1
|
Madzokere ET, Freppel W, Pyke AT, Lynch SE, Mee PT, Doggett SL, Haniotis J, Weir R, Caly L, Druce J, Robson JM, van den Hurk AF, Edwards R, Herrero LJ. Ross River virus genomes from Australia and the Pacific display coincidental and antagonistic codon usage patterns with common vertebrate hosts and a principal vector. Virology 2025; 608:110530. [PMID: 40306107 DOI: 10.1016/j.virol.2025.110530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Around 4500 Ross River virus (RRV) human cases are reported in Australia annually. To date, there is no registered nor licenced vaccine to protect against RRV disease. Identifying and substituting preferred with less-preferred codons and dinucleotides is a recognised strategy to attenuate viruses and may prove useful to vaccine development efforts for RRV and other related viruses. Here, we used bioinformatic approaches aimed at assessing evidence of codon usage and dinucleotide bias in 55 RRV whole genomes sampled from humans (Homo sapiens), macropods (Notomacropus agilis), and the Aedes vigilax mosquito. Our results indicate that RRV undergoes positive and negative codon usage bias with natural selection as the major force driving RRV codon usage patterns. RRV displays a bias towards codons with an A or C at the 3rd position while H. sapiens displays a G or C and N. agilis and Ae. vigilax both show bias towards codons with an A or U at the same 3rd position. RRVs codon usage patterns are coincidental to those displayed by common vertebrate hosts and antagonistic to patterns of Ae. vigilax. The coincidental bias identified suggests vertebrate host gene expression greatly influences RRV evolution. In addition, we show that the UG dinucleotides in RRV are overrepresented at all three codon sites, while CA dinucleotides are only overrepresented at codon sites 1-2 and 2-3. These over and under-representations can be exploited to develop attenuated RRV RNA vaccines. The approach utilised here could also be used to develop vaccines for other alphaviruses of global importance.
Collapse
Affiliation(s)
- Eugene T Madzokere
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| | - Wesley Freppel
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| | - Alyssa T Pyke
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Brisbane, Queensland, Australia.
| | - Stacey E Lynch
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia.
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, Australia.
| | - Stephen L Doggett
- Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia.
| | - John Haniotis
- Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia.
| | - Richard Weir
- Berrimah Veterinary Laboratory, Department of Primary Industries and Fisheries, Darwin, Northern Territory, Australia.
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory of Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory of Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Jennifer M Robson
- Department of Microbiology and Molecular Pathology, Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia.
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Brisbane, Queensland, Australia.
| | - Robert Edwards
- College of Science and Engineering, Bedford Park, Adelaide, South Australia, Australia.
| | - Lara J Herrero
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| |
Collapse
|
2
|
Tan X, Zhou W, Jing S, Shen W, Lu B. Decoding codon usage in human papillomavirus type 59. Virus Genes 2025; 61:313-323. [PMID: 40038214 PMCID: PMC12052745 DOI: 10.1007/s11262-025-02148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Human Papillomavirus Type 59 (HPV-59) is a high-risk subtype linked to cervical and other cancers. However, its codon usage patterns remain underexplored despite their importance in understanding viral behavior and vaccine optimization. This study reveals a mild codon usage bias in HPV-59, with a notable preference for A/T-ending codons and 29 favored codons, primarily ending in A or T. Additionally, CpG dinucleotides were significantly underrepresented, potentially aiding immune evasion. Analyses using the Parity Rule 2, Effective Number of Codons plot, and neutrality plot indicate that both mutational pressure and natural selection shape codon usage, with natural selection playing a dominant role. The virus's codon usage moderately aligns with human translational machinery, as shown by the Isoacceptor tRNA pool, Codon Adaptation Index, and Relative Codon Deoptimization Index, reflecting an evolutionary balance between protein synthesis efficiency and host compatibility. These findings provide valuable insights into HPV-59 biology, offering guidance for developing optimized vaccines.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China
| | - Wenyi Zhou
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China
| | - Shunyou Jing
- Department of Clinical Laboratory, Sichuan Provincial Women's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| | - Weifeng Shen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China
| | - Binbin Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China.
| |
Collapse
|
3
|
Zhao Y, Zhang Y, Feng J, He Z, Li T. Codon Usage Bias: A Potential Factor Affecting VGLUT Developmental Expression and Protein Evolution. Mol Neurobiol 2025; 62:3508-3522. [PMID: 39305444 DOI: 10.1007/s12035-024-04426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/05/2024] [Indexed: 02/04/2025]
Abstract
More and more attention has been paid to the role of synonymous substitution in evolution, in which codon usage preference can affect gene expression distribution and protein structure and function. Vesicular glutamate transporter (VGLUT) consists of three isoforms, among which VGLUT3 is significantly different from other VGLUTs in functional importance, expression level, and distribution range, whose reason is still unclear. This study sought to analyze the role of codon preference in VGLUT differentiation. To conduct an evolutionary analysis of the three VGLUTs, this paper uses bioinformatics research methods to analyze the coding sequences of the three VGLUTs in different species and compare the codon usage patterns. Furthermore, the differences among the three VGLUTs were analyzed by combining functional importance, expression level, distribution range, gene structure, protein relationship network, expression at specific developmental stages, and phylogenetic tree, and the influence of codon usage pattern was explored. The results showed that the VGLUT with greater codon preference had less functional importance, lower expression levels, more peripheral distribution away from the CNS, smaller exon density of gene, less conserved and farther away from the CDS region miRNA regulatory sites, simpler and less tight protein interaction networks, delayed developmental expression, and more distant evolutionary relationships. Codon usage preference is a potential factor affecting VGLUT developmental expression and protein evolution.
Collapse
Affiliation(s)
- Yiran Zhao
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Yu Zhang
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Jiaxing Feng
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Zixian He
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China
| | - Ting Li
- College of Life Sciences, Yunlong District, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou City, Jiangsu, 221000, China.
| |
Collapse
|
4
|
Rahman SU, Hu Y, Rehman HU, Alrashed MM, Attia KA, Ullah U, Liang H. Analysis of synonymous codon usage bias of Lassa virus. Virus Res 2025; 353:199528. [PMID: 39832535 PMCID: PMC11815952 DOI: 10.1016/j.virusres.2025.199528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Lassa virus genome consists of two single-stranded, negative-sense RNA segments that lie in the genus Arenavirus. The disease associated with the Lassa virus is distributed all over the world, with approximately 3,000,000-5,000,000 infections diagnosed annually in West Africa. It shows high health risks to the human being. Previous research used the evolutionary time scale and adaptive evolution to describe the Lassa virus population pattern. However, it is still unclear how the Lassa virus takes advantage of synonymous codons. In this study, we analyzed the codon usage bias in 162 Lassa virus strains by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results disclosed that LASV strains are rich in A/T. The average ENC value indicated a low codon usage bias in LASVs. The ENC-plot, neutrality plot and parity rule 2 plot demonstrated that, besides mutational pressure, other factors like natural selection also contributed to codon usage bias. This study is significant because it described the pattern of codon usage in the genomes of the Lassa viruses and provided the information needed for a fundamental evolutionary study of them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, PR China; Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - Yikui Hu
- Department of Neurology, Wuhan Wuchang Hospital, Wuhan, PR China
| | - Hassan Ur Rehman
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - May M Alrashed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia.
| | - Ubaid Ullah
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - Huiying Liang
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, PR China.
| |
Collapse
|
5
|
Ren J, Li Q, Shen W, Tan X. Decoding Codon Usage Patterns in High-Risk Human Papillomavirus Genomes: A Comprehensive Analysis. Curr Microbiol 2025; 82:148. [PMID: 39987223 DOI: 10.1007/s00284-025-04131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Human Papillomavirus (HPV) is a major contributor to various human cancers, particularly cervical cancer. Despite its significant impact, the codon usage bias in high-risk HPV types has not been extensively studied. Understanding this bias, however, could provide valuable insights into the virus itself and inform the optimization of vaccine design. This study explores codon usage bias within the genomes of 17 high-risk HPV types (HPV-16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, and 82) through comparative analysis. While overall codon usage preference across these genotypes is not highly significant, a notable trend emerges in the preference for codons ending in A or U, with 24 out of 26 favored codons (Relative Synonymous Codon Usage > 1) ending in A or U. Moreover, no common optimal codons are shared among the 17 genomes. The study also identifies the underrepresentation of CpG and ApA dinucleotides, alongside the overrepresentation of CpA and UpG, which likely contribute to codon usage preferences that may influence viral replication and immune evasion strategies. Integrated analysis further suggests that natural selection is the primary force driving codon usage bias in these high-risk HPV genomes. Additionally, these HPVs exhibit a limited set of favored codons shared with humans, potentially minimizing competition for translation resources. This study offers new insights into codon usage bias in high-risk HPVs and underscores the importance of this understanding for optimizing vaccine design.
Collapse
Affiliation(s)
- Jiahuan Ren
- Emergency Department, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Qijia Li
- Department of Clinical Laboratory, Sichuan Provincial Women's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| | - Weifeng Shen
- Department of Clinical Laboratory, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaochun Tan
- Department of Clinical Laboratory, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
6
|
Thomas PD, Ferrer MF, Lozano MJ, Gómez RM. Comparative genetic analysis of pathogenic and attenuated strains of Junín virus. Genetica 2025; 153:12. [PMID: 39921799 DOI: 10.1007/s10709-025-00228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Junín virus (JUNV) is a mammarenavirus that causes Argentine hemorrhagic fever (AHF). Mammarenaviruses are RNA viruses with an ambisense, bi-segmented genome containing four genes encoding the glycoproteins (GPC), the nucleoprotein (NP), the RNA polymerase (L) and the matrix protein (Z). Several JUNV strains with different pathogenicity have already been fully sequenced. We performed a comprehensive and comparative analysis of their genetic differences and phylogeny, focusing on the synonymous codon usage patterns of the JUNV proteins. We found a nucleotide identity of > 95% between strains, with significant differences between all genes for GC% and Z and L genes for GC3%. Analysis of relative synonymous codon usage showed that codons AGA and AGG of the amino acid arginine were overrepresented, while CGC, CGA and CGG of arginine, GCG of alanine, ACG of threonine, CCG of proline and TCG of serine were underrepresented in the GPC, NP and L genes. A weak codon usage bias was observed, with GPC having a significantly higher effective number of codons. Moreover, selection could explain at least 83% of the observed bias. Analysis of the codon adaptation index revealed a better adaptation for B cells and kidney and a lower one for endothelial cells. We also observed a possible reassortment event between the MC2 and Romero strains. This work provides a new perspective on the genetic diversity of JUNV strains, which may contribute to the development of new approaches for future research into the evolutionary model, origin and host adaptation of JUNV causing AHF.
