1
|
Nikitina N, Wadsworth J, Goelzer M, Goldfeldt M, Bursa N, Howard S, Crandall C, Semodji A, Zavala AG, Judex S, Rubin J, Lujan TJ, Fitzpatrick CK, Rubin CT, Satici A, Uzer G. Small Accelerations of the cell generate sufficient nuclear motion to modulate transcriptional activity, driving cellular response independent of matrix strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647583. [PMID: 40291652 PMCID: PMC12026902 DOI: 10.1101/2025.04.07.647583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The cell's mechanical environment is a fundamental determinant of its activity. Ostensibly, the cellular response is dependent on interactions between extracellular matrix deformations and the cell adhesome. Low-intensity vibration (LIV) induces sinusoidal mechanical accelerations that stimulate mesenchymal stem cell (MSC) anabolism despite generating minimal matrix strain. In this study, we tested the hypothesis that accelerations of less than 1g cause nuclear motions relative to the cell membrane in adherent cells, resulting in elevated stresses in the cytoskeleton that promote transcriptional activity. Coupling a piezoelectric vibration platform with real-time microscopy, we applied a 0.7g, 90Hz LIV signal that oscillates the cell with displacements of up to ±11 µm. Live-cell tracking revealed that the sinusoidal vibrations caused the nucleus to move ±1.27 µm (17% of total displacement) out of phase with the cell membrane. Disruption of the LINC complex, which mechanically couples the nucleoskeleton to the cytoskeleton, doubled the magnitude of this relative motion, indicating that the nucleo-cytoskeletal configuration plays a major role in regulating nuclear motion. Consistent with a previously reported increase in nuclear stiffness caused by LIV, machine-learning-based image segmentation of confocal micrographs showed that LIV increased both apical and basal F-actin fiber numbers, generating a denser, more branched actin network near the nucleus. Following six 20 min bouts of LIV applied to MSC, RNA sequencing identified 372 differentially expressed genes. Upregulated gene sets were linked to F-actin assembly and focal adhesion pathways. Finite element simulations showed that nuclear stresses increased by LIV up to 18% were associated with nuclei flattening and a 30-50% increase in actin-generated forces. These findings demonstrate that low-intensity accelerations, independent of matrix strain, can directly activate a response of the nucleus, leading to cytoskeletal reorganization and heightened nuclear stresses. Thus, even very small oscillatory mechanical signals can markedly influence cell outcomes, establishing a mechanosensing pathway independent of extracellular strains.
Collapse
|
2
|
Regner AM, DeLeon M, Gibbons KD, Howard S, Nesbitt DQ, Darghiasi SF, Zavala AG, Lujan TJ, Fitzpatrick CK, Farach-Carson MC, Wu D, Uzer G. Increased deformations are dispensable for encapsulated cell mechanoresponse in engineered bone analogs mimicking aging bone marrow. MECHANOBIOLOGY IN MEDICINE 2025; 3:100097. [PMID: 40134991 PMCID: PMC11936507 DOI: 10.1016/j.mbm.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Aged individuals and astronauts experience bone loss despite rigorous physical activity. Bone mechanoresponse is in-part regulated by mesenchymal stem cells (MSCs) that respond to mechanical stimuli. Direct delivery of low intensity vibration (LIV) recovers MSC proliferation in senescence and simulated microgravity models, indicating that age-related reductions in mechanical signal delivery within bone marrow may contribute to declining bone mechanoresponse. To answer this question, we developed a 3D bone marrow analog that controls trabecular geometry, marrow mechanics and external stimuli. Validated finite element (FE) models were developed to quantify strain environment within hydrogels during LIV. Bone marrow analogs with gyroid-based trabeculae of scaffold volume fractions (SV/TV) corresponding to adult (25 %) and aged (13 %) mice were printed using polylactic acid (PLA). MSCs encapsulated in migration-permissive hydrogels within printed trabeculae showed robust cell populations on both PLA surface and hydrogel within a week. Following 14 days of LIV treatment (1 g, 100 Hz, 1 h/day), cell proliferation, type-I collagen (Collagen-I) and filamentous actin (F-actin) were quantified for the cells in the hydrogel fraction. While LIV increased all measured outcomes, FE models predicted higher von Mises strains for the 13 % SV/TV groups (0.2 %) when compared to the 25 % SV/TV group (0.1 %). While LIV increased collagen-I volume 34 % more in 13 % SV/TV groups when compared to 25 % SV/TV groups, collagen-I and F-actin measures remained lower in the 13 % SV/TV groups when compared to 25 % SV/TV counterparts, indicating that both LIV-induced strains and scaffold volume fraction (i.e. available scaffold surface) affect cell behavior in the hydrogel phase. Overall, bone marrow analogs offer a robust and repeatable platform to study bone mechanobiology.
Collapse
Affiliation(s)
- Alexander M. Regner
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | - Maximilien DeLeon
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry, USA
- Department of Bioengineering, Rice University, USA
| | - Kalin D. Gibbons
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | - Sean Howard
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | | | | | - Anamaria G. Zavala
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | - Trevor J. Lujan
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| | | | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry, USA
- Department of Bioengineering, Rice University, USA
- Department of Biosciences, Rice University, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry, USA
- Department of Bioengineering, Rice University, USA
| | - Gunes Uzer
- Mechanical and Biomedical Engineering Department, Boise State University, USA
| |
Collapse
|
3
|
Chan ME, Ashdown C, Strait L, Pasumarthy S, Hassan A, Crimarco S, Singh C, Patel VS, Pagnotti G, Khan O, Uzer G, Rubin CT. Low intensity mechanical signals promote proliferation in a cell-specific manner: Tailoring a non-drug strategy to enhance biomanufacturing yields. MECHANOBIOLOGY IN MEDICINE 2024; 2:100080. [PMID: 39717386 PMCID: PMC11666124 DOI: 10.1016/j.mbm.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Biomanufacturing relies on living cells to produce biotechnology-based therapeutics, tissue engineering constructs, vaccines, and a vast range of agricultural and industrial products. With the escalating demand for these bio-based products, any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline. While these goals are primarily achieved using biological or chemical strategies, harnessing cell mechanosensitivity represents a promising - albeit less studied - physical pathway to promote bioprocessing endpoints, yet identifying which mechanical parameters influence cell activities has remained elusive. We tested the hypothesis that mechanical signals, delivered non-invasively using low-intensity vibration (LIV; <1 g, 10-500 Hz), will enhance cell expansion, and determined that any unique signal configuration was not equally influential across a range of cell types. Varying frequency, intensity, duration, refractory period, and daily doses of LIV increased proliferation in Chinese Hamster Ovary (CHO)-adherent cells (+79% in 96 hr) using a particular set of LIV parameters (0.2 g, 500 Hz, 3 × 30 min/d, 2 hr refractory period), yet this same mechanical input suppressed proliferation in CHO-suspension cells (-13%). Another set of LIV parameters (30 Hz, 0.7 g, 2 × 60 min/d, 2 hr refractory period) however, were able to increase the proliferation of CHO-suspension cells by 210% and T-cells by 20.3%. Importantly, we also reported that T-cell response to LIV was in-part dependent upon AKT phosphorylation, as inhibiting AKT phosphorylation reduced the proliferative effect of LIV by over 60%, suggesting that suspension cells utilize mechanism(s) similar to adherent cells to sense specific LIV signals. Particle image velocimetry combined with finite element modeling showed high transmissibility of these signals across fluids (>90%), and LIV effectively scaled up to T75 flasks. Ultimately, when LIV is tailored to the target cell population, it's highly efficient transmission across media represents a means to non-invasively augment biomanufacturing endpoints for both adherent and suspended cells, and holds immediate applications, ranging from small-scale, patient-specific personalized medicine to large-scale commercial biocentric production challenges.
Collapse
Affiliation(s)
- M. Ete Chan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Christopher Ashdown
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
- Medical Scientist Training Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lia Strait
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Sishir Pasumarthy
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Abdullah Hassan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Steven Crimarco
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Chanpreet Singh
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Vihitaben S. Patel
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Gabriel Pagnotti
- Department of Endocrine Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Omor Khan
- Department of Mechanical and Biomedical Engineering, College of Engineering, Boise State University, Boise, ID, 83725-205, USA
| | - Gunes Uzer
- Department of Mechanical and Biomedical Engineering, College of Engineering, Boise State University, Boise, ID, 83725-205, USA
| | - Clinton T. Rubin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
- Center for Biotechnology, New York State Center for Advanced Technology in Medical Biotechnology, Stony Brook University, Stony Brook, NY, 11794-5281, USA
| |
Collapse
|
4
|
Kuroki Y, Shiraishi T. Frequency and amplitude dependence of nuclear displacement and phase delay in mechanical vibrations for determining cellular natural frequency. J Biomech 2024; 177:112403. [PMID: 39522124 DOI: 10.1016/j.jbiomech.2024.112403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/08/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Cultured cells biochemically respond to mechanical vibrations. However, the mechanisms of sensing mechanical vibrations and transducing biochemical responses remain unclear. A previous study reported that the expression of the alkaline phosphatase gene of osteoblastic cell under mechanical vibrations peaks at 50 Hz, which seems like a resonance curve in the mechanical vibration theory. Since forced displacement excitation is a dynamic mechanical stimulus that differs from other static mechanical stimuli in that an external force is equivalent to inertia, force is apparently exerted on the mass element by considering the equation of motion. In this study, the method for obtaining the change of a nucleus's relative displacement to an excited dish was refined, and the frequency and acceleration amplitude dependence of the nucleus's relative displacement and phase delay under mechanical vibrations was demonstrated by regarding a cell model as a vibration system. The change of the relative displacement of a HeLa nucleus to an excited dish decreases with increasing frequency in the 12.5-100 Hz range at 0.5 G and increases with increasing acceleration amplitude in the 0.5-2.0 G range at 50 Hz. Phase reversal occurs between 12.5 Hz and 50 Hz, which suggests the existence of the natural frequency of the cell between 12.5 Hz and 50 Hz. The single actin filament tension estimated from the nucleus's relative displacement change was 2.3-10 pN and can be a biochemical response of the mechanotransducer. These findings can contribute to clarifying the mechanism of cell mechanotransduction in dynamic mechanical stimuli.
