1
|
Labeille RO, Elliott J, Abdulla H, Seemann F. Hyperglycosylation as an Indicator of Aging in the Bone Metabolome of Oryzias latipes. Metabolites 2024; 14:525. [PMID: 39452906 PMCID: PMC11509322 DOI: 10.3390/metabo14100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Chronological aging of bone tissues is a multi-faceted process that involves a complex interplay of cellular, biochemical, and molecular mechanisms. Metabolites play a crucial role for bone homeostasis, and a changed metabolome is indicative for bone aging, although bone metabolomics are currently understudied. The vertebral bone metabolome of the model fish Japanese medaka (Oryzias latipes) was employed to identify sex-specific markers of bone aging. 265 and 213 metabolites were differently expressed in 8-month-old vs. 3-month-old female and male fish, respectively. The untargeted metabolomics pathway enrichment analysis indicated a sex-independent increased hyperglycosylation in 8-month-old individuals. The upregulated glycosylation pathways included glycosphingolipids, glycosylphosphatidylinositol anchors, O-glycans, and N-glycans. UDP-sugars and sialic acid were found to be major drivers in regulating glycosylation pathways and metabolic flux. The data indicate a disruption of protein processing at the endoplasmic reticulum and changes in O-glycan biosynthesis. Dysregulation of glycosylation, particularly through the hexosamine biosynthetic pathway, may contribute to bone aging and age-related bone loss. The results warrant further investigation into the functional involvement of increased glycosylation in bone aging. The potential of glycan-based biomarkers as early warning systems for bone aging should be explored and would aid in an advanced understanding of the progression of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Remi O. Labeille
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; (R.O.L.); (J.E.); (H.A.)
| | - Justin Elliott
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; (R.O.L.); (J.E.); (H.A.)
| | - Hussain Abdulla
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; (R.O.L.); (J.E.); (H.A.)
| | - Frauke Seemann
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
2
|
Verma A, Holeyappa SA, Bansal N, Kaur VI. Efficacy of quercetin in ameliorating hypoxia-induced hematological and histopathological alterations in rohu Labeo rohita. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1171-1187. [PMID: 38446317 DOI: 10.1007/s10695-024-01329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Hypoxia, a major issue in aquatic ecosystems, in special reference to climate change, and exacerbated by anthropogenic activities. It is causing slow growth, disease outbreaks, and mortality in finfish and shellfish. Therefore, adaptation to lowering oxygen levels through supplementation of herbs or their extracts in diets is imperative. In this study, hypoxia was simulated in controlled conditions with quercetin-enriched diets. Quercetin is a plant pigment (flavonol) possessing anti-oxidant property and is present in vegetables, leaves, seeds, pulses, and fruits. The experiment was conducted on rohu Labeo rohita, which is most widely cultured in India. There were four treatments including T1 (Normoxia: > 5 ppm dissolved oxygen; DO2), T2 (hypoxia: 3-4 ppm DO2), T3 (hypoxia + 50 mg quercetin/kg diet), and T4 (hypoxia + 100 mg quercetin/kg diet). The study was conducted for 30 days, and water quality was measured regularly. The results revealed that the hematological parameters were negatively affected. The tissue micro-architecture illustrated the impairment through degeneration of neurons in the brain, increased pigmentation as melanosis in the kidney, increased thickness of primary lamellae in the gills, and dilatations of sinusoids in the liver in hypoxia groups, while quercetin-enriched diets improved the hematological and histomorphological parameters. The results confirm the utility of hematological and histopathological tools as biomarkers and reflect the possible threats of hypoxia on fish. In conclusion, quercetin in diets appeared to show resistance towards chronic hypoxia by restoring the structure and functions of the vital organs towards normalcy and could be recommended as a potential ameliorative agent.
Collapse
Affiliation(s)
- Arvind Verma
- Department of Aquatic Environment, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India, 141 004
| | - Shanthanagouda A Holeyappa
- Department of Aquatic Environment, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India, 141 004.
