the respective mono-culture using RNAseq. Global responses in both bacteria included competition for nitrogen sources, amino acids and increased tRNA levels. Both organisms also induced lysogenic mechanisms related to prophage induction (S. aureus) and R- and F- pyocin synthesis (P. aeruginosa), possibly as a response to stress resulting from nutrient limitation or cell damage. Specific responses in S. aureus included increased expression of de novo and salvation pathways for purine and pyrimidine synthesis, a switch to glucose fermentation, and decreased expression of major virulence factors and global regulators. CONCLUSIONS Taken together, transcriptomic data indicate that early responses between P. aeruginosa and S. aureus involve competition for resources and metabolic adaptations, rather than the expression of bacteria- or host-directed virulence factors.
Collapse
Affiliation(s)
- Mikaël Tognon
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland
| | - Thilo Köhler
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland. .,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland.
| | - Alexandre Luscher
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland
| | - Christian van Delden
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland
| |
Collapse
|
48
|
Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C. Antimicrob Agents Chemother 2018; 62:AAC.02197-17. [PMID: 29610201 DOI: 10.1128/aac.02197-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of deadly hospital-acquired infections. The discovery of anti-Staphylococcus antibiotics and new classes of drugs not susceptible to the mechanisms of resistance shared among bacteria is imperative. We recently showed that tomatidine (TO), a steroidal alkaloid from solanaceous plants, possesses potent antibacterial activity against S. aureus small-colony variants (SCVs), the notoriously persistent form of this bacterium that has been associated with recurrence of infections. Here, using genomic analysis of in vitro-generated TO-resistant S. aureus strains to identify mutations in genes involved in resistance, we identified the bacterial ATP synthase as the cellular target. Sequence alignments were performed to highlight the modified sequences, and the structural consequences of the mutations were evaluated in structural models. Overexpression of the atpE gene in S. aureus SCVs or introducing the mutation found in the atpE gene of one of the high-level TO-resistant S. aureus mutants into the Bacillus subtilis atpE gene provided resistance to TO and further validated the identity of the cellular target. FC04-100, a TO derivative which also possesses activity against non-SCV strains, prevents high-level resistance development in prototypic strains and limits the level of resistance observed in SCVs. An ATP synthesis assay allowed the observation of a correlation between antibiotic potency and ATP synthase inhibition. The selectivity index (inhibition of ATP production by mitochondria versus that of bacterial ATP synthase) is estimated to be >105-fold for FC04-100.
Collapse
|
49
|
O'Brien S, Fothergill JL. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol Lett 2018; 364:3958795. [PMID: 28859314 PMCID: PMC5812498 DOI: 10.1093/femsle/fnx128] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a major pathogen in the lungs of cystic fibrosis (CF) patients. However, it is now recognised that a diverse microbial community exists in the airways comprising aerobic and anaerobic bacteria as well as fungi and viruses. This rich soup of microorganisms provides ample opportunity for interspecies interactions, particularly when considering secreted compounds. Here, we discuss how P. aeruginosa-secreted products can have community-wide effects, with the potential to ultimately shape microbial community dynamics within the lung. We focus on three well-studied traits associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation, and discuss how secretions can shape interactions between P. aeruginosa and other commonly encountered members of the lung microbiome: Staphylococcus aureus, the Burkholderia cepacia complex, Candida albicans and Aspergillus fumigatus. These interactions may shape the evolutionary trajectory of P. aeruginosa while providing new opportunities for therapeutic exploitation of the CF lung microbiome.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Center for Adaptation to a Changing Environment (ACE), ETH Zürich, 8092 Zürich, Switzerland.,Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7B3, UK
| |
Collapse
|
50
|
Alves PM, Al-Badi E, Withycombe C, Jones PM, Purdy KJ, Maddocks SE. Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm. Pathog Dis 2018; 76:4803945. [DOI: 10.1093/femspd/fty003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
|