Collapse
Affiliation(s)
- Yuri Kuroki
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Toshihiko Shiraishi
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
5
|
Shiraishi T, Sato K. Real-time imaging of intracellular deformation dynamics in vibrated adherent cell cultures. Biotechnol Bioeng 2024; 121:3034-3046. [PMID: 38961714 DOI: 10.1002/bit.28793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Mechanical vibration has been shown to regulate cell proliferation and differentiation in vitro and in vivo. However, the mechanism of its cellular mechanotransduction remains unclear. Although the measurement of intracellular deformation dynamics under mechanical vibration could reveal more detailed mechanisms, corroborating experimental evidence is lacking due to technical difficulties. In this study, we aimed to propose a real-time imaging method of intracellular structure deformation dynamics in vibrated adherent cell cultures and investigate whether organelles such as actin filaments connected to a nucleus and the nucleus itself show deformation under horizontal mechanical vibration. The proposed real-time imaging was achieved by conducting vibration isolation and making design improvements to the experimental setup; using a high-speed and high-sensitivity camera with a global shutter; and reducing image blur using a stroboscope technique. Using our system, we successfully produced the first experimental report on the existence of the deformation of organelles connected to a nucleus and the nucleus itself under horizontal mechanical vibration. Furthermore, the intracellular deformation difference between HeLa and MC3T3-E1 cells measured under horizontal mechanical vibration agrees with the prediction of their intracellular structure based on the mechanical vibration theory. These results provide new findings about the cellular mechanotransduction mechanism under mechanical vibration.
Collapse
Affiliation(s)
- Toshihiko Shiraishi
- Division of Artificial Environment and Information, Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Katsuya Sato
- Division of Artificial Environment and Information, Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| |
Collapse
|
6
|
Birks S, Howard S, O’Rourke C, Thompson WR, Lau A, Uzer G. Osterix-driven LINC complex disruption in vivo diminishes osteogenesis at 8 weeks but not at 15 weeks. J Orthop Res 2024; 42:2007-2016. [PMID: 38602438 PMCID: PMC11293982 DOI: 10.1002/jor.25849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex is a crucial connective component between the nuclear envelope and the cytoskeleton involving various cellular processes including nuclear positioning, nuclear architecture, and mechanotransduction. How LINC complexes regulate bone formation in vivo, however, is not well understood. To start bridging this gap, here we created a LINC disruption murine model using transgenic mice expressing Cre recombinase enzyme under the control of the Osterix (Osx-Cre) which is primarily active in pre-osteoblasts and floxed Tg(CAG-LacZ/EGFP-KASH2) mice. Tg(CAG-LacZ/EGFP-KASH2) mice contain a lox-STOP-lox flanked LacZ gene which is deleted upon cre recombination allowing for the overexpression of an EGFP-KASH2 fusion protein. This overexpressed protein disrupts endogenous Nesprin-Sun binding leading to disruption of LINC complexes. Thus, crossing these two lines results in an Osx- driven LINC disruption (ODLD) specific to pre-osteoblasts. In this study, we investigated how this LINC disruption affects exercise-induced bone accrual. ODLD cells had decreased osteogenic and adipogenic potential in vitro compared to non-disrupted controls and sedentary ODLD mice showed decreased bone quality at 8 weeks. Upon access to a voluntary running wheel, ODLD animals showed increased running time and distance; however, our 6-week exercise intervention did not significantly affect bone microarchitecture and bone mechanical properties.
Collapse
Affiliation(s)
- Scott Birks
- Boise State University, Micron School of Materials Science and Engineering
| | - Sean Howard
- Boise State University, Mechanical and Biomedical Engineering
| | | | | | - Anthony Lau
- The College of New Jersey, Biomedical Engineering
| | - Gunes Uzer
- Boise State University, Mechanical and Biomedical Engineering
| |
Collapse
|
7
|
Nikitina N, Bursa N, Goelzer M, Goldfeldt M, Crandall C, Howard S, Rubin J, Zavala A, Satici A, Uzer G. Data-Driven and Cell-Specific Determination of Nuclei-Associated Actin Structure. SMALL STRUCTURES 2024; 5:2300204. [PMID: 39220563 PMCID: PMC11361466 DOI: 10.1002/sstr.202300204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Quantitative and volumetric assessment of filamentous actin fibers (F-actin) remains challenging due to their interconnected nature, leading researchers to utilize threshold based or qualitative measurement methods with poor reproducibility. Here we introduce a novel machine learning based methodology for accurate quantification and reconstruction of nuclei-associated F-actin. Utilizing a Convolutional Neural Network (CNN), we segment actin filaments and nuclei from 3D confocal microscopy images and then reconstruct each fiber by connecting intersecting contours on cross-sectional slices. This allowed measurement of the total number of actin filaments and individual actin filament length and volume in a reproducible fashion. Focusing on the role of F-actin in supporting nucleocytoskeletal connectivity, we quantified apical F-actin, basal F-actin, and nuclear architecture in mesenchymal stem cells (MSCs) following the disruption of the Linker of Nucleoskeleton and Cytoskeleton (LINC) Complexes. Disabling LINC in mesenchymal stem cells (MSCs) generated F-actin disorganization at the nuclear envelope characterized by shorter length and volume of actin fibers contributing a less elongated nuclear shape. Our findings not only present a new tool for mechanobiology but introduce a novel pipeline for developing realistic computational models based on quantitative measures of F-actin.
Collapse
|
8
|
Machireddy M, Oberman AG, DeBiase L, Stephens M, Li J, Littlepage LE, Niebur GL. Controlled mechanical loading affects the osteocyte transcriptome in porcine trabecular bone in situ. Bone 2024; 181:117028. [PMID: 38309412 PMCID: PMC10923013 DOI: 10.1016/j.bone.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Osteocytes modulate bone adaptation in response to mechanical stimuli imparted by the deforming bone tissue in which they are encased by communicating with osteoclasts and osteoblasts as well as other osteocytes in the lacuna-canalicular network through secreted cytokines and chemokines. Understanding the transcriptional response of osteocytes to mechanical stimulation in situ could identify new targets to inhibit bone loss or enhance bone formation in the presence of diseases like osteoporosis or metastatic cancer. We compared the mechanically regulated transcriptional response of osteocytes in trabecular bone following one or three days of controlled mechanical loading. METHODS Porcine trabecular bone explants were cultured in a bioreactor for 48 h and subsequently loaded twice a day for one day or 3 days. RNA was isolated and sequenced, and the Tuxedo suite was used to identify differentially expressed genes and pathway analysis was conducted using Ingenuity Pathway Analysis (IPA). RESULTS There were about 4000 differentially expressed genes following in situ culture relative to fresh bone. One hundred six genes were differentially expressed between the loaded and non-loaded groups following one day of loading compared to 913 genes after 3 d of loading. Only 45 of these were coincident between the two time points, indicating an evolving transcriptome. Clustering and principal component analysis indicated differences between the loaded and non-loaded groups after 3 d of loading. DISCUSSION With sustained loading, there was a nine-fold increase in the number of differentially expressed genes, suggesting that osteocytes respond to loading through sequential activation of downstream genes in the same pathways. The differentially expressed genes were related to osteoarthritis, osteocyte, and chondrocyte signaling pathways. We noted that NFkB and TNF signaling are affected by early loading and this may drive downstream effects on the mechanobiological response. Moreover, these genes may regulate catabolic effects of mechanical disuse through their actions on pre-osteoclasts in the bone marrow niche.
Collapse
Affiliation(s)
- Meghana Machireddy
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Alyssa G Oberman
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Lucas DeBiase
- Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA
| | - Melissa Stephens
- Genomics and Bioinformatics Core Facility, University of Notre Dame, IN 46556, USA
| | - Jun Li
- Dept. of Applied Mathematics, Computations, and Statistics, University of Notre Dame, IN 46556, USA
| | - Laurie E Littlepage
- Dept. of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA; Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
9
|
Regner AM, DeLeon M, Gibbons KD, Howard S, Nesbitt DQ, Lujan TJ, Fitzpatrick CK, Farach-Carson MC, Wu D, Uzer G. Increased deformations are dispensable for cell mechanoresponse in engineered bone analogs mimicking aging bone marrow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.24.559187. [PMID: 37905032 PMCID: PMC10614733 DOI: 10.1101/2023.09.24.559187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Aged individuals and astronauts experience bone loss despite rigorous physical activity. Bone mechanoresponse is in-part regulated by mesenchymal stem cells (MSCs) that respond to mechanical stimuli. Direct delivery of low intensity vibration (LIV) recovers MSC proliferation in senescence and simulated microgravity models, indicating that age-related reductions in mechanical signal delivery within bone marrow may contribute to declining bone mechanoresponse. To answer this question, we developed a 3D bone marrow analog that controls trabecular geometry, marrow mechanics and external stimuli. Validated finite element (FE) models were developed to quantify strain environment within hydrogels during LIV. Bone marrow analogs with gyroid-based trabeculae of bone volume fractions (BV/TV) corresponding to adult (25%) and aged (13%) mice were printed using polylactic acid (PLA). MSCs encapsulated in migration-permissive hydrogels within printed trabeculae showed robust cell populations on both PLA surface and hydrogel within a week. Following 14 days of LIV treatment (1g, 100 Hz, 1 hour/day), type-I collagen and F-actin were quantified for the cells in the hydrogel fraction. While LIV increased all measured outcomes, FE models predicted higher von Mises strains for the 13% BV/TV groups (0.2%) when compared to the 25% BV/TV group (0.1%). Despite increased strains, collagen-I and F-actin measures remained lower in the 13% BV/TV groups when compared to 25% BV/TV counterparts, indicating that cell response to LIV does not depend on hydrogel strains and that bone volume fraction (i.e. available bone surface) directly affects cell behavior in the hydrogel phase independent of the external stimuli. Overall, bone marrow analogs offer a robust and repeatable platform to study bone mechanobiology.