Collapse
Affiliation(s)
- Pablo Daniel Thomas
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - María Florencia Ferrer
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Mauricio J Lozano
- Laboratorio de Genómica y Ecología Molecular de Microorganismos del Suelo asociados con Plantas, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| | - Ricardo Martín Gómez
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| |
Collapse
|
7
|
Tan X, Bao S, Lu X, Lu B, Shen W, Jiang C. Comprehensive Analysis of Codon Usage Bias in Human Papillomavirus Type 51. Pol J Microbiol 2024; 73:455-465. [PMID: 39465910 PMCID: PMC11639286 DOI: 10.33073/pjm-2024-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
Human papillomavirus type 51 (HPV-51) is associated with various cancers, including cervical cancer. Examining the codon usage bias of the organism can offer valuable insights into its evolutionary patterns and its relationship with the host. This study comprehensively analyzed codon usage bias in HPV-51 by examining 64 complete genome sequences sourced from the NCBI GenBank database. Our analysis revealed no noteworthy preference for codon usage in HPV-51 overall. However, there was a noticeable bias towards A/T-ending codons, accompanied by GC3s below 32%. Dinucleotide frequency analysis revealed reduced frequencies for ApA, CpG, and TpC dinucleotides, while CpA and TpG dinucleotides were more frequent than others. Relative Synonymous Codon Usage analysis revealed 30 favored codons, primarily concluding with A/T nucleotides. Further analysis using Parity Rule 2, Effective Number of Codons plot, and neutrality plot indicated a balance between mutational pressure and natural selection, with natural selection being the primary force shaping codon usage bias. The Isoacceptor tRNA Pool analysis indicates that HPV-51 has a higher translation efficiency within the human cellular translational system. Moreover, the Codon Adaptation Index and Relative Codon Deoptimization Index analyses suggested a moderate adaptation of HPV-51 to human codon preferences. Our discoveries offer valuable perspectives on how HPV-51 evolves and uses genetic codes, contributing to a deeper comprehension of its endurance and disease-causing potential.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Siwen Bao
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaolei Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Binbin Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weifeng Shen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaoyue Jiang
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
8
|
Eldin P, David A, Hirtz C, Battini JL, Briant L. SARS-CoV-2 Displays a Suboptimal Codon Usage Bias for Efficient Translation in Human Cells Diverted by Hijacking the tRNA Epitranscriptome. Int J Mol Sci 2024; 25:11614. [PMID: 39519170 PMCID: PMC11546939 DOI: 10.3390/ijms252111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Codon bias analysis of SARS-CoV-2 reveals suboptimal adaptation for translation in human cells it infects. The detailed examination of the codons preferentially used by SARS-CoV-2 shows a strong preference for LysAAA, GlnCAA, GluGAA, and ArgAGA, which are infrequently used in human genes. In the absence of an adapted tRNA pool, efficient decoding of these codons requires a 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2) modification at the U34 wobble position of the corresponding tRNAs (tLysUUU; tGlnUUG; tGluUUC; tArgUCU). The optimal translation of SARS-CoV-2 open reading frames (ORFs) may therefore require several adjustments to the host's translation machinery, enabling the highly biased viral genome to achieve a more favorable "Ready-to-Translate" state in human cells. Experimental approaches based on LC-MS/MS quantification of tRNA modifications and on alteration of enzymatic tRNA modification pathways provide strong evidence to support the hypothesis that SARS-CoV-2 induces U34 tRNA modifications and relies on these modifications for its lifecycle. The conclusions emphasize the need for future studies on the evolution of SARS-CoV-2 codon bias and its ability to alter the host tRNA pool through the manipulation of RNA modifications.
Collapse
Affiliation(s)
- Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| | - Alexandre David
- Institut de Génomique Fonctionnelle (IGF), INSERM U1191, 141 Rue de la Cardonille, 34000 Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB)-Plateforme de Protéomique Clinique (PPC), Institut des Neurosciences de Montpellier (INM), University of Montpellier, CHU Montpellier, INSERM CNRS, 298 Rue du Truel, 34090 Montpellier, France
| | - Christophe Hirtz
- Institute for Regenerative Medicine and Biotherapy (IRMB)-Plateforme de Protéomique Clinique (PPC), Institut des Neurosciences de Montpellier (INM), University of Montpellier, CHU Montpellier, INSERM CNRS, 298 Rue du Truel, 34090 Montpellier, France
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
9
|
Uddin A. Compositional Features and Codon Usage Pattern of Genes Associated with Parkinson's Disease. Mol Neurobiol 2024; 61:8279-8292. [PMID: 38488980 DOI: 10.1007/s12035-024-04091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Codon usage bias (CUB) is the phenomenon of non-uniform usage of synonymous codons in which some codons are more used than others and it helps in understanding the molecular organization of genome. Bioinformatic approach was used to analyze the protein-coding sequences of genes associated with Parkinson's disease (PD) to explore compositional features and codon usage pattern as no details work was reported yet. The average improved effective number of codons (Nc) and Nc prime were 42.74 and 44.26 respectively, indicated that CUB was low in these genes. In most of the genes, the overall GC content was almost 50% and GC content at the 1st codon position was the highest while GC content at the 2nd codon position was lowest. Relative synonymous codon usage (RSCU) analysis elucidated over-represented (p > 1.6) and under-represented codons (p < 0.6). The GTG (Val) is the only codon over-represented in all genes. Over-represented codons except (GTG) were A or T ending while under-represented codons (except ACT) were G or C ending. The codons namely TTA (Leu), CTA (Leu), ATC (Ile), ATA (Ile), AGT (Ser), AAC (Asn), TGT (Cys), TGC (Cys), CGC (Arg), AGA (Arg), and AGG (Arg) were absent in SNCA1 to SNCA8 genes. The codon TCG (Ser) was absent in all genes except UCHL1 and PINK1. Correspondence analysis (COA) revealed that the pattern of codon usage differs among genes associated with PD. Neutrality plot analysis indicated some of the points are diagonal distribution suggested that mutation pressure influenced the CUB in genes associated with PD.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi-788150, Assam, India.
| |
Collapse
|
10
|
Castellano LA, McNamara RJ, Pallarés HM, Gamarnik AV, Alvarez DE, Bazzini AA. Dengue virus preferentially uses human and mosquito non-optimal codons. Mol Syst Biol 2024; 20:1085-1108. [PMID: 39039212 PMCID: PMC11450187 DOI: 10.1038/s44320-024-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Codon optimality refers to the effect that codon composition has on messenger RNA (mRNA) stability and translation level and implies that synonymous codons are not silent from a regulatory point of view. Here, we investigated the adaptation of virus genomes to the host optimality code using mosquito-borne dengue virus (DENV) as a model. We demonstrated that codon optimality exists in mosquito cells and showed that DENV preferentially uses nonoptimal (destabilizing) codons and avoids codons that are defined as optimal (stabilizing) in either human or mosquito cells. Human genes enriched in the codons preferentially and frequently used by DENV are upregulated during infection, and so is the tRNA decoding the nonoptimal and DENV preferentially used codon for arginine. We found that adaptation during single-host passaging in human or mosquito cells results in the selection of synonymous mutations towards DENV's preferred nonoptimal codons that increase virus fitness. Finally, our analyses revealed that hundreds of viruses preferentially use nonoptimal codons, with those infecting a single host displaying an even stronger bias, suggesting that host-pathogen interaction shapes virus-synonymous codon choice.
