1
|
Gruber MC, Kummer D, Sallinger K, Cleaves HJ, Aydinoğlu AU, Kroneis T. The Microchimerism Literature Atlas. Bioinform Biol Insights 2025; 19:11779322251324104. [PMID: 40182081 PMCID: PMC11967202 DOI: 10.1177/11779322251324104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
The Microchimerism Literature Atlas (MCLA) is a comprehensive online dataset to facilitate the investigation of microchimerism (MC), condition where individuals harbor cells from another individual of the same species. The MCLA provides access to more than 15 000 references from MC research, covering peer-reviewed articles and reviews from 1970 to the present. Key features include a multidimensional search function and logical operators for assembling search queries. The MCLA dataset offers a clearly structured data table view, combined with dynamic graphical data representation and visual citation analysis, aiding in the investigation and identification of research trends and patterns. The MCLA supports data export in various formats and receives regular updates. The MCLA is being developed as an essential resource for the MC research community while its framework is easily adaptable for custom literature datasets, enabling its use in other research fields.
Collapse
Affiliation(s)
- Michael Christian Gruber
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
| | - Daniel Kummer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
| | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
| | | | - Arsev Umur Aydinoğlu
- Research Center for Science and Technology Policies, Middle East Technical University, Ankara, Turkey
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Nelson JL, Lambert NC. The when, what, and where of naturally-acquired microchimerism. Semin Immunopathol 2025; 47:20. [PMID: 40067465 DOI: 10.1007/s00281-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 05/13/2025]
Abstract
Naturally acquired microchimerism (Mc) is increasingly recognized as an aspect of normal biology. Maternal-fetal bi-directional exchange during pregnancy creates a Mc legacy for the long-term in both individuals. Maternal Mc in her offspring and Mc of fetal origin in women with previous births are best studied. Other sources include from a known or vanished twin, miscarriage or pregnancy termination, older sibling, or previous maternal pregnancy loss. Mc is pleotropic and protean, present in diverse forms, and changing over time as other aspects of biology. Mc acquired from multiple sources, at different lifespan times, and taking on an array of diverse forms, creates a "forward, reverse, and horizontal inheritance" Mc landscape. Mc is found in adaptive and innate immune cells, as resident tissue-specific cells in a wide variety of human tissues, and among other forms as extracellular vesicles. HLA molecules function in a myriad of ways as key determinants for health and are of central importance in interactions between genetically disparate individuals. Studies of autoimmune disease have firmly established a primary role of HLA molecules. Studies of iatrogenic chimerism have established benefit of donor-recipient HLA-disparity against recurrent malignancy after transplantation. HLA molecules and HLA-relationships of families are therefore of particular interest in seeking to understand the role(s) of Mc at the interface of auto-immunity and healthy allo-immunity. This review will begin by providing perspective on Mc in biology followed by a primary focus on persistent Mc according to the human lifespan, in healthy individuals and with illustrative examples of autoimmune diseases.
Collapse
Affiliation(s)
- J Lee Nelson
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Translational Science and Therapeutics Fred Hutchinson Cancer Center, Seattle, USA.
| | - Nathalie C Lambert
- INSERM UMRs 1097 Arthrites, Microchimérisme et Inflammations (ARTHEMIS), Aix Marseille Université, Marseille, France.
