1
|
Németh Z, Paulinné Bukovics M, Sümegi LD, Sturm G, Takács I, Simon-Szabó L. The Importance of Edible Medicinal Mushrooms and Their Potential Use as Therapeutic Agents Against Insulin Resistance. Int J Mol Sci 2025; 26:827. [PMID: 39859540 PMCID: PMC11765957 DOI: 10.3390/ijms26020827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
In addition to conventional treatments, there is growing interest in preventive and complementary therapies. Proper nutrition can prevent the manifestation of several chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer, and can attenuate the severity of these diseases. Edible mushrooms have been used as nutrition and medicine for thousands of years. The spectrum and quantity of their medicinal compounds made them a widely investigated target both in basic research and clinical trials. The most abundant and medically important components are polysaccharides, terpenoids, phenols, and heterocyclic amines, but bioactive proteins, vitamins, including vitamin D, polyunsaturated fatty acids, and essential minerals are also important ingredients with noteworthy health benefits. Mushroom extracts have anti-diabetic, anti-hyperlipidemic, anti-inflammatory, antioxidant, cardioprotective, anti-osteoporotic, and anti-tumor effects and are well tolerated, even by cancer patients. In our previous review we detailed the molecular aspects of the development of type 2 diabetes, discussing the role of physical activity and diet, but we did not detail the role of medicinal mushrooms as part of nutrition. In this review, we aimed to summarize the most important medical mushrooms, along with their natural habitats, growing conditions, and components, that are presumably sufficient for the prevention and treatment of insulin resistance.
Collapse
Affiliation(s)
- Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | | | - Liza Dalma Sümegi
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői Út 78/b, 1082 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | - Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37–47, 1094 Budapest, Hungary;
| |
Collapse
|
2
|
Cui P, Hou H, Song B, Xia Z, Xu Y. Vitamin D and ischemic stroke - Association, mechanisms, and therapeutics. Ageing Res Rev 2024; 96:102244. [PMID: 38395199 DOI: 10.1016/j.arr.2024.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Confronting the rising tide of ischemic stroke and its associated mortality and morbidity with ageing, prevention and acute management of ischemic stroke is of paramount importance. Mounting observational studies have established a non-linear association of vitamin D status with cardiovascular diseases, including ischemic stroke. Paradoxically, current clinical trials fail to demonstrate the cardiovascular benefits of vitamin D supplementation. We aim to update recent clinical and experimental findings on the role of vitamin D in the disease course of ischemic stroke, from its onset, progression, recovery, to recurrence, and the established and alternative possible pathophysiological mechanisms. This review justifies the necessities to address stroke etiological subtypes and focus on vitamin D-deficient subjects for investigating the potential of vitamin D supplementation as a preventive and therapeutic approach for ischemic stroke. Well-powered clinical trials are warranted to determine the efficacy, safety, timing, target individuals, optimal dosages, and target 25OHD concentrations of vitamin D supplementation in the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Pan Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China; Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiman Hou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China; Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Liu T, Zuo R, Wang J, Wang B, Sun L, Wang S, Li B, Yao J, Huang C, Pan Y, Zhu Z. Association between Serum 25-Hydroxyvitamin D and Abdominal Aortic Calcification: A Large Cross-Sectional Study. Int J Clin Pract 2023; 2023:1621873. [PMID: 36815008 PMCID: PMC9940955 DOI: 10.1155/2023/1621873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
In the American population, the relationship between the standardized serum 25-hydroxyvitamin D (25(OH)D) concentration and the risk of abdominal aortic calcification (AAC) is unclear. The purpose of our study was to investigate the relationship between serum 25(OH)D concentration and AAC risk. Participants from the National Health and Nutrition Examination Survey (NHANES) between 2013 and 2014 were analyzed cross sectionally. An analysis of the relationship between serum 25(OH)D concentration and incident AAC and severe AAC (SAAC) was based on the restricted cubic spline (RCS) and multivariable logistic regression model. In addition, generalized additive models with smooth functions were used to evaluate the relationship between serum 25(OH)D concentration and the degree of AAC. Finally, a subgroup analysis was conducted. There were a total of 3,040 individuals in our study. The serum 25(OH)D concentration was divided into quartiles (Q1: 9.37-50.5 nmol/L; Q2: 50.6-67.2 nmol/L; Q3: 67.3-85.8 nmol/L; and Q4: 85.9-318.0 nmol/L); the lowest quartile served as the reference group (Q1). After adjusting for known confounding variables, compared with the lowest quartile (Q1) of serum 25(OH)D concentration, the odds ratios with 95% confidence intervals for AAC and SAAC across the quartiles (Q2, Q3, and Q4) were (1.042 (0.812, 1.338), 0.863 (0.668, 1.115), and 1.022 (0.787, 1.327)) and (1.48 (0.87, 2.52), 1.70 (1.01, 2.92), and 2.13 (1.19, 3.86)), respectively. As shown by the RCS plot, the serum 25(OH)D concentration was associated with the risk of AAC/SAAC in a U-shaped pattern (P for nonlinearity <0.05). In addition, the degree of AAC decreased at first and then increased as the serum 25(OH)D concentration increased. In conclusion, a U-shaped relationship existed between serum 25(OH)D concentration and the risk of AAC and SAAC. Consequently, the risk of AAC and SAAC may be mitigated with regular monitoring and vitamin D supplementation.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201500, China
| | - Ronghua Zuo
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jia Wang
- Department of Nephrology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Bing Wang
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201500, China
| | - Lifang Sun
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201500, China
| | - Shasha Wang
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201500, China
| | - Baoyin Li
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201500, China
| | - Jianhui Yao
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201500, China
| | - Conggang Huang
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201500, China
| | - Yesheng Pan
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201500, China
| | - Zhijian Zhu
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201500, China
| |
Collapse
|
4
|
Ren SC, Mao N, Yi S, Ma X, Zou JQ, Tang X, Fan JM. Vascular Calcification in Chronic Kidney Disease: An Update and Perspective. Aging Dis 2022; 13:673-697. [PMID: 35656113 PMCID: PMC9116919 DOI: 10.14336/ad.2021.1024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease is a devastating condition resulting from irreversible loss of nephron numbers and function and leading to end-stage renal disease and mineral disorders. Vascular calcification, an ectopic deposition of calcium-phosphate salts in blood vessel walls and heart valves, is an independent risk factor of cardiovascular morbidity and mortality in chronic kidney disease. Moreover, aging and related metabolic disorders are essential risk factors for chronic kidney disease and vascular calcification. Marked progress has been recently made in understanding and treating vascular calcification in chronic kidney disease. However, there is a paucity of systematic reviews summarizing this progress, and investigating unresolved issues is warranted. In this systematic review, we aimed to overview the underlying mechanisms of vascular calcification in chronic kidney diseases and discuss the impact of chronic kidney disease on the pathophysiology of vascular calcification. Additionally, we summarized potential clinical diagnostic biomarkers and therapeutic applications for vascular calcification with chronic kidney disease. This review may offer new insights into the pathogenesis, diagnosis, and therapeutic intervention of vascular calcification.
