1
|
Caracci MO, Pizarro H, Alarcón-Godoy C, Fuentealba LM, Farfán P, De Pace R, Santibañez N, Cavieres VA, Pástor TP, Bonifacino JS, Mardones GA, Marzolo MP. The Reelin receptor ApoER2 is a cargo for the adaptor protein complex AP-4: Implications for Hereditary Spastic Paraplegia. Prog Neurobiol 2024; 234:102575. [PMID: 38281682 PMCID: PMC10979513 DOI: 10.1016/j.pneurobio.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes export of selected cargo proteins from the trans-Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1- knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1-KO mice display increased co-localization of ApoER2 with Golgi markers. Furthermore, hippocampal neurons from Ap4e1-KO mice and AP4M1-KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. This work thus establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.
Collapse
Affiliation(s)
- Mario O Caracci
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Héctor Pizarro
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Carlos Alarcón-Godoy
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Luz M Fuentealba
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Pamela Farfán
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Natacha Santibañez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Departamento de Ciencias Biológicas y Químicas, Fac. Med y Ciencia, USS, Santiago, Chile
| | - Tammy P Pástor
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gonzalo A Mardones
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - María-Paz Marzolo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Caracci MO, Pizarro H, Alarcón-Godoy C, Fuentealba LM, Farfán P, Pace RD, Santibañez N, Cavieres VA, Pástor TP, Bonifacino JS, Mardones GA, Marzolo MP. The Reelin Receptor ApoER2 is a Cargo for the Adaptor Protein Complex AP-4: Implications for Hereditary Spastic Paraplegia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572896. [PMID: 38187774 PMCID: PMC10769347 DOI: 10.1101/2023.12.21.572896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes protein export from the trans -Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1 -knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1 -KO mice display increased Golgi localization of ApoER2. Furthermore, hippocampal neurons from Ap4e1 -KO mice and AP4M1 -KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. Altogether, this work establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.
Collapse
|
3
|
Opazo JC, Vandewege MW, Hoffmann FG, Zavala K, Meléndez C, Luchsinger C, Cavieres VA, Vargas-Chacoff L, Morera FJ, Burgos PV, Tapia-Rojas C, Mardones GA. How Many Sirtuin Genes Are Out There? Evolution of Sirtuin Genes in Vertebrates With a Description of a New Family Member. Mol Biol Evol 2023; 40:6993039. [PMID: 36656997 PMCID: PMC9897032 DOI: 10.1093/molbev/msad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Studying the evolutionary history of gene families is a challenging and exciting task with a wide range of implications. In addition to exploring fundamental questions about the origin and evolution of genes, disentangling their evolution is also critical to those who do functional/structural studies to allow a deeper and more precise interpretation of their results in an evolutionary context. The sirtuin gene family is a group of genes that are involved in a variety of biological functions mostly related to aging. Their duplicative history is an open question, as well as the definition of the repertoire of sirtuin genes among vertebrates. Our results show a well-resolved phylogeny that represents an improvement in our understanding of the duplicative history of the sirtuin gene family. We identified a new sirtuin gene family member (SIRT3.2) that was apparently lost in the last common ancestor of amniotes but retained in all other groups of jawed vertebrates. According to our experimental analyses, elephant shark SIRT3.2 protein is located in mitochondria, the overexpression of which leads to an increase in cellular levels of ATP. Moreover, in vitro analysis demonstrated that it has deacetylase activity being modulated in a similar way to mammalian SIRT3. Our results indicate that there are at least eight sirtuin paralogs among vertebrates and that all of them can be traced back to the last common ancestor of the group that existed between 676 and 615 millions of years ago.
Collapse
Affiliation(s)
| | - Michael W Vandewege
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Catalina Meléndez
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Charlotte Luchsinger
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Luis Vargas-Chacoff
- Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile,Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile,Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Morera
- Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile,Applied Biochemistry Laboratory, Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | | |
Collapse
|
4
|
Solinger JA, Spang A. Sorting of cargo in the tubular endosomal network. Bioessays 2022; 44:e2200158. [DOI: 10.1002/bies.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | - Anne Spang
- Biozentrum University of Basel Basel Switzerland
| |
Collapse
|
5
|
Januário YC, Eden J, de Oliveira LS, De Pace R, Tavares LA, da Silva-Januário ME, Apolloni VB, Wilby EL, Altmeyer R, Burgos PV, Corrêa SAL, Gershlick DC, daSilva LLP. Clathrin adaptor AP-1-mediated Golgi export of amyloid precursor protein is crucial for the production of neurotoxic amyloid fragments. J Biol Chem 2022; 298:102172. [PMID: 35753347 PMCID: PMC9352552 DOI: 10.1016/j.jbc.2022.102172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
One of the hallmarks of Alzheimer's disease is the accumulation of toxic amyloid-β (Aβ) peptides in extracellular plaques. The direct precursor of Aβ is the carboxyl-terminal fragment β (or C99) of the amyloid precursor protein (APP). C99 is detected at elevated levels in Alzheimer's disease brains, and its intracellular accumulation has been linked to early neurotoxicity independently of Aβ. Despite this, the causes of increased C99 levels are poorly understood. Here, we demonstrate that APP interacts with the clathrin vesicle adaptor AP-1 (adaptor protein 1), and we map the interaction sites on both proteins. Using quantitative kinetic trafficking assays, established cell lines and primary neurons, we also show that this interaction is required for the transport of APP from the trans-Golgi network to endosomes. In addition, disrupting AP-1-mediated transport of APP alters APP processing and degradation, ultimately leading to increased C99 production and Aβ release. Our results indicate that AP-1 regulates the subcellular distribution of APP, altering its processing into neurotoxic fragments.