Collapse
Affiliation(s)
- Luciana A Castellano
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Ryan J McNamara
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Horacio M Pallarés
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, San Martín B1650, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
11
|
Aktürk Dizman Y. Exploring Codon Usage Patterns and Influencing Factors in Ranavirus DNA Polymerase Genes. J Basic Microbiol 2024; 64:e2400289. [PMID: 39099168 DOI: 10.1002/jobm.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Ranaviruses, members of the genus Ranavirus within the family Iridoviridae, have become a significant concern for amphibian populations globally, along with other cold-blooded vertebrates, due to their emergence as a significant threat. We employed bioinformatics tools to examine the codon usage patterns in 61 DNA pol genes from Ranavirus, Lymphocystivirus, Megalocytivirus, and two unclassified ranaviruses, as no prior studies had been conducted on this topic. The results showed a slight or low level of codon usage bias (CUB) in the DNA pol genes of Ranavirus. Relative synonymous codon usage (RSCU) analysis indicated that the predominant codons favored in Ranavirus DNA pol genes terminate with C or G. Correlation analysis examining nucleotide content, third codon position, effective number of codons (ENC), correspondence analysis (COA), Aroma values, and GRAVY values indicated that the CUB across DNA pol genes could be influenced by both mutation pressure and natural selection. The neutrality plot indicated that natural selection is the primary factor driving codon usage. Furthermore, the analysis of the codon adaptation index (CAI) illustrated the robust adaptability of Ranavirus DNA pol genes to their hosts. Analysis of the relative codon deoptimization index (RCDI) suggested that Ranavirus DNA pol genes underwent greater selection pressure from their hosts. These findings will aid in comprehending the factors influencing the evolution and adaptation of Ranavirus to its hosts.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Türkiye
| |
Collapse
|
12
|
Sharma D, Chakraborty S. RNA editing sites and triplet usage in exomes of bat RNA virus genomes of the family Paramyxoviridae. Microb Pathog 2024; 194:106796. [PMID: 39025379 DOI: 10.1016/j.micpath.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Bats contain a diverse spectrum of viral species in their bodies. The RNA virus family Paramyxoviridae tends to infect several vertebrate species, which are accountable for a variety of devastating infections in both humans and animals. Viruses of this kind include measles, mumps, and Hendra. Some synonymous codons are favoured over others in mRNAs during gene-to-protein synthesis process. Such phenomenon is termed as codon usage bias (CUB). Our research emphasized many aspects that shape the CUB of genes in the Paramyxoviridae family found in bats. Here, the nitrogenous base A occurred the most. AT was found to be abundant in the coding sequences of the Paramyxoviridae family. RSCU data revealed that A or T ending codons occurred more frequently than predicted. Furthermore, 3 overrepresented codons (CAT, AGA, and GCA) and 7 underrepresented codons (CCG, TCG, CGC, CGG, CGT, GCG and ACG) were detected in the viral genomes. Correspondence analysis, neutrality plot, and parity plots highlight the combined impact of mutational pressure and natural selection on CUB. The neutrality plot of GC12 against GC3 yielded a regression coefficient value of 0.366, indicating that natural selection had a significant (63.4 %) impact. Moreover, RNA editing analysis was done, which revealed the highest frequency of C to T mutations. The results of our research revealed the pattern of codon usage and RNA editing sites in Paramyxoviridae genomes.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
13
|
Cho M, Min X, Been N, Son HS. The evolutionary and genetic patterns of African swine fever virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105612. [PMID: 38824981 DOI: 10.1016/j.meegid.2024.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
African swine fever (ASF) is a serious animal disease, and has spread to Africa, Europe and Asia, causing massive economic losses. African swine fever virus (ASFV) is transmitted from a reservoir host (warthog) to domestic pigs via a sylvatic cycle (transmission between warthogs and soft ticks) and a domestic cycle (transmission between domestic pigs) and survives by expressing a variety of genes related to virus-host interactions. We evaluated differences in codon usage patterns among ASFV genotypes and clades and explored the common and specific evolutionary and genetic characteristics of ASFV sequences. We analysed the evolutionary relationships, nucleotide compositions, codon usage patterns, selection pressures (mutational pressure and natural selection) and viral adaptation to host codon usage based on the coding sequences (CDS) of key functional genes of ASFV. AT bias was detected in the six genes analysed, irrespective of clade. The AT bias of genes (A224L, A179L, EP153R) encoding proteins involved in interaction with host cells after infection was high; among them, the AT bias of EP153R was the greatest at 78.3%. A large number of overrepresented codons were identified in EP153R, whereas there were no overrepresented codons with a relative synonymous codon usage (RSCU) value of ≥3 in B646L. In most genes, the pattern of selection pressure was similar for each clade, but in EP153R, diverse patterns of selection pressure were captured within the same clade and genotype. As a result of evaluating host adaptation based on the codon adaptation index (CAI), for B646L, E183L, CP204L and A179L, the codon usage patterns in all sequences were more similar to tick than domestic pig or wild boar. However, EP153R showed the lowest average CAI value of 0.52 when selecting tick as a reference set. The genes analysed in this study showed different magnitudes of selection pressure at the clade and genotype levels, which is likely to be related to the function of the encoded proteins and may determine key evolutionary traits of viruses, such as the level of genetic variation and host range. The diversity of codon adaptations at the genetic level in ASFV may account for differences in translational selection in ASFV hosts and provides insight into viral host adaptation and co-evolution.
Collapse
Affiliation(s)
- Myeongji Cho
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Xianglan Min
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Nara Been
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hyeon S Son
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Interdisciplinary Graduate Program in Bioinformatics, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
14
|
Xu Q, Cao J, Rai KR, Zhu B, Liu D, Wan C. Codon usage bias of goose circovirus and its adaptation to host. Poult Sci 2024; 103:103775. [PMID: 38713985 PMCID: PMC11091504 DOI: 10.1016/j.psj.2024.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/09/2024] Open
Abstract
Goose circovirus (GoCV), a potential immunosuppressive virus possessing a circular single-stranded DNA genome, is widely distributed in both domesticated and wild geese. This virus infection causes significant economic losses in the waterfowl industry. The codon usage patterns of viruses reflect the evolutionary history and genetic architecture, allowing them to adapt quickly to changes in the external environment, particularly to their hosts. In this study, we retrieved the coding sequences (Rep and Cap) and the genome of GoCV from GenBank, conducting comprehensive research to explore the codon usage patterns in 144 GoCV strains. The overall codon usage of the GoCV strains was relatively similar and exhibited a slight bias. The effective number of codons (ENC) indicated a low overall extent of codon usage bias (CUB) in GoCV. Combined with the base composition and relative synonymous codon usage (RSCU) analysis, the results revealed a bias toward A- and G-ending codons in the overall codon usage. Analysis of the ENC-GC3s plot and neutrality plot suggested that natural selection plays an important role in shaping the codon usage pattern of GoCV, with mutation pressure having a minor influence. Furthermore, the correlations between ENC and relative indices, as well as correspondence analysis (COA), showed that hydrophobicity and geographical distribution also contribute to codon usage variation in GoCV, suggesting the possible involvement of natural selection. In conclusion, GoCV exhibits comparatively slight CUB, with natural selection being the major factor shaping the codon usage pattern of GoCV. Our research contributes to a deeper understanding of GoCV evolution and its host adaptation, providing valuable insights for future basic studies and vaccine design related to GoCV.
Collapse
Affiliation(s)
- Quanming Xu
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou 350007, China
| | - Jie Cao
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou 350007, China
| | - Kul Raj Rai
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binling Zhu
- Department of Forensic Science, Fujian Police College, Fuzhou 350007, China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
15
|
Tan X, Xie Y, Jiang C, Li H, Lu Y, Shen W, Chen J. Codon usage bias of human papillomavirus type 33 and 58: A comprehensive analysis. J Basic Microbiol 2024; 64:e2300636. [PMID: 38346260 DOI: 10.1002/jobm.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 05/03/2024]
Abstract
Cervical cancer is closely linked to specific strains of human papillomavirus (HPV), notably HPV-33 and HPV-58, which exhibit a significant prevalence among women in China. Nevertheless, the codon usage bias in HPV-33 and HPV-58 is not well comprehended. The objective of this research is to analyze the codon usage patterns HPV-33 and HPV-58, pinpoint the primary factors that influence codon preference. The overall preference for codon usage in two HPV genotypes is not significant. Both HPV genotypes exhibit a preference for codons that end with A/U. The GC3 content for HPV-33 is 25.43% ± 0.35%, and for HPV-58, it is 29.44% ± 0.57%. Out of the 26 favored codons in HPV-33 and HPV-58 (relative synonymous codon usage (RSCU) > 1), 25 conclude with A/U. Principal component analysis (PCA) shows a tight clustering of the entire genome sequences of HPV-33 and HPV-58, suggesting a similarity in their RSCU preferences. Moreover, an examination of dinucleotide abundance indicated that translation selection influenced the development of a distinctive dinucleotide usage pattern in HPV-33 and HPV-58. Additionally, a combined analysis involving an effective number of codons plot, parity rule 2, and neutrality analysis demonstrated that, for HPV-33 and HPV-58, the primary determinant influencing codon usage preference is natural selection. HPV-33 and HPV-58 exhibit a restricted set of favored codons in common with humans, potentially mitigating competition for translation resources. Our discoveries could provide valuable perspectives on the evolutionary patterns and codon usage preferences of HPV-33 and HPV-58 viruses, contributing to the development and application of relevant HPV subtype vaccines.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yucheng Xie
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaoyue Jiang
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hui Li
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yu Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weifeng Shen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jing Chen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
16
|
Aktürk Dizman Y. Analysis of codon usage bias of exonuclease genes in invertebrate iridescent viruses. Virology 2024; 593:110030. [PMID: 38402641 DOI: 10.1016/j.virol.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Invertebrate iridescent viruses (IIVs) are double-stranded DNA viruses that belong to the Iridoviridae family. IIVs result diseases that vary in severity from subclinical to lethal in invertebrate hosts. Codon usage bias (CUB) analysis is a versatile method for comprehending the genetic and evolutionary aspects of species. In this study, we analyzed the CUB in 10 invertebrate iridescent viruses exonuclease genes by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results revealed that IIVs exonuclease genes are rich in A/T. The ENC analysis displayed a low codon usage bias in IIVs exonuclease genes. ENC-plot, neutrality plot, and parity rule 2 plot demonstrated that besides mutational pressure, other factors like natural selection, dinucleotide content, and aromaticity also contributed to CUB. The findings could enhance our understanding of the evolution of IIVs exonuclease genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye.
| |
Collapse
|
17
|
S. Celina S, Černý J. Genetic background of adaptation of Crimean-Congo haemorrhagic fever virus to the different tick hosts. PLoS One 2024; 19:e0302224. [PMID: 38662658 PMCID: PMC11045102 DOI: 10.1371/journal.pone.0302224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a negative-sense, single-stranded RNA virus with a segmented genome and the causative agent of a severe Crimean-Congo haemorrhagic fever (CCHF) disease. The virus is transmitted mainly by tick species in Hyalomma genus but other ticks such as representatives of genera Dermacentor and Rhipicephalus may also be involved in virus life cycle. To improve our understanding of CCHFV adaptation to its tick species, we compared nucleotide composition and codon usage patterns among the all CCHFV strains i) which sequences and other metadata as locality of collection and date of isolation are available in GenBank and ii) which were isolated from in-field collected tick species. These criteria fulfilled 70 sequences (24 coding for S, 23 for M, and 23 for L segment) of virus isolates originating from different representatives of Hyalomma and Rhipicephalus genera. Phylogenetic analyses confirmed that Hyalomma- and Rhipicephalus-originating CCHFV isolates belong to phylogenetically distinct CCHFV clades. Analyses of nucleotide composition among the Hyalomma- and Rhipicephalus-originating CCHFV isolates also showed significant differences, mainly in nucleotides located at the 3rd codon positions indicating changes in codon usage among these lineages. Analyses of codon adaptation index (CAI), effective number of codons (ENC), and other codon usage statistics revealed significant differences between Hyalomma- and Rhipicephalus-isolated CCHFV strains. Despite both sets of strains displayed a higher adaptation to use codons that are preferred by Hyalomma ticks than Rhipicephalus ticks, there were distinct codon usage preferences observed between the two tick species. These findings suggest that over the course of its long co-evolution with tick vectors, CCHFV has optimized its codon usage to efficiently utilize translational resources of Hyalomma species.