Collapse
Affiliation(s)
- Si-Chong Ren
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
- Center for Translational Medicine, Sichuan Academy of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Mao
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Si Yi
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| | - Xin Ma
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Jia-Qiong Zou
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun-Ming Fan
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| |
Collapse
|
5
|
Tintut Y, Demer LL. Potential impact of the steroid hormone, vitamin D, on the vasculature. Am Heart J 2021; 239:147-153. [PMID: 34051171 DOI: 10.1016/j.ahj.2021.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The role of vitamin D in the cardiovascular system is complex because it regulates expression of genes involved in diverse metabolic processes. Although referred to as a vitamin, it is more accurately considered a steroid hormone, because it is produced endogenously in the presence of ultraviolet light. It occurs as a series of sequentially activated forms, here referred to as vitamin D-hormones. A little-known phenomenon, based on pre-clinical data, is that its biodistribution and potential effects on vascular disease likely depend on whether it is derived from diet or sunlight. Diet-derived vitamin D-hormones are carried in the blood, at least in part, in chylomicrons and lipoprotein particles, including low-density lipoprotein. Since low-density lipoprotein is known to accumulate in the artery wall and atherosclerotic plaque, diet-derived vitamin D-hormones may also collect there, and possibly promote the osteochondrogenic mineralization associated with plaque. Also, little known is the fact that the body stores vitamin D-hormones in adipose tissue with a half-life on the order of months, raising doubts about whether the use of the term "daily requirement" is appropriate. Cardiovascular effects of vitamin D-hormones are controversial, and risk appears to increase with both low and high blood levels. Since low serum vitamin D-hormone concentration is reportedly associated with increased cardiovascular and orthopedic risk, oral supplementation is widely used, often together with calcium supplements. However, meta-analyses show that oral vitamin D-hormone supplementation does not protect against cardiovascular events, findings that are also supported by a randomized controlled trial. These considerations suggest that prevalent recommendations for vitamin D-hormone supplementation for the purpose of cardiovascular protection should be carefully reconsidered.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, CA
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA; VA Greater Los Angeles Healthcare System, Los Angeles, Los Angeles, CA.
| |
Collapse
|
6
|
Abstract
The incidence of osteoporosis and cardiovascular disease increases with age, and there are potentially shared mechanistic associations between the two conditions. It is therefore highly relevant to understand the cardiovascular implications of osteoporosis medications. These are presented in this narrative review. Calcium supplementation could theoretically cause atheroma formation via calcium deposition, and in one study was found to be associated with myocardial infarction, but this has not been replicated. Vitamin D supplementation has been extensively investigated for cardiac benefit, but no consistent effect has been found. Despite findings in the early 21st century that menopausal hormone therapy was associated with coronary artery disease and venous thromboembolism (VTE), this therapy is now thought to be potentially safe (from a cardiac perspective) if started within the first 10 years of the menopause. Selective estrogen receptor modulators (SERMs) are associated with increased risk of VTE and may be related to fatal strokes (a subset of total strokes). Bisphosphonates could theoretically provide protection against atheroma. However, data from randomised trials and observational studies have neither robustly supported this nor consistently demonstrated the potential association with atrial fibrillation. Denosumab does not appear to be associated with cardiovascular disease and, although parathyroid hormone analogues are associated with palpitations and dizziness, no association with a defined cardiovascular pathology has been demonstrated. Finally, romosozumab has been shown to have a possible cardiovascular signal, and therefore post-market surveillance of this therapy will be vital.
Collapse
|
7
|
Chinetti G, Neels JG. Roles of Nuclear Receptors in Vascular Calcification. Int J Mol Sci 2021; 22:6491. [PMID: 34204304 PMCID: PMC8235358 DOI: 10.3390/ijms22126491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification is defined as an inappropriate accumulation of calcium depots occurring in soft tissues, including the vascular wall. Growing evidence suggests that vascular calcification is an actively regulated process, sharing similar mechanisms with bone formation, implicating both inhibitory and inducible factors, mediated by osteoclast-like and osteoblast-like cells, respectively. This process, which occurs in nearly all the arterial beds and in both the medial and intimal layers, mainly involves vascular smooth muscle cells. In the vascular wall, calcification can have different clinical consequences, depending on the pattern, localization and nature of calcium deposition. Nuclear receptors are transcription factors widely expressed, activated by specific ligands that control the expression of target genes involved in a multitude of pathophysiological processes, including metabolism, cancer, inflammation and cell differentiation. Some of them act as drug targets. In this review we describe and discuss the role of different nuclear receptors in the control of vascular calcification.
Collapse
Affiliation(s)
- Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06204 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
| |
Collapse
|
8
|
Rimondi E, Marcuzzi A, Casciano F, Tornese G, Pellati A, Toffoli B, Secchiero P, Melloni E. Role of vitamin D in the pathogenesis of atheromatosis. Nutr Metab Cardiovasc Dis 2021; 31:344-353. [PMID: 33500110 PMCID: PMC7486169 DOI: 10.1016/j.numecd.2020.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Cardiovascular disease is the main cause of death worldwide, but the collective efforts to prevent this pathological condition are directed exclusively to individuals at higher risk due to hypercholesterolemia, hypertension, obesity, diabetes. Recently, vitamin D deficiency was identified as a risk factor for cardiovascular disease in healthy people, as it predisposes to different vascular dysfunctions that can result in plaque development and fragility. In this scenario, the fundamental aim of the study was to reproduce a disease model inducing vitamin D deficiency and atheromatosis in ApoE-/- mice and then to evaluate the impact of this vitamin D status on the onset/progression of atheromatosis, focusing on plaque formation and instability. METHODS AND RESULTS In our murine disease model, vitamin D deficiency was achieved by 3 weeks of vitamin D deficient diet along with intraperitoneal paricalcitol injections, while atheromatosis by western-type diet administration. Under these experimental conditions, vitamin D deficient mice developed more unstable atheromatous plaques with reduced or absent fibrotic cap. Since calcium and phosphorus metabolism and also cholesterol and triglycerides systemic concentration were not affected by vitamin D level, our results highlighted the role of vitamin D deficiency in the formation/instability of atheromatous plaque and, although further studies are needed, suggested a possible intervention with vitamin D to prevent or delay the atheromatous disease. CONCLUSIONS The data obtained open the question about the potential role of the vitamins in the pharmacological treatments of cardiovascular disorders as coadjutant of the primary drugs used for these pathologies.