Collapse
Affiliation(s)
- Yunan C Januário
- Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jessica Eden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Luan S de Oliveira
- Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Raffaella De Pace
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Lucas A Tavares
- Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mara E da Silva-Januário
- Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinícius B Apolloni
- Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elise L Wilby
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Randolf Altmeyer
- Statslab, Department of Pure Mathematics and Mathematical Statistics, University of Cambridgee, Cambridge, UK
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sonia A L Corrêa
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Luis L P daSilva
- Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
6
|
Viral Interactions with Adaptor-Protein Complexes: A Ubiquitous Trait among Viral Species. Int J Mol Sci 2021; 22:ijms22105274. [PMID: 34067854 PMCID: PMC8156722 DOI: 10.3390/ijms22105274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Numerous viruses hijack cellular protein trafficking pathways to mediate cell entry or to rearrange membrane structures thereby promoting viral replication and antagonizing the immune response. Adaptor protein complexes (AP), which mediate protein sorting in endocytic and secretory transport pathways, are one of the conserved viral targets with many viruses possessing AP-interacting motifs. We present here different mechanisms of viral interference with AP complexes and the functional consequences that allow for efficient viral propagation and evasion of host immune defense. The ubiquity of this phenomenon is evidenced by the fact that there are representatives for AP interference in all major viral families, covered in this review. The best described examples are interactions of human immunodeficiency virus and human herpesviruses with AP complexes. Several other viruses, like Ebola, Nipah, and SARS-CoV-2, are pointed out as high priority disease-causative agents supporting the need for deeper understanding of virus-AP interplay which can be exploited in the design of novel antiviral therapies.
Collapse
|
7
|
Podleśny-Drabiniok A, Marcora E, Goate AM. Microglial Phagocytosis: A Disease-Associated Process Emerging from Alzheimer’s Disease Genetics. Trends Neurosci 2020; 43:965-979. [DOI: 10.1016/j.tins.2020.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023]
|
8
|
Arriagada C, Cavieres VA, Luchsinger C, González AE, Muñoz VC, Cancino J, Burgos PV, Mardones GA. GOLPH3 Regulates EGFR in T98G Glioblastoma Cells by Modulating Its Glycosylation and Ubiquitylation. Int J Mol Sci 2020; 21:E8880. [PMID: 33238647 PMCID: PMC7700535 DOI: 10.3390/ijms21228880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Protein trafficking is altered when normal cells acquire a tumor phenotype. A key subcellular compartment in regulating protein trafficking is the Golgi apparatus, but its role in carcinogenesis is still not well defined. Golgi phosphoprotein 3 (GOLPH3), a peripheral membrane protein mostly localized at the trans-Golgi network, is overexpressed in several tumor types including glioblastoma multiforme (GBM), the most lethal primary brain tumor. Moreover, GOLPH3 is currently considered an oncoprotein, however its precise function in GBM is not fully understood. Here, we analyzed in T98G cells of GBM, which express high levels of epidermal growth factor receptor (EGFR), the effect of stable RNAi-mediated knockdown of GOLPH3. We found that silencing GOLPH3 caused a significant reduction in the proliferation of T98G cells and an unexpected increase in total EGFR levels, even at the cell surface, which was however less prone to ligand-induced autophosphorylation. Furthermore, silencing GOLPH3 decreased EGFR sialylation and fucosylation, which correlated with delayed ligand-induced EGFR downregulation and its accumulation at endo-lysosomal compartments. Finally, we found that EGF failed at promoting EGFR ubiquitylation when the levels of GOLPH3 were reduced. Altogether, our results show that GOLPH3 in T98G cells regulates the endocytic trafficking and activation of EGFR likely by affecting its extent of glycosylation and ubiquitylation.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Viviana A. Cavieres
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Charlotte Luchsinger
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Alexis E. González
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Vanessa C. Muñoz
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Jorge Cancino
- Center for Cell Biology and Biomedicine, School of Science and Medicine, Universidad San Sebastián, Santiago 7510235, Chile; (J.C.); (P.V.B.)
| | - Patricia V. Burgos
- Center for Cell Biology and Biomedicine, School of Science and Medicine, Universidad San Sebastián, Santiago 7510235, Chile; (J.C.); (P.V.B.)