Collapse
Affiliation(s)
- Alexander M Regner
- Mechanical and Biomedical Engineering Department, Boise State University
| | - Maximilien DeLeon
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry
- Department of Bioengineering, Rice University
- Department of Biosciences, Rice University
| | - Kalin D. Gibbons
- Mechanical and Biomedical Engineering Department, Boise State University
| | - Sean Howard
- Mechanical and Biomedical Engineering Department, Boise State University
| | | | - Trevor J. Lujan
- Mechanical and Biomedical Engineering Department, Boise State University
| | | | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry
- Department of Bioengineering, Rice University
- Department of Biosciences, Rice University
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, UTHealth Houston School of Dentistry
- Department of Bioengineering, Rice University
- Department of Biosciences, Rice University
| | - Gunes Uzer
- Mechanical and Biomedical Engineering Department, Boise State University
| |
Collapse
|
10
|
Chan ME, Strait L, Ashdown C, Pasumarthy S, Hassan A, Crimarco S, Singh C, Patel VS, Pagnotti G, Khan O, Uzer G, Rubin CT. Low intensity mechanical signals promote proliferation in a cell-specific manner: Tailoring a non-drug strategy to enhance biomanufacturing yields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547864. [PMID: 37461507 PMCID: PMC10350023 DOI: 10.1101/2023.07.05.547864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Biomanufacturing relies on living cells to produce biotechnology-based therapeutics, tissue engineering constructs, vaccines, and a vast range of agricultural and industrial products. With the escalating demand for these bio-based products, any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline. While these goals are primarily achieved using biological or chemical strategies, harnessing cell mechanosensitivity represents a promising - albeit less studied - physical pathway to promote bioprocessing endpoints, yet identifying which mechanical parameters influence cell activities has remained elusive. We tested the hypothesis that mechanical signals, delivered non-invasively using low-intensity vibration (LIV; <1g, 10-500Hz), will enhance cell expansion, and determined that any unique signal configuration was not equally influential across a range of cell types. Varying frequency, intensity, duration, refractory period, and daily doses of LIV increased proliferation in CHO-adherent cells (+79% in 96h) using a particular set of LIV parameters (0.2g, 500Hz, 3x30 min/d, 2h refractory period), yet this same mechanical input suppressed proliferation in CHO-suspension cells (-13%). Exposing these same CHO-suspension cells to distinct LIV parameters (30Hz, 0.7g, 2x60 min/d, 2h refractory period) increased proliferation by 210%. Particle image velocimetry combined with finite element modeling showed high transmissibility of these signals across fluids (>90%), and LIV effectively scaled up to T75 flasks. Ultimately, when LIV is tailored to the target cell population, its highly efficient transmission across media represents a means to non-invasively augment biomanufacturing endpoints for both adherent and suspended cells, and holds immediate applications, ranging from small-scale, patient-specific personalized medicine to large-scale commercial bio-centric production challenges.
Collapse
|
11
|
Nikitina N, Bursa N, Goelzer M, Goldfeldt M, Crandall C, Howard S, Rubin J, Satici A, Uzer G. Data driven and cell specific determination of nuclei-associated actin structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535937. [PMID: 37066142 PMCID: PMC10104112 DOI: 10.1101/2023.04.06.535937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Quantitative and volumetric assessment of filamentous actin fibers (F-actin) remains challenging due to their interconnected nature, leading researchers to utilize threshold based or qualitative measurement methods with poor reproducibility. Here we introduce a novel machine learning based methodology for accurate quantification and reconstruction of nuclei-associated F-actin. Utilizing a Convolutional Neural Network (CNN), we segment actin filaments and nuclei from 3D confocal microscopy images and then reconstruct each fiber by connecting intersecting contours on cross-sectional slices. This allowed measurement of the total number of actin filaments and individual actin filament length and volume in a reproducible fashion. Focusing on the role of F-actin in supporting nucleocytoskeletal connectivity, we quantified apical F-actin, basal F-actin, and nuclear architecture in mesenchymal stem cells (MSCs) following the disruption of the Linker of Nucleoskeleton and Cytoskeleton (LINC) Complexes. Disabling LINC in mesenchymal stem cells (MSCs) generated F-actin disorganization at the nuclear envelope characterized by shorter length and volume of actin fibers contributing a less elongated nuclear shape. Our findings not only present a new tool for mechanobiology but introduce a novel pipeline for developing realistic computational models based on quantitative measures of F-actin.
Collapse
|
12
|
Han Z, Sun LW, Wu XT, Yang X, Fan YB. Nonlinear dynamics of membrane skeleton in osteocyte. Comput Methods Biomech Biomed Engin 2023; 26:249-260. [PMID: 35363098 DOI: 10.1080/10255842.2022.2057796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteocytes play an important role in mechanosensation and conduction in bone tissue, and the change of mechanical environment can affect the sensitivity of osteocytes to external stimulation. The structure of osteocytes will be changed when they are subjected to vibrations, which influence the mechanosensitivity of osteocytes and alter the regulation of bone remodeling process. As an important mechanotransduction structure in osteocytes, the membrane skeleton greatly affects the mechanosensation and conduction of osteocytes. However, the dynamic responses of membrane skeleton to the vibration and the structural changes of membrane skeleton are unclear. Therefore, we applied a nonlinear dynamics method to explain the time-dependent changes of membrane skeleton. The semi-ellipsoidal reticulate shell structure of membrane skeleton is built based on the experimental observation in our previous work. Then, the nonlinear dynamic equations of membrane skeleton are established according to the theory of plate and shell dynamics, and the displacement-time curves, phase portraits, and Poincaré maps of membrane skeleton structure were obtained. The numeration results show that under the vibration stimulation of 15 Hz, 30 Hz, 60 Hz, and 90 Hz, the membrane skeleton is destroyed after a transient equilibrium position vibration. The vibration of 15 Hz has the most destructive effect on the membrane skeleton, the natural frequency of membrane skeleton may be less than 15 Hz. In addition, the chaos phenomenon occurs to the membrane skeleton during vibration. As a damping factor, the existence of viscosity alleviates the damage of structure. This study can help us to understand the oscillation characteristic of membrane skeleton in osteocyte.
Collapse
Affiliation(s)
- Zhuang Han
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lian-Wen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xin-Tong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
13
|
Reyes Fernandez PC, Wright CS, Masterson AN, Yi X, Tellman TV, Bonteanu A, Rust K, Noonan ML, White KE, Lewis KJ, Sankar U, Hum JM, Bix G, Wu D, Robling AG, Sardar R, Farach-Carson MC, Thompson WR. Gabapentin Disrupts Binding of Perlecan to the α 2δ 1 Voltage Sensitive Calcium Channel Subunit and Impairs Skeletal Mechanosensation. Biomolecules 2022; 12:biom12121857. [PMID: 36551284 PMCID: PMC9776037 DOI: 10.3390/biom12121857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Our understanding of how osteocytes, the principal mechanosensors within bone, sense and perceive force remains unclear. Previous work identified "tethering elements" (TEs) spanning the pericellular space of osteocytes and transmitting mechanical information into biochemical signals. While we identified the heparan sulfate proteoglycan perlecan (PLN) as a component of these TEs, PLN must attach to the cell surface to induce biochemical responses. As voltage-sensitive calcium channels (VSCCs) are critical for bone mechanotransduction, we hypothesized that PLN binds the extracellular α2δ1 subunit of VSCCs to couple the bone matrix to the osteocyte membrane. Here, we showed co-localization of PLN and α2δ1 along osteocyte dendritic processes. Additionally, we quantified the molecular interactions between α2δ1 and PLN domains and demonstrated for the first time that α2δ1 strongly associates with PLN via its domain III. Furthermore, α2δ1 is the binding site for the commonly used pain drug, gabapentin (GBP), which is associated with adverse skeletal effects when used chronically. We found that GBP disrupts PLN::α2δ1 binding in vitro, and GBP treatment in vivo results in impaired bone mechanosensation. Our work identified a novel mechanosensory complex within osteocytes composed of PLN and α2δ1, necessary for bone force transmission and sensitive to the drug GBP.
Collapse
Affiliation(s)
- Perla C. Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Christian S. Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Adrianna N. Masterson
- Department of Chemistry and Chemical Biology, School of Science, Indiana University, Indianapolis, IN 46202, USA
| | - Xin Yi
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Tristen V. Tellman
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Andrei Bonteanu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Katie Rust
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Karl J. Lewis
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Uma Sankar
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Julia M. Hum
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
| | - Gregory Bix
- Departments of Neurosurgery and Neurology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, School of Science, Indiana University, Indianapolis, IN 46202, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - William R. Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
- Correspondence:
| |
Collapse
|
14
|
Nix Z, Kota D, Ratnayake I, Wang C, Smith S, Wood S. Spectral characterization of cell surface motion for mechanistic investigations of cellular mechanobiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:3-15. [PMID: 36108781 DOI: 10.1016/j.pbiomolbio.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Understanding the specific mechanisms responsible for anabolic and catabolic responses to static or dynamic force are largely poorly understood. Because of this, most research groups studying mechanotransduction due to dynamic forces employ an empirical approach in deciding what frequencies to apply during experiments. While this has been shown to elucidate valuable information regarding how cells respond under controlled provocation, it is often difficult or impossible to determine a true optimal frequency for force application, as many intracellular complexes are involved in receiving, propagating, and responding to a given stimulus. Here we present a novel adaptation of an analytical technique from the fields of civil and mechanical engineering that may open the door to direct measurement of mechanobiological cellular frequencies which could be used to target specific cell signaling pathways leveraging synergy between outside-in and inside-out mechanotransduction approaches. This information could be useful in identifying how specific proteins are involved in the homeostatic balance, or disruption thereof, of cells and tissue, furthering the understanding of the pathogenesis and progression of many diseases across a wide variety of cell types, which may one day lead to the development of novel mechanobiological therapies for clinical use.
Collapse
Affiliation(s)
- Zachary Nix
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Divya Kota
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Ishara Ratnayake
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Congzhou Wang
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Steve Smith
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Scott Wood
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA.
| |
Collapse
|
15
|
Lin CY, Song X, Ke Y, Raha A, Wu Y, Wasi M, Wang L, Geng F, You L. Yoda1 Enhanced Low-Magnitude High-Frequency Vibration on Osteocytes in Regulation of MDA-MB-231 Breast Cancer Cell Migration. Cancers (Basel) 2022; 14:3395. [PMID: 35884459 PMCID: PMC9324638 DOI: 10.3390/cancers14143395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Low-magnitude (≤1 g) high-frequency (≥30 Hz) (LMHF) vibration has been shown to enhance bone mineral density. However, its regulation in breast cancer bone metastasis remains controversial for breast cancer patients and elder populations. Yoda1, an activator of the mechanosensitive Piezo1 channel, could potentially intensify the effect of LMHF vibration by enhancing the mechanoresponse of osteocytes, the major mechanosensory bone cells with high expression of Piezo1. In this study, we treated osteocytes with mono- (Yoda1 only or vibration only) or combined treatment (Yoda1 and LMHF vibration) and examined the further regulation of osteoclasts and breast cancer cells through the conditioned medium. Moreover, we studied the effects of combined treatment on breast cancer cells in regulation of osteocytes. Combined treatment on osteocytes showed beneficial effects, including increasing the nuclear translocation of Yes-associated protein (YAP) in osteocytes (488.0%, p < 0.0001), suppressing osteoclastogenesis (34.3%, p = 0.004), and further reducing migration of MDA-MB-231 (15.1%, p = 0.02) but not Py8119 breast cancer cells (4.2%, p = 0.66). Finally, MDA-MB-231 breast cancer cells subjected to the combined treatment decreased the percentage of apoptotic osteocytes (34.5%, p = 0.04) but did not affect the intracellular calcium influx. This study showed the potential of stimulating Piezo1 in enhancing the mechanoresponse of osteocytes to LMHF vibration and further suppressing breast cancer migration via osteoclasts.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
| | - Xin Song
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada;
| | - Yaji Ke
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
| | - Arjun Raha
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Yuning Wu
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Murtaza Wasi
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (M.W.); (L.W.)