Collapse
Affiliation(s)
- Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Annalisa Marcuzzi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo'', Trieste, Italy
| | - Agnese Pellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Barbara Toffoli
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo'', Trieste, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
X-ray Micro-Computed Tomography: An Emerging Technology to Analyze Vascular Calcification in Animal Models. Int J Mol Sci 2020; 21:ijms21124538. [PMID: 32630604 PMCID: PMC7352990 DOI: 10.3390/ijms21124538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification describes the formation of mineralized tissue within the blood vessel wall, and it is highly associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, diabetes, and atherosclerosis. In this article, we briefly review different rodent models used to study vascular calcification in vivo, and critically assess the strengths and weaknesses of the current techniques used to analyze and quantify calcification in these models, namely 2-D histology and the o-cresolphthalein assay. In light of this, we examine X-ray micro-computed tomography (µCT) as an emerging complementary tool for the analysis of vascular calcification in animal models. We demonstrate that this non-destructive technique allows us to simultaneously quantify and localize calcification in an intact vessel in 3-D, and we consider recent advances in µCT sample preparation techniques. This review also discusses the potential to combine 3-D µCT analyses with subsequent 2-D histological, immunohistochemical, and proteomic approaches in correlative microscopy workflows to obtain rich, multifaceted information on calcification volume, calcification load, and signaling mechanisms from within the same arterial segment. In conclusion we briefly discuss the potential use of µCT to visualize and measure vascular calcification in vivo in real-time.
Collapse
|
10
|
Cozzolino M, Cianciolo G, Podestà MA, Ciceri P, Galassi A, Gasperoni L, La Manna G. Current Therapy in CKD Patients Can Affect Vitamin K Status. Nutrients 2020; 12:nu12061609. [PMID: 32486167 PMCID: PMC7352600 DOI: 10.3390/nu12061609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) patients have a higher risk of cardiovascular (CVD) morbidity and mortality compared to the general population. The links between CKD and CVD are not fully elucidated but encompass both traditional and uremic-related risk factors. The term CKD-mineral and bone disorder (CKD-MBD) indicates a systemic disorder characterized by abnormal levels of calcium, phosphate, PTH and FGF-23, along with vitamin D deficiency, decreased bone mineral density or altered bone turnover and vascular calcification. A growing body of evidence shows that CKD patients can be affected by subclinical vitamin K deficiency; this has led to identifying such a condition as a potential therapeutic target given the specific role of Vitamin K in metabolism of several proteins involved in bone and vascular health. In other words, we can hypothesize that vitamin K deficiency is the common pathogenetic link between impaired bone mineralization and vascular calcification. However, some of the most common approaches to CKD, such as (1) low vitamin K intake due to nutritional restrictions, (2) warfarin treatment, (3) VDRA and calcimimetics, and (4) phosphate binders, may instead have the opposite effects on vitamin K metabolism and storage in CKD patients.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.C.); (M.A.P.); (A.G.)
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola Hospital, University of Bologna, 40126 Bologna, Italy; (G.C.); (L.G.)
| | - Manuel Alfredo Podestà
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.C.); (M.A.P.); (A.G.)
| | - Paola Ciceri
- Renal Research Laboratory, Department of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Andrea Galassi
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.C.); (M.A.P.); (A.G.)
| | - Lorenzo Gasperoni
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola Hospital, University of Bologna, 40126 Bologna, Italy; (G.C.); (L.G.)
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola Hospital, University of Bologna, 40126 Bologna, Italy; (G.C.); (L.G.)
- Correspondence: ; Tel.: +39-051214-3255
| |
Collapse
|
11
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
12
|
Zhang Q, Wu Y, Lu Y, Fei X. Role of vitamin D in risk factors of patients with type 2 diabetes mellitus. Med Clin (Barc) 2020; 154:151-156. [PMID: 31255367 DOI: 10.1016/j.medcli.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION AND OBJECTIVES Previous observational studies have suggested that low vitamin D status is associated with high circulating C-reactive protein levels, as well as other plasma inflammatory cytokines. However, there is no study to explore the relationship between vitamin D status and Lp-PLA2, a new biomarker of vascular-specific inflammation. The aim of this study was to examine the association between vitamin D status and circulating Lp-PLA2 levels in subjects with type 2 diabetes mellitus. MATERIAL AND METHODS This descriptive cross-sectional study enrolled diabetic subjects who underwent physical examination at Taizhou People's Hospital between August 2016 and January 2017. Blood pressure, anthropometry, metabolic profiles, serum 25(OH)D levels and Lp-PLA2 mass levels were measured in all participants. RESULTS A total of 196 participants were recruited into this study. The vitamin D insufficiency group had higher serum LP-PLA2 levels than the vitamin D sufficiency group (t=-2.765, p=.005). A significant negative correlation was noted between Lp-PLA2 and 25(OH)D in the vitamin D insufficiency group (r=-0.364, p=0.009). However, no significant relationship between serum Lp-PLA2 concentration and 25(OH)D levels was observed in subjects with vitamin D sufficiency. CONCLUSIONS From this cohort of patients with type 2 diabetes, regardless of traditional cardiovascular risk factors, we observed a statistically significant inverse relation between Lp-PLA2 and 25(OH)D at levels <30ng/mL.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou 225300, Jiangsu, China.
| | - Yucheng Wu
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou 225300, Jiangsu, China
| | - Yu Lu
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou 225300, Jiangsu, China
| | - Xiaoqiang Fei
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou 225300, Jiangsu, China
| |
Collapse
|
13
|
Chuang YC, Chuang TW, Chao HJ, Tseng KC, Nkoka O, Sunaringsih S, Chuang KY. Contextual Factors and Spatial Patterns of Childhood Malnutrition in Provinces of Burkina Faso. J Trop Pediatr 2020; 66:66-74. [PMID: 31086979 DOI: 10.1093/tropej/fmz031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Approximately 45% of all children's deaths are associated with malnutrition, and sub-Saharan Africa is hardest hit by this phenomenon. However, information on geographical variations of malnutrition in developing countries is limited. This study examined the geographical distribution and community characteristics associated with child malnutrition in Burkina Faso. DESIGN Data from the 2011 Burkina Faso Demographic Health Survey were analyzed. A general Kriging interpolation method was used to generate spatial malnutrition patterns. The global Moran's I test was used to identify significant malnutrition spatial patterns. Generalized estimating equations (GEEs) were fitted to examine the association between community level factors and malnutrition. RESULTS Average rates of stunting and wasting in the communities were 32.48% and 15.05%, respectively. Stunting hotspots were observed in the eastern and northeastern parts of Burkina Faso (i.e. Oudolan, Séno and Yagha, among others), while high rates of wasting were observed in the north-central part. The GEE results revealed lower stunting rates in communities with a higher percentage of households with improved sanitation. Communities with higher rates of professionally assisted births were associated with low wasting rates, while communities with higher rates of households with a low wealth index reported higher rates of wasting. CONCLUSIONS Spatial statistical models of malnutrition prevalence are useful for indicating hotspots over wide areas and hence, for guiding intervention strategies. This study revealed significant geographical patterns and community factors associated with childhood malnutrition. These factors should be considered in future programs aimed at reducing malnutrition in Burkina Faso.