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Gonzalo A. Mardones
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| |
Collapse
|
9
|
The role of AP-4 in cargo export from the trans-Golgi network and hereditary spastic paraplegia. Biochem Soc Trans 2020; 48:1877-1888. [PMID: 33084855 DOI: 10.1042/bst20190664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/02/2023]
Abstract
Heterotetrameric adaptor protein (AP) complexes play key roles in protein sorting and transport vesicle formation in the endomembrane system of eukaryotic cells. One of these complexes, AP-4, was identified over 20 years ago but, up until recently, its function remained unclear. AP-4 associates with the trans-Golgi network (TGN) through interaction with small GTPases of the ARF family and recognizes transmembrane proteins (i.e. cargos) having specific sorting signals in their cytosolic domains. Recent studies identified accessory proteins (tepsin, RUSC2 and the FHF complex) that co-operate with AP-4, and cargos (amyloid precursor protein, ATG9A and SERINC3/5) that are exported from the TGN in an AP-4-dependent manner. Defective export of ATG9A from the TGN in AP-4-deficient cells was shown to reduce ATG9A delivery to pre-autophagosomal structures, impairing autophagosome formation and/or maturation. In addition, mutations in AP-4-subunit genes were found to cause neurological dysfunction in mice and a form of complicated hereditary spastic paraplegia referred to as 'AP-4-deficiency syndrome' in humans. These findings demonstrated that mammalian AP-4 is required for the development and function of the central nervous system, possibly through its role in the sorting of ATG9A for the maintenance of autophagic homeostasis. In this article, we review the properties and functions of AP-4, and discuss how they might explain the clinical features of AP-4 deficiency.
Collapse
|
10
|
Human Golgi phosphoprotein 3 is an effector of RAB1A and RAB1B. PLoS One 2020; 15:e0237514. [PMID: 32790781 PMCID: PMC7425898 DOI: 10.1371/journal.pone.0237514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a peripheral membrane protein localized at the trans-Golgi network that is also distributed in a large cytosolic pool. GOLPH3 has been involved in several post-Golgi protein trafficking events, but its precise function at the molecular level is not well understood. GOLPH3 is also considered the first oncoprotein of the Golgi apparatus, with important roles in several types of cancer. Yet, it is unknown how GOLPH3 is regulated to achieve its contribution in the mechanisms that lead to tumorigenesis. Binding of GOLPH3 to Golgi membranes depends on its interaction to phosphatidylinositol-4-phosphate. However, an early finding showed that GTP promotes the binding of GOLPH3 to Golgi membranes and vesicles. Nevertheless, it remains largely unknown whether this response is consequence of the function of GTP-dependent regulatory factors, such as proteins of the RAB family of small GTPases. Interestingly, in Drosophila melanogaster the ortholog of GOLPH3 interacts with- and behaves as effector of the ortholog of RAB1. However, there is no experimental evidence implicating GOLPH3 as a possible RAB1 effector in mammalian cells. Here, we show that human GOLPH3 interacted directly with either RAB1A or RAB1B, the two isoforms of RAB1 in humans. The interaction was nucleotide dependent and it was favored with GTP-locked active state variants of these GTPases, indicating that human GOLPH3 is a bona fide effector of RAB1A and RAB1B. Moreover, the expression in cultured cells of the GTP-locked variants resulted in less distribution of GOLPH3 in the Golgi apparatus, suggesting an intriguing model of GOLPH3 regulation.
Collapse
|
11
|
Galaz A, Cortés-Molina F, Arce-Molina R, Romero-Gómez I, Mardones GA, Felipe Barros L, San Martín A. Imaging of the Lactate/Pyruvate Ratio Using a Genetically Encoded Förster Resonance Energy Transfer Indicator. Anal Chem 2020; 92:10643-10650. [PMID: 32600029 DOI: 10.1021/acs.analchem.0c01741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ratio between the cytosolic concentrations of lactate and pyruvate is a direct readout of the balance between glycolysis and mitochondrial oxidative metabolism. Current approaches do not allow detection of the lactate/pyruvate ratio in a single readout with high spatial/temporal resolution in living systems. Using a Förster resonance energy transfer (FRET)-based screening strategy, we found that the orphan transcriptional factor LutR from Bacillus licheniformis is an endogenous sensor of the lactate/pyruvate ratio, suitable for use as a binding moiety to develop a lactate/pyruvate ratio FRET-based genetically encoded indicator, Lapronic. The sensitivity of the indicator to lactate and pyruvate was characterized through changes in the fluorescence FRET ratio and validated with isothermal titration calorimetry. Lapronic was insensitive to physiological pH and temperature and did not respond to structurally related molecules acetate and β-hydroxybutyrate or cofactors NAD+ and NADH. Lapronic was expressed in HEK 293 cells showing a homogeneous cytosolic localization and was also targeted to the mitochondrial matrix. A calibration protocol was designed to quantitatively assess the lactate/pyruvate ratio in intact mammalian cells. Purified protein from Escherichia coli showed robust stability over time and was found suitable for lactate/pyruvate ratio detection in biological samples. We envision that Lapronic will be of practical interest for basic and applied research.
