1
|
Yarahmadi A, Najafiyan H, Yousefi MH, Khosravi E, Shabani E, Afkhami H, Aghaei SS. Beyond antibiotics: exploring multifaceted approaches to combat bacterial resistance in the modern era: a comprehensive review. Front Cell Infect Microbiol 2025; 15:1493915. [PMID: 40176987 PMCID: PMC11962305 DOI: 10.3389/fcimb.2025.1493915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/23/2025] [Indexed: 04/05/2025] Open
Abstract
Antibiotics represent one of the most significant medical breakthroughs of the twentieth century, playing a critical role in combating bacterial infections. However, the rapid emergence of antibiotic resistance has become a major global health crisis, significantly complicating treatment protocols. This paper provides a narrative review of the current state of antibiotic resistance, synthesizing findings from primary research and comprehensive review articles to examine the various mechanisms bacteria employ to counteract antibiotics. One of the primary sources of antibiotic resistance is the improper use of antibiotics in the livestock industry. The emergence of drug-resistant microorganisms from human activities and industrial livestock production has presented significant environmental and public health concerns. Today, resistant nosocomial infections occur following long-term hospitalization of patients, causing the death of many people, so there is an urgent need for alternative treatments. In response to this crisis, non-antibiotic therapeutic strategies have been proposed, including bacteriophages, probiotics, postbiotics, synbiotics, fecal microbiota transplantation (FMT), nanoparticles (NPs), antimicrobial peptides (AMPs), antibodies, traditional medicines, and the toxin-antitoxin (TA) system. While these approaches offer innovative solutions for addressing bacterial infections and preserving the efficacy of antimicrobial therapies, challenges such as safety, cost-effectiveness, regulatory hurdles, and large-scale implementation remain. This review examines the potential and limitations of these strategies, offering a balanced perspective on their role in managing bacterial infections and mitigating the broader impact of antibiotic resistance.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamide Najafiyan
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Elham Khosravi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Seyed Soheil Aghaei
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
2
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Morgan RN, Aboshanab KM. Phage therapeutic delivery methods and clinical trials for combating clinically relevant pathogens. Ther Deliv 2025; 16:247-269. [PMID: 39545771 PMCID: PMC11875505 DOI: 10.1080/20415990.2024.2426824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The ongoing global health crisis caused by multidrug-resistant (MDR) bacteria necessitates quick interventions to introduce new management strategies for MDR-associated infections and antimicrobial agents' resistance. Phage therapy emerges as an antibiotic substitute for its high specificity, efficacy, and safety profiles in treating MDR-associated infections. Various in vitro and in vivo studies denoted their eminent bactericidal and anti-biofilm potential. This review addresses the latest developments in phage therapy regarding their attack strategies, formulations, and administration routes. It additionally discusses and elaborates on the status of phage therapy undergoing clinical trials, and the challenges encountered in their usage, and explores prospects in phage therapy research and application.
Collapse
Affiliation(s)
- Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Fatma Alzahraa M. Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Bandar Puncak Alam, Malaysia
| |
Collapse
|
3
|
Gondil V, Ashcraft M, Ghalei S, Kumar A, Wilson SN, Devine R, Handa H, Brisbois EJ. Anti-Infective Bacteriophage Immobilized Nitric Oxide-Releasing Surface for Prevention of Thrombosis and Device-Associated Infections. ACS APPLIED BIO MATERIALS 2025; 8:1362-1376. [PMID: 39895136 PMCID: PMC11836933 DOI: 10.1021/acsabm.4c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
The treatment of critically ill patients has made great strides in the past few decades due to the rapid development of indwelling medical devices. Despite immense advancements in the design of these devices, indwelling medical device-associated infections and thrombosis are two major clinical problems that may lead to device failure and compromise clinical outcomes. Antibiotics are the current treatment choice for these infections; however, the global emergence of antibiotic-resistance and their biofilm formation abilities complicate the management of such infections. Moreover, systemic administration of anticoagulants has been used to counter medical device-induced thrombosis, but a range of serious adverse effects associated with all types of available anticoagulants entails exploring alternative options to counter device-associated thrombosis. In this study, bacteriophages (phages) were covalently immobilized on polydimethylsiloxane (PDMS) surface containing the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) via SNAP impregnation method. This dual strategy combines the targeted antibacterial activity of phages against bacterial pathogens with the antibacterial-antithrombotic activity of NO released from the polymeric surface. The PDMS, SNAP-PDMS, phage-immobilized PDMS (PDMS-Phage), and phage-immobilized SNAP-PDMS (SNAP-PDMS-Phage) surfaces were characterized for their surface topology, elemental composition, contact angle, SNAP loading, NO release and phage distribution. SNAP-PDMS and SNAP-PDMS-Phage surfaces showed similar and consistent NO release profiles over 24 h of incubation. Immobilization of whole phages on PDMS and SNAP-PDMS was achieved with densities of 2.4 ± 0.54 and 2.1 ± 0.33 phages μm-2, respectively. Immobilized phages were found to retain their activity, and SNAP-PDMS-Phage surfaces showed a significant reduction in planktonic (99.99 ± 0.08%) as well as adhered (99.80 ± 0.05%) Escherichia coli as compared to controls in log killing assays. The SNAP-PDMS-Phage surfaces also exhibited significantly reduced platelet adhesion by 64.65 ± 2.95% as compared to control PDMS surfaces. All fabricated surfaces were found to be nonhemolytic and do not exhibit any significant cytotoxic effects toward mammalian fibroblast cells. This study is the first of its kind to demonstrate the combinatorial pertinence of phages and NO to prevent antibiotic-resistant/sensitive bacterial infections and thrombosis associated with indwelling medical devices.
Collapse
Affiliation(s)
- Vijay
Singh Gondil
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Morgan Ashcraft
- Pharmaceutical
and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Sama Ghalei
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Anil Kumar
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sarah N. Wilson
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan Devine
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical
and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Decodts M, Cantallops-Vilà C, Hornez JC, Lacroix JM, Bouchart F. Phage-Loaded Biomimetic Apatite Powder With Antibiofilm Activity to Treat Bone-Associated Infections. J Biomed Mater Res A 2025; 113:e37808. [PMID: 39376206 DOI: 10.1002/jbm.a.37808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
For decades, calcium phosphate (CaP)-based ceramics have been used for coating of bone and joint substitutes after arthroplasty due to their biocompatible properties. Infections following orthopedic replacement occur in 1%-5% of cases, causing serious complications. Biofilm formation either on the biomaterial's surface or on patient's tissues greatly enhances the resistance against antibiotic treatments and can induce a chronic infection, emphasizing the need for novel antimicrobial delivery systems. In this study, we established a protocol enabling bacteriophage loading during the synthesis of a CaP-based powder. The resulting biomaterial proved to be noncytotoxic against human osteoblastic cells and able to significantly inhibit 24-h matured S. aureus biofilm cultures or even completely eradicate it after 5 days of contact. Additional S. aureus biofilm assays with a freeze-dried material using two different excipients showed that sucrose had a protective role against Remus bacteriophage treatment of S. aureus biofilms, whereas lactose-freeze-dried powder maintained the antibiofilm activity.
Collapse
Affiliation(s)
- Maxime Decodts
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Cristina Cantallops-Vilà
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Jean-Christophe Hornez
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Jean-Marie Lacroix
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, Lille, France
| | - Franck Bouchart
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, Lille, France
| |
Collapse
|
5
|
Young J, Shariyate MJ, Misra P, Laiwala S, Nazarian A, Rodriguez EK. Assessment of Bacteriophage Pharmacokinetic Parameters After Intra-Articular Delivery in a Rat Prosthetic Joint Infection Model. Viruses 2024; 16:1800. [PMID: 39599913 PMCID: PMC11598970 DOI: 10.3390/v16111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Prosthetic joint infections (PJIs) are a serious complication of orthopedic surgery. Bacteriophage (phage) therapy shows promise as an adjunctive treatment but requires further study, particularly in its pharmacokinetics. Consequently, we performed a pharmacokinetic assessment of phage therapy for PJIs using a Staphylococcus epidermidis Kirschner wire-based prosthesis rat model. We used 52 male Sprague-Dawley rats in four groups: negative controls (no phage, sterile implant), PJI controls (bacteria, no phage), sterile phage (phages given, sterile implant), and PJI (bacteria, phages given). The PJI groups were inoculated with ~106 CFU of S. epidermidis. The groups receiving phage were intra-articularly injected with ~108 PFU of vB_SepM_Alex five days post-implantation. The rats were euthanized between 30 min and 48 h post-injection. The measured phage concentrations between the PJI rats and the sterile controls in periarticular tissues were not significantly different. In a noncompartmental pharmacokinetic analysis, the estimated phage half-lives were under 6 h (combined: 3.73 [IQR, 1.45, 10.07]). The maximum phage concentrations were reached within 2 h after administration (combined: 0.75 [0.50, 1.75]). The estimated phage mean residence time was approximately three hours (combined: 3.04 [1.44, 4.19]). Our study provides a preliminary set of pharmacokinetic parameters that can inform future phage dosing studies and animal models of phage therapy for PJIs.