Collapse
Affiliation(s)
- Ying-Chih Chuang
- School of Public Health, Taipei Medical University, 250 Wu-Hsing St, Taipei 11031, Taiwan
| | - Ting-Wu Chuang
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, Taipei Medical University, 250 Wu-Hsing St, Taipei 11031, Taiwan
| | - Hsing Jasmine Chao
- School of Public Health, Taipei Medical University, 250 Wu-Hsing St, Taipei 11031, Taiwan
| | - Kuo-Chien Tseng
- School of Public Health, Taipei Medical University, 250 Wu-Hsing St, Taipei 11031, Taiwan
| | - Owen Nkoka
- School of Public Health, Taipei Medical University, 250 Wu-Hsing St, Taipei 11031, Taiwan
| | - Sri Sunaringsih
- School of Public Health, Taipei Medical University, 250 Wu-Hsing St, Taipei 11031, Taiwan
| | - Kun-Yang Chuang
- School of Public Health, Taipei Medical University, 250 Wu-Hsing St, Taipei 11031, Taiwan
| |
Collapse
|
14
|
Capelli I, Cianciolo G, Gasperoni L, Galassi A, Ciceri P, Cozzolino M. Nutritional vitamin D in CKD: Should we measure? Should we treat? Clin Chim Acta 2019; 501:186-197. [PMID: 31770508 DOI: 10.1016/j.cca.2019.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023]
Abstract
Vitamin Ddeficiency is frequently present in patients affected by chronic kidney disease (CKD). Experimental studies demonstrated that Vitamin D may play a role in the pathophysiology of diseases beyond mineral bone disorders in CKD (CKD-MBD). Unfortunately, the lack of large and interventional studies focused on the so called "non-classic" effects of 25(OH) Vitamin D supplementation in CKD patients, doesn't permit to conclude definitely about the beneficial effects of this supplementation in clinical practice. In conclusion, treatment of nutritional vitamin D deficiency in CKD may play a central role in both bone homeostasis and cardiovascular outcomes, but there is not clear evidence to support one formulation of nutritional vitamin D over another in CKD.
Collapse
Affiliation(s)
- Irene Capelli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Giuseppe Cianciolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Lorenzo Gasperoni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Andrea Galassi
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Italy
| | - Paola Ciceri
- Renal Research Laboratory, Department of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Italy.
| |
Collapse
|
15
|
Disthabanchong S, Srisuwarn P. Mechanisms of Vascular Calcification in Kidney Disease. Adv Chronic Kidney Dis 2019; 26:417-426. [PMID: 31831120 DOI: 10.1053/j.ackd.2019.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
The increase in prevalence and severity of vascular calcification in chronic kidney disease is a result of complex interactions between changes in the vascular bed, mineral metabolites, and other uremic factors. Vascular calcification can occur in the intima and the media of arterial wall. Under permissive conditions, vascular smooth muscle cells (VSMCs) can transform to osteoblast-like phenotype. The membrane-bound vesicles released from transformed VSMCs and the apoptotic bodies derived from dying VSMCs serve as nucleating structures for calcium crystal formation. Alterations in the quality and the quantity of endogenous calcification inhibitors also give rise to an environment that potentiates calcification.
Collapse
Affiliation(s)
- Sinee Disthabanchong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Praopilad Srisuwarn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Ray M, Jovanovich A. Mineral Bone Abnormalities and Vascular Calcifications. Adv Chronic Kidney Dis 2019; 26:409-416. [PMID: 31831119 DOI: 10.1053/j.ackd.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
Vascular calcification (VC) is common in chronic kidney disease, increases in prevalence as patients progress to end-stage renal disease, and is significantly associated with mortality. VC is a complex and highly regulated process similar to bone formation whereby hydroxyapatite crystals deposit in the intimal or medial layer of arteries. Mineral bone abnormalities are common in chronic kidney disease; reduction in glomerular filtration rate and changes in vitamin D, parathyroid hormone, and fibroblast growth factor 23 result in the dysregulation of phosphorus and calcium metabolism. Cell culture studies, animal models, and observational and clinical studies all suggest this abnormal mineral metabolism plays a role in the initiation and progression of VC in kidney disease. This review will focus on these mineral bone abnormalities and how they may contribute to mechanisms that induce VC in kidney disease.
Collapse
|
17
|
Paschou SA, Kosmopoulos M, Nikas IP, Spartalis M, Kassi E, Goulis DG, Lambrinoudaki I, Siasos G. The Impact of Obesity on the Association between Vitamin D Deficiency and Cardiovascular Disease. Nutrients 2019; 11:2458. [PMID: 31615154 PMCID: PMC6835874 DOI: 10.3390/nu11102458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this article is to review the literature regarding the relationship between vitamin D deficiency and cardiovascular disease (CVD) and its modification in the presence of obesity. Despite the strong association between vitamin D status and cardiovascular outcomes, vitamin D supplementation trials in the general population have failed to decrease the incidence of cardiovascular events and mortality. A comprehensive study of the published literature and a comparison with experimental data lead to the conclusion that obesity, due to its high prevalence and strong association with both vitamin D deficiency and CVD, may act as a critical confounder, which is responsible for the different results on this association. Adoption of a vitamin D preventive supplementation strategy for CVD is unlikely to yield any benefit to the general population. However, it might be particularly useful in obese adults with increased risk for CVD.
Collapse
Affiliation(s)
- Stavroula A. Paschou
- Division of Endocrinology and Diabetes, Aghia Sophia Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus;
| | - Marinos Kosmopoulos
- Department of Medicine, Division of Cardiology, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ilias P. Nikas
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus;
| | - Michael Spartalis
- Division of Cardiology, Onassis Cardiac Surgery Centre, 17674 Athens, Greece;
| | - Evanthia Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios G. Goulis
- Department of Obstetrics and Gynecology, Unit of Reproductive Endocrinology, Medical School, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece;
| | - Irene Lambrinoudaki
- Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, 11526 Athens, Greece;
| | - Gerasimos Siasos
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11526 Athens, Greece;
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This review addresses recent developments in studies of lipid regulation of calcific disease of arteries and cardiac valves, including the role of nuclear receptors. The role of lipid-soluble signals and their receptors is timely given the recent evidence and concerns that lipid-lowering treatment may increase the rate of progression of coronary artery calcification, which has been long associated with increased cardiovascular risk. Understanding the mechanisms will be important for interpreting such clinical information. RECENT FINDINGS New findings support regulation of calcific vascular and valvular disease by nuclear receptors, including the vitamin D receptor, glucocorticoid receptor, nutrient-sensing nuclear receptors (liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors), and sex hormone (estrogen and androgen) receptors. There were two major unexpected findings: first, vitamin D supplementation, which was previously believed to prevent or reduce vascular calcification, showed no cardiovascular benefit in large randomized, controlled trials. Second, both epidemiological studies and coronary intravascular ultrasound studies suggest that treatment with HMG-CoA reductase inhibitors increases progression of coronary artery calcification, raising a question of whether there are mechanically stable and unstable forms of coronary calcification. SUMMARY For clinical practice and research, these new findings offer new fundamental mechanisms for vascular calcification and provide new cautionary insights for therapeutic avenues.