Collapse
Affiliation(s)
- Alex Galaz
- Centro de Estudios Cientı́ficos (CECs), Avenida Arturo Prat 514, Valdivia 5110466, Chile
| | | | - Robinson Arce-Molina
- Centro de Estudios Cientı́ficos (CECs), Avenida Arturo Prat 514, Valdivia 5110466, Chile
| | - Ignacio Romero-Gómez
- Centro de Estudios Cientı́ficos (CECs), Avenida Arturo Prat 514, Valdivia 5110466, Chile
| | - Gonzalo Antonio Mardones
- Instituto de Fisiologı́a, Facultad de Medicina, Universidad Austral de Chile (UACh), Isla Teja s/n, Valdivia 5110566, Chile
| | - L Felipe Barros
- Centro de Estudios Cientı́ficos (CECs), Avenida Arturo Prat 514, Valdivia 5110466, Chile
| | - Alejandro San Martín
- Centro de Estudios Cientı́ficos (CECs), Avenida Arturo Prat 514, Valdivia 5110466, Chile
| |
Collapse
|
12
|
Gadbery JE, Abraham A, Needle CD, Moth C, Sheehan J, Capra JA, Jackson LP. Integrating structural and evolutionary data to interpret variation and pathogenicity in adapter protein complex 4. Protein Sci 2020; 29:1535-1549. [PMID: 32285480 PMCID: PMC7255511 DOI: 10.1002/pro.3870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Genetic variation in the membrane trafficking adapter protein complex 4 (AP-4) can result in pathogenic neurological phenotypes including microencephaly, spastic paraplegias, epilepsy, and other developmental defects. We lack molecular mechanisms responsible for impaired AP-4 function arising from genetic variation, because AP-4 remains poorly understood structurally. Here, we analyze patterns of AP-4 genetic evolution and conservation to identify regions that are likely important for function and thus more susceptible to pathogenic variation. We map known variants onto an AP-4 homology model and predict the likelihood of pathogenic variation at a given location on the structure of AP-4. We find significant clustering of likely pathogenic variants located at the interface between the β4 and N-μ4 subunits, as well as throughout the C-μ4 subunit. Our work offers an integrated perspective on how genetic and evolutionary forces affect AP-4 structure and function. As more individuals with uncharacterized AP-4 variants are identified, our work provides a foundation upon which their functional effects and disease relevance can be interpreted.
Collapse
Affiliation(s)
- John E. Gadbery
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
| | - Abin Abraham
- Vanderbilt Genetics InstituteVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Carli D. Needle
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
| | - Christopher Moth
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Jonathan Sheehan
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - John A. Capra
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University School of MedicineNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Department of Biomedical InformaticsVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Lauren P. Jackson
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
13
|
A simple and rapid pipeline for identification of receptor-binding sites on the surface proteins of pathogens. Sci Rep 2020; 10:1163. [PMID: 31980725 PMCID: PMC6981161 DOI: 10.1038/s41598-020-58305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Ligand-receptor interactions play a crucial role in the plethora of biological processes. Several methods have been established to reveal ligand-receptor interface, however, the majority of methods are time-consuming, laborious and expensive. Here we present a straightforward and simple pipeline to identify putative receptor-binding sites on the pathogen ligands. Two model ligands (bait proteins), domain III of protein E of West Nile virus and NadA of Neisseria meningitidis, were incubated with the proteins of human brain microvascular endothelial cells immobilized on nitrocellulose or PVDF membrane, the complex was trypsinized on-membrane, bound peptides of the bait proteins were recovered and detected on MALDI-TOF. Two peptides of DIII (~916 Da and ~2003 Da) and four peptides of NadA (~1453 Da, ~1810 Da, ~2051 Da and ~2433 Da) were identified as plausible receptor-binders. Further, binding of the identified peptides to the proteins of endothelial cells was corroborated using biotinylated synthetic analogues in ELISA and immunocytochemistry. Experimental pipeline presented here can be upscaled easily to map receptor-binding sites on several ligands simultaneously. The approach is rapid, cost-effective and less laborious. The proposed experimental pipeline could be a simpler alternative or complementary method to the existing techniques used to reveal amino-acids involved in the ligand-receptor interface.