Collapse
Affiliation(s)
- Jason Young
- Harvard Combined Orthopedic Residency Program, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Mohammad Javad Shariyate
- Harvard Medical School, Boston, MA 02115, USA
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Prateek Misra
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Shubham Laiwala
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Ara Nazarian
- Harvard Medical School, Boston, MA 02115, USA
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Orthopedic Surgery, Yerevan State Medical University, Yerevan 0025, Armenia
| | - Edward Kenneth Rodriguez
- Harvard Medical School, Boston, MA 02115, USA
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
6
|
Villegas M, Bayat F, Kramer T, Schwarz E, Wilson D, Hosseinidoust Z, Didar TF. Emerging Strategies to Prevent Bacterial Infections on Titanium-Based Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404351. [PMID: 39161205 DOI: 10.1002/smll.202404351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.
Collapse
Affiliation(s)
- Martin Villegas
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Taylor Kramer
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Elise Schwarz
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - David Wilson
- Division of Orthopedic Surgery, Halifax Infirmary, Halifax, NS, B3H3A6, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
7
|
Abdulrehman T, Qadri S, Haik Y, Sultan A, Skariah S, Kumar S, Mendoza Z, Yadav KK, Titus A, Khader S. Advances in the targeted theragnostics of osteomyelitis caused by Staphylococcus aureus. Arch Microbiol 2024; 206:288. [PMID: 38834761 DOI: 10.1007/s00203-024-04015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Bone infections caused by Staphylococcus aureus may lead to an inflammatory condition called osteomyelitis, which results in progressive bone loss. Biofilm formation, intracellular survival, and the ability of S. aureus to evade the immune response result in recurrent and persistent infections that present significant challenges in treating osteomyelitis. Moreover, people with diabetes are prone to osteomyelitis due to their compromised immune system, and in life-threatening cases, this may lead to amputation of the affected limbs. In most cases, bone infections are localized; thus, early detection and targeted therapy may prove fruitful in treating S. aureus-related bone infections and preventing the spread of the infection. Specific S. aureus components or overexpressed tissue biomarkers in bone infections could be targeted to deliver active therapeutics, thereby reducing drug dosage and systemic toxicity. Compounds like peptides and antibodies can specifically bind to S. aureus or overexpressed disease markers and combining these with therapeutics or imaging agents can facilitate targeted delivery to the site of infection. The effectiveness of photodynamic therapy and hyperthermia therapy can be increased by the addition of targeting molecules to these therapies enabling site-specific therapy delivery. Strategies like host-directed therapy focus on modulating the host immune mechanisms or signaling pathways utilized by S. aureus for therapeutic efficacy. Targeted therapeutic strategies in conjunction with standard surgical care could be potential treatment strategies for S. aureus-associated osteomyelitis to overcome antibiotic resistance and disease recurrence. This review paper presents information about the targeting strategies and agents for the therapy and diagnostic imaging of S. aureus bone infections.
Collapse
Affiliation(s)
- Tahir Abdulrehman
- eHealth Program, DeGroote School of Business, McMaster University, Hamilton, ON, Canada
- Health Policy, Management and Informatics, Allied Health, Credit Valley Hospital, Mississauga, ON, Canada
| | - Shahnaz Qadri
- School of Pharmacy, Texas A&M University, Kingsville, USA.
| | - Yousef Haik
- Department of Mechanical & Nuclear Engineering, University of Sharjah, Sharjah, UAE.
| | - Ali Sultan
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sini Skariah
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Shourya Kumar
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Zachary Mendoza
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Kamlesh K Yadav
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Anoop Titus
- Department of Preventive Cardiology, Houston Methodist, Houston, TX, USA
| | - Shameer Khader
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
8
|
Kaspiris A, Vasiliadis E, Pantazaka E, Lianou I, Melissaridou D, Savvidis M, Panagopoulos F, Tsalimas G, Vavourakis M, Kolovos I, Savvidou OD, Pneumaticos SG. Current Progress and Future Perspectives in Contact and Releasing-Type Antimicrobial Coatings of Orthopaedic Implants: A Systematic Review Analysis Emanated from In Vitro and In Vivo Models. Infect Dis Rep 2024; 16:298-316. [PMID: 38667751 PMCID: PMC11050497 DOI: 10.3390/idr16020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Despite the expanding use of orthopedic devices and the application of strict pre- and postoperative protocols, the elimination of postoperative implant-related infections remains a challenge. Objectives: To identify and assess the in vitro and in vivo properties of antimicrobial-, silver- and iodine-based implants, as well as to present novel approaches to surface modifications of orthopedic implants. Methods: A systematic computer-based review on the development of these implants, on PubMed and Web of Science databases, was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: Overall, 31 in vitro and 40 in vivo entries were evaluated. Regarding the in vitro studies, antimicrobial-based coatings were assessed in 12 entries, silver-based coatings in 10, iodine-based in 1, and novel-applied coating technologies in 8 entries. Regarding the in vivo studies, antimicrobial coatings were evaluated in 23 entries, silver-coated implants in 12, and iodine-coated in 1 entry, respectively. The application of novel coatings was studied in the rest of the cases (4). Antimicrobial efficacy was examined using different bacterial strains, and osseointegration ability and biocompatibility were examined in eukaryotic cells and different animal models, including rats, rabbits, and sheep. Conclusions: Assessment of both in vivo and in vitro studies revealed a wide antimicrobial spectrum of the coated implants, related to reduced bacterial growth, inhibition of biofilm formation, and unaffected or enhanced osseointegration, emphasizing the importance of the application of surface modification techniques as an alternative for the treatment of orthopedic implant infections in the clinical settings.
Collapse
Affiliation(s)
- Angelos Kaspiris
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Elias Vasiliadis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Evangelia Pantazaka
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Ioanna Lianou
- Department of Orthopedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Dimitra Melissaridou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Matthaios Savvidis
- Second Orthopedic Department, 424 General Military Hospital, 56429 Thessaloniki, Greece;
| | - Fotios Panagopoulos
- Department of Orthopedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Georgios Tsalimas
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Michail Vavourakis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Ioannis Kolovos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Olga D. Savvidou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Spiros G. Pneumaticos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| |
Collapse
|
9
|
Young J, Lee SW, Shariyate MJ, Cronin A, Wixted JJ, Nazarian A, Rowley CF, Rodriguez EK. Bacteriophage therapy and current delivery strategies for orthopedic infections: A SCOPING review. J Infect 2024; 88:106125. [PMID: 38373574 DOI: 10.1016/j.jinf.2024.106125] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Interest in phages as adjunctive therapy to treat difficult infections has grown in the last decade. However, phage dosing and delivery for orthopedic infections have not been systematically summarized. METHODS Following PRISMA-ScR guidelines, we conducted a SCOPING review through September 1st, 2023, of MEDLINE, Embase, Web of Science Core Collection, and Cochrane Central. RESULTS In total, 77 studies were included, of which 19 (24.7%) were in vitro studies, 17 (22.1%) were animal studies, and 41 (53.2%) were studies in humans. A total of 137 contemporary patients receiving phage therapy are described. CONCLUSIONS Direct phage delivery remains the most studied form of phage therapy, notably in prosthetic joint infections, osteomyelitis, and diabetic foot ulcers. Available evidence describing phage therapy in humans suggests favorable outcomes for orthopedic infections, though this evidence is composed largely of low-level descriptive studies. Several phage delivery devices have been described, though a lack of comparative and in-human evidence limits their therapeutic application. Limitations to the use of phage therapy for orthopedic infections that need to be overcome include a lack of understanding related to optimal dosing and phage pharmacokinetics, bacterial heterogeneity in an infection episode, and phage therapy toxicity.