| |
Collapse
|
3
|
Fujimoto K, Nakajima A, Hori S, Tanaka Y, Shirasaki Y, Uemura S, Irie N. Whole-embryonic identification of maternal microchimeric cell types in mouse using single-cell RNA sequencing. Sci Rep 2022; 12:18313. [PMID: 36333354 PMCID: PMC9636240 DOI: 10.1038/s41598-022-20781-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
Even though the mother and the fetus of placental mammals are immunologically non-self with respect to one other, mutual exchange of small numbers of cells between them is known to occur. Maternal cells entering the fetus, called maternal microchimeric cells (MMc cells), are thought to be involved in different physiological phenomena, such as establishing immune tolerance, tissue repair, and the pathogenesis or deterioration of some inflammatory diseases and congenital malformations. While specific MMc cell types have been reported as associated with these phenomena, the contribution of MMc cells to these different outcomes remains unknown. As one possibility, we hypothesized that different embryos have differing repertoires of MMc cell types, leading to or biasing embryos toward different fates. To date, no studies have succeeded in identifying the MMc cell type repertoire of a single embryo. Accordingly, here, we isolated MMc cells from whole mouse embryos, determined their types, and analyzed their MMc cell type variability. By combining our previously established, whole-embryonic MMc isolation method with single-cell RNA sequencing, we successfully estimated the cell type repertoires of MMc cells isolated from 26 mouse embryos. The majority of MMc cells were immune-related cells, such as myeloid cells and granulocytes. We also detected stem cell-like MMc cells expressing proliferation marker genes and terminally differentiated cells. As hypothesized, we noted statistically significant inter-individual variation in the proportion of immune-related cells in the different embryos. We here successfully estimated MMc cell types in individual whole mouse embryos. The proportion of immune-related cells significantly differed among the individual embryos, suggesting that the variations are one of the potential mechanisms underlying the differing MMc-related physiological phenomena in offspring. These findings provide insight into cell-level epigenetics by maternal cells.
Collapse
Affiliation(s)
- Kana Fujimoto
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Akira Nakajima
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shohei Hori
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yumiko Tanaka
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yoshitaka Shirasaki
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sotaro Uemura
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Naoki Irie
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan ,grid.26999.3d0000 0001 2151 536XUniversal Biology Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Olsen SDH, Kolte AM, Bang N, Krog MC, Steffensen R, Nielsen HS, Jakobsen MA. The development of an indel panel for microchimerism detection. Exp Mol Pathol 2022; 127:104804. [PMID: 35718190 DOI: 10.1016/j.yexmp.2022.104804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The aim of the study was to create a simple assay for microchimerism detection independent of sex and without HLA genotyping. METHODS The method is based on detection of insertion or deletions utilizing a multiplex PCR followed by fragment analysis by capillary electrophoresis, and probe-based qPCR assays. A total of 192 samples, taken either before pregnancy, during 1st trimester, or either during 2nd trimester or at miscarriage, obtained from a cohort of 97 female patients with either primary or secondary recurrent pregnancy loss, were screened for fetal microchimerism by the indel panel as well as an existing assay based on detection of the Y-chromosome marker; DYS14. RESULTS The overall prevalence of DYS14 positive samples was 29% (55/192) whereas 32% (61/192) tested positive by the indel method. There was an overall agreement of 64% (122/192) between the results obtained by the two methods. A Fisher's Exact test showed no statistic significant difference in the prevalence of microchimerism detected by the two methods at any of the three times of sampling. The distribution of the number of positive wells detected by both methods were compared by a Mann-Whitney U test, which showed no statistically significant difference at any of the three times of sampling. CONCLUSION The data indicates that microchimerism can be detected efficiently by the indel method. This makes it possible to detect both female and male cells without the need of HLA-genotyping. Furthermore, the indel method has potential to be implemented as a routine analysis. This will remove the sex bias in future explorations of the role microchimerism plays in health and disease.
Collapse
Affiliation(s)
- Sofie D H Olsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.
| | - Astrid M Kolte
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre & Rigshospitalet, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Nina Bang
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Maria Christine Krog
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre & Rigshospitalet, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Henriette S Nielsen
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre & Rigshospitalet, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark; Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Marianne A Jakobsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
5
|
Fujimoto K, Nakajima A, Hori S, Irie N. Whole embryonic detection of maternal microchimeric cells highlights significant differences in their numbers among individuals. PLoS One 2021; 16:e0261357. [PMID: 34941916 PMCID: PMC8699925 DOI: 10.1371/journal.pone.0261357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
During pregnancy in placental mammals, small numbers of maternal cells (maternal microchimeric cells, or MMc cells) migrate into the fetus and persist decades, or perhaps for the rest of their lives, and higher frequencies of MMc cells are reported to correlate with variety of phenomena, such as immune tolerance, tissue repair, and autoimmune diseases. While detection of these MMc cells is considered in all pregnancies, their frequency differs largely according to tissue type and disease cases, and it remains unclear whether the number of MMc cells differs significantly among embryos in normal pregnancies. Here, for the first time, we developed a whole embryonic detection method for MMc cells using transgenic mice and counted live MMc cells in each individual embryo. Using this technique, we found that the number of MMc cells was comparable in most of the analyzed embryos; however, around 500 times higher number of MMc cells was detected in one embryo at the latest stage. This result suggests that the number of MMc cells could largely differ in rare cases with unknown underlying mechanisms. Our methodology provides a basis for testing differences in the numbers of MMc cells among individual embryos and for analyzing differences in MMc cell type repertoires in future studies. These data could provide a hint toward understanding the mechanisms underlying the variety of apparently inconsistent MMc-related phenomena.