Collapse
Affiliation(s)
- Seyma S. Celina
- Faculty of Tropical AgriSciences, Center for Infectious Animal Diseases, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Center for Infectious Animal Diseases, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
18
|
Kaushik R, Kumar N, Yadav P, Sircar S, Shete-Aich A, Singh A, Tomar S, Launey T, Malik YS. Comprehensive Genomics Investigation of Neboviruses Reveals Distinct Codon Usage Patterns and Host Specificity. Microorganisms 2024; 12:696. [PMID: 38674640 PMCID: PMC11052288 DOI: 10.3390/microorganisms12040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Neboviruses (NeVs) from the Caliciviridae family have been linked to enteric diseases in bovines and have been detected worldwide. As viruses rely entirely on the cellular machinery of the host for replication, their ability to thrive in a specific host is greatly impacted by the specific codon usage preferences. Here, we systematically analyzed the codon usage bias in NeVs to explore the genetic and evolutionary patterns. Relative Synonymous Codon Usage and Effective Number of Codon analyses indicated a marginally lower codon usage bias in NeVs, predominantly influenced by the nucleotide compositional constraints. Nonetheless, NeVs showed a higher codon usage bias for codons containing G/C at the third codon position. The neutrality plot analysis revealed natural selection as the primary factor that shaped the codon usage bias in both the VP1 (82%) and VP2 (57%) genes of NeVs. Furthermore, the NeVs showed a highly comparable codon usage pattern to bovines, as reflected through Codon Adaptation Index and Relative Codon Deoptimization Index analyses. Notably, yak NeVs showed considerably different nucleotide compositional constraints and mutational pressure compared to bovine NeVs, which appear to be predominantly host-driven. This study sheds light on the genetic mechanism driving NeVs' adaptability, evolution, and fitness to their host species.
Collapse
Affiliation(s)
- Rahul Kaushik
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Naveen Kumar
- Diagnostics and Vaccines Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462021, Madhya Pradesh, India;
| | - Pragya Yadav
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Shubhankar Sircar
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Anita Shete-Aich
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Thomas Launey
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, Punjab, India
| |
Collapse
|
19
|
Nkurikiyimfura O, Waheed A, Fang H, Yuan X, Chen L, Wang YP, Lu G, Zhan J, Yang L. Fitness difference between two synonymous mutations of Phytophthora infestans ATP6 gene. BMC Ecol Evol 2024; 24:36. [PMID: 38494489 PMCID: PMC10946160 DOI: 10.1186/s12862-024-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Sequence variation produced by mutation provides the ultimate source of natural selection for species adaptation. Unlike nonsynonymous mutation, synonymous mutations are generally considered to be selectively neutral but accumulating evidence suggests they also contribute to species adaptation by regulating the flow of genetic information and the development of functional traits. In this study, we analysed sequence characteristics of ATP6, a housekeeping gene from 139 Phytophthora infestans isolates, and compared the fitness components including metabolic rate, temperature sensitivity, aggressiveness, and fungicide tolerance among synonymous mutations. RESULTS We found that the housekeeping gene exhibited low genetic variation and was represented by two major synonymous mutants at similar frequency (0.496 and 0.468, respectively). The two synonymous mutants were generated by a single nucleotide substitution but differed significantly in fitness as well as temperature-mediated spatial distribution and expression. The synonymous mutant ending in AT was more common in cold regions and was more expressed at lower experimental temperature than the synonymous mutant ending in GC and vice versa. CONCLUSION Our results are consistent with the argument that synonymous mutations can modulate the adaptive evolution of species including pathogens and have important implications for sustainable disease management, especially under climate change.
Collapse
Affiliation(s)
- Oswald Nkurikiyimfura
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Abdul Waheed
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hanmei Fang
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoxian Yuan
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lixia Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, 611130, China
| | - Guodong Lu
- Department of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden.
| | - Lina Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
20
|
Khandia R, Gurjar P, Kamal MA, Greig NH. Relative synonymous codon usage and codon pair analysis of depression associated genes. Sci Rep 2024; 14:3502. [PMID: 38346990 PMCID: PMC10861588 DOI: 10.1038/s41598-024-51909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Depression negatively impacts mood, behavior, and mental and physical health. It is the third leading cause of suicides worldwide and leads to decreased quality of life. We examined 18 genes available at the genetic testing registry (GTR) from the National Center for Biotechnological Information to investigate molecular patterns present in depression-associated genes. Different genotypes and differential expression of the genes are responsible for ensuing depression. The present study, investigated codon pattern analysis, which might play imperative roles in modulating gene expression of depression-associated genes. Of the 18 genes, seven and two genes tended to up- and down-regulate, respectively, and, for the remaining genes, different genotypes, an outcome of SNPs were responsible alone or in combination with differential expression for different conditions associated with depression. Codon context analysis revealed the abundance of identical GTG-GTG and CTG-CTG pairs, and the rarity of methionine-initiated codon pairs. Information based on codon usage, preferred codons, rare, and codon context might be used in constructing a deliverable synthetic construct to correct the gene expression level of the human body, which is altered in the depressive state. Other molecular signatures also revealed the role of evolutionary forces in shaping codon usage.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, MP, India.
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence in Healthcare, Institutes for Systems Genetics and West China School of Nursing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee place, Hebersham, NSW, 2770, Australia
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
21
|
Xiao M, Hu X, Li Y, Liu Q, Shen S, Jiang T, Zhang L, Zhou Y, Li Y, Luo X, Bai L, Yan W. Comparative analysis of codon usage patterns in the chloroplast genomes of nine forage legumes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:153-166. [PMID: 38623162 PMCID: PMC11016040 DOI: 10.1007/s12298-024-01421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/17/2024]
Abstract
Leguminosae is one of the three largest families of angiosperms after Compositae and Orchidaceae. It is widely distributed and grows in a variety of environments, including plains, mountains, deserts, forests, grasslands, and even waters where almost all legumes can be found. It is one of the most important sources of starch, protein and oil in the food of mankind and also an important source of high-quality forage material for animals, which has important economic significance. In our study, the codon usage patterns and variation sources of the chloroplast genome of nine important forage legumes were systematically analyzed. Meanwhile, we also constructed a phylogenetic tree based on the whole chloroplast genomes and protein coding sequences of these nine forage legumes. Our results showed that the chloroplast genomes of nine forage legumes end with A/T bases, and seven identical high-frequency (HF) codons were detected among the nine forage legumes. ENC-GC3s mapping, PR2 analysis, and neutral analysis showed that the codon bias of nine forage legumes was influenced by many factors, among which natural selection was the main influencing factor. The codon usage frequency showed that the Nicotiana tabacum and Saccharomyces cerevisiae can be considered as receptors for the exogenous expression of chloroplast genes of these nine forage legumes. The phylogenetic relationships of the chloroplast genomes and protein coding genes were highly similar, and the nine forage legumes were divided into three major clades. Among the clades Melilotus officinalis was more closely related to Medicago sativa, and Galega officinalis was more closely related to Galega orientalis. This study provides a scientific basis for the molecular markers research, species identification and phylogenetic studies of forage legumes. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01421-0.
Collapse
Affiliation(s)
- Mingkun Xiao
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan China
| | - Xiang Hu
- Tropical Eco-agricultural Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou, Yunnan China
| | - Yaqi Li
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan China
| | - Qian Liu
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan China
| | - Shaobin Shen
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan China
| | - Tailing Jiang
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan China
| | - Linhui Zhang
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan China
| | - Yingchun Zhou
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan China
| | - Yuexian Li
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan China
| | - Xin Luo
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan China
| | - Lina Bai
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan China
| | - Wei Yan
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan China
| |
Collapse
|
22
|
Yimyaem M, Jitobaom K, Auewarakul P. A small stretch of poor codon usage at the beginning of dengue virus open reading frame may act as a translational checkpoint. BMC Res Notes 2023; 16:359. [PMID: 38053139 DOI: 10.1186/s13104-023-06615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVE Rare codons were previously shown to be enriched at the beginning of the dengue virus (DENV) open reading frame. However, the role of rare codons in regulating translation efficiency and replication of DENV remains unclear. The present study aims to clarify the significance of rare codon usage at the beginning of DENV transcripts using the codon adaptation index (CAI). METHODOLOGY CAIs of the whole starting regions of DENV transcripts as well as 18-codon sliding windows of the regions were analyzed. RESULTS One of the intriguing findings is that those rare codons do not typically result in uniformly low CAI in the starting region with rare codons. However, it shows a notable local drop in CAI around the 50th codon in all dengue serotypes. This suggests that there may be a translational checkpoint at this site and that the rare codon usage upstream to this checkpoint may not be related to translational control.
Collapse
Affiliation(s)
- Maneenop Yimyaem
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
23
|
Aktürk Dizman Y. Codon usage bias analysis of the gene encoding NAD +-dependent DNA ligase protein of Invertebrate iridescent virus 6. Arch Microbiol 2023; 205:352. [PMID: 37812231 DOI: 10.1007/s00203-023-03688-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
The genome of Invertebrate iridescent virus 6 (IIV6) contains a sequence that shows similarity to eubacterial NAD+-dependent DNA ligases. The 615-amino acid open reading frame (ORF 205R) consists of several domains, including an N-terminal domain Ia, followed by an adenylation domain, an OB-fold domain, a helix-hairpin-helix (HhH) domain, and a BRCT domain. Notably, the zinc finger domain, typically present in NAD+-dependent DNA ligases, is absent in ORF 205R. Since the protein encoded by ORF 205R (IIV6 DNA ligase gene) is involved in critical functions such as DNA replication, modification, and repair, it is crucial to comprehend the codon usage associated with this gene. In this paper, the codon usage bias (CUB) in DNA ligase gene of IIV6 and 11 reference iridoviruses was analyzed by comparing the nucleotide contents, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), relative abundance of dinucleotides and other indices. Both the base content and the RCSU analysis indicated that the A- and T-ending codons were mostly favored in the DNA ligase gene of IIV6. The ENC value of 35.64 implied a high CUB in the IIV6 DNA ligase gene. The ENC plot, neutrality plot, parity rule 2 plot, correspondence analysis revealed that mutation pressure and natural selection had an impact on the CUB of the IIVs DNA ligase genes. Additionally, the analysis of codon adaptation index demonstrated that the IIV6 DNA ligase gene is strongly adapted to its host. These findings will improve our comprehension of the CUB of IIV6 DNA ligase and reference genes, which may provide the required information for a fundamental evolutionary analysis of these genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| |
Collapse
|
24
|
Li M, Wang J, Dai R, Smagghe G, Wang X, You S. Comparative analysis of codon usage patterns and phylogenetic implications of five mitochondrial genomes of the genus Japanagallia Ishihara, 1955 (Hemiptera, Cicadellidae, Megophthalminae). PeerJ 2023; 11:e16058. [PMID: 37780390 PMCID: PMC10538298 DOI: 10.7717/peerj.16058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Japanagallia is a genus of Cicadomorpha in the family of leafhoppers that are plant piercing-sucking insects, and it is difficult to distinguish by morphological characteristics. So far, only one complete mitochondrial genome data has been reported for the genus Japanagallia. Therefore, in order to better understand this group, we assembled and annotated the complete mitochondrial genomes of five Japanagallia species, and analyzed their codon usage patterns. Nucleotide composition analysis showed that AT content was higher than GC content, and the protein-coding sequences preferred to end with A/T at the third codon position. Relative synonymous codon usage analysis revealed most over-represented codon ends with A or T. Parity plot analysis revealed the codon usage bias of mitochondrial genes was influenced by both natural selection and mutation pressure. In the neutrality plot, the slopes of regression lines were < 0.5, suggesting that natural selection was playing a major role while mutation pressure was of minor importance. The effective number of codons showed that the codon usage bias between genes and genomes was low. Correspondence analysis revealed that the codon usage pattern differed among 13 protein-coding genes. Phylogenetic analyses based on three datasets using two methods (maximum likelihood and Bayesian inference), restored the Megophthalminae monophyly with high support values (bootstrap support values (BS) = 100, Bayesian posterior probability (PP) = 1). In the obtained topology, the seven Japanagallia species were clustered into a monophyletic group and formed a sister group with Durgade. In conclusion, our study can provide a reference for the future research on organism evolution, identification and phylogeny relationships of Japanagallia species.