Collapse
Affiliation(s)
- Jason Young
- Harvard Combined Orthopedic Residency Program, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | | | - Mohammad J Shariyate
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - John J Wixted
- Harvard Medical School, Boston, MA, USA; Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| | - Christopher F Rowley
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard School of Public Health, Boston, MA, USA
| | - Edward K Rodriguez
- Harvard Medical School, Boston, MA, USA; Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
10
|
Mukhopadhyay S, To KKW, Liu Y, Bai C, Leung SSY. A thermosensitive hydrogel formulation of phage and colistin combination for the management of multidrug-resistant Acinetobacter baumannii wound infections. Biomater Sci 2023; 12:151-163. [PMID: 37937608 DOI: 10.1039/d3bm01383a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chronic skin wounds are often associated with multidrug-resistant bacteria, impeding the healing process. Bacteriophage (phage) therapy has been revitalized as a promising strategy to counter the growing concerns of antibiotic resistance. However, phage monotherapy also faces several application drawbacks, such as a narrow host spectrum, the advent of resistant phenotypes and poor stability of phage preparations. Phage-antibiotic synergistic (PAS) combination therapy has recently been suggested as a possible approach to overcome these shortcomings. In the present study, we employed a model PAS combination containing a vB_AbaM-IME-AB2 phage and colistin to develop stable wound dressings of PAS to mitigate infections associated with Acinetobacter baumannii. A set of thermosensitive hydrogels were synthesized with varying amounts of Pluronic® F-127 (PF-127 at 15, 17.5 and 20 w/w%) modified with/without 3 w/w% hydroxypropyl methylcellulose (HPMC). Most hydrogel formulations had a gelation temperature around skin temperature, suitable for topical application. The solidified gels were capable of releasing the encapsulated phage and colistin in a sustained manner to kill bacteria. The highest bactericidal effect was achieved with the formulation containing 17.5% PF-127 and 3% HPMC (F5), which effectively killed bacteria in both planktonic (by 5.66 log) and biofilm (by 3 log) states and inhibited bacterial regrowth. Good storage stability of F5 was also noted with negligible activity loss after 9 months of storage at 4 °C. The ex vivo antibacterial efficacy of the F5 hydrogel formulation was also investigated in a pork skin wound infection model, where it significantly reduced the bacterial burden by 4.65 log. These positive outcomes warrant its further development as a topical PAS-wound dressing.
Collapse
Affiliation(s)
- Subhankar Mukhopadhyay
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Changqing Bai
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Guangdong, 518055, China
| | - Sharon S Y Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
11
|
Bredikhin M, Sawant S, Gross C, Antonio ELS, Borodinov N, Luzinov I, Vertegel A. Highly Adhesive Antimicrobial Coatings for External Fixation Devices. Gels 2023; 9:639. [PMID: 37623093 PMCID: PMC10453896 DOI: 10.3390/gels9080639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Pin site infections arise from the use of percutaneous pinning techniques (as seen in skeletal traction, percutaneous fracture pinning, and external fixation for fracture stabilization or complex deformity reconstruction). These sites are niduses for infection because the skin barrier is disrupted, allowing for bacteria to enter a previously privileged area. After external fixation, the rate of pin site infections can reach up to 100%. Following pin site infection, the pin may loosen, causing increased pain (increasing narcotic usage) and decreasing the fixation of the fracture or deformity correction construct. More serious complications include osteomyelitis and deep tissue infections. Due to the morbidity and costs associated with its sequelae, strategies to reduce pin site infections are vital. Current strategies for preventing implant-associated infections include coatings with antibiotics, antimicrobial polymers and peptides, silver, and other antiseptics like chlorhexidine and silver-sulfadiazine. Problems facing the development of antimicrobial coatings on orthopedic implants and, specifically, on pins known as Kirschner wires (or K-wires) include poor adhesion of the drug-eluting layer, which is easily removed by shear forces during the implantation. Development of highly adhesive drug-eluting coatings could therefore lead to improved antimicrobial efficacy of these devices and ultimately reduce the burden of pin site infections. In response to this need, we developed two types of gel coatings: synthetic poly-glycidyl methacrylate-based and natural-chitosan-based. Upon drying, these gel coatings showed strong adhesion to pins and remained undamaged after the application of strong shear forces. We also demonstrated that antibiotics can be incorporated into these gels, and a K-wire with such a coating retained antimicrobial efficacy after drilling into and removal from a bone. Such a coating could be invaluable for K-wires and other orthopedic implants that experience strong shear forces during their implantation.
Collapse
Affiliation(s)
- Mikhail Bredikhin
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| | - Sushant Sawant
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| | - Christopher Gross
- Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Erik L. S. Antonio
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Nikolay Borodinov
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Igor Luzinov
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| |
Collapse
|
12
|
Fungo GBN, Uy JCW, Porciuncula KLJ, Candelario CMA, Chua DPS, Gutierrez TAD, Clokie MRJ, Papa DMD. "Two Is Better Than One": The Multifactorial Nature of Phage-Antibiotic Combinatorial Treatments Against ESKAPE-Induced Infections. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:55-67. [PMID: 37350995 PMCID: PMC10282822 DOI: 10.1089/phage.2023.0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Phage-antibiotic synergy (PAS) has been extensively explored over the past decade, with the aim of developing more effective treatments against multidrug-resistant organisms. However, it remains unclear how to effectively combine these two approaches. To address this uncertainty, we assessed four main aspects of PAS interactions in this review, seeking to identify commonalities of combining treatments within and between bacterial species. We examined all literature on PAS efficacy toward ESKAPE pathogens and present an analysis of the data in papers focusing on: (1) order of treatment, (2) dose of both phage and antibiotics, (3) mechanism of action, and (4) viability of transfer from in vivo or animal model trials to clinical applications. Our analysis indicates that there is little consistency within phage-antibiotic therapy regimens, suggesting that highly individualized treatment regimens should be used. We propose a set of experimental studies to address these research gaps. We end our review with suggestions on how to improve studies on phage-antibiotic combination therapy to advance this field.
Collapse
Affiliation(s)
- Gale Bernice N. Fungo
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - John Christian W. Uy
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Kristiana Louise J. Porciuncula
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Chiarah Mae A. Candelario
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Deneb Philip S. Chua
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Tracey Antaeus D. Gutierrez
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | | | - Donna May D. Papa
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
13
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|
14
|
Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections. Int J Mol Sci 2022; 23:ijms231911658. [PMID: 36232956 PMCID: PMC9569980 DOI: 10.3390/ijms231911658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
One of the most serious complications following the implantation of orthopedic biomaterials is the development of infection. Orthopedic implant-related infections do not only entail clinical problems and patient suffering, but also cause a burden on healthcare care systems. Additionally, the ageing of the world population, in particular in developed countries, has led to an increase in the population above 60 years. This is a significantly vulnerable population segment insofar as biomaterials use is concerned. Implanted materials are highly susceptible to bacterial and fungal colonization and the consequent infection. These microorganisms are often opportunistic, taking advantage of the weakening of the body defenses at the implant surface–tissue interface to attach to tissues or implant surfaces, instigating biofilm formation and subsequent development of infection. The establishment of biofilm leads to tissue destruction, systemic dissemination of the pathogen, and dysfunction of the implant/bone joint, leading to implant failure. Moreover, the contaminated implant can be a reservoir for infection of the surrounding tissue where microorganisms are protected. Therefore, the biofilm increases the pathogenesis of infection since that structure offers protection against host defenses and antimicrobial therapies. Additionally, the rapid emergence of bacterial strains resistant to antibiotics prompted the development of new alternative approaches to prevent and control implant-related infections. Several concepts and approaches have been developed to obtain biomaterials endowed with anti-infective properties. In this review, several anti-infective strategies based on biomaterial engineering are described and discussed in terms of design and fabrication, mechanisms of action, benefits, and drawbacks for preventing and treating orthopaedic biomaterials-related infections.