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (M.W.); (L.W.)
| | - Fei Geng
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada;
| |
Collapse
|
16
|
Das S, Chowdhury AR, Datta P. Modelling cell deformations in bioprinting process using a multicompartment-smooth particle hydrodynamics approach. Proc Inst Mech Eng H 2022; 236:867-881. [PMID: 35411836 DOI: 10.1177/09544119221089720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bioprinting using cell-laden bioink is a rapidly emerging additive manufacturing method to fabricate engineered tissue constructs and in vitro models of disease biology. Amongst different bioprinting modalities, extrusion-based bioprinting is the most conveniently adopted technique due to its affordability. Bioinks consisting of living cells are suspended in hydrogels and extruded through syringe-needle assemblies, which subsequently undergo gelation at the collector plate. During the process, pressure is exerted on living cells which may cause cell deaths. Thus, for selected combination of cell and hydrogel, exerted pressure and the extrusion play key roles in determining the cell viability. Experimental evaluation to characterise stresses experienced by the cells in a bioink during bioprinting is a tedious exercise. Herein, computational modelling can be applied efficiently for rapid screening of bioinks. In the present study, a smoothed particle hydrodynamics model is developed for the analysis of stresses exerted on the cells during bioprinting process. Cells are modelled by assigning different mechanical properties to nucleus, cytoskeleton and cell membrane regions of the cell to get a more realistic understanding of cell deformation. The cytoplasm and nucleus are modelled as finite element meshes and a spring model of the cell membrane is coupled to the finite element model to develop a three-compartment model of the cell. Cell deformation is taken as a potential indicator of cell death. Effect of different process parameters such as flow rate, syringe-nozzle geometry and cell density are investigated. A submodeling approach is further introduced to predict deformation with higher resolution in a unit volume containing 104 to 108 cells. Results suggest that the generated bioink flow dynamic model can be a useful tool for the computational study of fluid flow involving cell suspensions during a bioprinting process.
Collapse
Affiliation(s)
- Samir Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, West Bengal, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Howrah, West Bengal, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Osteocytes are the conductors of bone adaptation and remodelling. Buried inside the calcified matrix, they sense mechanical cues and signal osteoclasts in case of low activity, and osteoblasts when stresses are high. How do osteocytes detect mechanical stress? What physical signal do they perceive? Finite element analysis is a useful tool to address these questions as it allows calculating stresses, strains and fluid flow where they cannot be measured. The purpose of this review is to evaluate the capabilities and challenges of finite element models of bone, in particular the osteocytes and load-induced activation mechanisms. RECENT FINDINGS High-resolution imaging and increased computational power allow ever more detailed modelling of osteocytes, either in isolation or embedded within the mineralised matrix. Over the years, homogeneous models of bone and osteocytes got replaced by heterogeneous and microstructural models, including, e.g. the lacuno-canalicular network and the cytoskeleton. The lacuno-canalicular network induces strain amplifications and the osteocyte protrusions seem to be stimulated much more than the cell body, both by strain and fluid flow. More realistic cell geometries, like minute constrictions of the canaliculi, increase this effect. Microstructural osteocyte models describe the transduction of external stimuli to the nucleus. Supracellular multiscale models (e.g. of a tunnelling osteon) allow to study differential loading of osteocytes and to distinguish between strain and fluid flow as the pivotal stimulatory cue. In the future, the finite element models may be enhanced by including chemical transport and intercellular communication between osteocytes, osteoclasts and osteoblasts.
Collapse
Affiliation(s)
- Theodoor H Smit
- Department of Medical Biology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Orthopaedic Surgery, Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Abstract
The nuclear envelope and nucleoskeleton are emerging as signaling centers that regulate how physical information from the extracellular matrix is biochemically transduced into the nucleus, affecting chromatin and controlling cell function. Bone is a mechanically driven tissue that relies on physical information to maintain its physiological function and structure. Disorder that present with musculoskeletal and cardiac symptoms, such as Emery-Dreifuss muscular dystrophies and progeria, correlate with mutations in nuclear envelope proteins including Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, Lamin A/C, and emerin. However, the role of nuclear envelope mechanobiology on bone function remains underexplored. The mesenchymal stem cell (MSC) model is perhaps the most studied relationship between bone regulation and nuclear envelope function. MSCs maintain the musculoskeletal system by differentiating into multiple cell types including osteocytes and adipocytes, thus supporting the bone's ability to respond to mechanical challenge. In this review, we will focus on how MSC function is regulated by mechanical challenges both in vitro and in vivo within the context of bone function specifically focusing on integrin, β-catenin and YAP/TAZ signaling. The importance of the nuclear envelope will be explored within the context of musculoskeletal diseases related to nuclear envelope protein mutations and nuclear envelope regulation of signaling pathways relevant to bone mechanobiology in vitro and in vivo.
Collapse
Affiliation(s)
- Scott Birks
- Boise State University, Micron School of Materials Science and Engineering, United States of America
| | - Gunes Uzer
- Boise State University, Mechanical and Biomedical Engineering, United States of America.
| |
Collapse
|
19
|
Shobara K, Ogawa T, Shibamoto A, Miyashita M, Ito A, Sitalaksmi RM. Osteogenic effect of low-intensity pulsed ultrasound and whole-body vibration on peri-implant bone. An experimental in vivo study. Clin Oral Implants Res 2021; 32:641-650. [PMID: 33711168 DOI: 10.1111/clr.13738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/24/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aims of this study were (i) to compare the osteogenic impact of low-intensity pulsed ultrasound (LIPUS) and low-magnitude high-frequency (LMHF) loading achieved with whole-body vibration (WBV) on peri-implant bone healing and implant osseointegration in rat tibiae, and (ii) to examine their combined effect on these processes. MATERIAL AND METHODS Titanium implants were inserted in the bilateral tibiae of 28 Wistar rats. Rats were randomly divided into four groups: LIPUS + WBV, LIPUS, WBV, and control. LIPUS was applied to the implant placement site for 20 min/day on 5 days/week (1.5 MHz and 30 mW/cm2 ). WBV was applied for 15 min/day on 5 days/week (50 Hz and 0.5 g). In the LIPUS + WBV group, both stimuli were applied under the same stimulation conditions as in the LIPUS and WBV groups. After 4 weeks of treatment, peri-implant bone healing and implant osseointegration were assessed using removal torque (RT) tests, micro-CT analyses of relative gray (RG) value, and histomorphometrical analyses of bone-to-implant contact (BIC) and peri-implant bone formation (BV/TV). RESULTS The LIPUS + WBV group had significantly greater BIC than the WBV and control groups. Although there were no significant intergroup differences in RT, RG value, and BV/TV, these variables tended to be greater in the LIPUS + WBV group than the other groups. CONCLUSIONS The combination of LIPUS and LMHF loading may promote osteogenic activity around the implant. However, further study of the stimulation conditions of LIPUS and LMHF loading is necessary to better understand the osteogenic effects and the relationship between the two stimuli.
Collapse
Affiliation(s)
- Kenta Shobara
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Shibamoto
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Makiko Miyashita
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Akiyo Ito
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ratri M Sitalaksmi
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Faculty of Dental Medicine, Department of Prosthodontics, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
20
|
Thompson M, Woods K, Newberg J, Oxford JT, Uzer G. Low-intensity vibration restores nuclear YAP levels and acute YAP nuclear shuttling in mesenchymal stem cells subjected to simulated microgravity. NPJ Microgravity 2020; 6:35. [PMID: 33298964 PMCID: PMC7708987 DOI: 10.1038/s41526-020-00125-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Reducing the musculoskeletal deterioration that astronauts experience in microgravity requires countermeasures that can improve the effectiveness of otherwise rigorous and time-expensive exercise regimens in space. The ability of low-intensity vibrations (LIV) to activate force-responsive signaling pathways in cells suggests LIV as a potential countermeasure to improve cell responsiveness to subsequent mechanical challenge. Mechanoresponse of mesenchymal stem cells (MSC), which maintain bone-making osteoblasts, is in part controlled by the "mechanotransducer" protein YAP (Yes-associated protein), which is shuttled into the nucleus in response to cyto-mechanical forces. Here, using YAP nuclear shuttling as a measurement outcome, we tested the effect of 72 h of clinostat-induced simulated microgravity (SMG) and daily LIV application (LIVDT) on the YAP nuclear entry driven by either acute LIV (LIVAT) or Lysophosphohaditic acid (LPA), applied after the 72 h period. We hypothesized that SMG-induced impairment of acute YAP nuclear entry would be alleviated by the daily application of LIVDT. Results showed that while both acute LIVAT and LPA treatments increased nuclear YAP entry by 50 and 87% over the basal levels in SMG-treated MSCs, nuclear YAP levels of all SMG groups were significantly lower than non-SMG controls. LIVDT, applied in parallel to SMG, restored the SMG-driven decrease in basal nuclear YAP to control levels as well as increased the LPA-induced but not LIVAT-induced YAP nuclear entry over SMG only, counterparts. These cell-level observations suggest that daily LIV treatments are a feasible countermeasure for restoring basal nuclear YAP levels and increasing the YAP nuclear shuttling in MSCs under SMG.
Collapse
Affiliation(s)
- Matthew Thompson
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Kali Woods
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Joshua Newberg
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Julia Thom Oxford
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA.
| |
Collapse
|
21
|
Mechanical suppression of breast cancer cell invasion and paracrine signaling to osteoclasts requires nucleo-cytoskeletal connectivity. Bone Res 2020; 8:40. [PMID: 33298883 PMCID: PMC7673025 DOI: 10.1038/s41413-020-00111-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023] Open
Abstract
Exercise benefits the musculoskeletal system and reduces the effects of cancer. The effects of exercise are multifactorial, where metabolic changes and tissue adaptation influence outcomes. Mechanical signals, a principal component of exercise, are anabolic to the musculoskeletal system and restrict cancer progression. We examined the mechanisms through which cancer cells sense and respond to low-magnitude mechanical signals introduced in the form of vibration. Low-magnitude, high-frequency vibration was applied to human breast cancer cells in the form of low-intensity vibration (LIV). LIV decreased matrix invasion and impaired secretion of osteolytic factors PTHLH, IL-11, and RANKL. Furthermore, paracrine signals from mechanically stimulated cancer cells, reduced osteoclast differentiation and resorptive capacity. Disconnecting the nucleus by knockdown of SUN1 and SUN2 impaired LIV-mediated suppression of invasion and osteolytic factor secretion. LIV increased cell stiffness; an effect dependent on the LINC complex. These data show that mechanical vibration reduces the metastatic potential of human breast cancer cells, where the nucleus serves as a mechanosensory apparatus to alter cell structure and intercellular signaling.