- Inland Fisheries Unit, Zonal Agricultural and Horticultural Sciences, Keladi Shivappa Nayaka University of Agricultural and Horticultural Sciences, Navile, Shivamogga, Karnataka, India, 577 204.
| | - Neelam Bansal
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India, 141 004
| | - Vaneet Inder Kaur
- Department of Aquaculture, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India, 141 004
| |
Collapse
|
3
|
Schkoda S, Horman B, Witchey SK, Jansson A, Macari S, Patisaul HB. Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat. FRONTIERS IN TOXICOLOGY 2023; 5:1216388. [PMID: 37577032 PMCID: PMC10414991 DOI: 10.3389/ftox.2023.1216388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Accumulating evidence reveals that endocrine disrupting chemicals (EDCs) can disrupt aspects of metabolic programming, suggesting that skeletal development may be at risk, a possibility that is rarely examined. The commercial flame retardant (FR) mixture, Firemaster 550 (FM 550), has repeatedly been shown to negatively influence metabolic programming, raising concerns that skeletal integrity may consequently be impaired. We have previously shown that gestational and lactational exposure to 1,000 µg FM 550 negatively affected sex-specific skeletal traits in male, but not female, rats assessed at 6 months of age. Whether this outcome is primarily driven by the brominated (BFR) or organophosphate ester (OPFR) portions of the mixture or the effects persist to older ages is unknown. Materials and methods: To address this, in the present study, dams were orally exposed throughout gestation and lactation to either 1,000 μg BFR, 1,000 µg OPFR, or 2,000 µg FM 550. Offspring (n = 8/sex/exposure) were weaned at PND 21 and assessed for femoral cortical and trabecular bone parameters at 8 months of age by high-resolution X-ray micro-computed tomography (micro-CT). Serum levels of serotonin, osteocalcin, alkaline phosphatase, and calcium were quantified. Results: FM 550 affected both sexes, but the females were more appreciably impacted by the OPFRs, while the males were more vulnerable to the BFRs. Conclusion: Although sex specificity was expected due to the sexual dimorphic nature of skeletal physiology, the mechanisms accounting for the male- and female-specific phenotypes remain to be determined. Future work aims to clarify these unresolved issues.
Collapse
Affiliation(s)
- Stacy Schkoda
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Shannah K. Witchey
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Anton Jansson
- Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC, United States
| | - Soraia Macari
- Department of Restorative Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Heather B. Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Mo J, Wan MT, Au DWT, Shi J, Tam N, Qin X, Cheung NKM, Lai KP, Winkler C, Kong RYC, Seemann F. Transgenerational bone toxicity in F3 medaka (Oryzias latipes) induced by ancestral benzo[a]pyrene exposure: Cellular and transcriptomic insights. J Environ Sci (China) 2023; 127:336-348. [PMID: 36522066 DOI: 10.1016/j.jes.2022.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/17/2023]
Abstract
Benzo[a]pyrene (BaP), a ubiquitous pollutant, raises environmental health concerns due to induction of bone toxicity in the unexposed offspring. Exposure of F0 ancestor medaka (Oryzias latipes) to 1 µg/L BaP for 21 days causes reduced vertebral bone thickness in the unexposed F3 male offspring. To reveal the inherited modifications, osteoblast (OB) abundance and molecular signaling pathways of transgenerational BaP-induced bone thinning were assessed. Histomorphometric analysis showed a reduction in OB abundance. Analyses of the miRNA and mRNA transcriptomes revealed the dysregulation of Wnt signaling (frzb/ola-miR-1-3p, sfrp5/ola-miR-96-5p/miR-455-5p) and bone morphogenetic protein (Bmp) signaling (bmp3/ola-miR-96-5p/miR-181b-5p/miR-199a-5p/miR-205-5p/miR-455-5p). Both pathways are major indicators of impaired bone formation, while the altered Rank signaling in osteoclasts (c-fos/miR-205-5p) suggests a potentially augmented bone resorption. Interestingly, a typical BaP-responsive pathway, the Nrf2-mediated oxidative stress response (gst/ola-miR-181b-5p/miR-199a-5p/miR-205), was also affected. Moreover, mRNA levels of epigenetic modification enzymes (e.g., hdac6, hdac7, kdm5b) were found dysregulated. The findings indicated that epigenetic factors (e.g., miRNAs, histone modifications) may directly regulate the expression of genes associated with transgenerational BaP bone toxicity and warrants further studies. The identified candidate genes and miRNAs may serve as potential biomarkers for BaP-induced bone disease and as indicators of historic exposures in wild fish for conservation purposes.