Collapse
|
15
|
Jeyaraman M, Jeyaraman N, Konkathi VK, Nallakumarasamy A, Muthu S, Khanna M. Bacteriophage Therapy in Implant-Related Orthopedic Infections. Indian J Orthop 2022; 56:1685-1693. [PMID: 36187582 PMCID: PMC9485506 DOI: 10.1007/s43465-022-00728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/15/2022] [Indexed: 02/08/2023]
Abstract
Biofilm producers pose a major challenge in treating implant-related orthopedic infections (IROIs). The incidence of IROIs for the closed fracture amounts to 1% to 2% whereas for open fracture it is up to 30%. Due to inappropriate and irrational use of antibiotics in the management of infections, there is an emergence of a global "antimicrobial resistance crisis". To combat these antimicrobial resistance crises, a few innovative and targeted therapies like nanomedicine, phage therapy, antimicrobial peptides, and sonic therapies have been introduced. In this review, we have detailed the basic mechanisms involved in the employment of bacteriophage therapy for IROIs, along with the preclinical and clinical data on its utility. We also present the guidelines on its regulation, processing, and limitations of bacteriophage therpay to combat the upcoming era of antibiotic resistance.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu India
- Indian Orthopaedic Rheumatology Association (IORA), Lucknow, India
- Orthopaedic Research Group, Coimbatore, Tamil Nadu India
| | - Naveen Jeyaraman
- Indian Orthopaedic Rheumatology Association (IORA), Lucknow, India
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli, Tamil Nadu India
- Dr. RML National Law University, Lucknow, India
| | - Vijay Kumar Konkathi
- Indian Orthopaedic Rheumatology Association (IORA), Lucknow, India
- Dr. RML National Law University, Lucknow, India
| | - Arulkumar Nallakumarasamy
- Indian Orthopaedic Rheumatology Association (IORA), Lucknow, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha India
| | - Sathish Muthu
- Indian Orthopaedic Rheumatology Association (IORA), Lucknow, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu India
- Orthopaedic Research Group, Coimbatore, Tamil Nadu India
| | - Manish Khanna
- Indian Orthopaedic Rheumatology Association (IORA), Lucknow, India
- Department of Orthopaedics, Autonomous State Medical College, Ayodhya, Uttar Pradesh India
| |
Collapse
|
16
|
Benefits of Combined Phage–Antibiotic Therapy for the Control of Antibiotic-Resistant Bacteria: A Literature Review. Antibiotics (Basel) 2022; 11:antibiotics11070839. [PMID: 35884092 PMCID: PMC9311689 DOI: 10.3390/antibiotics11070839] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
With the increase in bacterial resistance to antibiotics, more and more therapeutic failures are being reported worldwide. The market for antibiotics is now broken due to the high cost of developing new molecules. A promising solution to bacterial resistance is combined phage–antibiotic therapy, a century-old method that can potentiate existing antibiotics by prolonging or even restoring their activity against specific bacteria. The aim of this literature review was to provide an overview of different phage–antibiotic combinations and to describe the possible mechanisms of phage–antibiotic synergy.
Collapse
|
17
|
Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. Int J Mol Sci 2022; 23:ijms23115958. [PMID: 35682632 PMCID: PMC9180976 DOI: 10.3390/ijms23115958] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
The use of indwelling medical devices has constantly increased in recent years and has revolutionized the quality of life of patients affected by different diseases. However, despite the improvement of hygiene conditions in hospitals, implant-associated infections remain a common and serious complication in prosthetic surgery, mainly in the orthopedic field, where infection often leads to implant failure. Staphylococcus aureus is the most common cause of biomaterial-centered infection. Upon binding to the medical devices, these bacteria proliferate and develop dense communities encased in a protective matrix called biofilm. Biofilm formation has been proposed as occurring in several stages-(1) attachment; (2) proliferation; (3) dispersal-and involves a variety of host and staphylococcal proteinaceous and non-proteinaceous factors. Moreover, biofilm formation is strictly regulated by several control systems. Biofilms enable staphylococci to avoid antimicrobial activity and host immune response and are a source of persistent bacteremia as well as of localized tissue destruction. While considerable information is available on staphylococcal biofilm formation on medical implants and important results have been achieved on the treatment of biofilms, preclinical and clinical applications need to be further investigated. Thus, the purpose of this review is to gather current studies about the mechanism of infection of indwelling medical devices by S. aureus with a special focus on the biochemical factors involved in biofilm formation and regulation. We also provide a summary of the current therapeutic strategies to combat biomaterial-associated infections and highlight the need to further explore biofilm physiology and conduct research for innovative anti-biofilm approaches.
Collapse
|
18
|
Shiue SJ, Syu FS, Lin HY. Two types of bacteriophage-modified alginate hydrogels as antibacterial coatings for implants. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Lin J, Du F, Long M, Li P. Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review. Molecules 2022; 27:molecules27061857. [PMID: 35335222 PMCID: PMC8951143 DOI: 10.3390/molecules27061857] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial infectious diseases cause serious harm to human health. At present, antibiotics are the main drugs used in the treatment of bacterial infectious diseases, but the abuse of antibiotics has led to the rapid increase in drug-resistant bacteria and to the inability to effectively control infections. Bacteriophages are a kind of virus that infects bacteria and archaea, adopting bacteria as their hosts. The use of bacteriophages as antimicrobial agents in the treatment of bacterial diseases is an alternative to antibiotics. At present, phage therapy (PT) has been used in various fields and has provided a new technology for addressing diseases caused by bacterial infections in humans, animals, and plants. PT uses bacteriophages to infect pathogenic bacteria so to stop bacterial infections and treat and prevent related diseases. However, PT has several limitations, due to a narrow host range, the lysogenic phenomenon, the lack of relevant policies, and the lack of pharmacokinetic data. The development of reasonable strategies to overcome these limitations is essential for the further development of this technology. This review article described the current applications and limitations of PT and summarizes the existing solutions for these limitations. This information will be useful for clinicians, people working in agriculture and industry, and basic researchers.
Collapse
Affiliation(s)
- Jiaxi Lin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (F.D.); (M.L.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Fangyuan Du
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (F.D.); (M.L.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (F.D.); (M.L.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Peng Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (F.D.); (M.L.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
- Correspondence:
| |
Collapse
|
20
|
Antimicrobial and Antibiofilm Coating of Dental Implants—Past and New Perspectives. Antibiotics (Basel) 2022; 11:antibiotics11020235. [PMID: 35203837 PMCID: PMC8868456 DOI: 10.3390/antibiotics11020235] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Regarded as one of the best solutions to replace missing teeth in the oral cavity, dental implants have been the focus of plenty of studies and research in the past few years. Antimicrobial coatings are a promising solution to control and prevent bacterial infections that compromise the success of dental implants. In the last few years, new materials that prevent biofilm adhesion to the surface of titanium implants have been reported, ranging from improved methods to already established coating surfaces. The purpose of this review is to present the developed antimicrobial and antibiofilm coatings that may have the potential to reduce bacterial infections and improve the success rate of titanium dental implants. All referred coating surfaces showed high antimicrobial properties with effectiveness in biofilm control, while maintaining implant biocompatibility. We expect that by combining the use of oligonucleotide probes as a covering material with novel peri-implant adjuvant therapies, we will be able to avoid the downsides of other covering materials (such as antibiotic resistance), prevent bacterial infections, and raise the success rate of dental implants. The existing knowledge on the optimal coating material for dental implants is limited, and further research is needed before more definitive conclusions can be drawn.
Collapse
|
21
|
Khullar L, Harjai K, Chhibber S. Exploring the therapeutic potential of staphylococcal phage formulations: Current challenges and applications in phage therapy. J Appl Microbiol 2022; 132:3515-3532. [DOI: 10.1111/jam.15462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lavanya Khullar
- Department of Microbiology Panjab University Chandigarh India
| | - Kusum Harjai
- Department of Microbiology Panjab University Chandigarh India
| | - Sanjay Chhibber
- Department of Microbiology Panjab University Chandigarh India
| |
Collapse
|
22
|
Totten KMC, Patel R. Phage Activity against Planktonic and Biofilm Staphylococcus aureus Periprosthetic Joint Infection Isolates. Antimicrob Agents Chemother 2022; 66:e0187921. [PMID: 34662191 PMCID: PMC8765226 DOI: 10.1128/aac.01879-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
We recently reported the successful treatment of a case of periprosthetic joint infection (PJI) with phage. Phage activity against bacteria causing PJI has not been systematically evaluated. Here, we examined the in vitro activity of seven phages against 122 clinical isolates of Staphylococcus aureus recovered between April 1999 and February 2018 from subjects with PJI. Phages were assessed against planktonic and biofilm phenotypes. Activity of individual phages was demonstrated against up to 73% of bacterial isolates in the planktonic state and up to 100% of biofilms formed by isolates that were planktonically phage susceptible. Susceptibility to phage was not correlated with small-colony-variant phenotype for planktonic or biofilm bacteria; correlation between antibiotic susceptibility and planktonic phage susceptibility and between biofilm phage susceptibility and strength of biofilm formation were noted under select conditions. These results demonstrate that phages can infect S. aureus causing PJI in both planktonic and biofilm phenotypes, and thus are worthy of investigation as an alternative or addition to antibiotics in this setting.