Collapse
Affiliation(s)
- Min Li
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| | - Jiajia Wang
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Renhuai Dai
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
- Cellular and Molecular Life Sciences, Department of Biology, Brussels, Belgium
- Laboratory of Agrozoology, Dep. of Crop Protection, Ghent University, Ghent, Belgium
| | - Xianyi Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Siying You
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| |
Collapse
|
25
|
Sophiarani Y, Chakraborty S. Synonymous sites for accessibility around microRNA binding sites in bacterial spot and speck disease resistance genes of tomato. Funct Integr Genomics 2023; 23:247. [PMID: 37468805 DOI: 10.1007/s10142-023-01178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/15/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
The major causes of mass tomato infections in both covered and open ground are agents of bacterial spot and bacterial speck diseases. MicroRNAs (miRNAs) are 16-21 nucleotides in length, non-coding RNAs that inhibit translation and trigger mRNA degradation. MiRNAs play a significant part in plant resistance to abiotic and biotic stresses by mediating gene regulation via post-transcriptional RNA silencing. In this study, we analyzed a collection of bacterial resistance genes of tomato and their binding sites for tomato miRNAs and Pseudomonas syringe pv. tomato miRNAs. Our study found that two genes, bacterial spot disease resistance gene (Bs4) and bacterial speck disease resistance gene (Prf), have a 7mer-m8 perfect seed match with miRNAs. Bs4 was targeted by one tomato miRNA (sly-miR9470-3p) and three Pseudomonas syringe pv. tomato miRNAs (PSTJ4_3p_27246, PSTJ4_3p_27246, and PSTJ4_3p_27246). Again, Prf gene was found to be targeted by two tomato miRNAs namely, sly-miR9469-5p and sly-miR9474-3p. The accessibility of the miRNA-target site and its flanking regions and the relationship between relative synonymous codon usage and tRNAs were compared. Strong access to miRNA targeting regions and decreased rate of translations suggested that miRNAs might be efficient in binding to their particular targets. We also found the existence of rare codons, which suggests that it could enhance miRNA targeting even more. The codon usage pattern analysis of the two genes revealed that both were AT-rich (Bs4 = 63.2%; Prf = 60.8%). We found a low codon usage bias in both genes, suggesting that selective restriction might regulate them. The silencing property of miRNAs would allow researchers to discover the involvement of plant miRNAs in pathogen invasion. However, the efficient validation of direct targets of miRNAs is an urgent need that might be highly beneficial in enhancing plant resistance to multiple pathogenic diseases.
Collapse
Affiliation(s)
- Yengkhom Sophiarani
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
26
|
Zhou J, Wang X, Zhou Z, Wang S. Insights into the Evolution and Host Adaptation of the Monkeypox Virus from a Codon Usage Perspective: Focus on the Ongoing 2022 Outbreak. Int J Mol Sci 2023; 24:11524. [PMID: 37511283 PMCID: PMC10380431 DOI: 10.3390/ijms241411524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The exceptionally widespread outbreak of human monkeypox, an emerging zoonosis caused by the monkeypox virus (MPXV), with more than 69,000 confirmed cases in 100 non-endemic countries since 2022, is a major public health concern. Codon usage patterns reflect genetic variation and adaptation to new hosts and ecological niches. However, detailed analyses of codon usage bias in MPXV based on large-scale genomic data, especially for strains responsible for the 2022 outbreak, are lacking. In this study, we analyzed codon usage in MPXV and its relationship with host adaptation. We confirmed the ongoing outbreak of MPXVs belonging to the West Africa (WA) lineage by principal component analysis based on their codon usage patterns. The 2022 outbreak strains had a relatively low codon usage bias. Codon usage of MPXVs was shaped by mutation and natural selection; however, different from past strains, codon usage in the 2022 outbreak strains was predominantly determined by mutation pressure. Additionally, as revealed by the codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses, the codon usage patterns of MPXVs were also affected by their hosts. In particular, the 2022 outbreak strains showed slightly but significantly greater adaptation to many primates, including humans, and were subjected to stronger selection pressure induced by hosts. Our results suggest that MPXVs contributing to the 2022 outbreak have unique evolutionary features, emphasizing the importance of sustained monitoring of their transmission and evolution.
Collapse
Affiliation(s)
| | | | - Zhe Zhou
- Bioinformatics Center of AMMS, Beijing 100850, China; (J.Z.); (X.W.)
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, China; (J.Z.); (X.W.)
| |
Collapse
|
27
|
Noor F, Ashfaq UA, Bakar A, Qasim M, Masoud MS, Alshammari A, Alharbi M, Riaz MS. Identification and characterization of codon usage pattern and influencing factors in HFRS-causing hantaviruses. Front Immunol 2023; 14:1131647. [PMID: 37492567 PMCID: PMC10364125 DOI: 10.3389/fimmu.2023.1131647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an acute viral zoonosis carried and transmitted by infected rodents through urine, droppings, or saliva. The etiology of HFRS is complex due to the involvement of viral factors and host immune and genetic factors which hinder the development of potential therapeutic solutions for HFRS. Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), Seoul virus (SEOV), and Puumala virus (PUUV) are predominantly found in hantaviral species that cause HFRS in patients. Despite ongoing prevention and control efforts, HFRS remains a serious economic burden worldwide. Furthermore, recent studies reported that the hantavirus nucleocapsid protein is a multi-functional protein and plays a major role in the replication cycle of the hantavirus. However, the precise mechanism of the nucleoproteins in viral pathogenesis is not completely understood. In the framework of the current study, various in silico approaches were employed to identify the factors influencing the codon usage pattern of hantaviral nucleoproteins. Based on the relative synonymous codon usage (RSCU) values, a comparative analysis was performed between HFRS-causing hantavirus and their hosts, suggesting that HTNV, DOBV, SEOV, and PUUV, were inclined to evolve their codon usage patterns that were comparable to those of their hosts. The results indicated that most of the overrepresented codons had AU-endings, which revealed that mutational pressure is the major force shaping codon usage patterns. However, the influence of natural selection and geographical factors cannot be ignored on viral codon usage bias. Further analysis also demonstrated that HFRS causing hantaviruses adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts. To our knowledge, no study to date reported the factors influencing the codon usage pattern within hantaviral nucleoproteins. Thus, the proposed computational scheme can help in understanding the underlying mechanism of codon usage patterns in HFRS-causing hantaviruses which lend a helping hand in designing effective anti-HFRS treatments in future. This study, although comprehensive, relies on in silico methods and thus necessitates experimental validation for more solid outcomes. Beyond the identified factors influencing viral behavior, there could be other yet undiscovered influences. These potential factors should be targets for further research to improve HFRS therapeutic strategies.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abu Bakar
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
28
|
Yang Y, Wang J, Dai R, Wang X. Structural Characteristics and Phylogenetic Analysis of the Mitochondrial Genomes of Four Krisna Species (Hemiptera: Cicadellidae: Iassinae). Genes (Basel) 2023; 14:1175. [PMID: 37372355 DOI: 10.3390/genes14061175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Krisna species are insects that have piercing-sucking mouthparts and belong to the Krisnini tribe in the Iassinae subfamily of leafhoppers in the Cicadellidae family. In this study, we sequenced and compared the mitochondrial genomes (mitogenomes) of four Krisna species. The results showed that all four mitogenomes were composed of cyclic double-stranded molecules and contained 13 protein-coding genes (PCGs) and 22 and 2 genes coding for tRNAs and rRNAs, respectively. Those mitogenomes exhibited similar base composition, gene size, and codon usage patterns for the protein-coding genes. The analysis of the nonsynonymous substitution rate (Ka)/synonymous substitution rate (Ks) showed that evolution occurred the fastest in ND4 and the slowest in COI. 13 PCGs that underwent purification selection were suitable for studying phylogenetic relationships within Krisna. ND2, ND6, and ATP6 had highly variable nucleotide diversity, whereas COI and ND1 exhibited the lowest diversity. Genes or gene regions with high nucleotide diversity can provide potential marker candidates for population genetics and species delimitation in Krisna. Analyses of parity and neutral plots showed that both natural selection and mutation pressure affected the codon usage bias. In the phylogenetic analysis, all subfamilies were restored to a monophyletic group; the Krisnini tribe is monophyletic, and the Krisna genus is paraphyletic. Our study provides novel insights into the significance of the background nucleotide composition and codon usage patterns in the CDSs of the 13 mitochondrial PCGs of the Krisna genome, which could enable the identification of a different gene organization and may be used for accurate phylogenetic analysis of Krisna species.