Collapse
Affiliation(s)
- Jiezhang Mo
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Miles Teng Wan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Nathan Tam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Napo K M Cheung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin 541004, China
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, 119077, Singapore
| | - Richard Yuen-Chong Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| | - Frauke Seemann
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Center for Coastal Studies and Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas 78412, USA.
| |
Collapse
|
5
|
Holeyappa SA, Kaur A, Bansal N, Ansal MD, Patil JG, Thammegowda NB, Kaur VI, Sethi RS. Biomarker-assisted assessment of aquatic health using the cosmopolitan common carp, Cyprinus carpio (L): a case study of bisphenol-A exposures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14206-14218. [PMID: 34601693 DOI: 10.1007/s11356-021-16778-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Monitoring aquatic health from environmental pollutants is critical, none more so than bisphenol-A (BPA), a ubiquitous endocrine-disrupting chemical (EDC). The present study brings out the responses of selected transcripts, hormone levels, and tissue histomorphology in a widely distributed fish species Cyprinus carpio (Linn.), following exposure to environmentally relevant (10, 100 ng/L) and higher (1000 ng/L) concentration of BPA. The response of cyp19a1a, cyp19a1b, and c3 significantly decreased, while that of vtg increased in their respective tissue domains. The hematological parameters TEC, Hb, and Hct decreased significantly in contrast to TLC (p < 0.05) at all exposure concentrations, whereas none of the erythrocytic indices (MCV, MCH, and MCHC) was perturbed. The steroidogenic hormone levels, such as estradiol and progesterone, increased significantly with increasing BPA concentrations. In contrast, the testosterone and all the thyroid hormones (T3, T4, and TSH) were suppressed significantly (p < 0.05). At the histological level, the BPA induced chondrocyte proliferation, which was accompanied by hemorrhage of the gill lamellae, increased melanomacrophagic centers (MMCs), and degeneration of tubules and fluid accumulation in the kidney. In parallel, binucleated hepatocytes and inflammations were prominent in the liver. Collectively, the histomorphology confirmed induction of degenerative effects in all the tissues investigated, while the cyclic responses of biochemical markers suggest an ability to regulate the impacts. However, a chronic exposure could result in overriding the endemic reproductive pathways with potential population-level effects. In conclusion, the study identified multiple molecular, cellular, and physiological markers that could be employed to detect early signs of BPA and more broadly EDC exposures. These markers in combination with a wide distribution of C. carpio should allow comparative studies of pollutants at environmental concentrations.
Collapse
Affiliation(s)
- Shanthanagouda Admane Holeyappa
- Department of Aquatic Environment, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Amandeep Kaur
- Department of Aquaculture, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Neelam Bansal
- Department of Veterinary Anatomy, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Meera D Ansal
- Department of Aquaculture, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Jawahar G Patil
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Naveenkumar Billekallu Thammegowda
- Department of Aquatic Environment, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Vaneet Inder Kaur
- Department of Aquaculture, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Ram Saran Sethi
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
6
|
Mo J, Au DWT, Wan MT, Shi J, Zhang G, Winkler C, Kong RYC, Seemann F. Multigenerational Impacts of Benzo[ a]pyrene on Bone Modeling and Remodeling in Medaka ( Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12271-12284. [PMID: 32840350 DOI: 10.1021/acs.est.0c02416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ancestral benzo[a]pyrene (BaP) (1 μg/L, 21 days) exposure has previously been shown to cause skeletal deformities in medaka (Oryzias latipes) larvae in the F1-F3 generation. However, when and how this deformity is induced during bone development remain to be elucidated. The col10a1:nlGFP/osx:mCherry double transgenic medaka model was employed to determine the temporal and spatial changes of col10a1:nlGFP- positive osteochondral progenitor cells (OPCs) and osx:mCherry-positive premature osteoblasts (POBs) [8 days postfertilization (dpf)-31 dpf] in combination with changes in bone mineralization at the tissue level. Ancestral BaP exposure delayed the development of col10a1:nlGFP- and osx:mCherry-positive osteoblasts and reduced the abundance of col10a1:nlGFP-positive osteoblast progenitors and col10a1:nlGFP/osx:mCherry double-positive premature osteoblasts during critical windows of early vertebral bone formation, associated with reduced bone mineralization in embryos (14 dpf) and larvae (31 dpf), compressed vertebral segments in larvae (31 dpf), and reduced bone thickness in adult male medaka (6 months old) of the F1-F3 generations. Both Col10a1:nlGFP and osx:mCherry were identified as potential targets of epigenetic modifications underlying the transgenerational inheritance of BaP bone toxicity. The present study provides novel knowledge of the underlying mechanisms of transgenerational toxicity of BaP at the cellular level.