Collapse
|
14
|
Zamorano P, Koning T, Oyanadel C, Mardones GA, Ehrenfeld P, Boric MP, González A, Soza A, Sánchez FA. Galectin-8 induces endothelial hyperpermeability through the eNOS pathway involving S-nitrosylation-mediated adherens junction disassembly. Carcinogenesis 2019; 40:313-323. [PMID: 30624618 DOI: 10.1093/carcin/bgz002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/04/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
The permeability of endothelial cells is regulated by the stability of the adherens junctions, which is highly sensitive to kinase-mediated phosphorylation and endothelial nitric oxide synthase (eNOS)-mediated S-nitrosylation of its protein components. Solid tumors can produce a variety of factors that stimulate these signaling pathways leading to endothelial cell hyperpermeability. This generates stromal conditions that facilitate tumoral growth and dissemination. Galectin-8 (Gal-8) is overexpressed in several carcinomas and has a variety of cellular effects that can contribute to tumor pathogenicity, including angiogenesis. Here we explored whether Gal-8 has also a role in endothelial permeability. We show that recombinant Gal-8 activates eNOS, induces S-nitrosylation of p120-catenin (p120) and dissociation of adherens junction, leading to hyperpermeability of the human endothelial cell line EAhy926. This pathway involves focal-adhesion kinase (FAK) activation downstream of eNOS as a requirement for eNOS-mediated p120 S-nitrosylation. This suggests a reciprocal, yet little understood, regulation of phosphorylation and S-nitrosylation events acting upon adherens junction permeability. In addition, glutathione S-transferase (GST)-Gal-8 pull-down experiments and function-blocking β1-integrin antibodies point to β1-integrins as cell surface components involved in Gal-8-induced hyperpermeability. Endogenous Gal-8 secreted from the breast cancer cell line MCF-7 has similar hyperpermeability and signaling effects. Furthermore, the mouse cremaster model system showed that Gal-8 also activates eNOS, induces S-nitrosylation of adherens junction components and is an effective hyperpermeability agent in vivo. These results add endothelial permeability regulation by S-nitrosylation as a new function of Gal-8 that can potentially contribute to the pathogenicity of tumors overexpressing this lectin.
Collapse
Affiliation(s)
- Patricia Zamorano
- Instituto de Inmunología, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Tania Koning
- Instituto de Inmunología, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Gonzalo A Mardones
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Instituto de Fisiología, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Valdivia, Chile
| | - Pamela Ehrenfeld
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Valdivia, Chile.,Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | | | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Fundación Ciencia y Vida. Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabiola A Sánchez
- Instituto de Inmunología, Universidad Austral de Chile, Valdivia 5110566, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Valdivia, Chile
| |
Collapse
|
15
|
Cargo Sorting at the trans-Golgi Network for Shunting into Specific Transport Routes: Role of Arf Small G Proteins and Adaptor Complexes. Cells 2019; 8:cells8060531. [PMID: 31163688 PMCID: PMC6627992 DOI: 10.3390/cells8060531] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023] Open
Abstract
The trans-Golgi network (TGN) is responsible for selectively recruiting newly synthesized cargo into transport carriers for delivery to their appropriate destination. In addition, the TGN is responsible for receiving and recycling cargo from endosomes. The membrane organization of the TGN facilitates the sorting of cargoes into distinct populations of transport vesicles. There have been significant advances in defining the molecular mechanism involved in the recognition of membrane cargoes for recruitment into different populations of transport carriers. This machinery includes cargo adaptors of the adaptor protein (AP) complex family, and monomeric Golgi-localized γ ear-containing Arf-binding protein (GGA) family, small G proteins, coat proteins, as well as accessory factors to promote budding and fission of transport vesicles. Here, we review this literature with a particular focus on the transport pathway(s) mediated by the individual cargo adaptors and the cargo motifs recognized by these adaptors. Defects in these cargo adaptors lead to a wide variety of diseases.
Collapse
|
16
|
The knocking down of the oncoprotein Golgi phosphoprotein 3 in T98G cells of glioblastoma multiforme disrupts cell migration by affecting focal adhesion dynamics in a focal adhesion kinase-dependent manner. PLoS One 2019; 14:e0212321. [PMID: 30779783 PMCID: PMC6380552 DOI: 10.1371/journal.pone.0212321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/31/2019] [Indexed: 01/29/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a conserved protein of the Golgi apparatus that in humans has been implicated in tumorigenesis. However, the precise function of GOLPH3 in malignant transformation is still unknown. Nevertheless, clinicopathological data shows that in more than a dozen kinds of cancer, including gliomas, GOLPH3 could be found overexpressed, which correlates with poor prognosis. Experimental data shows that overexpression of GOLPH3 leads to transformation of primary cells and to tumor growth enhancement. Conversely, the knocking down of GOLPH3 in GOLPH3-overexpressing tumor cells reduces tumorigenic features, such as cell proliferation and cell migration and invasion. The cumulative evidence indicate that GOLPH3 is an oncoprotein that promotes tumorigenicity by a mechanism that impact at different levels in different types of cells, including the sorting of Golgi glycosyltransferases, signaling pathways, and the actin cytoskeleton. How GOLPH3 connects mechanistically these processes has not been determined yet. Further studies are important to have a more complete understanding of the role of GOLPH3 as oncoprotein. Given the genetic diversity in cancer, a still outstanding aspect is how in this inherent heterogeneity GOLPH3 could possibly exert its oncogenic function. We have aimed to evaluate the contribution of GOLPH3 overexpression in the malignant phenotype of different types of tumor cells. Here, we analyzed the effect on cell migration that resulted from stable, RNAi-mediated knocking down of GOLPH3 in T98G cells of glioblastoma multiforme, a human glioma cell line with unique features. We found that the reduction of GOLPH3 levels produced dramatic changes in cell morphology, involving rearrangements of the actin cytoskeleton and reduction in the number and dynamics of focal adhesions. These effects correlated with decreased cell migration and invasion due to affected persistence and directionality of cell motility. Moreover, the knocking down of GOLPH3 also caused a reduction in autoactivation of focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase that regulates focal adhesions. Our data support a model in which GOLPH3 in T98G cells promotes cell migration by stimulating the activity of FAK.