Collapse
Affiliation(s)
- Yanqiong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jiajia Wang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Renhuai Dai
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Xianyi Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
29
|
Suresh KP, Indrabalan UB, Shreevatsa B, Dharmashekar C, Singh P, Patil SS, Syed A, Elgorban AM, Eswaramoorthy R, Amachawadi RG, Shivamallu C, Kollur SP. Evaluation of codon usage patterns and molecular evolution dynamics in Japanese encephalitis virus: An integrated bioinformatics approach. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105410. [PMID: 36791944 DOI: 10.1016/j.meegid.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
In the recent survey, Japanese encephalitis (JE) is one of the most common mosquito-borne diseases, accounting for ∼30% of fatalities. The outbreaks of the JE virus (JEV) suggests that exhaustive study is essential for the prevention and management of the disease. The disease mainly spreads in humans and pigs by the vector: mosquito; as this is a major concern, this study had employed various bioinformatics tools to investigate the codon usage bias, evolutionary inference and selection pressure analysis of the Japanese encephalitis virus disease. The results indicated that the JE virus was biased and natural selection was the main factor shaping the codon usage that was determined and confirmed with the Nc, neutrality, PR2 plots and correlation analysis. The evolutionary analysis revealed that the virus had a substitution rate of 1.54 × 10-4 substitution/site/year and the tMRCA was found to be in 1723. The transmission of the virus in the map found transmissions mostly from China and transmitted across Asia and Africa. The selection pressure analysis employed three methods which had 969th codon site as diversifying site and had many purifying sites that shows the virus had evolved rapidly. The inferences from this study would aid people to employ this methodology on various diseases and also perform insilico studies in the field of vaccinology and immunoinformatics.
Collapse
Affiliation(s)
| | - Uma Bharathi Indrabalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560063, India
| | - Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Pranav Singh
- Department of Internal Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560063, India.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| | - Rajalakshmanan Eswaramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamilnadu, India.
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5606, USA.
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidhyapeetham, Mysuru Campus, Mysuru 570 026, Karnataka, India.
| |
Collapse
|
30
|
Zhou J, Xing Y, Zhou Z, Wang S. A comprehensive analysis of Usutu virus (USUV) genomes revealed lineage-specific codon usage patterns and host adaptations. Front Microbiol 2023; 13:967999. [PMID: 36713228 PMCID: PMC9878346 DOI: 10.3389/fmicb.2022.967999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
The Usutu virus (USUV) is an emerging arbovirus virus maintained in the environment of Afro-Eurasia via a bird-mosquito-bird enzootic cycle and sporadically infected other vertebrates. Despite primarily asymptomatic or mild symptoms, humans infected by USUV can develop severe neurological diseases such as meningoencephalitis. However, no detailed study has yet been conducted to investigate its evolution from the perspective of codon usage patterns. Codon usage choice of viruses reflects the genetic variations that enable them to reconcile their viability and fitness toward the external environment and new hosts. This study performed a comprehensive evolution and codon usage analysis of USUVs. Our reconstructed phylogenetic tree confirmed that the circulation viruses belong to eight distinct lineages, reaffirmed by principal component analysis based on codon usage patterns. We also found a relatively small codon usage bias and that natural selection, mutation pressure, dinucleotide abundance, and evolutionary processes collectively shaped the codon usage of the USUV, with natural selection predominating over the others. Additionally, a complex interaction of codon usage between the USUV and its host was observed. This process could have enabled USUV to adapt to various hosts and vectors, including humans. Therefore, the USUV may possess a potential risk of cross-species transmission and subsequent outbreaks. In this respect, further epidemiologic surveys, diversity monitoring, and pathogenetic research are warranted.
Collapse
|
31
|
Rahman SU, Rehman HU, Rahman IU, Khan MA, Rahim F, Ali H, Chen D, Ma W. Evolution of codon usage in Taenia saginata genomes and its impact on the host. Front Vet Sci 2023; 9:1021440. [PMID: 36713873 PMCID: PMC9875090 DOI: 10.3389/fvets.2022.1021440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023] Open
Abstract
The beef tapeworm, also known as Taenia saginata, is a zoonotic tapeworm from the genus Taenia in the order Cyclophyllidea. Taenia saginata is a food-borne zoonotic parasite with a worldwide distribution. It poses serious health risks to the host and has a considerable negative socioeconomic impact. Previous studies have explained the population structure of T. saginata within the evolutionary time scale and adaptive evolution. However, it is still unknown how synonymous codons are used by T. saginata. In this study, we used 90 T. saginata strains, applying the codon usage bias (CUB). Both base content and relative synonymous codon usage (RSCU) analysis revealed that AT-ended codons were more frequently used in the genome of T. saginata. Further low CUB was observed from the effective number of codons (ENC) value. The neutrality plot analysis suggested that the dominant factor of natural selection was involved in the structuring of CUB in T. saginata. Further analysis showed that T. saginata has adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts (Bos taurus and Homo sapiens). Generally, both natural selection and mutational pressure have an impact on the codon usage patterns of the protein-coding genes in T. saginata. This study is important because it characterized the codon usage pattern in the T. saginata genomes and provided the necessary data for a basic evolutionary study on them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Hassan Ur Rehman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Inayat Ur Rahman
- Department of Botany, Khushal Khan Khattak University, Karak, Pakistan
| | - Muazzam Ali Khan
- Department of Botany, Bacha Khan University, Charsadda, KP, Pakistan
| | - Fazli Rahim
- Department of Botany, Bacha Khan University, Charsadda, KP, Pakistan
| | - Hamid Ali
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China,*Correspondence: Wentao Ma ✉
| |
Collapse
|
32
|
Rahman SU, Rehman HU, Rahman IU, Rauf A, Alshammari A, Alharbi M, Haq NU, Suleria HAR, Raza SHA. Analysis of codon usage bias of lumpy skin disease virus causing livestock infection. Front Vet Sci 2022; 9:1071097. [PMID: 36544551 PMCID: PMC9762553 DOI: 10.3389/fvets.2022.1071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/10/2022] [Indexed: 12/07/2022] Open
Abstract
Lumpy skin disease virus (LSDV) causes lumpy skin disease (LSD) in livestock, which is a double-stranded DNA virus that belongs to the genus Capripoxvirus of the family Poxviridae. LSDV is an important poxvirus that has spread out far and wide to become distributed worldwide. It poses serious health risks to the host and causes considerable negative socioeconomic impact on farmers financially and on cattle by causing ruminant-related diseases. Previous studies explained the population structure of the LSDV within the evolutionary time scale and adaptive evolution. However, it is still unknown and remains enigmatic as to how synonymous codons are used by the LSDV. Here, we used 53 LSDV strains and applied the codon usage bias (CUB) analysis to them. Both the base content and the relative synonymous codon usage (RSCU) analysis revealed that the AT-ended codons were more frequently used in the genome of LSDV. Further low codon usage bias was calculated from the effective number of codons (ENC) value. The neutrality plot analysis suggested that the dominant factor of natural selection played a role in the structuring of CUB in LSDV. Additionally, the results from a comparative analysis suggested that the LSDV has adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts (Bos taurus and Homo sapiens). Both natural selection and mutational pressure have an impact on the codon usage patterns of the protein-coding genes in LSDV. This study is important because it has characterized the codon usage pattern in the LSDV genomes and has provided the necessary data for a basic evolutionary study on them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Hassan Ur Rehman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Inayat Ur Rahman
- Department of Botany, Khushal Khan Khattak University, Karak, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Noor ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Hafiz Ansar Rasul Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, Australia
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
33
|
Tyagi A, Nagar V. Genome dynamics, codon usage patterns and influencing factors in Aeromonas hydrophila phages. Virus Res 2022; 320:198900. [PMID: 36029927 DOI: 10.1016/j.virusres.2022.198900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
In the present study, genome characteristics and codon usage patterns of 44 Aeromonas hydrophila phages were studied. Phage genomes varied from 30.8 to 262.0 kb with mean±SD and median values of 111.3 ± 81.4 kb and 79.4 kb, respectively. Though the great variation in phage GC contents (35.1-62.2%) was observed, GC contents of all phages (except two phages) were significantly less than the GC content (62.4 ± 5.6%) of the host. The effective number of codons (ENC) values of phage genes ranged from 27.7 to 61 with a mean±SD value of 47.4 ± 6.8. Out of a total 5773 phage genes, 207 (3.6%), 3,528 (61.1%) and 2,012 (34.9%) genes had strong (ENC < 35), moderate (35 < ENC < 50) and low (ENC ≥ 50) codon usage bias, respectively. During relative synonymous codon usage (RSCU) analysis, shared usage of preferred codons was also observed between the phages and host. During codon adaptation index (CAI) analysis, 1028 (17.8%) phage genes showed significant adaptation towards the host. Among these genes, 797 (78.0%) genes encoded hypothetical proteins or proteins of unknown function; whereas 118 (12%) genes encoded the phage structural and packaging proteins. Segregation of ENC, RSCU and CAI analysis results based on genome size also indicated that codon usage bias was more prominent in phages with small genomes. Correlation, neutrality and GC3 versus ENC analyzes indicated a more dominant role of natural selection in shaping the codon usage patterns of A. hydrophila phages. The findings of the current study could be useful from evolutionary and host-pathogen interaction perspectives leading to efficient utilization of phages for therapeutic and other applications.