Collapse
Affiliation(s)
- Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Miles Teng Wan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, 119077, Singapore
| | - Richard Yuen-Chong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong SAR, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Frauke Seemann
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Center for Coastal Studies and Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas 78412, United States
| |
Collapse
|
7
|
Carnovali M, Banfi G, Mariotti M. Age-dependent modulation of bone metabolism in zebrafish scales as new model of male osteoporosis in lower vertebrates. GeroScience 2020; 43:927-940. [PMID: 32997256 PMCID: PMC8110640 DOI: 10.1007/s11357-020-00267-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
After middle age, in human bone, the resorption usually exceeds formation resulting in bone loss and increased risk of fractures in the aged population. Only few in vivo models in higher vertebrates are available for pathogenic and therapeutic studies about bone aging. Among these, male Danio rerio (zebrafish) can be successfully used as low vertebrate model to study degenerative alterations that affect the skeleton during aging, reducing the role of sex hormones. In this paper, we investigated the early bone aging mechanisms in male zebrafish (3, 6, 9 months old) scales evaluating the physiological changes and the effects of prednisolone, a pro-osteoporotic drug. The results evidentiated an age-dependent reduction of the mineralization rate in the fish scales, as highlighted by growing circle measurements. Indeed, the osteoblastic ALP activity at the matrix deposition site was found progressively downregulated. The higher TRAP activity was found in 63% of 9-month-old fish scales associated with resorption lacunae along the scale border. Gene expression analysis evidentiated that an increase of the tnfrsf1b (homolog of human rank) in aging scales may be responsible for resorption stimulation. Interestingly, prednisolone inhibited the physiological growth of the scale and induced in aged scales a more significant bone resorption compared with untreated fish (3.8% vs 1.02%). Bone markers analysis shown a significant reduction of ALP/TRAP ratio due to a prednisolone-dependent stimulation of tnfsf11 (homolog of human rankl) in scales of older fish. The results evidentiated for the first time the presence of a senile male osteoporosis in lower vertebrate. This new model could be helpful to identify the early mechanisms of bone aging and new therapeutic strategies to prevent age-related bone alterations in humans.
Collapse
Affiliation(s)
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Mariotti
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy. .,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
8
|
Busse B, Galloway JL, Gray RS, Harris MP, Kwon RY. Zebrafish: An Emerging Model for Orthopedic Research. J Orthop Res 2020; 38:925-936. [PMID: 31773769 PMCID: PMC7162720 DOI: 10.1002/jor.24539] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/16/2019] [Indexed: 02/04/2023]
Abstract
Advances in next-generation sequencing have transformed our ability to identify genetic variants associated with clinical disorders of the musculoskeletal system. However, the means to functionally validate and analyze the physiological repercussions of genetic variation have lagged behind the rate of genetic discovery. The zebrafish provides an efficient model to leverage genetic analysis in an in vivo context. Its utility for orthopedic research is becoming evident in regard to both candidate gene validation as well as therapeutic discovery in tissues such as bone, tendon, muscle, and cartilage. With the development of new genetic and analytical tools to better assay aspects of skeletal tissue morphology, mineralization, composition, and biomechanics, researchers are emboldened to systematically approach how the skeleton develops and to identify the root causes, and potential treatments, of skeletal disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:925-936, 2020.
Collapse
Affiliation(s)
- Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
- all authors contributed equally to this work and are listed in alphabetical order
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street Boston, MA 02114, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, Texas, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School; Department of Orthopedic Research, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Ronald Y. Kwon
- Department of Orthopaedics and Sports Medicine; Department of Mechanical Engineering; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| |
Collapse
|
9
|
Motamedi M, Shamsaldini F, Teimori A, Hesni MA. Histomicroscopy and normal anatomy of the adult killifish
Aphanius hormuzensis
(Teleostei; Aphaniidae) from the Persian Gulf coastal environment. Microsc Res Tech 2018; 82:466-480. [DOI: 10.1002/jemt.23190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/30/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Mina Motamedi
- Department of Biology, Faculty of SciencesShahid Bahonar University of Kerman Kerman Iran
| | - Fatemeh Shamsaldini
- Department of Biology, Faculty of SciencesShahid Bahonar University of Kerman Kerman Iran
| | - Azad Teimori
- Department of Biology, Faculty of SciencesShahid Bahonar University of Kerman Kerman Iran
| | - Majid Askari Hesni
- Department of Biology, Faculty of SciencesShahid Bahonar University of Kerman Kerman Iran
| |
Collapse
|
10
|
Martins T, Valentim A, Pereira N, Antunes LM. Anaesthetics and analgesics used in adult fish for research: A review. Lab Anim 2018; 53:325-341. [PMID: 30514148 DOI: 10.1177/0023677218815199] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The number of fish used in research has increased in the last decades. Anaesthesia is required when fish must be held immobile and it is crucial to promote fish welfare, because these vertebrates can show signs of stress and/or pain during handling, transport, tagging, sampling and invasive procedures. The use of an inadequate anaesthetic protocol can compromise not only the welfare of the fish, but also the reliability of the research results. Thus, the development of suitable anaesthetic regimes for each fish species is important. This article reviews the main anaesthetic and analgesic agents used in adult fish in a research setting.