Collapse
Affiliation(s)
- Tamer Sallam
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1679
| | - Yin Tintut
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA 90095-1679
| | - Linda L. Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095-1679
| |
Collapse
|
19
|
Abstract
Understanding of vitamin D physiology is important because about half of the population is being diagnosed with deficiency and treated with supplements. Clinical guidelines were developed based on observational studies showing an association between low serum levels and increased cardiovascular risk. However, new randomized controlled trials have failed to confirm any cardiovascular benefit from supplementation in the general population. A major concern is that excess vitamin D is known to cause calcific vasculopathy and valvulopathy in animal models. For decades, administration of vitamin D has been used in rodents as a reliable experimental model of vascular calcification. Technically, vitamin D is a misnomer. It is not a true vitamin because it can be synthesized endogenously through ultraviolet exposure of the skin. It is a steroid hormone that comes in 3 forms that are sequential metabolites produced by hydroxylases. As a fat-soluble hormone, the vitamin D-hormone metabolites must have special mechanisms for delivery in the aqueous bloodstream. Importantly, endogenously synthesized forms are carried by a binding protein, whereas dietary forms are carried within lipoprotein particles. This may result in distinct biodistributions for sunlight-derived versus supplement-derived vitamin D hormones. Because the cardiovascular effects of vitamin D hormones are not straightforward, both toxic and beneficial effects may result from current recommendations.
Collapse
Affiliation(s)
- Linda L Demer
- From the Departments of Medicine (L.L.D., J.J.H., Y.T.) .,Physiology (L.L.D., Y.T.).,Bioengineering (L.L.D.)
| | - Jeffrey J Hsu
- From the Departments of Medicine (L.L.D., J.J.H., Y.T.)
| | - Yin Tintut
- From the Departments of Medicine (L.L.D., J.J.H., Y.T.).,Physiology (L.L.D., Y.T.).,Orthopaedic Surgery (Y.T.), University of California, Los Angeles
| |
Collapse
|
20
|
Hiemstra T, Lim K, Thadhani R, Manson JE. Vitamin D and Atherosclerotic Cardiovascular Disease. J Clin Endocrinol Metab 2019; 104:4033-4050. [PMID: 30946457 PMCID: PMC7112191 DOI: 10.1210/jc.2019-00194] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT A large body of experimental and observational data has implicated vitamin D deficiency in the development of cardiovascular disease. However, evidence to support routine vitamin D supplementation to prevent or treat cardiovascular disease is lacking. DESIGN AND RESULTS A comprehensive literature review was performed using PubMed and other literature search engines. Mounting epidemiological evidence and data from Mendelian randomization studies support a link between vitamin D deficiency and adverse cardiovascular health outcomes, but randomized trial evidence to support vitamin D supplementation is sparse. Current public health guidelines restrict vitamin D intake recommendations to the maintenance of bone health and prevention of fractures. Two recently published large trials (VITAL and ViDA) that assessed the role of moderate- to high-dose vitamin D supplementation as primary prevention for cardiovascular outcomes in the general population had null results, and previous randomized trials have also been generally negative. These findings from general population cohorts that are largely replete in vitamin D may not be applicable to chronic kidney disease (CKD) populations, in which the use of active (1α-hydroxylated) vitamin D compounds is prevalent, or to other high-risk populations. Additionally, recent trials in the CKD population, as well as trials using vitamin D analogs, have been limited. CONCLUSIONS Current randomized trials of vitamin D supplementation do not support benefits for cardiovascular health, but the evidence remains inconclusive. Additional randomized trials assessing larger numbers of participants with low baseline vitamin D levels, having longer follow-up periods, and testing higher vitamin D dosages are needed to guide clinical practice.
Collapse
Affiliation(s)
- Thomas Hiemstra
- Cambridge Clinical Trials Unit, Addenbrookes Hospital, Cambridge, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Kenneth Lim
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ravi Thadhani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - JoAnn E. Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School and Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
21
|
Demer LL, Tintut Y. Interactive and Multifactorial Mechanisms of Calcific Vascular and Valvular Disease. Trends Endocrinol Metab 2019; 30:646-657. [PMID: 31279666 PMCID: PMC6708492 DOI: 10.1016/j.tem.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Calcific vascular and valvular disease (CVVD) is widespread and has major health consequences. Although coronary artery calcification has long been associated with hyperlipidemia and increased mortality, recent evidence suggests that its progression is increased in association with cholesterol-lowering HMG-CoA reductase inhibitors ('statins') and long-term, high-intensity exercise. A nationwide trial showed no cardiovascular benefit of vitamin D supplements. Controversy remains as to whether calcium deposits in plaque promote or prevent plaque rupture. CVVD appears to occur through mechanisms similar to those of intramembranous, endochondral, and osteophytic skeletal bone formation. New evidence implicates autotaxin, endothelial-mesenchymal transformation, and microRNA and long non-coding RNA (lncRNA) as novel regulatory factors. New therapeutic options are being developed.
Collapse
Affiliation(s)
- Linda L Demer
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1679, USA; Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90095-1600, USA.
| | - Yin Tintut
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1679, USA; Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Orthopaedic Surgery, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland; and Andreas Grüntzig Foundation, Zürich, Switzerland
| |
Collapse
|
23
|
Wang J, Zhou JJ, Robertson GR, Lee VW. Vitamin D in Vascular Calcification: A Double-Edged Sword? Nutrients 2018; 10:nu10050652. [PMID: 29786640 PMCID: PMC5986531 DOI: 10.3390/nu10050652] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/13/2023] Open
Abstract
Vascular calcification (VC) as a manifestation of perturbed mineral balance, is associated with aging, diabetes and kidney dysfunction, as well as poorer patient outcomes. Due to the current limited understanding of the pathophysiology of vascular calcification, the development of effective preventative and therapeutic strategies remains a significant clinical challenge. Recent evidence suggests that traditional risk factors for cardiovascular disease, such as left ventricular hypertrophy and dyslipidaemia, fail to account for clinical observations of vascular calcification. Therefore, more complex underlying processes involving physiochemical changes to mineral balance, vascular remodelling and perturbed hormonal responses such as parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) are likely to contribute to VC. In particular, VC resulting from modifications to calcium, phosphate and vitamin D homeostasis has been recently elucidated. Notably, deregulation of vitamin D metabolism, dietary calcium intake and renal mineral handling are associated with imbalances in systemic calcium and phosphate levels and endothelial cell dysfunction, which can modulate both bone and soft tissue calcification. This review addresses the current understanding of VC pathophysiology, with a focus on the pathogenic role of vitamin D that has provided new insights into the mechanisms of VC.
Collapse
Affiliation(s)
- Jeffrey Wang
- Centre for Transplantation and Renal Research, Westmead Institute of Medical Research, Westmead, NSW 2145, Australia.
| | - Jimmy J Zhou
- Centre for Transplantation and Renal Research, Westmead Institute of Medical Research, Westmead, NSW 2145, Australia.