Collapse
Affiliation(s)
- Anuj Tyagi
- Department of Aquatic Environment, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India.
| | - Vandan Nagar
- Food Microbiology Group, Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra 400085, India
| |
Collapse
|
34
|
Sophiarani Y, Chakraborty S. Comparison of compositional constraints: Nuclear genome vs plasmid genome of Pseudomonas syringae pv. tomato DC3000. J Biosci 2022. [DOI: 10.1007/s12038-022-00296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Jungfleisch J, Böttcher R, Talló-Parra M, Pérez-Vilaró G, Merits A, Novoa EM, Díez J. CHIKV infection reprograms codon optimality to favor viral RNA translation by altering the tRNA epitranscriptome. Nat Commun 2022; 13:4725. [PMID: 35953468 PMCID: PMC9366759 DOI: 10.1038/s41467-022-31835-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Ample evidence indicates that codon usage bias regulates gene expression. How viruses, such as the emerging mosquito-borne Chikungunya virus (CHIKV), express their genomes at high levels despite an enrichment in rare codons remains a puzzling question. Using ribosome footprinting, we analyze translational changes that occur upon CHIKV infection. We show that CHIKV infection induces codon-specific reprogramming of the host translation machinery to favor the translation of viral RNA genomes over host mRNAs with an otherwise optimal codon usage. This reprogramming was mostly apparent at the endoplasmic reticulum, where CHIKV RNAs show high ribosome occupancy. Mechanistically, it involves CHIKV-induced overexpression of KIAA1456, an enzyme that modifies the wobble U34 position in the anticodon of tRNAs, which is required for proper decoding of codons that are highly enriched in CHIKV RNAs. Our findings demonstrate an unprecedented interplay of viruses with the host tRNA epitranscriptome to adapt the host translation machinery to viral production. Viruses completely depend on the host translational machinery, but their genomes are often enriched in rare codons and therefore should be translated with poor efficiency. Here, Jungfleisch et al. apply Ribo-Seq and RNASeq to provide a global view on the translational changes occurring during Chikungunya virus (CHIKV) infection. CHIKV infection induces a codon-specific reprogramming of the host translation machinery to favor the translation of viral RNA genomes over host mRNAs via tRNA modification.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - René Böttcher
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | - Marc Talló-Parra
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Gemma Pérez-Vilaró
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Juana Díez
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
36
|
Alqahtani T, Khandia R, Puranik N, Alqahtani AM, Alghazwani Y, Alshehri SA, Chidambaram K, Kamal MA. Codon Usage is Influenced by Compositional Constraints in Genes Associated with Dementia. Front Genet 2022; 13:884348. [PMID: 36017501 PMCID: PMC9395603 DOI: 10.3389/fgene.2022.884348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
Dementia is a clinical syndrome characterized by progressive cognitive decline, and the symptoms could be gradual, persistent, and progressive. In the present study, we investigated 47 genes that have been linked to dementia. Compositional, selectional, and mutational forces were seen to be involved. Nucleotide components that influenced A- and GC-affected codon usages bias at all three codon positions. The influence of these two compositional constraints on codon usage bias (CUB) was positive for nucleotide A and negative for GC. Nucleotide A also experienced the highest mutational force, and GC-ending codons were preferred over AT-ending codons. A high bias toward GC-ending codons enhances the gene expression level, evidenced by the positive association between CAI- and GC-ending codons. Unusual behavior of the TTG codon showing an inverse relationship with the GC-ending codon and negative influence of gene expression, behavior contrary to all other GC-ending codons, shows an operative selectional force. Furthermore, parity analysis, higher translational selection value, preference of GC-ending codons over AT-ending codons, and association of gene length with gene expression refer to the dominant role of selection pressure with compositional constraint and mutational force-shaping codon usage.
Collapse
Affiliation(s)
- Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Nidhi Puranik
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| |
Collapse
|
37
|
Wu H, Li B, Miao Z, Hu L, Zhou L, Lu Y. Codon usage of host-specific P genotypes (VP4) in group A rotavirus. BMC Genomics 2022; 23:518. [PMID: 35842571 PMCID: PMC9288207 DOI: 10.1186/s12864-022-08730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background Group A rotavirus (RVA) is a common causative agent of acute gastroenteritis in infants and young children worldwide. RVA P genotypes, determined by VP4 sequences, have been confirmed to infect humans and animals. However, their codon usage patterns that are essential to obtain insights into the viral evolution, host adaptability, and genetic characterization remained unclear, especially across animal hosts. Results We performed a comprehensive codon usage analysis of eight host-specific RVA P genotypes, including human RVA (P[4] and P[8]), porcine RVA (P[13] and P[23]), and zoonotic RVA (P[1], P[6], P[7] and P[19]), based on 233 VP4 complete coding sequences. Nucleotide composition, relative synonymous codon usage (RSCU), and effective number of codons (ENC) were calculated. Principal component analysis (PCA) based on RSCU values was used to explore the codon usage patterns of different RVA P genotypes. In addition, mutation pressure and natural selection were identified by using ENC-plot, parity rule 2 plot, and neutrality plot analyses. All VP4 sequences preferred using A/U nucleotides (A: 0.354-0.377, U: 0.267-0.314) than G/C nucleotides across genotypes. Similarly, majority of commonly used synonymous codons were likely to end with A/U nucleotides (A: 9/18-12/18, U: 6/18-9/18). In PCA, human, porcine, and zoonotic genotypes clustered separately in terms of RSCU values, indicating the host-specific codon usage patterns; however, porcine and zoonotic genotypes were partly overlapped. Human genotypes, P[4] and P[8], had stronger codon usage bias, as indicated by more over-represented codons and lower ENC, compared to porcine and zoonotic genotypes. Moreover, natural selection was determined to be a predominant driver in shaping the codon usage bias across the eight P genotypes. In addition, mutation pressure contributed to the codon usage bias of human genotypes. Conclusions Our study identified a strong codon usage bias of human RVA P genotypes attributable to both natural selection and mutation pressure, whereas similar codon usage bias between porcine and zoonotic genotypes predominantly attributable to natural selection. It further suggests possible cross-species transmission. Therefore, it warrants further surveillance of RVA P genotypes for early identification of zoonotic infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08730-2.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Bingzhe Li
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ziping Miao
- Institute of Communicable Diseases Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
Wang Q, Lyu X, Cheng J, Fu Y, Lin Y, Abdoulaye AH, Jiang D, Xie J. Codon Usage Provides Insights into the Adaptive Evolution of Mycoviruses in Their Associated Fungi Host. Int J Mol Sci 2022; 23:7441. [PMID: 35806445 PMCID: PMC9267111 DOI: 10.3390/ijms23137441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Codon usage bias (CUB) could reflect co-evolutionary changes between viruses and hosts in contrast to plant and animal viruses, and the systematic analysis of codon usage among the mycoviruses that infect plant pathogenic fungi is limited. We performed an extensive analysis of codon usage patterns among 98 characterized RNA mycoviruses from eight phytopathogenic fungi. The GC and GC3s contents of mycoviruses have a wide variation from 29.35% to 64.62% and 24.32% to 97.13%, respectively. Mycoviral CUB is weak, and natural selection plays a major role in the formation of mycoviral codon usage pattern. In this study, we demonstrated that the codon usage of mycoviruses is similar to that of some host genes, especially those involved in RNA biosynthetic process and transcription, suggesting that CUB is a potential evolutionary mechanism that mycoviruses adapt to in their hosts.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Assane Hamidou Abdoulaye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
39
|
Li B, Wu H, Miao Z, Hu L, Zhou L, Lu Y. Codon Usage of Hepatitis E Viruses: A Comprehensive Analysis. Front Microbiol 2022; 13:938651. [PMID: 35801104 PMCID: PMC9253588 DOI: 10.3389/fmicb.2022.938651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen with multiple species and genotypes, which may be classified into human, animal, and zoonotic HEV. Codon usage bias of HEV remained unclear. This study aims to characterize the codon usage of HEV and elucidate the main drivers influencing the codon usage bias. A total of seven HEV genotypes, HEV-1 (human HEV), HEV-3 and HEV-4 (zoonotic HEV), HEV-8, HEV-B, HEV-C1, and HEV-C2 (emerging animal HEV), were included in the study. Complete coding sequences, ORF1, ORF2, and ORF3, were accordingly obtained in the GenBank. Except for HEV-8, the other six genotypes tended to use codons ending in G/C. Based on the analysis of relatively synonymous codon usage (RSCU) and principal component analysis (PCA), codon usage bias was determined for HEV genotypes. Codon usage bias differed widely across human, zoonotic, and animal HEV genotypes; furthermore, it varied within certain genotypes such as HEV-4, HEV-8, and HEV-C1. In addition, dinucleotide abundance revealed that HEV was affected by translation selection to form a unique dinucleotide usage pattern. Moreover, parity rule 2 analysis (PR2), effective codon number (ENC)-plot, and neutrality analysis were jointly performed. Natural selection played a leading role in forming HEV codon usage bias, which was predominant in HEV-1, HEV-3, HEV-B and HEV-C1, while affected HEV-4, HEV-8, and HEV-C2 in combination with mutation pressure. Our findings may provide insights into HEV evolution and codon usage bias.
Collapse
Affiliation(s)
- Bingzhe Li
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Ziping Miao
- Institute of Communicable Diseases Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
- *Correspondence: Yihan Lu,
| |
Collapse
|
40
|
Ahmed W, Gupta S, Singh D, Singh R. Insight of genetic features prevalent in three Echinoderm species (Apostichopus japonicus, Heliocedaris erythrogramma and Asterias rubens) and their evolutionary association using comparative codon pattern analysis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Abdoli R, Mazumder TH, Nematollahian S, Zanjani RS, Mesbah RA, Uddin A. Gaining insights into the compositional constraints and molecular phylogeny of five silkworms mitochondrial genome. Int J Biol Macromol 2022; 206:543-552. [PMID: 35245576 DOI: 10.1016/j.ijbiomac.2022.02.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
This study was performed to identify codon usage bias (CUB), genetic similarity and phylogenetic analysis of complete mitochondrial genomes along with separate sequences of 13 protein coding genes per each genome from five types of silkworm including Bombyx mori, Bombyx mandarina, Samia cynthia ricini, Antheraea pernyi and Antheraea assama. Nucleotide composition analysis suggested that AT content was higher than GC content and t-test analysis revealed significance difference (p < 0.01) between AT and GC content. Relative synonymous CUB analysis revealed most over-represented codon ends with A or T. Parity plot analysis revealed both natural selection and mutation pressure influenced CUB of mitochondrial genes while neutrality plot analysis suggested that role of natural selection was higher than mutation pressure. The effective number of codons (ENC) revealed the CUB was low among genes and genomes. In phylogenetic analysis of complete mitochondrial genomes, the B. mori fell in a same cluster with Bombyx mandarina and showed the most similarity (96.7%). In terms of protein coding genes, COX1, COX2 and COX3 showed the most obvious differences. In conclusion, comparative analysis of mitochondrial genomes could be used to identify differences in gene organization, accurate phylogenetic analysis and clustering of different types of silkworms.