Collapse
Affiliation(s)
- Tânia Martins
- 1 Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Portugal
| | - Ana Valentim
- 1 Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Portugal.,2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,3 Laboratory Animal Science Group, Universidade do Porto, Portugal
| | - Nuno Pereira
- 4 Oceanário de Lisboa, Portugal.,5 ISPA - Instituto Universitário, Lisboa, Portugal.,6 Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal.,7 Chronic Diseases Research Center (CEDOC), Nova Medical School, Portugal.,8 Faculty of Veterinary Medicine, Lusófona University, Portugal
| | - Luis Marques Antunes
- 1 Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Portugal.,2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,3 Laboratory Animal Science Group, Universidade do Porto, Portugal
| |
Collapse
|
11
|
Quantitative morphometric analysis of adult teleost fish by X-ray computed tomography. Sci Rep 2018; 8:16531. [PMID: 30410001 PMCID: PMC6224569 DOI: 10.1038/s41598-018-34848-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Vertebrate models provide indispensable paradigms to study development and disease. Their analysis requires a quantitative morphometric study of the body, organs and tissues. This is often impeded by pigmentation and sample size. X-ray micro-computed tomography (micro-CT) allows high-resolution volumetric tissue analysis, largely independent of sample size and transparency to visual light. Importantly, micro-CT data are inherently quantitative. We report a complete pipeline of high-throughput 3D data acquisition and image analysis, including tissue preparation and contrast enhancement for micro-CT imaging down to cellular resolution, automated data processing and organ or tissue segmentation that is applicable to comparative 3D morphometrics of small vertebrates. Applied to medaka fish, we first create an annotated anatomical atlas of the entire body, including inner organs as a quantitative morphological description of an adult individual. This atlas serves as a reference model for comparative studies. Using isogenic medaka strains we show that comparative 3D morphometrics of individuals permits identification of quantitative strain-specific traits. Thus, our pipeline enables high resolution morphological analysis as a basis for genotype-phenotype association studies of complex genetic traits in vertebrates.
Collapse
|
12
|
Mu J, Chernick M, Dong W, Di Giulio RT, Hinton DE. Early life co-exposures to a real-world PAH mixture and hypoxia result in later life and next generation consequences in medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:162-173. [PMID: 28728047 PMCID: PMC5584607 DOI: 10.1016/j.aquatox.2017.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 05/12/2023]
Abstract
Acute effects of individual and complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are well documented in vertebrate species. Hypoxia in fish reduces metabolic rate and reproduction. However, less is known about the later life consequences stemming from early-life exposure to PAHs or hypoxia, particularly their co-exposure. To address this, medaka (Oryzias latipes) embryos were exposed to a complex PAH mixture sediment extract from the Elizabeth River, VA (ERSE) at concentrations of 0.1, 0.5, or 1.0% or to one of three different hypoxia scenarios: continuous, nocturnal, or late stage embryogenesis hypoxia. Co-exposures with 0.1% ERSE and each of the hypoxia scenarios were conducted. Results included decreased survival with ERSE, hatching delays with hypoxia, and higher occurrences of deformities with each. The continuous hypoxia scenario caused the most significant changes in all endpoints. These early-life exposures altered later-life growth, impaired reproductive capacity, and reduced the quality of their offspring. ERSE alone resulted in a female-biased sex ratio while continuous or nocturnal hypoxia produced significantly greater numbers of males; and co-exposure produced an equal sex ratio. Exposure to a PAH mixture and hypoxia during early life stages has meaningful later-life and next generational consequences.