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia.
| | | | - Vincent W Lee
- Centre for Transplantation and Renal Research, Westmead Institute of Medical Research, Westmead, NSW 2145, Australia.
| |
Collapse
|
24
|
Ruderman I, Holt SG, Hewitson TD, Smith ER, Toussaint ND. Current and potential therapeutic strategies for the management of vascular calcification in patients with chronic kidney disease including those on dialysis. Semin Dial 2018; 31:487-499. [PMID: 29733462 DOI: 10.1111/sdi.12710] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Patients with CKD have accelerated vascular stiffening contributing significantly to excess cardiovascular morbidity and mortality. Much of the arterial stiffening is thought to involve vascular calcification (VC), but the pathogenesis of this phenomenon is complex, resulting from a disruption of the balance between promoters and inhibitors of calcification in a uremic milieu, along with derangements in calcium and phosphate metabolic pathways. Management of traditional cardiovascular risk factors to reduce VC may be influential but has not been shown to significantly improve mortality. Control of mineral metabolism may potentially reduce the burden of VC, although using conventional approaches of restricting dietary phosphate, administering phosphate binders, and use of active vitamin D and calcimimetics, remains controversial because recommended biochemical targets are hard to achieve and clinical relevance hard to define. Increasing time on dialysis is perhaps another therapy with potential effectiveness in this area. Despite current treatments, cardiovascular morbidity and mortality remain high in this group. Novel therapies for addressing VC include magnesium and vitamin K supplementation, which are currently being investigated in large randomized control trials. Other therapeutic targets include crystallization inhibitors, ligand trap for activin receptors and BMP-7. This review summarizes current treatment strategies and therapeutic targets for the future management of VC in patients with CKD.
Collapse
Affiliation(s)
- Irene Ruderman
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Vic., Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Vic., Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Vic., Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Vic., Australia
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Vic., Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Vic., Australia
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Vic., Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Vic., Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Vic., Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
25
|
Shardlow A, McIntyre NJ, Fluck RJ, McIntyre CW, Taal MW. Associations of fibroblast growth factor 23, vitamin D and parathyroid hormone with 5-year outcomes in a prospective primary care cohort of people with chronic kidney disease stage 3. BMJ Open 2017; 7:e016528. [PMID: 28838895 PMCID: PMC5629682 DOI: 10.1136/bmjopen-2017-016528] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Vitamin D deficiency, elevated fibroblast growth factor 23 (FGF23) and elevated parathyroid hormone (PTH) have each been associated with increased mortality in people with chronic kidney disease (CKD). Previous studies have focused on the effects of FGF23 in relatively advanced CKD. This study aims to assess whether FGF23 is similarly a risk factor in people with early CKD, and how this risk compares to that associated with vitamin D deficiency or elevated PTH. DESIGN Prospective cohort study. SETTING Thirty-two primary care practices. PARTICIPANTS One thousand six hundred and sixty-four people who met Kidney Disease: Improving Global Outcomes (KDIGO) definitions for CKD stage 3 (two measurements of estimated glomerular filtration rate (eGFR) between 30 and 60 mL/min/1.73 m2 at least 90 days apart) prior to study recruitment. OUTCOME MEASURES All-cause mortality over the period of study follow-up and progression of CKD defined as a 25% fall in eGFR and a drop in GFR category, or an increase in albuminuria category. RESULTS Two hundred and eighty-nine participants died during the follow-up period. Vitamin D deficiency (HR 1.62, 95% CI 1.01 to 2.58) and elevated PTH (HR 1.42, 95% CI 1.09 to 1.84) were independently associated with all-cause mortality. FGF23 was associated with all-cause mortality in univariable but not multivariable analysis. Fully adjusted multivariable models of CKD progression showed no association with FGF23, vitamin D status or PTH. CONCLUSIONS In this cohort of predominantly older people with CKD stage 3 and low risk of progression, vitamin D deficiency and elevated PTH were independent risk factors for all-cause mortality but elevated FGF23 was not. While FGF23 may have a role as a risk marker in high-risk populations managed in secondary care, our data suggest that it may not be as important in CKD stage 3, managed in primary care. TRIAL REGISTRATION NUMBER National Institute for Health Research Clinical Research Portfolio Study Number 6632.
Collapse
Affiliation(s)
- Adam Shardlow
- Renal Medicine, Royal Derby Hospital, Derby, UK
- Division of Medical Sciences and Graduate Entry Medicine, Centre for Kidney Research and Innovation, School of Medicine, The University of Nottingham, Royal Derby Hospital, Derby, UK
| | | | | | - Christopher W McIntyre
- Division of Nephrology, Schulich School of Medicine and Dentistry University of Western Ontario, London, Ontario, Canada
| | - Maarten W Taal
- Renal Medicine, Royal Derby Hospital, Derby, UK
- Division of Medical Sciences and Graduate Entry Medicine, Centre for Kidney Research and Innovation, School of Medicine, The University of Nottingham, Royal Derby Hospital, Derby, UK
| |
Collapse
|
26
|
Grübler MR, März W, Pilz S, Grammer TB, Trummer C, Müllner C, Schwetz V, Pandis M, Verheyen N, Tomaschitz A, Fiordelisi A, Laudisio D, Cipolletta E, Iaccarino G. Vitamin-D concentrations, cardiovascular risk and events - a review of epidemiological evidence. Rev Endocr Metab Disord 2017; 18:259-272. [PMID: 28451877 DOI: 10.1007/s11154-017-9417-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitamin D has long been established as an elemental factor of bone physiology. Beyond mineral metabolism, the expression of the vitamin D receptor has been identified throughout the cardiovascular (CV) system. Experimental studies showed beneficial effects of vitamin D on heart and vessels, but vitamin D intoxication in animals also led to hypercalcemia and vascular calcification. Our knowledge has been extended by epidemiological studies that showed that 25-hydroxyvitamin D (25(OH)D) levels are inversely associated with an increased CV risk itself, but also with established CV risk factors, such as arterial hypertension, endothelial dysfunction and atherosclerosis. Conversely, randomized controlled trials could not document significant and consistent effects of vitamin D supplementation on CV risk or events. Potential explanations may lie in differences in reference ranges or the possibility that low vitamin D in CV disease is only an epiphenomenon. In the latter case, the key question is why low 25(OH)D levels are such a strong predictor of health. While we wait for new data, the current conclusion is that vitamin D is a strong risk marker for CV risk factors and for CV diseases itself.
Collapse
Affiliation(s)
- Martin Robert Grübler
- Swiss Cardiovascular Centre Bern, Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 8, 3010, Bern, Switzerland.
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria.