Collapse
|
22
|
Steppe L, Liedert A, Ignatius A, Haffner-Luntzer M. Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration. Front Bioeng Biotechnol 2020; 8:595139. [PMID: 33195165 PMCID: PMC7609921 DOI: 10.3389/fbioe.2020.595139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bone is a mechanosensitive tissue for which mechanical stimuli are crucial in maintaining its structure and function. Bone cells react to their biomechanical environment by activating molecular signaling pathways, which regulate their proliferation, differentiation, and matrix production. Bone implants influence the mechanical conditions in the adjacent bone tissue. Optimizing their mechanical properties can support bone regeneration. Furthermore, external biomechanical stimulation can be applied to improve implant osseointegration and accelerate bone regeneration. One promising anabolic therapy is vertical whole-body low-magnitude high-frequency vibration (LMHFV). This form of vibration is currently extensively investigated to serve as an easy-to-apply, cost-effective, and efficient treatment for bone disorders and regeneration. This review aims to provide an overview of LMHFV effects on bone cells in vitro and on implant integration and bone fracture healing in vivo. In particular, we review the current knowledge on cellular signaling pathways which are influenced by LMHFV within bone tissue. Most of the in vitro experiments showed that LMHFV is able to enhance mesenchymal stem cell (MSC) and osteoblast proliferation. Furthermore, osteogenic differentiation of MSCs and osteoblasts was shown to be accelerated by LMHFV, whereas osteoclastogenic differentiation was inhibited. Furthermore, LMHFV increased bone regeneration during osteoporotic fracture healing and osseointegration of orthopedic implants. Important mechanosensitive pathways mediating the effects of LMHFV might be the Wnt/beta-catenin signaling pathway, the estrogen receptor (ER) signaling pathway, and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
23
|
Low Intensity Vibrations Augment Mesenchymal Stem Cell Proliferation and Differentiation Capacity during in vitro Expansion. Sci Rep 2020; 10:9369. [PMID: 32523117 PMCID: PMC7286897 DOI: 10.1038/s41598-020-66055-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
A primary component of exercise, mechanical signals, when applied in the form of low intensity vibration (LIV), increases mesenchymal stem cell (MSC) osteogenesis and proliferation. While it is generally accepted that exercise effectively combats the deleterious effects of aging in the musculoskeletal system, how long-term exercise affects stem cell aging, which is typified by reduced proliferative and differentiative capacity, is not well explored. As a first step in understanding the effect of long-term application of mechanical signals on stem cell function, we investigated the effect of LIV during in vitro expansion of MSCs. Primary MSCs were subjected to either a control or to a twice-daily LIV regimen for up to sixty cell passages (P60) under in vitro cell expansion conditions. LIV effects were assessed at both early passage (EP) and late passage (LP). At the end of the experiment, P60 cultures exposed to LIV maintained a 28% increase of cell doubling and a 39% reduction in senescence-associated β-galactosidase activity (p < 0.01) but no changes in telomere lengths and p16INK4a levels were observed. Prolonged culture-associated decreases in osteogenic and adipogenic capacity were partially protected by LIV in both EP and LP groups (p < 0.05). Mass spectroscopy of late passage MSC indicated a synergistic decrease of actin and microtubule cytoskeleton-associated proteins in both control and LIV groups while LIV induced a recovery of proteins associated with oxidative reductase activity. In summary, our findings show that the application of long-term mechanical challenge (+LIV) during in vitro expansion of MSCs for sixty passages significantly alters MSC proliferation, differentiation and structure. This suggests LIV as a potential tool to investigate the role of physical activity during aging.
Collapse
|
24
|
Wu XT, Xiao W, Cao RY, Yang X, Pan F, Sun LW, Fan YB. Spontaneous cellular vibratory motions of osteocytes are regulated by ATP and spectrin network. Bone 2019; 128:112056. [PMID: 31376534 DOI: 10.1016/j.bone.2019.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 01/23/2023]
Abstract
Vibration at high frequency has been demonstrated to be anabolic for bone and embedded osteocytes. The response of osteocytes to vibration is frequency-dependent, but the mechanism remains unclear. Our previous computational study using an osteocyte finite element model has predicted a resonance effect involving in the frequency-dependent response of osteocytes to vibration. However, the cellular spontaneous vibratory motion of osteocytes has not been confirmed. In the present study, the cellular vibratory motions (CVM) of osteocytes were recorded by a custom-built digital holographic microscopy and quantitatively analyzed. The roles of ATP and spectrin network in the CVM of osteocytes were studied. Results showed the MLO-Y4 osteocytes displayed dynamic vibratory motions with an amplitude of ~80 nm, which is relied both on the ATP content and spectrin network. Spectrum analysis showed several frequency peaks in CVM of MLO-Y4 osteocytes at 30 Hz, 39 Hz, 83 Hz and 89 Hz. These peak frequencies are close to the commonly used effective frequencies in animal training and in-vitro cell experiments, and show a correlation with the computational predictions of the osteocyte finite element model. These results implicate that osteocytes are dynamic and the cellular dynamic motion is involved in the cellular mechanotransduction of vibration.
Collapse
Affiliation(s)
- Xin-Tong Wu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Wen Xiao
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Run-Yu Cao
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Xiao Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Feng Pan
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Lian-Wen Sun
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yu-Bo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| |
Collapse
|
25
|
Halonen HT, Ihalainen TO, Hyväri L, Miettinen S, Hyttinen JAK. Cell adhesion and culture medium dependent changes in the high frequency mechanical vibration induced proliferation, osteogenesis, and intracellular organization of human adipose stem cells. J Mech Behav Biomed Mater 2019; 101:103419. [PMID: 31518945 DOI: 10.1016/j.jmbbm.2019.103419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 01/21/2023]
Abstract
High frequency (HF) mechanical vibration appears beneficial for in vitro osteogenesis of mesenchymal stem cells (MSCs). However, the current mechanobiological understanding of the method remains insufficient. We designed high-throughput stimulators to apply horizontal or vertical high magnitude HF (HMHF; 2.5 Gpeak, 100 Hz) vibration on human adipose stem cells (hASCs). We analyzed proliferation, alkaline phosphatase (ALP) activity, mineralization, and effects on the actin cytoskeleton and nuclei using immunocytochemical stainings. Proliferation was studied on a standard tissue culture plastic (sTCP) surface and on an adhesion supporting tissue culture plastic (asTCP) surface in basal (BM) and osteogenic (OM) culture medium conditions. We discovered that the improved cell adhesion was a prerequisite for vibration induced changes in the proliferation of hASCs. Similarly, the adhesion supporting surface enabled us to observe vibration initiated ALP activity and mineralization changes in OM condition. The horizontal vibration increased ALP activity, while vertical stimulation reduced ALP activity. However, mineralization was not enhanced by the HMHF vibration. We performed image-based analysis of actin and nuclei to obtain novel data of the intracellular-level responses to HF vibration in BM and OM conditions. Our quantitative results suggest that actin organizations were culture medium and stimulation direction dependent. Both stimulation directions decreased OM induced changes in nuclear size and elongation. Consequently, our findings of the nuclear deformations provide supportive evidence for the involvement of the nuclei in the mechanocoupling of HF vibration. Taken together, the results of this study enhanced the knowledge of the intracellular mechanisms of HF vibration induced osteogenesis of MSCs.
Collapse
Affiliation(s)
- H T Halonen
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - T O Ihalainen
- Cellular Biophysics Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - L Hyväri
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland; Research, Development and Innovation Centre, Tampere University Hospital, Biokatu 6, 33520, Tampere, Finland.
| | - S Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland; Research, Development and Innovation Centre, Tampere University Hospital, Biokatu 6, 33520, Tampere, Finland.
| | - J A K Hyttinen
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| |
Collapse
|
26
|
Touchstone H, Bryd R, Loisate S, Thompson M, Kim S, Puranam K, Senthilnathan AN, Pu X, Beard R, Rubin J, Alwood J, Oxford JT, Uzer G. Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex. NPJ Microgravity 2019; 5:11. [PMID: 31123701 PMCID: PMC6520402 DOI: 10.1038/s41526-019-0072-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSC) rely on their ability to integrate physical and spatial signals at load bearing sites to replace and renew musculoskeletal tissues. Designed to mimic unloading experienced during spaceflight, preclinical unloading and simulated microgravity models show that alteration of gravitational loading limits proliferative activity of stem cells. Emerging evidence indicates that this loss of proliferation may be linked to loss of cellular cytoskeleton and contractility. Low intensity vibration (LIV) is an exercise mimetic that promotes proliferation and differentiation of MSCs by enhancing cell structure. Here, we asked whether application of LIV could restore the reduced proliferative capacity seen in MSCs that are subjected to simulated microgravity. We found that simulated microgravity (sMG) decreased cell proliferation and simultaneously compromised cell structure. These changes included increased nuclear height, disorganized apical F-actin structure, reduced expression, and protein levels of nuclear lamina elements LaminA/C LaminB1 as well as linker of nucleoskeleton and cytoskeleton (LINC) complex elements Sun-2 and Nesprin-2. Application of LIV restored cell proliferation and nuclear proteins LaminA/C and Sun-2. An intact LINC function was required for LIV effect; disabling LINC functionality via co-depletion of Sun-1, and Sun-2 prevented rescue of cell proliferation by LIV. Our findings show that sMG alters nuclear structure and leads to decreased cell proliferation, but does not diminish LINC complex mediated mechanosensitivity, suggesting LIV as a potential candidate to combat sMG-induced proliferation loss.