Collapse
Affiliation(s)
- Jingli Mu
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Wu Dong
- Nicholas School of the Environment, Duke University, Durham, NC, USA; College of Animal Science and Technology, Inner Mongolia University for the Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao, China
| | | | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Charles JF, Sury M, Tsang K, Urso K, Henke K, Huang Y, Russell R, Duryea J, Harris MP. Utility of quantitative micro-computed tomographic analysis in zebrafish to define gene function during skeletogenesis. Bone 2017; 101:162-171. [PMID: 28476577 PMCID: PMC5512604 DOI: 10.1016/j.bone.2017.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 11/16/2022]
Abstract
The zebrafish is a powerful experimental model to investigate the genetic and morphologic basis of vertebrate development. Analysis of skeletogenesis in this fish is challenging as a result of the small size of the developing and adult zebrafish. Many of the bones of small fishes such as the zebrafish and medaka are quite thin, precluding many standard assays of bone quality and morphometrics commonly used on bones of larger animals. Microcomputed tomography (microCT) is a common imaging technique used for detailed analysis of the skeleton of the zebrafish and determination of mutant phenotypes. However, the utility of this modality for analysis of the zebrafish skeleton, and the effect of inherent variation among individual zebrafish, including variables such as sex, age and strain, is not well understood. Given the increased use and accessibility of microCT, we set out to define the sensitivity of microCT methods in developing and adult zebrafish. We assessed skeletal shape and density measures in the developing vertebrae and parasphenoid of the skull base. We found most skeletal variables are tightly correlated to standard length, but that at later growth stages (>3months) there are age dependent effects on some skeletal measures. Further we find modest strain but not sex differences in skeletal measures. These data suggest that the appropriate control for assessing mutant phenotypes should be age and strain matched, ideally a wild-type sibling. By analyzing two mutants exhibiting skeletal dysplasia, we show that microCT imaging can be a sensitive method to quantify distinct skeletal parameters of adults. Finally, as developing zebrafish skeletons remain difficult to resolve by radiographic means, we define a contrast agent specific for bone that enhances resolution at early stages, permitting detailed morphometric analysis of the forming skeleton. This increased capability for detection extends the use of this imaging modality to leverage the zebrafish model to understand the development causes of skeletal dysplasias.
Collapse
Affiliation(s)
- Julia F Charles
- Department of Medicine, Brigham and Women's Hospital, United States.
| | - Meera Sury
- Department of Genetics, Harvard Medical School, United States; Department of Orthopaedics, Boston Children's Hospital, United States; Department of Radiology, Brigham and Women's Hospital, United States
| | - Kelly Tsang
- Department of Radiology, Brigham and Women's Hospital, United States
| | - Katia Urso
- Department of Medicine, Brigham and Women's Hospital, United States
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, United States; Department of Orthopaedics, Boston Children's Hospital, United States
| | - Yue Huang
- Department of Genetics, Harvard Medical School, United States; Department of Orthopaedics, Boston Children's Hospital, United States
| | - Ruby Russell
- Department of Radiology, Brigham and Women's Hospital, United States
| | - Jeffrey Duryea
- Department of Radiology, Brigham and Women's Hospital, United States
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, United States; Department of Orthopaedics, Boston Children's Hospital, United States.
| |
Collapse
|
14
|
Seemann F, Jeong CB, Zhang G, Wan MT, Guo B, Peterson DR, Lee JS, Au DWT. Ancestral benzo[a]pyrene exposure affects bone integrity in F3 adult fish (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:127-134. [PMID: 28061388 DOI: 10.1016/j.aquatox.2016.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 05/20/2023]
Abstract
Benzo[a]pyrene (BaP) at an environmentally relevant concentration (1μg/L) has previously been shown to affect bone development in a transgenerational manner in F3 medaka (Oryzias latipes) larvae (17dph). Here, we provide novel histomorphometric data demonstrating that the impaired bone formation at an early life stage is not recoverable and can result in a persistent transgenerational impairment of bone metabolism in F3 adult fish. A decrease in bone thickness and the occurrence of microcracks in ancestrally BaP-treated adult male fish (F3) were revealed by MicroCt measurement and histopathological analysis. The expression of twenty conserved bone miRNAs were screened in medaka and their relative expression (in the F3 ancestral BaP treatment vs the F3 control fish) were determined by quantitative real-time PCR. Attempt was made to link bone miRNA expression with the potential target bone mRNA expression in medaka. Five functional pairs of mRNA/miRNA were identified (Osx/miR-214, Col2a1b/miR-29b, Runx2/miR-204, Sox9b/miR-199a-3p, APC/miR-27b). Unique knowledge of bone-related miRNA expression in medaka in response to ancestral BaP-exposure in the F3 generation is presented. From the ecological risk assessment perspective, BaP needs to be regarded as a transgenerational skeletal toxicant which exerts a far-reaching impact on fish survival and fitness. Given that the underlying mechanisms of cartilage/bone formation are conserved between medaka and mammals, the results may also shed light on the potential transgenerational effect of BaP on skeletal disorders in mammals/humans.