Collapse
|
17
|
Davies AK, Itzhak DN, Edgar JR, Archuleta TL, Hirst J, Jackson LP, Robinson MS, Borner GHH. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun 2018; 9:3958. [PMID: 30262884 PMCID: PMC6160451 DOI: 10.1038/s41467-018-06172-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/17/2018] [Indexed: 12/03/2022] Open
Abstract
Adaptor protein 4 (AP-4) is an ancient membrane trafficking complex, whose function has largely remained elusive. In humans, AP-4 deficiency causes a severe neurological disorder of unknown aetiology. We apply unbiased proteomic methods, including 'Dynamic Organellar Maps', to find proteins whose subcellular localisation depends on AP-4. We identify three transmembrane cargo proteins, ATG9A, SERINC1 and SERINC3, and two AP-4 accessory proteins, RUSC1 and RUSC2. We demonstrate that AP-4 deficiency causes missorting of ATG9A in diverse cell types, including patient-derived cells, as well as dysregulation of autophagy. RUSC2 facilitates the transport of AP-4-derived, ATG9A-positive vesicles from the trans-Golgi network to the cell periphery. These vesicles cluster in close association with autophagosomes, suggesting they are the "ATG9A reservoir" required for autophagosome biogenesis. Our study uncovers ATG9A trafficking as a ubiquitous function of the AP-4 pathway. Furthermore, it provides a potential molecular pathomechanism of AP-4 deficiency, through dysregulated spatial control of autophagy.
Collapse
Affiliation(s)
- Alexandra K Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Daniel N Itzhak
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Tara L Archuleta
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|
18
|
Luchsinger C, Aguilar M, Burgos PV, Ehrenfeld P, Mardones GA. Functional disruption of the Golgi apparatus protein ARF1 sensitizes MDA-MB-231 breast cancer cells to the antitumor drugs Actinomycin D and Vinblastine through ERK and AKT signaling. PLoS One 2018; 13:e0195401. [PMID: 29614107 PMCID: PMC5882166 DOI: 10.1371/journal.pone.0195401] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/21/2018] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence indicates that the Golgi apparatus plays active roles in cancer, but a comprehensive understanding of its functions in the oncogenic transformation has not yet emerged. At the same time, the Golgi is becoming well recognized as a hub that integrates its functions of protein and lipid biosynthesis to signal transduction for cell proliferation and migration in cancer cells. Nevertheless, the active function of the Golgi apparatus in cancer cells has not been fully evaluated as a target for combined treatment. Here, we analyzed the effect of perturbing the Golgi apparatus on the sensitivity of the MDA-MB-231 breast cancer cell line to the drugs Actinomycin D and Vinblastine. We disrupted the function of ARF1, a protein necessary for the homeostasis of the Golgi apparatus. We found that the expression of the ARF1-Q71L mutant increased the sensitivity of MDA-MB-231 cells to both Actinomycin D and Vinblastine, resulting in decreased cell proliferation and cell migration, as well as in increased apoptosis. Likewise, the combined treatment of cells with Actinomycin D or Vinblastine and Brefeldin A or Golgicide A, two disrupting agents of the ARF1 function, resulted in similar effects on cell proliferation, cell migration and apoptosis. Interestingly, each combined treatment had distinct effects on ERK1/2 and AKT signaling, as indicated by the decreased levels of either phospho-ERK1/2 or phospho-AKT. Our results suggest that disruption of Golgi function could be used as a strategy for the sensitization of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Charlotte Luchsinger
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo Aguilar
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V. Burgos
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Center for Cell Biology and Biomedicine (CEBICEM), School of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Department of Anatomy, Histology and Pathology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Center for Cell Biology and Biomedicine (CEBICEM), School of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- * E-mail:
| |
Collapse
|
19
|
Mattera R, Park SY, De Pace R, Guardia CM, Bonifacino JS. AP-4 mediates export of ATG9A from the trans-Golgi network to promote autophagosome formation. Proc Natl Acad Sci U S A 2017; 114:E10697-E10706. [PMID: 29180427 PMCID: PMC5740629 DOI: 10.1073/pnas.1717327114] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AP-4 is a member of the heterotetrameric adaptor protein (AP) complex family involved in protein sorting in the endomembrane system of eukaryotic cells. Interest in AP-4 has recently risen with the discovery that mutations in any of its four subunits cause a form of hereditary spastic paraplegia (HSP) with intellectual disability. The critical sorting events mediated by AP-4 and the pathogenesis of AP-4 deficiency, however, remain poorly understood. Here we report the identification of ATG9A, the only multispanning membrane component of the core autophagy machinery, as a specific AP-4 cargo. AP-4 promotes signal-mediated export of ATG9A from the trans-Golgi network to the peripheral cytoplasm, contributing to lipidation of the autophagy protein LC3B and maturation of preautophagosomal structures. These findings implicate AP-4 as a regulator of autophagy and altered autophagy as a possible defect in AP-4-deficient HSP.