Collapse
Affiliation(s)
- Katherine M. C. Totten
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Doub JB. Risk of Bacteriophage Therapeutics to Transfer Genetic Material and Contain Contaminants Beyond Endotoxins with Clinically Relevant Mitigation Strategies. Infect Drug Resist 2022; 14:5629-5637. [PMID: 34992389 PMCID: PMC8711558 DOI: 10.2147/idr.s341265] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteriophage therapy is a promising adjuvant therapeutic in the treatment of multidrug-resistant infections and chronic biofilm infections. However, there is limited knowledge about how to best utilize these agents in vivo, leading to a wide range of treatment protocols. Moreover, while bacteriophages are similar to antibiotics in their antimicrobial effects, these are active viruses and are very different from conventional antibiotics. One main difference that clinicians should be cognizant about is the potential ability of these therapeutics to horizontally transfer genetic material, and the clinical ramifications of such events. In addition, while bacteriophage therapeutics are readily tested for sterility and endotoxins, clinicians should also be aware of other contaminants, such as exotoxins, pathogenicity islands and prophages, that can contaminate bacteriophage therapeutics, and their clinical ramifications. While the perception may be that these are only theoretical issues, regulatory agencies are starting to recommend their evaluation when using bacteriophage therapy and subsequently these topics are discussed herein, as are ways to test for and mitigate the adverse effects of these issues.
Collapse
Affiliation(s)
- James B Doub
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
[Treatment of bone and periprosthetic infections with bacteriophages : A systematic review]. DER ORTHOPADE 2021; 51:138-145. [PMID: 34499212 PMCID: PMC8821479 DOI: 10.1007/s00132-021-04148-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 01/19/2023]
Abstract
Hintergrund Die Behandlung von Knochen- und Protheseninfektionen bleibt trotz moderner Behandlungskonzepte mit interdisziplinärem Therapieansatz schwierig und weitere Maßnahmen zur Verbesserung des Behandlungsergebnisses sind wünschenswert. Präklinischen Studien liefern ein vielversprechendes Bild der Wirksamkeit von Bakteriophagen zur Behandlung von Knochen- und Protheseninfektionen. Ziel der Arbeit Die vorliegende Arbeit gibt eine systematische Übersicht über die klinische Anwendung von Bakteriophagen zur Behandlung von Knochen- und Protheseninfektionen. Material und Methoden Eine systematische Suche wurde in PubMed zur Identifikation von primären klinischen Daten zur Anwendung der Phagentherapie bei Patienten mit Knochen- und Protheseninfektion durchgeführt. Ergebnisse Elf Studien wurden eingeschlossen, bestehend aus 8 Fallberichten und 3 Fallserien. Indikationen der Phagentherapie waren periprothetische Infektionen (n = 12, 52,2 %), frakturassoziierte Infektionen (n = 9, 39,1 %), Osteomyelitis (n = 1, 4,4 %) und eine Iliosakralgelenkinfektion nach Zementaugmentation einer Metastase (n = 1, 4,4 %). Die Interventionen waren heterogen, Phagen wurden intravenös verabreicht, intraoperativ ins Gelenk injiziert, intraoperativ lokal angewendet oder über Drainagen appliziert. In Kombination mit Antibiotikatherapie konnte eine vollständige Infekteradikation bei 18 Patienten (78,3 %) erreicht werden. Bei 91,3 % der Patienten wurden keine Nebenwirkungen berichtet. Schlussfolgerung Bakteriophagen sind eine vielversprechende Behandlungsmethode von Knochen- und Protheseninfektionen in Kombination mit einer Antibiotikatherapie. Zukünftige klinische Studien mit höherem Evidenzgrad werden benötigt, um eine erfolgreiche Translation der Bakteriophagentherapie in die klinische Praxis weiter zu etablieren.
Collapse
|
25
|
Tamma PD, Suh GA. Phage Are All the Rage: Bacteriophage in Clinical Practice. J Pediatric Infect Dis Soc 2021; 10:749-753. [PMID: 33755148 DOI: 10.1093/jpids/piab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 01/17/2023]
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Gina A Suh
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| |
Collapse
|
26
|
Gkartziou F, Giormezis N, Spiliopoulou I, Antimisiaris SG. Nanobiosystems for Antimicrobial Drug-Resistant Infections. NANOMATERIALS 2021; 11:nano11051075. [PMID: 33922004 PMCID: PMC8143556 DOI: 10.3390/nano11051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
The worldwide increased bacterial resistance toward antimicrobial therapeutics has led investigators to search for new therapeutic options. Some of the options currently exploited to treat drug-resistant infections include drug-associated nanosystems. Additionally, the use of bacteriophages alone or in combination with drugs has been recently revisited; some studies utilizing nanosystems for bacteriophage delivery have been already reported. In this review article, we focus on nine pathogens that are the leading antimicrobial drug-resistant organisms, causing difficult-to-treat infections. For each organism, the bacteriophages and nanosystems developed or used in the last 20 years as potential treatments of pathogen-related infections are discussed. Summarizing conclusions and future perspectives related with the potential of such nano-antimicrobials for the treatment of persistent infections are finally highlighted.
Collapse
Affiliation(s)
- Foteini Gkartziou
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
| | - Nikolaos Giormezis
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| | - Sophia G. Antimisiaris
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| |
Collapse
|
27
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
28
|
Abstract
Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics. Cite this article: Bone Joint J 2021;103-B(2):234-244.
Collapse
Affiliation(s)
- Bryan P Gibb
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| |
Collapse
|
29
|
Doub JB. Bacteriophage Therapy for Clinical Biofilm Infections: Parameters That Influence Treatment Protocols and Current Treatment Approaches. Antibiotics (Basel) 2020; 9:E799. [PMID: 33198058 PMCID: PMC7697957 DOI: 10.3390/antibiotics9110799] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Biofilm infections are extremely difficult to treat, which is secondary to the inability of conventional antibiotics to eradicate biofilms. Consequently, current definitive treatment of biofilm infections requires complete removal of the infected hardware. This causes significant morbidity and mortality to patients and therefore novel therapeutics are needed to cure these infections without removal of the infected hardware. Bacteriophages have intrinsic properties that could be advantageous in the treatment of clinical biofilm infections, but limited knowledge is known about the proper use of bacteriophage therapy in vivo. Currently titers and duration of bacteriophage therapy are the main parameters that are evaluated when devising bacteriophage protocols. Herein, several other important parameters are discussed which if standardized could allow for more effective and reproducible treatment protocols to be formulated. In addition, these parameters are correlated with the current clinical approaches being evaluated in the treatment of clinical biofilm infections.
Collapse
Affiliation(s)
- James B Doub
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
30
|
Oliveira VC, Bim FL, Monteiro RM, Macedo AP, Santos ES, Silva-Lovato CH, Paranhos HFO, Melo LDR, Santos SB, Watanabe E. Identification and Characterization of New Bacteriophages to Control Multidrug-Resistant Pseudomonas aeruginosa Biofilm on Endotracheal Tubes. Front Microbiol 2020; 11:580779. [PMID: 33123112 PMCID: PMC7573221 DOI: 10.3389/fmicb.2020.580779] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Studies involving antimicrobial-coated endotracheal tubes are scarce, and new approaches to control multidrug-resistant Pseudomonas aeruginosa biofilm on these devices should be investigated. In this study, five new P. aeruginosa bacteriophages from domestic sewage were isolated. All of them belong to the order Caudovirales, Myoviridae family. They are pH and heat stable and produce 27 to 46 particles after a latent period of 30 min at 37°C. Their dsDNA genome (ranging from ∼62 to ∼65 kb) encodes 65 to 89 different putative proteins. They exhibit a broad lytic spectrum and infect 69.7% of the P. aeruginosa strains tested. All the bacteriophages were able to reduce the growth of P. aeruginosa strains in planktonic form. The bacteriophages were also able to reduce the biofilm viability rates and the metabolic activity of P. aeruginosa strains in a model of biofilms associated with endotracheal tubes. In addition, scanning electron microscopy micrographs showed disrupted biofilms and cell debris after treatment of bacteriophages, revealing remarkable biofilm reduction. The lytic activity on multidrug-resistant P. aeruginosa biofilm indicates that the isolated bacteriophages might be considered as good candidates for therapeutic studies and for the application of bacteriophage-encoded products.