Collapse
Affiliation(s)
- H. Touchstone
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - R. Bryd
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - S. Loisate
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - M. Thompson
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| | - S. Kim
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - K. Puranam
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - A. N. Senthilnathan
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - X. Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - R. Beard
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - J. Rubin
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - J. Alwood
- Space Biosciences Division, NASA-Ames Research Center, Mountain View, CA 94035 USA
| | - J. T. Oxford
- Biomolecular Research Center, Boise State University, Boise, ID 83725 USA
| | - G. Uzer
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID 83725 USA
| |
Collapse
|
27
|
Chen CH, Lin YH, Chen CH, Wang YH, Yeh ML, Cheng TL, Wang CZ. Transforming growth factor beta 1 mediates the low-frequency vertical vibration enhanced production of tenomodulin and type I collagen in rat Achilles tendon. PLoS One 2018; 13:e0205258. [PMID: 30307981 PMCID: PMC6181323 DOI: 10.1371/journal.pone.0205258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/22/2018] [Indexed: 11/19/2022] Open
Abstract
Vertical vibration (VV) is a whole-body vibration with mechanical loading that commonly used in rehabilitation and sports training to increase athlete muscle strength. Our previous study showed that low-magnitude, low-frequency VV at 8 Hz and 10 Hz increased myoblast myogenesis. Herein, we investigated whether a VV frequency at low-frequency 5-10 Hz has anabolic effects on tenocytes and improves tendon stiffness. In primary tenocytes, 10 Hz VV treatment increased the tenogenic marker gene expression of tenomodulin and extracellular matrix type I collagen but decreased decorin expression. qPCR and Enzyme-Linked Immunosorbent Assay (ELISA) results showed that TGF-β1 expression was increased in tenocytes after 3 days of 10 Hz VV treatment in vitro and in Achilles tendons after 3 weeks in vivo. Tenomodulin expression and Achilles tendon stiffness were significantly increased in Achilles tendons after 3 weeks in vivo. We also showed that the TGF-β1 receptor inhibitor SB431542 (10 μM) decreased the expression of tenomodulin and type I collagen but increased the decorin expression in tenocytes. These results indicated that the 10 Hz VV stimulated anabolic effects in tenocytes by increasing TGF-β1 expression that subsequently increases the expression of tenomodulin and type I collagen, and increased the Achilles tendon stiffness. This study provides insight into the low-frequency 10 Hz VV treatment improves tendon properties and can minimizes the risk of ligament/tendon reinjure during rehabilitation.
Collapse
Affiliation(s)
- Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiung Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Hsiung Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, No.1 University Road, Tainan City, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Mehta S, McClarren B, Aijaz A, Chalaby R, Cook-Chennault K, Olabisi RM. The effect of low-magnitude, high-frequency vibration on poly(ethylene glycol)-microencapsulated mesenchymal stem cells. J Tissue Eng 2018; 9:2041731418800101. [PMID: 30245801 PMCID: PMC6146326 DOI: 10.1177/2041731418800101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Low-magnitude, high-frequency vibration has stimulated osteogenesis in mesenchymal stem cells when these cells were cultured in certain types of three-dimensional environments. However, results of osteogenesis are conflicting with some reports showing no effect of vibration at all. A large number of vibration studies using three-dimensional scaffolds employ scaffolds derived from natural sources. Since these natural sources potentially have inherent biochemical and microarchitectural cues, we explored the effect of low-magnitude, high-frequency vibration at low, medium, and high accelerations when mesenchymal stem cells were encapsulated in poly(ethylene glycol) diacrylate microspheres. Low and medium accelerations enhanced osteogenesis in mesenchymal stem cells while high accelerations inhibited it. These studies demonstrate that the isolated effect of vibration alone induces osteogenesis.
Collapse
Affiliation(s)
- Sneha Mehta
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Brooke McClarren
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Ayesha Aijaz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Rabab Chalaby
- Department of Materials Science and Engineering, Rutgers University, Piscataway, NJ, USA
| | | | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
29
|
Rajapakse CS, Leonard MB, Kobe EA, Slinger MA, Borges KA, Billig E, Rubin CT, Wehrli FW. The Efficacy of Low-intensity Vibration to Improve Bone Health in Patients with End-stage Renal Disease Is Highly Dependent on Compliance and Muscle Response. Acad Radiol 2017; 24:1332-1342. [PMID: 28652048 DOI: 10.1016/j.acra.2017.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022]
Abstract
RATIONAL AND OBJECTIVES Low intensity vibration (LIV) may represent a nondrug strategy to mitigate bone deficits in patients with end-stage renal disease. MATERIALS AND METHODS Thirty end-stage renal patients on maintenance hemodialysis were randomized to stand for 20 minutes each day on either an active or placebo LIV device. Analysis at baseline and completion of 6-month intervention included magnetic resonance imaging (tibia and fibula stiffness; trabecular thickness, number, separation, bone volume fraction, plate-to-rod ratio; and cortical bone porosity), dual-energy X-ray absorptiometry (hip and spine bone mineral density [BMD]), and peripheral quantitative computed tomography (tibia trabecular and cortical BMD; calf muscle cross-sectional area). RESULTS Intention-to-treat analysis did not show any significant changes in outcomes associated with LIV. Subjects using the active device and with greater than the median adherence (70%) demonstrated an increase in distal tibia stiffness (5.3%), trabecular number (1.7%), BMD (2.3%), and plate-to-rod ratio (6.5%), and a decrease in trabecular separation (-1.8%). Changes in calf muscle cross-sectional area were associated with changes in distal tibia stiffness (R = 0.85), trabecular bone volume/total volume (R = 0.91), number (R = 0.92), and separation (R = -0.94) in the active group but not in the placebo group. Baseline parathyroid hormone levels were positively associated with increased cortical bone porosity over the 6-month study period in the placebo group (R = 0.55) but not in the active group (R = 0.01). No changes were observed in the nondistal tibia locations for either group except a decrease in hip BMD in the placebo group (-1.7%). CONCLUSION Outcomes and adherence thresholds identified from this pilot study could guide future longitudinal studies involving vibration therapy.
Collapse
|
30
|
Bilgin HM, Çelik F, Gem M, Akpolat V, Yıldız İ, Ekinci A, Özerdem MS, Tunik S. Effects of local vibration and pulsed electromagnetic field on bone fracture: A comparative study. Bioelectromagnetics 2017; 38:339-348. [DOI: 10.1002/bem.22043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Hakkı Murat Bilgin
- Department of Physiology; Faculty of Medicine; Dicle University; Diyarbakir Turkey
| | - Ferhat Çelik
- Department of Physiology; Faculty of Medicine; Dicle University; Diyarbakir Turkey
| | - Mehmet Gem
- Orthopedics and Traumatology; Dicle University; Diyarbakir Turkey
| | | | | | - Aysun Ekinci
- Biochemistry; Dicle University; Diyarbakir Turkey
| | - Mehmet Siraç Özerdem
- Department of Electrical & Electronics Engineering; Faculty of Engineering; Dicle University; Diyarbakir Turkey
| | - Selçuk Tunik
- Histology and Embryology; Dicle University; Diyarbakir Turkey
| |
Collapse
|
31
|
Suswillo RFL, Javaheri B, Rawlinson SCF, Dowthwaite GP, Lanyon LE, Pitsillides AA. Strain uses gap junctions to reverse stimulation of osteoblast proliferation by osteocytes. Cell Biochem Funct 2017; 35:56-65. [PMID: 28083967 PMCID: PMC5299599 DOI: 10.1002/cbf.3245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
Identifying mechanisms by which cells of the osteoblastic lineage communicate in vivo is complicated by the mineralised matrix that encases osteocytes, and thus, vital mechanoadaptive processes used to achieve load-bearing integrity remain unresolved. We have used the coculture of immunomagnetically purified osteocytes and primary osteoblasts from both embryonic chick long bone and calvariae to examine these mechanisms. We exploited the fact that purified osteocytes are postmitotic to examine both their effect on proliferation of primary osteoblasts and the role of gap junctions in such communication. We found that chick long bone osteocytes significantly increased basal proliferation of primary osteoblasts derived from an identical source (tibiotarsi). Using a gap junction inhibitor, 18β-glycyrrhetinic acid, we also demonstrated that this osteocyte-related increase in osteoblast proliferation was not reliant on functional gap junctions. In contrast, osteocytes purified from calvarial bone failed to modify basal proliferation of primary osteoblast, but long bone osteocytes preserved their proproliferative action upon calvarial-derived primary osteoblasts. We also showed that coincubated purified osteocytes exerted a marked inhibitory action on mechanical strain-related increases in proliferation of primary osteoblasts and that this action was abrogated in the presence of a gap junction inhibitor. These data reveal regulatory differences between purified osteocytes derived from functionally distinct bones and provide evidence for 2 mechanisms by which purified osteocytes communicate with primary osteoblasts to coordinate their activity.
Collapse
Affiliation(s)
| | - Behzad Javaheri
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Simon C F Rawlinson
- Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gary P Dowthwaite
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Lance E Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
32
|
Bondar C, Ormazabal M, Crivaro A, Ferreyra-Compagnucci M, Delpino MV, Rozenfeld PA, Mucci JM. Osteocyte Alterations Induce Osteoclastogenesis in an In Vitro Model of Gaucher Disease. Int J Mol Sci 2017; 18:112. [PMID: 28098793 PMCID: PMC5297746 DOI: 10.3390/ijms18010112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 01/18/2023] Open
Abstract
Gaucher disease (GD) is caused by mutations in the glucosylceramidase β (GBA 1) gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells, mainly in the monocyte/macrophage lineage. Its mildest form is Type I GD, characterized by non-neuronopathic involvement. Bone compromise is the most disabling aspect of the Gaucher disease. However, the pathophysiological aspects of skeletal alterations are not yet fully understood. The bone tissue homeostasis is maintained by a balance between resorption of old bone by osteoclasts and new bone formation by osteoblasts. A central player in this balance is the osteocyte as it controls both processes. We studied the involvement of osteocytes in an in vitro chemical model of Gaucher disease. The osteocyte cell line MLO-Y4 was exposed to conduritol-β-epoxide (CBE), an inhibitor of GCase, for a period of 7, 14 and 21 days. Conditioned media from CBE-treated osteocytes was found to induce osteoclast differentiation. GCase inhibition caused alterations in Cx43 expression and distribution pattern and an increase in osteocyte apoptosis. Osteoclast differentiation involved osteocyte apoptotic bodies, receptor activator of nuclear factor κ-B ligand (RANKL) and soluble factors. Thus, our results indicate that osteocytes may have a role to play in the bone pathophysiology of GD.
Collapse
Affiliation(s)
- Constanza Bondar
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-UNLP, 1900 La Plata, Argentina.
| | - Maximiliano Ormazabal
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-UNLP, 1900 La Plata, Argentina.
| | - Andrea Crivaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-UNLP, 1900 La Plata, Argentina.
| | | | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas "José de San Martín", Facultad de Medicina, CONICET-Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | - Paula Adriana Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-UNLP, 1900 La Plata, Argentina.
| | - Juan Marcos Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-UNLP, 1900 La Plata, Argentina.
| |
Collapse
|
33
|
Baskan O, Mese G, Ozcivici E. Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells. Proc Inst Mech Eng H 2017; 231:160-168. [PMID: 28068880 DOI: 10.1177/0954411916687338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells that are committed to adipogenesis were exposed daily to high-frequency low-intensity mechanical vibrations to understand molecular, morphological and ultrastructural adaptations to mechanical signals during adipogenesis. D1-ORL-UVA mouse bone marrow mesenchymal stem cells were cultured with either growth or adipogenic medium for 1 week. Low-intensity vibration signals (15 min/day, 90 Hz, 0.1 g) were applied to one group of adipogenic cells, while the other adipogenic group served as a sham control. Cellular viability, lipid accumulation, ultrastructure and morphology were determined with MTT, Oil-Red-O staining, phalloidin staining and atomic force microscopy. Semiquantitative reverse transcription polymerase chain reaction showed expression profile of the genes responsible for adipogenesis and ultrastructure of cells. Low-intensity vibration signals increased viability of the cells in adipogenic culture that was reduced significantly compared to quiescent controls. Low-intensity vibration signals also normalized the effects of adipogenic condition on cell morphology, including area, perimeter, circularization and actin cytoskeleton. Furthermore, low-intensity vibration signals reduced the expression of some adipogenic markers significantly. Mesenchymal stem cells are sensitive and responsive to mechanical loads, but debilitating conditions such as aging or obesity may steer mesenchymal stem cells toward adipogenesis. Here, daily application of low-intensity vibration signals partially neutralized the effects of adipogenic induction on mesenchymal stem cells, suggesting that these signals may provide an alternative and/or complementary option to reduce fat deposition.