Collapse
Affiliation(s)
- Rafael Mattera
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Sang Yoon Park
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Raffaella De Pace
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
20
|
Arcos A, de Paola M, Gianetti D, Acuña D, Velásquez ZD, Miró MP, Toro G, Hinrichsen B, Muñoz RI, Lin Y, Mardones GA, Ehrenfeld P, Rivera FJ, Michaut MA, Batiz LF. α-SNAP is expressed in mouse ovarian granulosa cells and plays a key role in folliculogenesis and female fertility. Sci Rep 2017; 7:11765. [PMID: 28924180 PMCID: PMC5603506 DOI: 10.1038/s41598-017-12292-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/05/2017] [Indexed: 01/13/2023] Open
Abstract
The balance between ovarian folliculogenesis and follicular atresia is critical for female fertility and is strictly regulated by a complex network of neuroendocrine and intra-ovarian signals. Despite the numerous functions executed by granulosa cells (GCs) in ovarian physiology, the role of multifunctional proteins able to simultaneously coordinate/modulate several cellular pathways is unclear. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (α-SNAP) is a multifunctional protein that participates in SNARE-mediated membrane fusion events. In addition, it regulates cell-to-cell adhesion, AMPK signaling, autophagy and apoptosis in different cell types. In this study we examined the expression pattern of α-SNAP in ovarian tissue and the consequences of α-SNAP (M105I) mutation (hyh mutation) in folliculogenesis and female fertility. Our results showed that α-SNAP protein is highly expressed in GCs and its expression is modulated by gonadotropin stimuli. On the other hand, α-SNAP-mutant mice show a reduction in α-SNAP protein levels. Moreover, increased apoptosis of GCs and follicular atresia, reduced ovulation rate, and a dramatic decline in fertility is observed in α-SNAP-mutant females. In conclusion, α-SNAP plays a critical role in the balance between follicular development and atresia. Consequently, a reduction in its expression/function (M105I mutation) causes early depletion of ovarian follicles and female subfertility.
Collapse
Affiliation(s)
- Alexis Arcos
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Matilde de Paola
- Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Diego Gianetti
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Acuña
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Zahady D Velásquez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - María Paz Miró
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriela Toro
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Bryan Hinrichsen
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rosa Iris Muñoz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Yimo Lin
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Gonzalo A Mardones
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, A-5020, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, A-5020, Austria
| | - Marcela A Michaut
- Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina. .,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Luis Federico Batiz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile. .,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile. .,Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
21
|
Sun X, Feng Z, Qu Y, Shao J, Wei N. Expression of Activating Protein 4 and Its Relationships with Prognosis in Gastric Cancer. Chemotherapy 2017; 62:181-186. [DOI: 10.1159/000455004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/30/2016] [Indexed: 01/26/2023]
Abstract
Objective: The aim of this work was to investigate the expression of transcription activating protein 4 (AP-4) in gastric cancer (GC) and its impacts on prognosis. Methods: The cancer tissues and normal tissues of 54 GC patients were sampled for the expression detection of AP-4, and the patients were followed up. Results: The positive expression rate of AP-4 in the cancer tissues (68.5%) was higher than the normal tissues (22.2%; p < 0.01). The lower the tumor differentiation degree and the deeper the invasion depth, the higher the expression rate of AP-4. The median survival time of the patients with positive AP-4 expression was significantly shorter than of those without AP-4 expression (26.3/41.3 months), and the accumulative survival rate of the former was also lower than the latter (χ2 = 4.736, p = 0.03). AP-4 was expressed in GC tissues and normal gastric tissues, with the expression in the former being higher. Conclusions: The expression of AP-4 was positively related with the tumor differentiation degree, invasion depth, lymph node metastasis, and pTNM stage, while it was not related with patient gender, age, tumor size, location, or distant metastasis. AP-4 might be used as an indicator for the prognosis prediction of GC.