Collapse
Affiliation(s)
- Kana Fujimoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (NI); (KF)
| | - Akira Nakajima
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shohei Hori
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (NI); (KF)
| |
Collapse
|
6
|
Bianchi DW, Khosrotehrani K, Way SS, MacKenzie TC, Bajema I, O'Donoghue K. Forever Connected: The Lifelong Biological Consequences of Fetomaternal and Maternofetal Microchimerism. Clin Chem 2020; 67:351-362. [PMID: 33417673 PMCID: PMC10072000 DOI: 10.1093/clinchem/hvaa304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Originally studied as a mechanism to understand eclampsia-related deaths during pregnancy, fetal cells in maternal blood have more recently garnered attention as a noninvasive source of fetal material for prenatal testing. In the 21st century, however, intact fetal cells have been largely supplanted by circulating cell-free placental DNA for aneuploidy screening. Instead, interest has pivoted to the ways in which fetal cells influence maternal biology. In parallel, an increasing appreciation of the consequences of maternal cells in the developing fetus has occurred. CONTENT In this review, we highlight the potential clinical applications and functional consequences of the bidirectional trafficking of intact cells between a pregnant woman and her fetus. Fetal cells play a potential role in the pathogenesis of maternal disease and tissue repair. Maternal cells play an essential role in educating the fetal immune system and as a factor in transplant acceptance. Naturally occurring maternal microchimerism is also being explored as a source of hematopoietic stem cells for transplant in fetal hematopoietic disorders. SUMMARY Future investigations in humans need to include complete pregnancy histories to understand maternal health and transplant success or failure. Animal models are useful to understand the mechanisms underlying fetal wound healing and/or repair associated with maternal injury and inflammation. The lifelong consequences of the exchange of cells between a mother and her child are profound and have many applications in development, health, and disease. This intricate exchange of genetically foreign cells creates a permanent connection that contributes to the survival of both individuals.
Collapse
Affiliation(s)
- Diana W Bianchi
- National Human Genome Research Institute and Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kiarash Khosrotehrani
- Experimental Dermatology Group, The University of Queensland, UQ Diamantina Institute, Brisbane, Queensland, Australia
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tippi C MacKenzie
- Center for Maternal-Fetal Precision Medicine and the Department of Surgery, University of California, San Francisco, CA, USA
| | - Ingeborg Bajema
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Keelin O'Donoghue
- Irish Centre for Maternal and Child Health (INFANT), University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Abstract
OBJECTIVES During pregnancy, small quantities of maternal cells are naturally transmitted to the fetus. This transmission, termed maternal microchimerism (MMc), has been implicated in autoimmune diseases but its potential role is unclear. We aimed to investigate if MMc at birth predicted childhood celiac disease (CD) risk, a common immune-mediated enteropathy often presenting in childhood. METHODS We designed a case-control study, nested in the Norwegian Mother, Father and Child Cohort. Participants were HLA class II typed to determine noninherited, nonshared maternal alleles (NIMA). Droplet digital (dd) PCR assays specific for common HLA class II NIMAs (HLA-DQB103:01, 04:02 and 06:02/03) were used to estimate the quantity of maternal DNA, as a marker of maternal cells, in cord blood DNA from 124 children who later developed clinically diagnosed CD (median age at end of study 7.4 years, range 3.6-12.9) and 124 random controls. We tested whether presence of MMc was associated with CD using logistic regression, and compared ranks between cases and controls. RESULTS MMc, for example, maternal HLA antigens not inherited by the child, was found in 42% of cases and 43% of controls, and not associated with CD (odds ratio [OR] 0.97, 95% confidence interval [CI] 0.58-1.60). The ranks of MMc quantities in cases and controls were also similar (Mann-Whitney U-test, P = 0.71). The subgroup with HLA-DQB1:03*01 as their NIMA had a potential association with MMc, where levels greater than median was associated with CD (OR 3.78, 95% CI 1.28-11.18). CONCLUSION MMc measured in cord blood was not associated with later risk of CD.