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, and Rheumatology), Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Synlab Academy, Synlab Services GmbH, and Augsburg, Mannheim, Germany
| | - Stefan Pilz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Department of Epidemiology and Biostatistics, EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, Netherlands
| | - Tanja B Grammer
- Mannheim Institute of Public Health, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Christian Trummer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Christian Müllner
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Verena Schwetz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Marlene Pandis
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Nicolas Verheyen
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Andreas Tomaschitz
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
- Bad Gleichenberg Clinic, Schweizereiweg 4, 8344, Bad Gleichenberg, Austria
| | | | | | - Ersilia Cipolletta
- Department of Medicine, Surgery Odontoiatrics-Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Guido Iaccarino
- Department of Medicine, Surgery Odontoiatrics-Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| |
Collapse
|
27
|
Barassi A, Corsi Romanelli MM, Pezzilli R, Damele CAL, Vaccalluzzo L, Goi G, Papini N, Colpi GM, Massaccesi L, Melzi d'Eril GV. Levels of l
-arginine and l
-citrulline in patients with erectile dysfunction of different etiology. Andrology 2017; 5:256-261. [DOI: 10.1111/andr.12293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
Affiliation(s)
- A. Barassi
- Dipartimento di Scienze della Salute; Università degli Studi di Milano; Milano Italy
| | - M. M. Corsi Romanelli
- Dipartimento di Scienze Biomediche per la Salute; Università degli Studi di Milano; Milano Italy
- Unità Operativa Medicina di Laboratorio -1 Patologia Clinica; IRCCS Policlinico San Donato; San Donato Milanese Milano Italy
| | - R. Pezzilli
- Dipartimento di Malattie dell'Apparato Digerente e Medicina Interna; Ospedale Sant'Orsola-Malpighi; Alma Mater Studiorum; Università degli Studi di Bologna; Bologna Italy
| | - C. A. L. Damele
- Dipartimento di Scienze della Salute; Università degli Studi di Milano; Milano Italy
| | - L. Vaccalluzzo
- ISES - Istituto per la Sterilità e la Sessualità; Milano Italy
| | - G. Goi
- Dipartimento di Scienze Biomediche; Chirurgiche e Odontoiatriche; Università degli Studi di Milano; Milano Italy
| | - N. Papini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale; Università degli Studi di Milano; Milano Italy
| | - G. M. Colpi
- ISES - Istituto per la Sterilità e la Sessualità; Milano Italy
| | - L. Massaccesi
- Dipartimento di Scienze Biomediche; Chirurgiche e Odontoiatriche; Università degli Studi di Milano; Milano Italy
| | - G. V. Melzi d'Eril
- Dipartimento di Scienze della Salute; Università degli Studi di Milano; Milano Italy
| |
Collapse
|
28
|
Abstract
PTH and Vitamin D are two major regulators of mineral metabolism. They play critical roles in the maintenance of calcium and phosphate homeostasis as well as the development and maintenance of bone health. PTH and Vitamin D form a tightly controlled feedback cycle, PTH being a major stimulator of vitamin D synthesis in the kidney while vitamin D exerts negative feedback on PTH secretion. The major function of PTH and major physiologic regulator is circulating ionized calcium. The effects of PTH on gut, kidney, and bone serve to maintain serum calcium within a tight range. PTH has a reciprocal effect on phosphate metabolism. In contrast, vitamin D has a stimulatory effect on both calcium and phosphate homeostasis, playing a key role in providing adequate mineral for normal bone formation. Both hormones act in concert with the more recently discovered FGF23 and klotho, hormones involved predominantly in phosphate metabolism, which also participate in this closely knit feedback circuit. Of great interest are recent studies demonstrating effects of both PTH and vitamin D on the cardiovascular system. Hyperparathyroidism and vitamin D deficiency have been implicated in a variety of cardiovascular disorders including hypertension, atherosclerosis, vascular calcification, and kidney failure. Both hormones have direct effects on the endothelium, heart, and other vascular structures. How these effects of PTH and vitamin D interface with the regulation of bone formation are the subject of intense investigation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Rebecca D. Murray
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Eleanor Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
- Robley Rex VA Medical Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
29
|
Li N, Cheng W, Huang T, Yuan J, Wang X, Song M. Vascular Adventitia Calcification and Its Underlying Mechanism. PLoS One 2015; 10:e0132506. [PMID: 26148272 PMCID: PMC4492877 DOI: 10.1371/journal.pone.0132506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/15/2015] [Indexed: 01/18/2023] Open
Abstract
Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE−/− mice which were fed high fat diets (HFD) for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCs)were obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml) + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.
Collapse
MESH Headings
- Adventitia/metabolism
- Adventitia/pathology
- Aged
- Aged, 80 and over
- Animals
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/deficiency
- Cells, Cultured
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Humans
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Rats, Sprague-Dawley
- Transforming Growth Factor beta1/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Na Li
- Department of Health Care, China-Japan Friendship Hospital, Ministry of Health, Beijing, China
| | - Wenli Cheng
- Center for Cardiovascular Diseases, China-Japan Friendship Hospital, Ministry of Health, Beijing, China
- * E-mail:
| | - Tiequn Huang
- Department of Health Care, China-Japan Friendship Hospital, Ministry of Health, Beijing, China
| | - Jie Yuan
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xi Wang
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Meiyue Song
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Mary A, Hénaut L, Boudot C, Six I, Brazier M, Massy ZA, Drüeke TB, Kamel S, Mentaverri R. Calcitriol prevents in vitro vascular smooth muscle cell mineralization by regulating calcium-sensing receptor expression. Endocrinology 2015; 156:1965-74. [PMID: 25763635 DOI: 10.1210/en.2014-1744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vascular calcification (VC) is a degenerative disease that contributes to cardiovascular morbidity and mortality. A negative relationship has been demonstrated between VC and calcium sensing receptor (CaSR) expression in the vasculature. Of interest, vitamin D response elements, which allow responsiveness to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], are present in the promoters of the CaSR gene. We hypothesized that 1,25(OH)2D3, by modulating CaSR expression in vascular smooth muscle cells (VSMCs), might protect against VC. Human VSMCs were exposed to increasing concentrations of 1,25(OH)2D3 (0.01-10 nmol/L) in noncalcifying (1.8 mmol/L) or procalcifying Ca(2+)0 condition (5.0 mmol/L). Using quantitative RT-PCR and Western blotting we observed a significant increase in both CaSR mRNA and protein levels after exposure to 1.0 nmol/L 1,25(OH)2D3. This effect was associated with a maximal increase in CaSR expression at the cell surface after 48 hours of 1,25(OH)2D3 treatment, as assessed by flow cytometry. Down-regulation of the vitamin D receptor by small interfering RNA abolished these effects. In the procalcifying condition, 1.0 nmol/L 1,25(OH)2D3 blocked the Ca(2+)0-induced decrease in total and surface CaSR expression and protected against mineralization. Down-regulation of CaSR expression by CaSR small interfering RNA abolished this protective effect. 1,25(OH)2D3 concentrations of 0.5 and 5.0 nmol/L were also effective, but other (0.01, 0.1, and 10 nmol/L) concentrations did not modify CaSR expression and human VSMC mineralization. In conclusion, these findings suggest that nanomolar concentrations of 1,25(OH)2D3 induce a CaSR-dependent protection against VC. Both lower and higher concentrations are either ineffective or may even promote VC. Whether this also holds true in the clinical setting requires further study.