Collapse
|
22
|
Barriga GP, Villalón-Letelier F, Márquez CL, Bignon EA, Acuña R, Ross BH, Monasterio O, Mardones GA, Vidal SE, Tischler ND. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc. PLoS Negl Trop Dis 2016; 10:e0004799. [PMID: 27414047 PMCID: PMC4945073 DOI: 10.1371/journal.pntd.0004799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses. The infection of cells by enveloped viruses involves the fusion of membranes between viruses and cells. This process is mediated by viral fusion proteins that have been grouped into at least three structural classes. Membrane-enveloped hantaviruses are worldwide spread pathogens that can cause human disease with mortality rates reaching up to 50%, however, neither a therapeutic drug nor preventive measures are currently available. Here we show that the entrance of Andes hantavirus into target cells can be blocked by fragments derived from the Gc fusion protein that are analogous to inhibitory fragments of class II fusion proteins. The Gc fragments acted directly over the viral fusion process, preventing its late stages. Together, our data demonstrate that the hantavirus Gc protein shares not only structural, but also mechanistic similarity with class II fusion proteins, suggesting its evolution from a common or related ancestral fusion protein. Furthermore, the results outline novel approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Gonzalo P. Barriga
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | | | - Chantal L. Márquez
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Eduardo A. Bignon
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Rodrigo Acuña
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Breyan H. Ross
- Laboratory of Structural Cell Biology, Department of Physiology, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gonzalo A. Mardones
- Laboratory of Structural Cell Biology, Department of Physiology, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Simon E. Vidal
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Nicole D. Tischler
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
- * E-mail:
| |
Collapse
|
23
|
Tenorio MJ, Ross BH, Luchsinger C, Rivera-Dictter A, Arriagada C, Acuña D, Aguilar M, Cavieres V, Burgos PV, Ehrenfeld P, Mardones GA. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS One 2016; 11:e0154719. [PMID: 27123979 PMCID: PMC4849736 DOI: 10.1371/journal.pone.0154719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/18/2016] [Indexed: 01/08/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes.
Collapse
Affiliation(s)
- María J. Tenorio
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Breyan H. Ross
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Charlotte Luchsinger
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Andrés Rivera-Dictter
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Cecilia Arriagada
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Diego Acuña
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo Aguilar
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Viviana Cavieres
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V. Burgos
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Department of Anatomy, Histology and Pathology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
24
|
Cavieres VA, González A, Muñoz VC, Yefi CP, Bustamante HA, Barraza RR, Tapia-Rojas C, Otth C, Barrera MJ, González C, Mardones GA, Inestrosa NC, Burgos PV. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS One 2015; 10:e0136313. [PMID: 26308941 PMCID: PMC4550396 DOI: 10.1371/journal.pone.0136313] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/02/2015] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) peptide. We have previously shown that the compound tetrahydrohyperforin (IDN5706) prevents accumulation of Aβ species in an in vivo model of AD, however the mechanism that explains this reduction is not well understood. We show herein that IDN5706 decreases the levels of ER degradation enhancer, mannosidase alpha-like 1 (EDEM1), a key chaperone related to endoplasmic-reticulum-associated degradation (ERAD). Moreover, we observed that low levels of EDEM1 correlated with a strong activation of autophagy, suggesting a crosstalk between these two pathways. We observed that IDN5706 perturbs the glycosylation and proteolytic processing of the amyloid precursor protein (APP), resulting in the accumulation of immature APP (iAPP) in the endoplasmic reticulum. To investigate the contribution of autophagy, we tested the effect of IDN5706 in Atg5-depleted cells. We found that depletion of Atg5 enhanced the accumulation of iAPP in response to IDN5706 by slowing down its degradation. Our findings reveal that IDN5706 promotes degradation of iAPP via the activation of Atg5-dependent autophagy, shedding light on the mechanism that may contribute to the reduction of Aβ production in vivo.
Collapse
Affiliation(s)
- Viviana A. Cavieres
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Alexis González
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Vanessa C. Muñoz
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Claudia P. Yefi
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Hianara A. Bustamante
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Rafael R. Barraza
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carola Otth
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - María José Barrera
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos González
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Nibaldo C. Inestrosa
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- * E-mail: (NCI); (PVB)
| | - Patricia V. Burgos
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
- * E-mail: (NCI); (PVB)
| |
Collapse
|
25
|
Tenorio MJ, Luchsinger C, Mardones GA. Protein kinase A activity is necessary for fission and fusion of Golgi to endoplasmic reticulum retrograde tubules. PLoS One 2015; 10:e0135260. [PMID: 26258546 PMCID: PMC4530959 DOI: 10.1371/journal.pone.0135260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity.
Collapse
Affiliation(s)
- María J. Tenorio
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
| | - Charlotte Luchsinger
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
26
|
Paczkowski JE, Richardson BC, Fromme JC. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends Cell Biol 2015; 25:408-16. [PMID: 25795254 DOI: 10.1016/j.tcb.2015.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 12/29/2022]
Abstract
Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The adaptor protein (AP)-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor has a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the ADP-ribosylation factor 1 (Arf1) GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos.
Collapse
Affiliation(s)
- Jon E Paczkowski
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brian C Richardson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|