Collapse
|
8
|
Johnson BN, Ehli EA, Davies GE, Boomsma DI. Chimerism in health and potential implications on behavior: A systematic review. Am J Med Genet A 2020; 182:1513-1529. [PMID: 32212323 DOI: 10.1002/ajmg.a.61565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
In this review, we focus on the phenomenon of chimerism and especially microchimerism as one of the currently underexplored explanations for differences in health and behavior. Chimerism is an amalgamation of cells from two or more unique zygotes within a single organism, with microchimerism defined by a minor cell population of <1%. This article first presents an overview of the primary techniques employed to detect and quantify the presence of microchimerism and then reviews empirical studies of chimerism in mammals including primates and humans. In women, male microchimerism, a condition suggested to be the result of fetomaternal exchange in utero, is relatively easily detected by polymerase chain reaction molecular techniques targeting Y-chromosomal markers. Consequently, studies of chimerism in human diseases have largely focused on diseases with a predilection for females including autoimmune diseases, and female cancers. We detail studies of chimerism in human diseases and also discuss some potential implications in behavior. Understanding the prevalence of chimerism and the associated health outcomes will provide invaluable knowledge of human biology and guide novel approaches for treating diseases.
Collapse
Affiliation(s)
- Brandon N Johnson
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, South Dakota, USA
| | - Erik A Ehli
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, South Dakota, USA
| | - Gareth E Davies
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, South Dakota, USA
| | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Snethen H, Ye J, Gillespie KM, Scolding NJ. Maternal micro-chimeric cells in the multiple sclerosis brain. Mult Scler Relat Disord 2020; 40:101925. [PMID: 31986425 DOI: 10.1016/j.msard.2020.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 11/26/2022]
Abstract
Maternal microchimeric cells (MMC) pass across the placenta from a mother to her baby during pregnancy. MMC have been identified in healthy adults, but have been reported to be more frequent and at a higher concentration in individuals with autoimmune diseases. MMC in brain tissue from individuals with autoimmune neurological disease has never previously been explored. The present study aims to identify and quantify MMC in adult human brain from control and multiple sclerosis (MS) affected individuals using fluorescent in situ hybridization (FISH) with a probe for the X and Y chromosomes. Post mortem brain tissue from 6 male MS cases and 6 male control cases were examined. Female cells presumed to be MMC were identified in 5/6 MS cases and 6/6 control cases. Cell specific labeling identified female cells of neuronal and immune phenotype in both control and active MS lesion tissue. This study shows that female cells presumed to be MMC are a common phenomenon in adult human brain where they appear to have embedded into brain tissue with the ability to express tissue specific markers.