Collapse
Affiliation(s)
- Aurélien Mary
- INSERM Unit 1088 (A.M., L.H., C.B., I.B., M.B., Z.A.M., T.B.D., S.K., R.M.), University of Picardie Jules Vernes, 80000 Amiens, France; Department of Pharmacy (A.M.) and Department of Biochemistry (M.B., S.K., R.M.), Amiens University Medical Center, 80054 Amiens, France; Division of Nephrology (Z.A.M.), Ambroise Paré University Hospital, Assistance Publique-Hôpitaux de Paris, University Versailles Saint-Quentin-en-Yvelines, 92100 Boulogne Billancourt/Paris, France; and Multifaceted CaSR Initial Training Network (M.B., Z.A.M., S.K., R.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
A review of the effect of diet on cardiovascular calcification. Int J Mol Sci 2015; 16:8861-83. [PMID: 25906474 PMCID: PMC4425113 DOI: 10.3390/ijms16048861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular (CV) calcification is known as sub-clinical atherosclerosis and is recognised as a predictor of CV events and mortality. As yet there is no treatment for CV calcification and conventional CV risk factors are not consistently correlated, leaving clinicians uncertain as to optimum management for these patients. For this reason, a review of studies investigating diet and serum levels of macro- and micronutrients was carried out. Although there were few human studies of macronutrients, nevertheless transfats and simple sugars should be avoided, while long chain ω-3 fats from oily fish may be protective. Among the micronutrients, an intake of 800 μg/day calcium was beneficial in those without renal disease or hyperparathyroidism, while inorganic phosphorus from food preservatives and colas may induce calcification. A high intake of magnesium (≥380 mg/day) and phylloquinone (500 μg/day) proved protective, as did a serum 25(OH)D concentration of ≥75 nmol/L. Although oxidative damage appears to be a cause of CV calcification, the antioxidant vitamins proved to be largely ineffective, while supplementation of α-tocopherol may induce calcification. Nevertheless other antioxidant compounds (epigallocatechin gallate from green tea and resveratrol from red wine) were protective. Finally, a homocysteine concentration >12 µmol/L was predictive of CV calcification, although a plasma folate concentration of >39.4 nmol/L could both lower homocysteine and protect against calcification. In terms of a dietary programme, these recommendations indicate avoiding sugar and the transfats and preservatives found in processed foods and drinks and adopting a diet high in oily fish and vegetables. The micronutrients magnesium and vitamin K may be worthy of further investigation as a treatment option for CV calcification.
Collapse
|
32
|
Hu F, Chen L, Che H, Fang J, Lv F, Li H, Zhang S, Guo C, Yin H, Zhang S, Zuo Y. Fasting serum CGRP levels are related to calcium concentrations, but cannot be elevated by short-term calcium/vitamin D supplementation. Neuropeptides 2015; 49:37-45. [PMID: 25499095 DOI: 10.1016/j.npep.2014.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 10/30/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is an important cardioprotective neuropeptide. Few studies have shown that calcium supplementation may increase CGRP levels transiently. However, the relationship between CGRP and calcium is poorly known. This study was to explore the correlation between serum calcium and CGRP in coronary artery disease (CAD), and observe whether short-term calcium/vitamin D supplementation would increase fasting serum CGRP. A randomized, placebo-controlled and double-blind clinical trial, and a supplementary study for further analysis of the correlations were conducted. The results showed that the correlation between serum calcium and CGRP was positive in CAD without myocardial infarction (MI) (r = 0.487, P = 0.029), but negative in acute and healing MI (r = -0.382, P = 0.003). Moreover, we found a positive correlation between lg (amino-terminal pro-B-type natriuretic peptide, NT-proBNP) and CGRP (r = 0.312, P = 0.027), but a negative correlation between lg (NT-proBNP) and serum calcium (r = -0.316, P = 0.025) in acute and healing MI. As to the clinical trial, participants subjected to CAD but without evolving or acute MI, together with blood calcium ≤ 2.4 mmol/L, were randomized into three groups. Among the groups of placebo, caltrate (600 mg elemental calcium; 125 IU vitamin D3, per tablet) 1 tablet/d and caltrate 2 tablets/d, there were no significant differences in baseline characteristics. After short-term (5 days) treatments, the results indicated that the effect of grouping was not statistically significant (P = 0.915). In conclusion, the correlations between serum calcium and CGRP in different types of CAD are inconsistent, and the main reason may be associated with elevated natriuretic peptides after acute MI. Further, our study shows that short-term calcium/vitamin D supplementation cannot significantly increase fasting serum CGRP levels.
Collapse
Affiliation(s)
- Fudong Hu
- Department of Cardiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Lianglong Chen
- Department of Cardiology, Union Hospital, Fujian Medical University, Fuzhou, China.
| | - Hailan Che
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jun Fang
- Department of Cardiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Fenghua Lv
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongjun Li
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Surong Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Changlei Guo
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Honglei Yin
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shaoli Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yulan Zuo
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
33
|
Lang F, Ritz E, Alesutan I, Voelkl J. Impact of aldosterone on osteoinductive signaling and vascular calcification. Nephron Clin Pract 2014; 128:40-5. [PMID: 25377380 DOI: 10.1159/000368268] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vascular calcification is frequently found already in early stages of chronic kidney disease (CKD) patients and is associated with high cardiovascular risk. The process of vascular calcification is not considered a passive phenomenon but involves, at least in part, phenotypical transformation of vascular smooth muscle cells (VSMCs). Following exposure to excessive extracellular phosphate concentrations, VSMCs undergo a reprogramming into osteo-/chondroblast-like cells. Such 'vascular osteoinduction' is characterized by expression of osteogenic transcription factors and triggered by increased phosphate concentrations. A key role in this process is assigned to cellular phosphate transporters, most notably the type III sodium-dependent phosphate transporter Pit1. Pit1 expression is stimulated by mineralocorticoid receptor activation. Therefore, aldosterone participates in the phenotypical transformation of VSMCs. In preclinical models, aldosterone antagonism reduces vascular osteoinduction. Patients with CKD suffer from hyperphosphatemia predisposing to vascular osteogenic transformation, potentially further fostered by concomitant hyperaldosteronism. Clearly, additional research is required to define the role of aldosterone in the regulation of osteogenic signaling and the consecutive vascular calcification in CKD, but more generally also other diseases associated with excessive vascular calcification and even in individuals without overt disease.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
34
|
Barassi A, Pezzilli R, Colpi GM, Corsi Romanelli MM, Melzi d'Eril GV. Vitamin D and Erectile Dysfunction. J Sex Med 2014; 11:2792-800. [DOI: 10.1111/jsm.12661] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|