Collapse
Affiliation(s)
- Viviane C Oliveira
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe L Bim
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rachel M Monteiro
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula Macedo
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Emerson S Santos
- Department of Clinical Toxicological and Bromatologic Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cláudia H Silva-Lovato
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Helena F O Paranhos
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sílvio B Santos
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Evandro Watanabe
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
31
|
Cobb LH, McCabe EM, Priddy LB. Therapeutics and delivery vehicles for local treatment of osteomyelitis. J Orthop Res 2020; 38:2091-2103. [PMID: 32285973 PMCID: PMC8117475 DOI: 10.1002/jor.24689] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis, or the infection of the bone, presents a major complication in orthopedics and may lead to prolonged hospital visits, implant failure, and in more extreme cases, amputation of affected limbs. Typical treatment for this disease involves surgical debridement followed by long-term, systemic antibiotic administration, which contributes to the development of antibiotic-resistant bacteria and has limited ability to eradicate challenging biofilm-forming pathogens including Staphylococcus aureus-the most common cause of osteomyelitis. Local delivery of high doses of antibiotics via traditional bone cement can reduce systemic side effects of an antibiotic. Nonetheless, growing concerns over burst release (then subtherapeutic dose) of antibiotics, along with microbial colonization of the nondegradable cement biomaterial, further exacerbate antibiotic resistance and highlight the need to engineer alternative antimicrobial therapeutics and local delivery vehicles with increased efficacy against, in particular, biofilm-forming, antibiotic-resistant bacteria. Furthermore, limited guidance exists regarding both standardized formulation protocols and validated assays to predict efficacy of a therapeutic against multiple strains of bacteria. Ideally, antimicrobial strategies would be highly specific while exhibiting a broad spectrum of bactericidal activity. With a focus on S. aureus infection, this review addresses the efficacy of novel therapeutics and local delivery vehicles, as alternatives to the traditional antibiotic regimens. The aim of this review is to discuss these components with regards to long bone osteomyelitis and to encourage positive directions for future research efforts.
Collapse
Affiliation(s)
- Leah H. Cobb
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Emily M. McCabe
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA,Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Lauren B. Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA,corresponding author: Contact: , (662) 325-5988, Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, USA 39762
| |
Collapse
|
32
|
Rotman SG, Sumrall E, Ziadlou R, Grijpma DW, Richards RG, Eglin D, Moriarty TF. Local Bacteriophage Delivery for Treatment and Prevention of Bacterial Infections. Front Microbiol 2020; 11:538060. [PMID: 33072008 PMCID: PMC7531225 DOI: 10.3389/fmicb.2020.538060] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
As viruses with high specificity for their bacterial hosts, bacteriophages (phages) are an attractive means to eradicate bacteria, and their potential has been recognized by a broad range of industries. Against a background of increasing rates of antibiotic resistance in pathogenic bacteria, bacteriophages have received much attention as a possible "last-resort" strategy to treat infections. The use of bacteriophages in human patients is limited by their sensitivity to acidic pH, enzymatic attack and short serum half-life. Loading phage within a biomaterial can shield the incorporated phage against many of these harmful environmental factors, and in addition, provide controlled release for prolonged therapeutic activity. In this review, we assess the different classes of biomaterials (i.e., biopolymers, synthetic polymers, and ceramics) that have been used for phage delivery and describe the processing methodologies that are compatible with phage embedding or encapsulation. We also elaborate on the clinical or pre-clinical data generated using these materials. While a primary focus is placed on the application of phage-loaded materials for treatment of infection, we also include studies from other translatable fields such as food preservation and animal husbandry. Finally, we summarize trends in the literature and identify current barriers that currently prevent clinical application of phage-loaded biomaterials.
Collapse
Affiliation(s)
- Stijn Gerard Rotman
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | - Eric Sumrall
- AO Research Institute Davos, AO Foundation, Davos, Switzerland
| | - Reihane Ziadlou
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Dirk W Grijpma
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | | | - David Eglin
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
33
|
Barros JAR, Melo LDRD, Silva RARD, Ferraz MP, Azeredo JCVDR, Pinheiro VMDC, Colaço BJA, Fernandes MHR, Gomes PDS, Monteiro FJ. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102145. [PMID: 31857183 DOI: 10.1016/j.nano.2019.102145] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
An innovative delivery system based on bacteriophages-loaded alginate-nanohydroxyapatite hydrogel was developed as a multifunctional approach for local tissue regeneration and infection prevention and control. Bacteriophages were efficiently encapsulated, without jeopardizing phage viability and functionality, nor affecting hydrogel morphology and chemical composition. Bacteriophage delivery occurred by swelling-disintegration-degradation process of the alginate structure and was influenced by environmental pH. Good tissue response was observed following the implantation of bacteriophages-loaded hydrogels, sustaining their biosafety profile. Bacteriophages-loaded hydrogels did not affect osteoblastic cells' proliferation and morphology. A strong osteogenic and mineralization response was promoted through the implantation of hydrogels system with nanohydroxyapatite. Lastly, bacteriophages-loaded hydrogel showed excellent antimicrobial activity inhibiting the attachment and colonization of multidrug-resistant E. faecalis surrounding and within femoral tissues. This new local delivery approach could be a promising approach to prevent and control bacterial contamination during implantation and bone integration.
Collapse
Affiliation(s)
- Joana Alberta Ribeiro Barros
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
| | - Luís Daniel Rodrigues de Melo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Center of Biological Engineering, University of Minho, Braga, Portugal
| | - Rita Araújo Reis da Silva
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Maria Pia Ferraz
- FP-ENAS/CEBIMED - University Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Center, Porto, Portugal
| | | | | | - Bruno Jorge Antunes Colaço
- Department of Animal Sciences, ECAV, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria Helena Raposo Fernandes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Pedro de Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Fernando Jorge Monteiro
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
34
|
Caflisch KM, Suh GA, Patel R. Biological challenges of phage therapy and proposed solutions: a literature review. Expert Rev Anti Infect Ther 2019; 17:1011-1041. [PMID: 31735090 DOI: 10.1080/14787210.2019.1694905] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: In light of the emergence of antibiotic-resistant bacteria, phage (bacteriophage) therapy has been recognized as a potential alternative or addition to antibiotics in Western medicine for use in humans.Areas covered: This review assessed the scientific literature on phage therapy published between 1 January 2007 and 21 October 2019, with a focus on the successes and challenges of this prospective therapeutic.Expert opinion: Efficacy has been shown in animal models and experimental findings suggest promise for the safety of human phagotherapy. Significant challenges remain to be addressed prior to the standardization of phage therapy in the West, including the development of phage-resistant bacteria; the pharmacokinetic complexities of phage; and any potential human immune response incited by phagotherapy.
Collapse
Affiliation(s)
- Katherine M Caflisch
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gina A Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
Abedon ST. Phage-Antibiotic Combination Treatments: Antagonistic Impacts of Antibiotics on the Pharmacodynamics of Phage Therapy? Antibiotics (Basel) 2019; 8:antibiotics8040182. [PMID: 31614449 PMCID: PMC6963693 DOI: 10.3390/antibiotics8040182] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria can evolve resistance to antibiotics. Even without changing genetically, bacteria also can display tolerance to antibiotic treatments. Many antibiotics are also broadly acting, as can result in excessive modifications of body microbiomes. Particularly for antibiotics of last resort or in treating extremely ill patients, antibiotics furthermore can display excessive toxicities. Antibiotics nevertheless remain the standard of care for bacterial infections, and rightly so given their long track records of both antibacterial efficacy and infrequency of severe side effects. Antibiotics do not successfully cure all treated bacterial infections, however, thereby providing a utility to alternative antibacterial approaches. One such approach is the use of bacteriophages, the viruses of bacteria. This nearly 100-year-old bactericidal, anti-infection technology can be effective against antibiotic-resistant or -tolerant bacteria, including bacterial biofilms and persister cells. Ideally phages could be used in combination with standard antibiotics while retaining their anti-bacterial pharmacodynamic activity, this despite antibiotics interfering with aspects of bacterial metabolism that are also required for full phage infection activity. Here I examine the literature of pre-clinical phage-antibiotic combination treatments, with emphasis on antibiotic-susceptible bacterial targets. I review evidence of antibiotic interference with phage infection activity along with its converse: phage antibacterial functioning despite antibiotic presence.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA.
| |
Collapse
|
36
|
Wroe JA, Johnson CT, García AJ. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J Biomed Mater Res A 2019; 108:39-49. [PMID: 31443115 DOI: 10.1002/jbm.a.36790] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
Implanted orthopedic devices become infected more frequently than any other implanted surgical device. These infections can be extremely costly and result in significant patient morbidity. Current treatment options typically involve the long term, systemic administration of a combination of antibiotics, often followed by implant removal. Here we engineered an injectable hydrogel capable of encapsulating Pseudomonas aeruginosa bacteriophage and delivering active phage to the site of bone infections. Bacteriophage retain their bacteriolytic activity after encapsulation and release from the hydrogel, and their rate of release from the hydrogel can be controlled by gel formulation. Bacteriophage-encapsulating hydrogels effectively kill their host bacteria in both planktonic and biofilm phenotypes in vitro without influencing the metabolic activity of human mesenchymal stromal cells. Bacteriophage-encapsulating hydrogels were used to treat murine radial segmental defects infected with P. aeruginosa. The hydrogels achieved a 4.7-fold reduction in live P. aeruginosa counts at the infection site compared to bacteriophage-free hydrogels at 7 days postimplantation. These results support the development of bacteriophage-delivering hydrogels to treat local bone infections.