Collapse
Affiliation(s)
- Heidi Snethen
- MS and stem cell group, Clinical Neuroscience, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jody Ye
- Diabetes and Metabolism Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kathleen M Gillespie
- Diabetes and Metabolism Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Neil J Scolding
- MS and stem cell group, Clinical Neuroscience, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
10
|
Perna-Barrull D, Rodriguez-Fernandez S, Pujol-Autonell I, Gieras A, Ampudia-Carrasco RM, Villalba A, Glau L, Tolosa E, Vives-Pi M. Prenatal Betamethasone interferes with immune system development and alters target cells in autoimmune diabetes. Sci Rep 2019; 9:1235. [PMID: 30718757 PMCID: PMC6362293 DOI: 10.1038/s41598-018-37878-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023] Open
Abstract
Non-genetic factors are crucial in the pathogenesis of type 1 diabetes (T1D), a disease caused by autoimmunity against insulin-producing β-cells. Exposure to medications in the prenatal period may influence the immune system maturation, thus altering self-tolerance. Prenatal administration of betamethasone –a synthetic glucocorticoid given to women at risk of preterm delivery– may affect the development of T1D. It has been previously demonstrated that prenatal betamethasone administration protects offspring from T1D development in nonobese diabetic (NOD) mice. The direct effect of betamethasone on the immature and mature immune system of NOD mice and on target β-cells is analysed in this paper. In vitro, betamethasone decreased lymphocyte viability and induced maturation-resistant dendritic cells, which in turn impaired γδ T cell proliferation and decreased IL-17 production. Prenatal betamethasone exposure caused thymus hypotrophy in newborn mice as well as alterations in immune cells subsets. Furthermore, betamethasone decreased β-cell growth, reduced C-peptide secretion and altered the expression of genes related to autoimmunity, metabolism and islet mass in T1D target tissue. These results support the protection against T1D in the betamethasone-treated offspring and demonstrate that this drug alters the developing immune system and β-cells. Understanding how betamethasone generates self-tolerance could have potential clinical relevance in T1D.
Collapse
Affiliation(s)
- David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Irma Pujol-Autonell
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rosa M Ampudia-Carrasco
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Adrian Villalba
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain. .,CIBERDEM, Barcelona, Spain.
| |
Collapse
|
11
|
Knoop KA, Holtz LR, Newberry RD. Inherited nongenetic influences on the gut microbiome and immune system. Birth Defects Res 2018; 110:1494-1503. [PMID: 30576093 PMCID: PMC8759455 DOI: 10.1002/bdr2.1436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
The gut microbiome and the immune system codevelop around the time of birth, well after genetic information has been passed from the parents to the offspring. Each of these "organ systems" displays plasticity. The immune system can mount highly specific adaptive responses to newly encountered antigens, and the gut microbiota is affected by changes in the environment. Despite this plasticity, there is a growing appreciation that these organ systems, once established, are remarkably stable. In health, the immune system rapidly mounts responses to infections, and once cleared, resolves inflammatory responses to return to homeostasis. However, a skewed immune system, such as seen in allergy, does not easily return to homeostasis. Allergic responses are often seen to multiple antigens. Likewise, a dysbiotic gut microbiota is seen in multiple diseases. Attempts to reset the gut microbiota as a therapy for disease have met with varied success. Therefore, how these codeveloping "organ systems" become established is a central question relevant to our overall health. Recent observations suggest that maternal factors encountered both in utero and after birth can directly or indirectly impact the development of the offspring's gut microbiome and immune system. Here, we discuss how these nongenetic maternal influences can have long-term effects on the progeny's health.
Collapse
Affiliation(s)
- Kathryn A. Knoop
- Department of Medicine, Washington University School of Medicine in Saint Louis, MO 63110
| | - Lori R. Holtz
- Department of Pediatrics, Washington University School of Medicine in Saint Louis, MO 63110
| | - Rodney D. Newberry
- Department of Medicine, Washington University School of Medicine in Saint Louis, MO 63110
| |
Collapse
|
12
|
Aydın MŞ, Yiğit EN, Vatandaşlar E, Erdoğan E, Öztürk G. Transfer and Integration of Breast Milk Stem Cells to the Brain of Suckling Pups. Sci Rep 2018; 8:14289. [PMID: 30250150 PMCID: PMC6155265 DOI: 10.1038/s41598-018-32715-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 01/19/2023] Open
Abstract
Beside its unique nutritional content breast milk also contains live cells from the mother. Fate of these cells in the offspring has not been adequately described. In this study, we aimed to detect and identify maternal cells in the suckling’s blood and the brain. Green fluorescent protein expressing transgenic female mice (GFP+) were used as foster mothers to breastfeed wildtype newborn pups. One week and two months after the birth, blood samples and brains of the sucklings were analyzed to detect presence of GFP+ cells by fluorescence activated cell sorting, polymerase chain reaction and immunohistochemistry on the brain sections and optically cleared brains. The tests confirmed that maternal cells were detectable in the blood and the brain of the pups and that they differentiated into both neuronal and glial cell types in the brain. This phenomenon represents breastfeeding – induced microchimerism in the brain with functional implications remain to be understood.