Collapse
Affiliation(s)
- Oznur Baskan
- 1 Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Gulistan Mese
- 2 Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Engin Ozcivici
- 1 Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
34
|
Wang L, Hsu HY, Li X, Xian CJ. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2735091. [PMID: 28074178 PMCID: PMC5198261 DOI: 10.1155/2016/2735091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/29/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022]
Abstract
Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE) models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity) on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85-48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g) to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies.
Collapse
Affiliation(s)
- Liping Wang
- The Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Hung-Yao Hsu
- School of Engineering, University of South Australia, Adelaide, SA 5095, Australia
| | - Xu Li
- The Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Cory J. Xian
- The Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
35
|
Wagner AP, Chinnathambi S, Titze IR, Sander EA. Vibratory stimulation enhances thyroid epithelial cell function. Biochem Biophys Rep 2016; 8:376-381. [PMID: 28955979 PMCID: PMC5614476 DOI: 10.1016/j.bbrep.2016.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
The tissues of the body are routinely subjected to various forms of mechanical vibration, the frequency, amplitude, and duration of which can contribute both positively and negatively to human health. The vocal cords, which are in close proximity to the thyroid, may also supply the thyroid with important mechanical signals that modulate hormone production via mechanical vibrations from phonation. In order to explore the possibility that vibrational stimulation from vocalization can enhance thyroid epithelial cell function, FRTL-5 rat thyroid cells were subjected to either chemical stimulation with thyroid stimulating hormone (TSH), mechanical stimulation with physiological vibrations, or a combination of the two, all in a well-characterized, torsional rheometer-bioreactor. The FRTL-5 cells responded to mechanical stimulation with significantly (p<0.05) increased metabolic activity, significantly (p<0.05) increased ROS production, and increased gene expression of thyroglobulin and sodium-iodide symporter compared to un-stimulated controls, and showed an equivalent or greater response than TSH only stimulated cells. Furthermore, the combination of TSH and oscillatory motion produced a greater response than mechanical or chemical stimulation alone. Taken together, these results suggest that mechanical vibrations could provide stimulatory cues that help maintain thyroid function. Thyroid epithelial cells responded to mechanical vibrations similar to those from vocalization. This response was equivalent or greater compared to chemical stimulation. The combination of mechanical and chemical stimulation was synergistic. It may be possible to influence thyroid function with mechanical vibrations.
Collapse
Affiliation(s)
- A P Wagner
- Department of Biomedical Engineering, University of Iowa, IA, USA
| | - S Chinnathambi
- Department of Biomedical Engineering, University of Iowa, IA, USA
| | - I R Titze
- Department of Communication Sciences and Disorders, University of Iowa, IA, USA.,National Center for Voice and Speech, University of Utah, Salt Lake City, UT, USA
| | - E A Sander
- Department of Biomedical Engineering, University of Iowa, IA, USA
| |
Collapse
|
36
|
Cytoskeletal Configuration Modulates Mechanically Induced Changes in Mesenchymal Stem Cell Osteogenesis, Morphology, and Stiffness. Sci Rep 2016; 6:34791. [PMID: 27708389 PMCID: PMC5052530 DOI: 10.1038/srep34791] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSC) responding to mechanical cues generated by physical activity is critical for skeletal development and remodeling. Here, we utilized low intensity vibrations (LIV) as a physiologically relevant mechanical signal and hypothesized that the confined cytoskeletal configuration imposed by 2D culture will enable human bone marrow MSCs (hBMSC) to respond more robustly when LIV is applied in-plane (horizontal-LIV) rather than out-of-plane (vertical-LIV). All LIV signals enhanced hBMSC proliferation, osteogenic differentiation, and upregulated genes associated with cytoskeletal structure. The cellular response was more pronounced at higher frequencies (100 Hz vs 30 Hz) and when applied in the horizontal plane. Horizontal but not vertical LIV realigned the cell cytoskeleton, culminating in increased cell stiffness. Our results show that applying very small oscillatory motions within the primary cell attachment plane, rather than perpendicular to it, amplifies the cell's response to LIV, ostensibly facilitating a more effective transfer of intracellular forces. Transcriptional and structural changes in particular with horizontal LIV, together with the strong frequency dependency of the signal, emphasize the importance of intracellular cytoskeletal configuration in sensing and responding to high-frequency mechanical signals at low intensities.
Collapse
|
37
|
Fritz A, Bertin A, Hanna P, Nualart F, Marcellini S. A Single Chance to Contact Multiple Targets: Distinct Osteocyte Morphotypes Shed Light on the Cellular Mechanism Ensuring the Robust Formation of Osteocytic Networks. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:280-9. [PMID: 27381191 DOI: 10.1002/jez.b.22683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 01/16/2023]
Abstract
The formation of the complex osteocytic network relies on the emission of long cellular processes involved in communication, mechanical strain sensing, and bone turnover control. Newly deposited osteocytic processes rapidly become trapped within the calcifying matrix, and, therefore, they must adopt their definitive conformation and contact their targets in a single morphogenetic event. However, the cellular mechanisms ensuring the robustness of this unique mode of morphogenesis remain unknown. To address this issue, we examined the developing calvaria of the amphibian Xenopus tropicalis by confocal, two-photon, and super-resolution imaging, and described flattened osteocytes lying within a woven bone structured in lamellae of randomly oriented collagen fibers. While most cells emit peripheral and perpendicular processes, we report two osteocytes morphotypes, located at different depth within the bone matrix and exhibiting distinct number and orientation of perpendicular cell processes. We show that this pattern is conserved with the chick Gallus gallus and suggest that the cellular microenvironment, and more particularly cell-cell contact, plays a fundamental role in the induction and stabilization of osteocytic processes. We propose that this intrinsic property might have been evolutionarily selected for its ability to robustly generate self-organizing osteocytic networks harbored by the wide variety of bone shapes and architectures found in extant and extinct vertebrates.
Collapse
Affiliation(s)
- Alan Fritz
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Ariana Bertin
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Patricia Hanna
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Francisco Nualart
- Center for Advanced Microscopy (CMA Bio-Bio), University of Concepcion, Concepción, Chile
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| |
Collapse
|
38
|
Cerciello S, Rossi S, Visonà E, Corona K, Oliva F. Clinical applications of vibration therapy in orthopaedic practice. Muscles Ligaments Tendons J 2016; 6:147-56. [PMID: 27331044 DOI: 10.11138/mltj/2016.6.1.147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Vibration therapy (VT) has been proposed as an option to improve physical performance and reduce the negative effects of ageing on bone, muscles and tendons. Several discrepancies exist on the type of applications, frequency and magnitude. These differences reflex on the contradictory clinical results in literature. Aim of the present study is to carry on an exhaustive review to focus on technical options on the market, clinical applications in orthopaedic practice and expected outcomes. METHODS a literature review using the key words "vibration therapy" and "whole-body vibration" and "orthopaedics" was performed. After checking the available abstracts 71 full text articles were evaluated. RESULTS fifty-one articles focused on the effects of VT on muscles and tendons reporting ways of action and clinical outcomes. In a similar way 20 studies focused on the influence of VT on bone tissue with regard on ways of action and clinical trials. CONCLUSIONS VT provides anabolic mechanical signals to bone and musculo-tendinous system. The best effects seem to be achieved with devices that deliver low-intensity stimuli at high frequencies providing linear horizontal displacement.
Collapse
Affiliation(s)
- Simone Cerciello
- Casa di Cura Villa Betania, Rome, Italy; Marrelli Hospital, Crotone, Italy
| | | | | | - Katia Corona
- Università degli Studi del Molise, Campobasso, Italy
| | - Francesco Oliva
- University of Rome "Tor Vergata", School of Medicine, Rome, Italy
| |
Collapse
|
39
|
Uzer G, Thompson WR, Sen B, Xie Z, Yen SS, Miller S, Bas G, Styner M, Rubin CT, Judex S, Burridge K, Rubin J. Cell Mechanosensitivity to Extremely Low-Magnitude Signals Is Enabled by a LINCed Nucleus. Stem Cells 2016; 33:2063-76. [PMID: 25787126 DOI: 10.1002/stem.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/19/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022]
Abstract
A cell's ability to recognize and adapt to the physical environment is central to its survival and function, but how mechanical cues are perceived and transduced into intracellular signals remains unclear. In mesenchymal stem cells (MSCs), high-magnitude substrate strain (HMS, ≥2%) effectively suppresses adipogenesis via induction of focal adhesion (FA) kinase (FAK)/mTORC2/Akt signaling generated at FAs. Physiologic systems also rely on a persistent barrage of low-level signals to regulate behavior. Exposing MSC to extremely low-magnitude mechanical signals (LMS) suppresses adipocyte formation despite the virtual absence of substrate strain (<0.001%), suggesting that LMS-induced dynamic accelerations can generate force within the cell. Here, we show that MSC response to LMS is enabled through mechanical coupling between the cytoskeleton and the nucleus, in turn activating FAK and Akt signaling followed by FAK-dependent induction of RhoA. While LMS and HMS synergistically regulated FAK activity at the FAs, LMS-induced actin remodeling was concentrated at the perinuclear domain. Preventing nuclear-actin cytoskeleton mechanocoupling by disrupting linker of nucleoskeleton and cytoskeleton (LINC) complexes inhibited these LMS-induced signals as well as prevented LMS repression of adipogenic differentiation, highlighting that LINC connections are critical for sensing LMS. In contrast, FAK activation by HMS was unaffected by LINC decoupling, consistent with signal initiation at the FA mechanosome. These results indicate that the MSC responds to its dynamic physical environment not only with "outside-in" signaling initiated by substrate strain, but vibratory signals enacted through the LINC complex enable matrix independent "inside-inside" signaling.