Collapse
Affiliation(s)
- James A Wroe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Christopher T Johnson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
37
|
Pawar V, Bulbake U, Khan W, Srivastava R. Chitosan sponges as a sustained release carrier system for the prophylaxis of orthopedic implant-associated infections. Int J Biol Macromol 2019; 134:100-112. [DOI: 10.1016/j.ijbiomac.2019.04.190] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022]
|
38
|
Abstract
Staphylococcus aureus is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.
Collapse
|
39
|
Fibrin glue as a local drug-delivery system for bacteriophage PA5. Sci Rep 2019; 9:2091. [PMID: 30765740 PMCID: PMC6376040 DOI: 10.1038/s41598-018-38318-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023] Open
Abstract
Fibrin glue has been used clinically for decades in a wide variety of surgical specialties and is now being investigated as a medium for local, prolonged drug delivery. Effective local delivery of antibacterial substances is important perioperatively in patients with implanted medical devices or postoperatively for deep wounds. However, prolonged local application of antibiotics is often not possible or simply inadequate. Biofilm formation and antibiotic resistance are also major obstacles to antibacterial therapy. In this paper we test the biocompatibility of bacteriophages incorporated within fibrin glue, track the release of bacteriophages from fibrin scaffolds, and measure the antibacterial activity of released bacteriophages. Fibrin glue polymerized in the presence of the PA5 bacteriophage released high titers of bacteriophages during 11 days of incubation in liquid medium. Released PA5 bacteriophages were effective in killing Pseudomonas aeruginosa PA01. Overall, our results show that fibrin glue can be used for sustained delivery of bacteriophages and this strategy holds promise for many antibacterial applications.
Collapse
|
40
|
Abstract
BACKGROUND The key elements in the therapy of surgical site infections (SSI) are surgical debridement and local and systemic antibiotic therapy; however, due to increasing antibiotic resistance, the development of additional therapeutic measures is of great interest for future trauma and orthopedic surgery. METHOD Against the background of our own experimental and clinical experiences and on the basis of the current literature, possible future anti-infective strategies were elaborated. RESULTS/CONCLUSIONS Bacteriophages were discovered and clinically implemented approximately one century ago and have been used in Western Europe for about one decade. They are currently used mainly in patients with burn injuries. It is likely that bacteriophages will become of great importance in view of the increasing antibiotic multi-drug resistance; however, they will probably not entirely replace antibiotic drugs. A combined use of bacteriophages and antibiotics is likely to be a more reasonable efficient therapy. In addition, the clinical importance of antimicrobial peptides (AMP) also increases. Up to now the possible use of AMPs is still experimental; however, individual AMPs are already established in the routine therapy (e. g. colistin). Further diagnostic and therapeutic measures may include photodynamic therapy, ultraviolet (UV) light application and differentiated genome analysis as well as the individual metabolism situation (metabolomics) of the pathogen cell and the patient tissue.
Collapse
|
41
|
Melo LDR, França A, Brandão A, Sillankorva S, Cerca N, Azeredo J. Assessment of Sep1virus interaction with stationary cultures by transcriptional and flow cytometry studies. FEMS Microbiol Ecol 2018; 94:5061119. [DOI: 10.1093/femsec/fiy143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/26/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Luís D R Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Angela França
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Ana Brandão
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Sanna Sillankorva
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Nuno Cerca
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
42
|
Chhibber S, Kaur J, Kaur S. Liposome Entrapment of Bacteriophages Improves Wound Healing in a Diabetic Mouse MRSA Infection. Front Microbiol 2018; 9:561. [PMID: 29651276 PMCID: PMC5884882 DOI: 10.3389/fmicb.2018.00561] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/12/2018] [Indexed: 01/21/2023] Open
Abstract
Diabetic populations are more prone to developing wound infections which results in poor and delayed wound healing. Infection with drug resistant organisms further worsen the situation, driving searches for alternative treatment approaches such as phage therapy. Major drawback of phage therapy, however, is low phage persistence in situ, suggesting further refinement of the approach. In the present work we address this issue by employing liposomes as delivery vehicles. A liposome entrapped phage cocktail was evaluated for its ability to resolve a Staphylococcus aureus-induced diabetic excission wound infection. Two characterized S. aureus specific lytic phages, MR-5 and MR-10 alone, in combination (cocktail), or entrapped in liposomes (versus as free phages) were assesed for their therapeutic efficacy in resolving diabetic wound infection. Mice treated with free phage cocktail showed significant reduction in wound bioburden, greater wound contraction and faster tissue healing than with free monophage therapy. However, to further enhance the availability of viable phages the encapsulation of phage cocktail in the liposomes was done. Results of in vitro stability studies and in vivo phage titer determination, suggests that liposomal entrapment of phage cocktail can lead to better phage persistence at the wound site. A 2 log increase in phage titre, however, was observed at the wound site with liposome entrapped as compared to the free phage cocktail, and this was associaed with increased rates of infection resolution and wound healing. Entrapment of phage cocktails within liposomes thus could represent an attractive approach for treatment of bacterial infections, not responding to antibiotis as increased phage persistence in vitro and in vivo at the wound site was observed.
Collapse
Affiliation(s)
- Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jasjeet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sandeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
43
|
Liana AE, Marquis CP, Gunawan C, Justin Gooding J, Amal R. Antimicrobial activity of T4 bacteriophage conjugated indium tin oxide surfaces. J Colloid Interface Sci 2017; 514:227-233. [PMID: 29268213 DOI: 10.1016/j.jcis.2017.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
Abstract
We report the antimicrobial activity of bare and surface functionalized indium tin oxide (ITO) conjugated with T4 bacteriophage towards E. coli. A ∼ 103-fold reduction (99.9%) in the bacterial concentration was achieved within 2 h exposure of E. coli to the bare as well as the amine, carboxylic and methyl functionalized ITO/T4 surfaces. Despite the known differences in bacteriophage loading of these ITO/T4 systems, the almost identical extent of antimicrobial activity of all of the ITO/T4 systems resulted from the release of a comparable amount of infective T4 from the systems. As anticipated, a single dose of immobilized bacteriophage was sufficient to eliminate further surge of bacterial population. Upon the 2 h eradication of the '1st batch' of E. coli population, all of the ITO/T4 systems, each system with 102-fold more suspended bacteriophage (due to propagation of the phage at the expense of the '1st batch' E. coli death), reduced the '2nd batch' of E. coli concentration by ∼104-fold in just 30 min, suggesting the potential of immobilized bacteriophage systems as solution to the issues of antimicrobial agent depletion. All of the ITO/T4 systems maintained their antimicrobial activity in the presence of model food components. The antimicrobial activity was however, affected by pH; at pH 5 whereby the bacteria's growth was physiologically inhibited, generally no reduction in E. coli concentration was detected. The present work provides an understanding of the mode of antimicrobial activity exhibited by an immobilized bacteriophage based substrate and demonstrates efficacy in the presence of food components.