Collapse
Affiliation(s)
- Mehmet Şerif Aydın
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Esra Nur Yiğit
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Emre Vatandaşlar
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Ender Erdoğan
- Department of Histology and Embryology, Faculty of Medicine, Selcuk University, Konya, 42030, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey. .,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, 34810, Turkey.
| |
Collapse
|
13
|
Fonolleda M, Murillo M, Vázquez F, Bel J, Vives-Pi M. Remission Phase in Paediatric Type 1 Diabetes: New Understanding and Emerging Biomarkers. Horm Res Paediatr 2018; 88:307-315. [PMID: 28772271 DOI: 10.1159/000479030] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a metabolic disease of unknown aetiology that results from the autoimmune destruction of the β-cells. Clinical onset with classic hyperglycaemic symptoms occurs much more frequently in children and young adults, when less than 30% of β-cells remain. Exogenous insulin administration is the only treatment for patients. However, due to glucose dysregulation, severe complications develop gradually. Recently, an increase in T1D incidence has been reported worldwide, especially in children. Shortly after diagnosis, T1D patients often experience partial remission called "honeymoon phase," which lasts a few months, with minor requirements of exogenous insulin. In this stage, the remaining β-cells are still able to produce enough insulin to reduce the administration of exogenous insulin. A recovery of immunological tolerance to β-cell autoantigens could explain the regeneration attempt in this remission phase. This mini-review focuses on the remission phase in childhood T1D. Understanding this period and finding those peripheral biomarkers that are signs of immunoregulation or islet regeneration could contribute to the identification of patients with a better glycaemic prognosis and a lower risk of secondary complications. This remission phase could be a good checkpoint for the administration of future immunotherapies.
Collapse
Affiliation(s)
- Mireia Fonolleda
- Immunology Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Marta Murillo
- Pediatrics Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Federico Vázquez
- Endocrinology and Nutrition and Clinical Trials Unit, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Joan Bel
- Pediatrics Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Kinder JM, Stelzer IA, Arck PC, Way SS. Reply: Breastfeeding-related maternal microchimerism. Nat Rev Immunol 2017; 17:730-1. [PMID: 28972207 DOI: 10.1038/nri.2017.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeremy M Kinder
- Division of Infectious Disease and Perinatal Institute at Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, Ohio 45229 USA
| | - Ina A Stelzer
- Division of Infectious Disease and Perinatal Institute at Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, Ohio 45229 USA
| | - Petra C Arck
- Laboratory of Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sing Sing Way
- Division of Infectious Disease and Perinatal Institute at Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, Ohio 45229 USA
| |
Collapse
|
15
|
Kinder JM, Stelzer IA, Arck PC, Way SS. Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol 2017; 17:483-494. [PMID: 28480895 PMCID: PMC5532073 DOI: 10.1038/nri.2017.38] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunological identity is traditionally defined by genetically encoded antigens, with equal maternal and paternal contributions as a result of Mendelian inheritance. However, vertically transferred maternal cells also persist in individuals at very low levels throughout postnatal development. Reciprocally, mothers are seeded during pregnancy with genetically foreign fetal cells that persist long after parturition. Recent findings suggest that these microchimeric cells expressing non-inherited, familially relevant antigenic traits are not accidental 'souvenirs' of pregnancy, but are purposefully retained within mothers and their offspring to promote genetic fitness by improving the outcome of future pregnancies. In this Review, we discuss the immunological implications, benefits and potential consequences of individuals being constitutively chimeric with a biologically active 'microchiome' of genetically foreign cells.