Collapse
Affiliation(s)
- Frauke Seemann
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Miles Teng Wan
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Baosheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Drew Ryan Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Doris Wai-Ting Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong.
| |
Collapse
|
15
|
Nganvongpanit K, Pitakarnnop T, Buddhachat K, Phatsara M. Gender-Related Differences in Pelvic Morphometrics of the Retriever Dog Breed. Anat Histol Embryol 2016; 46:51-57. [PMID: 27114107 DOI: 10.1111/ahe.12232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/03/2016] [Indexed: 11/30/2022]
Abstract
This study presents the results from a morphometric analysis of 52 dry Retriever dog pelvic bones (30 male, 22 female). A total of 20 parameters were measured using an osteometric board and digital vernier caliper. Six parameters were found to be significantly higher (P < 0.05) in males than in females, while one parameter was significantly higher (P < 0.05) in females than in males. However, none of the measured parameters demonstrated clear cut-off values with no intersect between males and females. Therefore, we generated a stepwise discriminant analysis from all 20 parameters in order to develop a possible working equation to discriminate gender from a dog pelvic bone. Stepwise discriminant analysis was used to create a discrimination function: Y = [82.1*PS/AII] - [50.72*LIS/LI] - [23.09*OTD/SP] + [7.69*SP/IE] + [6.52*IC/OW] + [7.67*ISA/OW] + [20.77*AII/PS] + [504.71*OW/ISA] - [90.84*PS/ISA] - [148.95], which showed an accuracy rate of 86.27%. This is the first study presenting an equation/function for use in discriminating gender from a dog's pelvic measurements. The results can be used in veterinary forensic anthropology and also show that a dog's pelvis presents sexual dimorphisms, as in humans.
Collapse
Affiliation(s)
- K Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.,Excellence Center in Osteology Research and Training, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - T Pitakarnnop
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - K Buddhachat
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - M Phatsara
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
16
|
Witten PE, Owen MAG, Fontanillas R, Soenens M, McGurk C, Obach A. A primary phosphorus-deficient skeletal phenotype in juvenile Atlantic salmon Salmo salar: the uncoupling of bone formation and mineralization. JOURNAL OF FISH BIOLOGY 2016; 88:690-708. [PMID: 26707938 PMCID: PMC4784172 DOI: 10.1111/jfb.12870] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/11/2015] [Indexed: 05/17/2023]
Abstract
To understand the effect of low dietary phosphorus (P) intake on the vertebral column of Atlantic salmon Salmo salar, a primary P deficiency was induced in post-smolts. The dietary P provision was reduced by 50% for a period of 10 weeks under controlled conditions. The animal's skeleton was subsequently analysed by radiology, histological examination, histochemical detection of minerals in bones and scales and chemical mineral analysis. This is the first account of how a primary P deficiency affects the skeleton in S. salar at the cellular and at the micro-anatomical level. Animals that received the P-deficient diet displayed known signs of P deficiency including reduced growth and soft, pliable opercula. Bone and scale mineral content decreased by c. 50%. On radiographs, vertebral bodies appear small, undersized and with enlarged intervertebral spaces. Contrary to the X-ray-based diagnosis, the histological examination revealed that vertebral bodies had a regular size and regular internal bone structures; intervertebral spaces were not enlarged. Bone matrix formation was continuous and uninterrupted, albeit without traces of mineralization. Likewise, scale growth continues with regular annuli formation, but new scale matrix remains without minerals. The 10 week long experiment generated a homogeneous osteomalacia of vertebral bodies without apparent induction of skeletal malformations. The experiment shows that bone formation and bone mineralization are, to a large degree, independent processes in the fish examined. Therefore, a deficit in mineralization must not be the only cause of the alterations of the vertebral bone structure observed in farmed S. salar. It is discussed how the observed uncoupling of bone formation and mineralization helps to better diagnose, understand and prevent P deficiency-related malformations in farmed S. salar.