Collapse
Affiliation(s)
- Ayu E Liana
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher P Marquis
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Cindy Gunawan
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; ithree institute, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
44
|
Tobin EJ. Recent coating developments for combination devices in orthopedic and dental applications: A literature review. Adv Drug Deliv Rev 2017; 112:88-100. [PMID: 28159606 DOI: 10.1016/j.addr.2017.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/30/2016] [Accepted: 01/30/2017] [Indexed: 02/06/2023]
Abstract
Orthopedic and dental implants have been used successfully for decades to replace or repair missing or damaged bones, joints, and teeth, thereby restoring patient function subsequent to disease or injury. However, although device success rates are generally high, patient outcomes are sometimes compromised due to device-related problems such as insufficient integration, local tissue inflammation, and infection. Many different types of surface coatings have been developed to address these shortcomings, including those that incorporate therapeutic agents to provide localized delivery to the surgical site. While these coatings hold enormous potential for improving device function, the list of requirements that an ideal combination coating must fulfill is extensive, and no single coating system today simultaneously addresses all of the criteria. Some of the primary challenges related to current coatings are non-optimal release kinetics, which most often are too rapid, the potential for inducing antibiotic resistance in target organisms, high susceptibility to mechanical abrasion and delamination, toxicity, difficult and expensive regulatory approval pathways, and high manufacturing costs. This review provides a survey of the most recent developments in the field, i.e., those published in the last 2-3years, with a particular focus on technologies that have potential for overcoming the most significant challenges facing therapeutically-loaded coatings. It is concluded that the ideal coating remains an unrealized target, but that advances in the field and emerging technologies are bringing it closer to reality. The significant amount of research currently being conducted in the field provides a level of optimism that many functional combination coatings will ultimately transition into clinical practice, significantly improving patient outcomes.
Collapse
|
45
|
Scoccianti G, Frenos F, Beltrami G, Campanacci DA, Capanna R. Levels of silver ions in body fluids and clinical results in silver-coated megaprostheses after tumour, trauma or failed arthroplasty. Injury 2016; 47 Suppl 4:S11-S16. [PMID: 27523624 DOI: 10.1016/j.injury.2016.07.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Infection in megaprostheses remains an unsolved problem, with a rate of occurrence ranging from 5% to 12%. Silver coating of medical devices has recently been proposed to reduce infection rate because of the antibacterial effect of silver. This innovation could be particularly interesting for megaprostheses, but few data have been reported in the literature. MATERIALS AND METHODS From June 2010 to August 2014 a modified MegaC System megaprosthesis with an innovative peripheral silver-added layer of titanium alloy ('Porag') was implanted in 33 patients after previous infection (21 patients) or at high risk for infection because of local or general conditions (12 patients). Previous infection followed megaprosthesis or standard arthroplasty procedures in 14 patients and trauma surgery in seven patients. A proximal femur replacement was performed in 13 patients, distal femur replacement in 13, total femur in one, and knee arthrodesis in six. Clinical results and levels of silver in blood, urine and wound drains were examined. RESULTS Minimum follow-up of the patients was one year (average 25.9 months). There was no infection during the first two years after surgery in the 12 patients who received a silver-coated megaprosthesis and had no previous history of infection. An infection developed in one patient at 25 months after surgery following two further surgical procedures. Infection recurred at seven months and 24 months in two out of the 21 patients (9.5%) who had received the implant because of previous septic complications. There was no clinical evidence of argyria, and no local or systemic side effects related to silver were detected. Mean levels of silver ranging from 0.41 to 5.33μg/L in blood and from 0.28 to 0.86μg/L in urine were detected at 24h to 36 months after surgery. CONCLUSIONS Silver-coated megaprostheses showed promising results in this series in terms of prevention of infection in a high-risk group of patients, many of whom had a history of infection. No side-effects were detected. The circulating silver levels confirm both the persistence of silver-coating activity after three years and the safety of silver-coated implants. Longer follow-up and larger series are needed.
Collapse
Affiliation(s)
- Guido Scoccianti
- Orthopaedic Oncology Unit, Careggi University-Hospital, Firenze, Italy.
| | - Filippo Frenos
- Orthopaedic Oncology Unit, Careggi University-Hospital, Firenze, Italy
| | - Giovanni Beltrami
- Orthopaedic Oncology Unit, Careggi University-Hospital, Firenze, Italy
| | | | - Rodolfo Capanna
- Orthopaedic Oncology Unit, Careggi University-Hospital, Firenze, Italy
| |
Collapse
|
46
|
Kaur S, Harjai K, Chhibber S. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA) Mediated Orthopaedic Device Related Infections. PLoS One 2016; 11:e0157626. [PMID: 27333300 PMCID: PMC4917197 DOI: 10.1371/journal.pone.0157626] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA), treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer) allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections) that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC) coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA). Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires) showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication) as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection.
Collapse
Affiliation(s)
- Sandeep Kaur
- Department of Microbiology, Panjab University, Chandigarh-160014, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh-160014, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh-160014, India
- * E-mail:
| |
Collapse
|
47
|
George DA, Gant V, Haddad FS. The management of periprosthetic infections in the future: a review of new forms of treatment. Bone Joint J 2015; 97-B:1162-9. [PMID: 26330580 DOI: 10.1302/0301-620x.97b9.35295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The number of arthroplasties being undertaken is expected to grow year on year, and periprosthetic joint infections will be an increasing socioeconomic burden. The challenge to prevent and eradicate these infections has resulted in the emergence of several new strategies, which are discussed in this review. Cite this article: Bone Joint J 2015;97-B:1162-9.
Collapse
Affiliation(s)
- D A George
- University College London Hospitals, 235 Euston Road, London, NW1 2BU, UK
| | - V Gant
- University College London Hospitals, 235 Euston Road, London, NW1 2BU, UK
| | - F S Haddad
- University College London Hospitals, 235 Euston Road, London, NW1 2BU, UK
| |
Collapse
|
48
|
Fujimura S, Sato T, Hayakawa S, Kawamura M, Furukawa E, Watanabe A. Antimicrobial efficacy of combined clarithromycin plus daptomycin against biofilms-formed methicillin-resistant Staphylococcus aureus on titanium medical devices. J Infect Chemother 2015; 21:756-9. [PMID: 26162777 DOI: 10.1016/j.jiac.2015.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/27/2015] [Accepted: 06/03/2015] [Indexed: 11/28/2022]
Abstract
In vitro efficacy of combined eradication therapy with clarithromycin and daptomycin against biofilm-formed methicillin-resistant Staphylococcus aureus on the orthopedic titanium devices was evaluated. The bactericidal effect of this antibiotic was investigated by a re-culture test, the scanning electron microscopy, and fluorescence microscopy using a double-staining dyes. Clarithromycin decreased the amount to half in 24 h. Although MRSA biofilms were not eradicated with clarithromycin or daptomycin alone, clarithromycin combined with daptomycin was useful to sterilize titanium devices within 72 h. This in vitro study showed that combined treatment with clarithromycin plus daptomycin is useful to eradicate staphylococcal biofilms formed on orthopedic devices.
Collapse
Affiliation(s)
- Shigeru Fujimura
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Pharmaceutical University, Sendai, Japan; Research Division for Development of Anti-infective Agents, Institute of Development Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Tetsuro Sato
- Department of Orthopedics, Sendai Orthopedic Hospital, Sendai, Japan
| | - Sachiko Hayakawa
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Pharmaceutical University, Sendai, Japan
| | - Masato Kawamura
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Pharmaceutical University, Sendai, Japan
| | - Emiko Furukawa
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Pharmaceutical University, Sendai, Japan
| | - Akira Watanabe
- Research Division for Development of Anti-infective Agents, Institute of Development Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
49
|
Scaffold-based anti-infection strategies in bone repair. Ann Biomed Eng 2014; 43:515-28. [PMID: 25476163 DOI: 10.1007/s10439-014-1205-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022]
Abstract
Bone fractures and non-union defects often require surgical intervention where biomaterials are used to correct the defect, and approximately 10% of these procedures are compromised by bacterial infection. Currently, treatment options are limited to sustained, high doses of antibiotics and surgical debridement of affected tissue, leaving a significant, unmet need for the development of therapies to combat device-associated biofilm and infections. Engineering implants to prevent infection is a desirable material characteristic. Tissue engineered scaffolds for bone repair provide a means to both regenerate bone and serve as a base for adding antimicrobial agents. Incorporating anti-infection properties into regenerative medicine therapies could improve clinical outcomes and reduce the morbidity and mortality associated with biomaterial implant-associated infections. This review focuses on current animal models and technologies available to assess bone repair in the context of infection, antimicrobial agents to fight infection, the current state of antimicrobial scaffolds, and future directions in the field.
Collapse
|