Collapse
Affiliation(s)
- Jeremy M. Kinder
- Division of Infectious Disease and Perinatal Institute, Cincinnati Children’s Hospital. Cincinnati, Ohio 45229 USA
| | - Ina A. Stelzer
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Petra C. Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sing Sing Way
- Division of Infectious Disease and Perinatal Institute, Cincinnati Children’s Hospital. Cincinnati, Ohio 45229 USA
| |
Collapse
|
16
|
Abstract
There is an increasing requirement for genetic analysis of individual cells from tissue sections. This is particularly the case for analysis of tumor cells but is also a requirement for analysis of cells in pancreas from individuals with type 1 diabetes where there is evidence of viral infection or in the analysis of chimerism in pancreas; either post-transplant or as a result of feto-maternal cell transfer.This protocol describes a strategy to isolate cells using laser microdissection and to run a 17plex PCR to discriminate between cells of haplo-identical origin (i.e., fetal and maternal cells) in pancreas tissue but other robust DNA tests could be used. In short, snap-frozen tissues are cryo-sectioned and mounted onto membrane-coated slides. Target cells are harvested from the tissue sections by laser microdissection and pressure catapulting (LMPC) prior to DNA profiling. This is based on amplification of highly repetitive yet stably inherited loci (short tandem repeats, STR) as well as the amelogenin locus for sex determination and separation of PCR products by capillary electrophoresis.
Collapse
|
17
|
Kaddis JS, Pugliese A, Atkinson MA. A run on the biobank: what have we learned about type 1 diabetes from the nPOD tissue repository? Curr Opin Endocrinol Diabetes Obes 2015; 22:290-5. [PMID: 26087339 DOI: 10.1097/med.0000000000000171] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Since the inaugural year of its biobank in 2007, the Network for Pancreatic Organ Donors with Diabetes program has provided 70 370 human samples to 127 investigators worldwide for projects focused on the pathogenesis of type 1 diabetes (T1D). The purpose of this review was to highlight major advances in our understanding of T1D using works that contain original data from experiments utilizing biospecimens provided by the Network for Pancreatic Organ Donors with Diabetes program. A total of 15 studies, published between 1 June 2013 and 31 December 2014, were selected using various search and filter strategies. RECENT FINDINGS The type and frequency of B and/or T-cell immune markers in both the endocrine and exocrine compartments vary in T1D. Enterovirus signals have been identified as having new proteins in the extracellular matrix around infiltrated islets. Novel genes within human islet cell types have been shown to play a role in immunity, infiltration, inflammation, disease progression, cell mass and function. Various cytokines and a complement degradation product have also been detected in the blood or surrounding pancreatic ducts/vasculature. SUMMARY These findings, from T1D donors across the disease spectrum, emphasize the notion that pathogenic heterogeneity is a hallmark of the disorder.
Collapse
Affiliation(s)
- John S Kaddis
- aDepartment of Information Sciences, City of Hope, Duarte, California bDiabetes Research Institute and Departments of Medicine, Microbiology and Immunology, University of Miami Miller School of Medicine, Miami cDepartments of Pathology and Pediatrics, University of Florida, Gainesville, Florida, USA
| | | | | |
Collapse
|
18
|
Maternal microchimerism: lessons learned from murine models. J Reprod Immunol 2015; 108:12-25. [DOI: 10.1016/j.jri.2014.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 11/20/2022]
|
19
|
Ye J, Vives-Pi M, Gillespie KM. Maternal microchimerism: friend or foe in type 1 diabetes? CHIMERISM 2014; 5:21-3. [PMID: 25093746 PMCID: PMC4199804 DOI: 10.4161/chim.29870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023]
Abstract
Increased levels of non-inherited maternal HLA alleles have been detected in the periphery of children with type 1 diabetes and an increased frequency of maternal cells have been identified in type 1 diabetes pancreas. It is now clear that the phenotype of these cells is pancreatic, supporting the hypothesis that maternal cells in human pancreas are derived from multipotent maternal progenitors. Here we hypothesize how increased levels of maternal cells could play a role in islet autoimmunity.
Collapse
Affiliation(s)
- Jody Ye
- Diabetes and Metabolism Unit; School of Clinical Sciences; University of Bristol; Bristol, UK
| | - Marta Vives-Pi
- Department of Immunology; Germans Trias i Pujol Research Institute; Autonomous University of Barcelona; Badalona, Spain
| | - Kathleen M Gillespie
- Diabetes and Metabolism Unit; School of Clinical Sciences; University of Bristol; Bristol, UK
| |
Collapse
|