Collapse
Affiliation(s)
- P E Witten
- Ghent University, Department of Biology, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - M A G Owen
- Skretting Aquaculture Research Centre, P. O. Box 48, N-4001, Stavanger, Norway
| | - R Fontanillas
- Skretting Aquaculture Research Centre, P. O. Box 48, N-4001, Stavanger, Norway
| | - M Soenens
- Ghent University, Department of Biology, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - C McGurk
- Skretting Aquaculture Research Centre, P. O. Box 48, N-4001, Stavanger, Norway
| | - A Obach
- Skretting Aquaculture Research Centre, P. O. Box 48, N-4001, Stavanger, Norway
| |
Collapse
|
17
|
Yu T, Witten PE, Huysseune A, Buettner A, To TT, Winkler C. Live imaging of osteoclast inhibition by bisphosphonates in a medaka osteoporosis model. Dis Model Mech 2015; 9:155-63. [PMID: 26704995 PMCID: PMC4770141 DOI: 10.1242/dmm.019091] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/21/2015] [Indexed: 12/14/2022] Open
Abstract
Osteoclasts are bone-resorbing cells derived from the monocyte/macrophage lineage. Excess osteoclast activity leads to reduced bone mineral density, a hallmark of diseases such as osteoporosis. Processes that regulate osteoclast activity are therefore targeted in current osteoporosis therapies. To identify and characterize drugs for treatment of bone diseases, suitable in vivo models are needed to complement cell-culture assays. We have previously reported transgenic medaka lines expressing the osteoclast-inducing factor receptor activator of nuclear factor κB ligand (Rankl) under control of a heat shock-inducible promoter. Forced Rankl expression resulted in ectopic osteoclast formation, as visualized by live imaging in fluorescent reporter lines. This led to increased bone resorption and a dramatic reduction of mineralized matrix similar to the situation in humans with osteoporosis. In an attempt to establish the medaka as an in vivo model for osteoporosis drug screening, we treated Rankl-expressing larvae with etidronate and alendronate, two bisphosphonates commonly used in human osteoporosis therapy. Using live imaging, we observed an efficient, dose-dependent inhibition of osteoclast activity, which resulted in the maintenance of bone integrity despite an excess of osteoclast formation. Strikingly, we also found that bone recovery was efficiently promoted after inhibition of osteoclast activity and that osteoblast distribution was altered, suggesting effects on osteoblast-osteoclast coupling. Our data show that transgenic medaka lines are suitable in vivo models for the characterization of antiresorptive or bone-anabolic compounds by live imaging and for screening of novel osteoporosis drugs.
Collapse
Affiliation(s)
- Tingsheng Yu
- Department of Biological Sciences, National University of Singapore, Singapore 117543 NUS Centre for Bioimaging Sciences (CBIS), Singapore 117557, Singapore
| | | | - Ann Huysseune
- Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Anita Buettner
- Department of Biological Sciences, National University of Singapore, Singapore 117543 NUS Centre for Bioimaging Sciences (CBIS), Singapore 117557, Singapore
| | - Thuy Thanh To
- Department of Biological Sciences, National University of Singapore, Singapore 117543 NUS Centre for Bioimaging Sciences (CBIS), Singapore 117557, Singapore
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore 117543 NUS Centre for Bioimaging Sciences (CBIS), Singapore 117557, Singapore
| |
Collapse
|
18
|
Seemann F, Peterson DR, Witten PE, Guo BS, Shanthanagouda AH, Ye RR, Zhang G, Au DWT. Insight into the transgenerational effect of benzo[a]pyrene on bone formation in a teleost fish (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:60-67. [PMID: 26456900 DOI: 10.1016/j.cbpc.2015.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 02/03/2023]
Abstract
Recent cross-generational studies in teleost fish have raised the awareness that high levels of benzo[a]pyrene (BaP) could affect skeletal integrity in the directly exposed F0 and their F1-F2. However, no further details were provided about the causes for abnormalities on the molecular and cellular level and the persistence of such sub-organismal impairments at the transgenerational scale (beyond F2). Adult Oryzias latipes were exposed to 1μg/L BaP for 21days. The F1-F3 were examined for skeletal deformities, histopathological alterations of vertebral bodies and differential expression of key genes of bone metabolism. Significant increase of dorsal-ventral vertebral compression was evident in ancestrally exposed larvae. Histopathological analysis revealed abnormal loss of notochord sheath, a lack of notochord epithelial integrity, reduced bone tissue and decreased osteoblast abundance. A significant downregulation of ATF4 and/or osterix and a high biological variability of COL10, coupled with a significant deregulation of SOX9a/b in the F1-F3 suggest that ancestral BaP exposure most likely perturbed chordoblasts, chondroblast and osteoblast differentiation, resulting in defective notochord sheath repair and rendering the vertebral column more vulnerable to compression. The present findings provide novel molecular and cellular insights into BaP-induced transgenerational bone impairment in the unexposed F3. From the ecological risk assessment perspective, BaP needs to be regarded as a transgenerational skeletal toxicant, which exerts a far-reaching impact on fish survival and fitness. Given that basic mechanisms of cartilage/bone formation are conserved between medaka and mammals, the results may also shed light on the potential transgenerational effect of BaP on the genesis of skeletal diseases in humans.
Collapse
Affiliation(s)
- Frauke Seemann
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - P Eckhard Witten
- Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Bao-Sheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Adamane H Shanthanagouda
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Rui R Ye
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|