Collapse
Affiliation(s)
- Gunes Uzer
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William R Thompson
- School of Physical Therapy, Indiana University, Indianapolis, Indiana, USA
| | - Buer Sen
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhihui Xie
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sherwin S Yen
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sean Miller
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Guniz Bas
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, State University of New York, Stony Brook, New York, USA
| | - Stefan Judex
- Department of Biomedical Engineering, State University of New York, Stony Brook, New York, USA
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
40
|
Low-intensity vibrations accelerate proliferation and alter macrophage phenotype in vitro. J Biomech 2016; 49:793-796. [PMID: 26897645 DOI: 10.1016/j.jbiomech.2016.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 01/08/2023]
Abstract
Macrophages are essential for the efficient healing of various tissues. Although many biochemical signaling pathways have been well characterized in macrophages, their sensitivity to mechanical signals is largely unexplored. Here, we applied low-intensity vibrations (LIV) to macrophages to determine whether macrophages could directly transduce LIV signals into changes in the expression of genes and proteins involved in tissue repair. Two different LIV signal frequencies (30Hz or 100Hz) were combined with two acceleration magnitudes (0.15g or 1g) to generate four distinct LIV signals that were applied to cultured murine macrophages. All four LIV signals significantly increased macrophage number after 3 days of stimulation with the combination of the smallest acceleration and the highest frequency (0.15g at 100Hz) generating the largest response. Compared to non-LIV controls, gene expression of the pro-healing growth factors VEGF and TGF-β increased with all four LIV signals (Day 1). LIV also decreased protein levels of the pro-inflammatory cytokines IL-6, IFN-γ, and TNF-α (Days 1 and 3). These data demonstrate the sensitivity of macrophages to high-frequency oscillations applied at low intensities and may suggest that the benefit of LIV for tissue repair may be based on reducing inflammation and promoting a pro-healing macrophage phenotype.
Collapse
|
41
|
Abstract
Mechanoresponses in mesenchymal stem cells (MSCs) guide both differentiation and function. In this review, we focus on advances in0 our understanding of how the cytoplasmic cytoskeleton, nuclear envelope and nucleoskeleton, which are connected via LINC (Linker of Nucleoskeleton and Cytoskeleton) complexes, are emerging as an integrated dynamic signaling platform to regulate MSC mechanobiology. This dynamic interconnectivity affects mechanical signaling and transfer of signals into the nucleus. In this way, nuclear and LINC-mediated cytoskeletal connectivity play a critical role in maintaining mechanical signaling that affects MSC fate by serving as both mechanosensory and mechanoresponsive structures. We review disease and age related compromises of LINC complexes and nucleoskeleton that contribute to the etiology of musculoskeletal diseases. Finally we invite the idea that acquired dysfunctions of LINC might be a contributing factor to conditions such as aging, microgravity and osteoporosis and discuss potential mechanical strategies to modulate LINC connectivity to combat these conditions.
Collapse
|
42
|
Wu XT, Sun LW, Qi HY, Shi H, Fan YB. The bio-response of osteocytes and its regulation on osteoblasts under vibration. Cell Biol Int 2016; 40:397-406. [DOI: 10.1002/cbin.10575] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/25/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Xin-Tong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education; School of Biological Science and Medical Engineering; Beihang University; 37th Xueyuan Road, Hian-dian District Beijing China
| | - Lian-Wen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education; School of Biological Science and Medical Engineering; Beihang University; 37th Xueyuan Road, Hian-dian District Beijing China
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering; Ministry of Science and Technology of China; Beijing China
| | - Hong-Yu Qi
- School of Energy and Power Engineering; Beihang University; 37th Xueyuan Road, Hian-dian District Beijing China
| | - Hao Shi
- School of Energy and Power Engineering; Beihang University; 37th Xueyuan Road, Hian-dian District Beijing China
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education; School of Biological Science and Medical Engineering; Beihang University; 37th Xueyuan Road, Hian-dian District Beijing China
- National Research Center for Rehabilitation Technical Aids; 1st Ronghuazhong Road, Beijing Economic and Technological Development Zone Beijing China
| |
Collapse
|
43
|
Abstract
A considerable volume of evidence has accumulated to suggest that whole-body vibration (WBV) may have a therapeutic role to play in the prevention of osteoporotic fracture, particularly for individuals who are unable to tolerate vigorous exercise interventions. There is moderate to strong evidence that WBV will prevent falls (likely due to enhanced neuromuscular function), but also some indication that the effects of WBV do not outstrip those of targeted exercise. Animal data indicates that WBV will also improve bone mass, including preventing loss due to hormone withdrawal, disuse and glucocorticoid exposure. Human trials, however, have produced equivocal outcomes for bone. Positive trends are apparent at the hip and spine, but shortcomings in study designs have limited statistical power. The mechanism of the vibration effect on bone tissue is likely to be mechanical coupling between an oscillating cell nucleus and the cytoskeleton. More robust dose-response human data are required before therapeutic guidelines can be developed.
Collapse
Affiliation(s)
- Belinda R Beck
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
44
|
Osteocyte specific responses to soluble and mechanical stimuli in a stem cell derived culture model. Sci Rep 2015; 5:11049. [PMID: 26056071 PMCID: PMC4460727 DOI: 10.1038/srep11049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/07/2015] [Indexed: 11/08/2022] Open
Abstract
Studying osteocyte behavior in culture has proven difficult because these embedded cells require spatially coordinated interactions with the matrix and surrounding cells to achieve the osteocyte phenotype. Using an easily attainable source of bone marrow mesenchymal stem cells, we generated cells with the osteocyte phenotype within two weeks. These "stem cell derived-osteocytes" (SCD-O) displayed stellate morphology and lacunocanalicular ultrastructure. Osteocytic genes Sost, Dmp1, E11, and Fgf23 were maximally expressed at 15 days and responded to PTH and 1,25(OH)2D3. Production of sclerostin mRNA and protein, within 15 days of culture makes the SCD-O model ideal for elucidating regulatory mechanisms. We found sclerostin to be regulated by mechanical factors, where low intensity vibration significantly reduced Sost expression. Additionally, this model recapitulates sclerostin production in response to osteoactive hormones, as PTH or LIV repressed secretion of sclerostin, significantly impacting Wnt-mediated Axin2 expression, via β-catenin signaling. In summary, SCD-O cells produce abundant matrix, rapidly attain the osteocyte phenotype, and secrete functional factors including sclerostin under non-immortalized conditions. This culture model enables ex vivo observations of osteocyte behavior while preserving an organ-like environment. Furthermore, as marrow-derived mesenchymal stem cells can be obtained from transgenic animals; our model enables study of genetic control of osteocyte behaviors.
Collapse
|
45
|
Thompson WR, Keller BV, Davis ML, Dahners LE, Weinhold PS. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon. Orthop J Sports Med 2015; 3. [PMID: 26086026 PMCID: PMC4467027 DOI: 10.1177/2325967115585783] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. Purpose: To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Study Design: Controlled laboratory study. Methods: Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Results: Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons (P < .05). Conclusion: While no differences were observed in the mechanical or histological properties of the fully transected MCL after low-magnitude, high-frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. Clinical Relevance: As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing. Additionally, the enhanced gene expression in response to low-magnitude, high-frequency vibration in the intact Achilles tendon suggests the need to further study its potential to accelerate tendon healing in partial injury or repair models.
Collapse
Affiliation(s)
- William R Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana, USA
| | - Benjamin V Keller
- Department of Orthopedics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew L Davis
- Department of Orthopedics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laurence E Dahners
- Department of Orthopedics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Paul S Weinhold
- Department of Orthopedics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
Judex S, Koh TJ, Xie L. Modulation of bone's sensitivity to low-intensity vibrations by acceleration magnitude, vibration duration, and number of bouts. Osteoporos Int 2015; 26:1417-28. [PMID: 25614140 DOI: 10.1007/s00198-014-3018-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Variables defining vibration-based biomechanical treatments were tested by their ability to affect the musculoskeleton in the growing mouse. Duration of a vibration bout, but not variations in vibration intensity or number of vibration bouts per day, was identified as modulator of trabecular bone formation rates. INTRODUCTION Low-intensity vibrations (LIV) may enhance musculoskeletal properties, but little is known regarding the role that individual LIV variables play. We determined whether acceleration magnitude and/or the number and duration of daily loading bouts may modulate LIV efficacy. METHODS LIV was applied to 8-week-old mice at either 0.3 g or 0.6 g for three weeks; the number of daily bouts was one, two, or four, and the duration of a single bout was 15, 30, or 60 min. A frequency of 45 Hz was used throughout. RESULTS LIV induced tibial cortical surface strains in 4-month-old mice of approximately 10 με at 0.3 g and 30 με at 0.6 g. In trabecular bone of the proximal tibial metaphysis, all single daily bout signal combinations with the exception of a single 15 min daily bout at 0.3 g (i.e., single bouts of 30 and 60 min at 0.3 g and 15 and 30 min at 0.6 g) produced greater bone formation rates (BFR/BS) than in controls. Across all signal combinations, 30 and 60 min bouts were significantly more effective than 15 min bouts in raising BFR/BS above control levels. Increasing the number of daily bouts or partitioning a single daily bout into several shorter bouts did not potentiate efficacy and in some instances led to BFR/BS that was not significantly different from those in controls. Bone chemical and muscle properties were similar across all groups. CONCLUSIONS These data may provide a basis towards optimization of LIV efficacy and indicate that in the growing mouse skeleton, increasing bout duration from 15 to 30 or 60 min positively influences BFR/BS.
Collapse
Affiliation(s)
- S Judex
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 213, Stony Brook, NY, 11794-5281, USA,
| | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The musculoskeletal system is largely regulated through dynamic physical activity and is compromised by cessation of physical loading. There is a need to recreate the anabolic effects of loading on the musculoskeletal system, especially in frail individuals who cannot exercise. Vibration therapy is designed to be a nonpharmacological analogue of physical activity, with an intention to promote bone and muscle strength. RECENT FINDINGS Animal and human studies suggest that high-frequency, low-magnitude vibration therapy improves bone strength by increasing bone formation and decreasing bone resorption. There is also evidence that vibration therapy is useful in treating sarcopenia, which confounds skeletal fragility and fall risk in aging. Enhancement of skeletal and muscle strength involves regulating the differentiation of mesenchymal stem cells to build these tissues; mesenchymal stem cell lineage allocation is positively promoted by vibration signals. SUMMARY Vibration therapy may be useful as a primary treatment as well as an adjunct to both physical and pharmacological treatments, but future studies must pay close attention to compliance and dosing patterns, and importantly, the vibration signal, be it low-intensity vibration (<1g) appropriate for treatment of frail individuals or high-intensity vibration (>1g) marketed as a training exercise.
Collapse
Affiliation(s)
- William R Thompson
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|