Collapse
Affiliation(s)
- Ramin Abdoli
- Iran Silk Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
| | | | - Shahla Nematollahian
- Iran Silk Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Reza Sourati Zanjani
- Iran Silk Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Rahim Abdollahi Mesbah
- Iran Silk Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, Assam, India.
| |
Collapse
|
42
|
Gaunt ER, Digard P. Compositional biases in RNA viruses: Causes, consequences and applications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1679. [PMID: 34155814 PMCID: PMC8420353 DOI: 10.1002/wrna.1679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023]
Abstract
If each of the four nucleotides were represented equally in the genomes of viruses and the hosts they infect, each base would occur at a frequency of 25%. However, this is not observed in nature. Similarly, the order of nucleotides is not random (e.g., in the human genome, guanine follows cytosine at a frequency of ~0.0125, or a quarter the number of times predicted by random representation). Codon usage and codon order are also nonrandom. Furthermore, nucleotide and codon biases vary between species. Such biases have various drivers, including cellular proteins that recognize specific patterns in nucleic acids, that once triggered, induce mutations or invoke intrinsic or innate immune responses. In this review we examine the types of compositional biases identified in viral genomes and current understanding of the evolutionary mechanisms underpinning these trends. Finally, we consider the potential for large scale synonymous recoding strategies to engineer RNA virus vaccines, including those with pandemic potential, such as influenza A virus and Severe Acute Respiratory Syndrome Coronavirus Virus 2. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Eleanor R. Gaunt
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| | - Paul Digard
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| |
Collapse
|
43
|
Khandia R, Ali Khan A, Alexiou A, Povetkin SN, Nikolaevna VM. Codon Usage Analysis of Pro-Apoptotic Bim Gene Isoforms. J Alzheimers Dis 2022; 86:1711-1725. [DOI: 10.3233/jad-215691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Bim is a Bcl-2 homology 3 (BH3)-only proteins, a group of pro-apoptotic proteins involved in physiological and pathological conditions. Both the overexpression and under-expression of Bim protein are associated with the diseased condition, and various isoforms of Bim protein are present with differential apoptotic potential. Objective: The present study attempted to envisage the association of various molecular signatures with the codon choices of Bim isoforms. Methods: Molecular signatures like composition, codon usage, nucleotide skews, the free energy of mRNA transcript, physical properties of proteins, codon adaptation index, relative synonymous codon usage, and dinucleotide odds ratio were determined and analyzed for their associations with codon choices of Bim gene. Results: Skew analysis of the Bim gene indicated the preference of C nucleotide over G, A, and T and preference of G over T and A nucleotides was observed. An increase in C content at the first and third codon position increased gene expression while it decreased at the second codon position. Compositional constraints on nucleotide C at all three codon positions affected gene expression. The analysis revealed an exceptionally high usage of CpC dinucleotide in all the envisaged 31 isoforms of Bim. We correlated it with the requirement of rapid demethylation machinery to fine-tune the Bimgene expression. Also, mutational pressure played a dominant role in shaping codon usage bias in Bim isoforms. Conclusion: An exceptionally high usage of CpC dinucleotide in all the envisaged 31 isoforms of Bim indicates a high order selectional force to fine tune Bim gene expression.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Australia & AFNP Med, Austria
| | | | | |
Collapse
|
44
|
Rahman SU, Abdullah M, Khan AW, Haq MIU, Haq NU, Aziz A, Tao S. A detailed comparative analysis of codon usage bias in Alongshan virus. Virus Res 2022; 308:198646. [PMID: 34822954 DOI: 10.1016/j.virusres.2021.198646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022]
Abstract
Alongshan virus (ALSV) is an emerging tick-borne pathogen that infects humans, causing febrile disease. ALSV uses Ixodes Persulcatus ticks to infect humans with a wide range of signs, from asymptomatic to encephalitis-like syndrome. There is an increasing public health concern about the ALSV infection. To get insight into the impacts of viral relations with their hosts on viral ability, survival, and evasion from hosts immune systems remain unknown. The codon usage is a driving force in viral genome evolution; therefore, we enrolled 41 ALSV strains in codon usage analysis to elucidate the molecular evolutionary dynamics of ALSV. The results indicate that the overall codon usage among ALSV isolates is relatively similar and slightly biased. Base compositions for the cds were in order of G >A >C >U and in the third position of codons G3 >A3 >C3 >T3. The RSCU values revealed that the more frequently used codons were mostly GC ended. Different codon preferences in ALSV genes in relation to codon usage of H. sapiens and Ixodes Persulcatus genes were found. Neutrality plot was determined to reveal the superiority of natural selection over directional mutation pressure in causing CUB based on GC12 versus GC3 contents. The results of these studies suggest that the emergence of ALSV in China, Russia and Finland may also be reflected in ALSV codon usage. Altogether, the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of ALSV.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan; College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| | - Muhammad Abdullah
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Abdul Wajid Khan
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Muhammad Inam Ul Haq
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Noor Ul Haq
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Abdul Aziz
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
45
|
Comprehensive Analysis of Codon Usage Patterns in Chinese Porcine Circoviruses Based on Their Major Protein-Coding Sequences. Viruses 2022; 14:v14010081. [PMID: 35062285 PMCID: PMC8778832 DOI: 10.3390/v14010081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023] Open
Abstract
Porcine circoviruses (PCVs) are distributed in swine herds worldwide and represent a threat to the health of domestic pigs and the profits of the swine industry. Currently, four PCV species, including PCV-1, PCV-2, PCV-3 and PCV-4, have been identified in China. Considering the ubiquitous characteristic of PCVs, the new emerged PCV-4 and the large scale of swine breeding in China, an overall analysis on codon usage bias for Chinese PCV sequences was performed by using the major proteins coding sequences (ORF1 and ORF2) to better understand the relationship of these viruses with their host. The data from genome nucleotide frequency composition and relative synonymous codon usage (RSCU) analysis revealed an overrepresentation of AT pair and the existence of a certain codon usage bias in all PCVs. However, the values of an effective number of codons (ENC) revealed that the bias was of low magnitude. Principal component analysis, ENC-plot, parity rule two analysis and correlation analysis suggested that natural selection and mutation pressure were both involved in the shaping of the codon usage patterns of PCVs. However, a neutrality plot revealed a stronger effect of natural selection than mutation pressure on codon usage patterns. Good host adaptation was also shown by the codon adaptation index analysis for all these viruses. Interestingly, obtained data suggest that PCV-4 might be more adapted to its host compared to other PCVs. The present study obtained insights into the codon usage pattern of PCVs based on ORF1 and ORF2, which further helps the understanding the molecular evolution of these swine viruses.
Collapse
|
46
|
Tikhomirova TS, Matyunin MA, Lobanov MY, Galzitskaya OV. In-depth analysis of amino acid and nucleotide sequences of Hsp60: how conserved is this protein? Proteins 2021; 90:1119-1141. [PMID: 34964171 DOI: 10.1002/prot.26294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/07/2022]
Abstract
Chaperonin Hsp60, as a protein found in all organisms, is of great interest in medicine, since it is present in many tissues and can be used both as a drug and as an object of targeted therapy. Hence, Hsp60 deserves a fundamental comparative analysis to assess its evolutionary characteristics. It was found that the percent identity of Hsp60 amino acid sequences both within and between phyla was not high enough to identify Hsp60s as highly conserved proteins. However, their ATP binding sites are largely conserved. The amino acid composition of Hsp60s remained relatively constant. At the same time, the analysis of the nucleotide sequences showed that GC content in the Hsp60 genes was comparable to or greater than the genomic values, which may indicate a high resistance to mutations due to tight control of the nucleotide composition by DNA repair systems. Natural selection plays a dominant role in the evolution of Hsp60 genes. The degree of mutational pressure affecting the Hsp60 genes is quite low, and its direction does not depend on taxonomy. Interestingly, for the Hsp60 genes from Chordata, Arthropoda, and Proteobacteria the exact direction of mutational pressure could not be determined. However, upon further division into classes, it was found that the direction of the mutational pressure for Hsp60 genes from Fish differs from that for other chordates. The direction of the mutational pressure affects the synonymous codon usage bias. The number of high and low represented codons increases with increasing GC content, which can improve codon usage. Special server has been created for bioinformatics analysis of Hsp60: http://oka.protres.ru:4202/.
Collapse
Affiliation(s)
- Tatyana S Tikhomirova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, Russia
| | - Maxim A Matyunin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Michail Yu Lobanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
47
|
Bu Y, Wu X, Sun N, Man Y, Jing Y. Codon usage bias predicts the functional MYB10 gene in Populus. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153491. [PMID: 34399121 DOI: 10.1016/j.jplph.2021.153491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Analysis of codon usage bias (CUB) in different species can reveal the patterns of genetic information transfer across those species. To better understand the characteristics of MYB10-a key regulator of anthocyanin biosynthesis-and identify the true (functional) MYB10 gene among the two candidates in Populus, we analysed the coding sequences of MYB10 genes in 10 different species using Codon W, CHIPS, CUSP, and CAI. Majority of the optimal amino acid codons of MYB10 genes ended with A/U, and GGA, UCA, GCA, AGA, and CCA were over-represented in all plant species studied. Among the two most promising MYB10 gene candidates in Populus, Potri.17G125700 shared a higher similarity of codon usage with MYB10 genes from other plant species, suggesting that it encodes the functional MYB10 in Populus. We verified this speculation by cloning both candidate MYB10 genes from Populus into vectors to produce transiently transformed seedlings. Colour phenotypes and anthocyanin content of the transiently transformed seedlings indicated that Potri.17G125700 encodes the true MYB10 transcription factor, which positively regulates anthocyanin accumulation in Populus. Furthermore, CUB analysis was used to select the most promising MYB12 candidate in Malus sp. (crabapple). Our results demonstrate the effectiveness of CUB analysis as a promising method to identify the functional gene from a set of candidates in long-living plants with complex genetics.
Collapse
Affiliation(s)
- Yufen Bu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Xinyuan Wu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Na Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Yi Man
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Yanping Jing
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| |
Collapse
|
48
|
Mazumder GA, Uddin A, Chakraborty S. Analysis of codon usage bias in mitochondrial CO gene among platyhelminthes. Mol Biochem Parasitol 2021; 245:111410. [PMID: 34487743 DOI: 10.1016/j.molbiopara.2021.111410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
The phenomenon of non-uniform usage of the synonymous codons, where some codons are given more preference to others, is known as codon usage bias (CUB). CUB is known to be determined by two major evolutionary forces i.e. mutation pressure and selection. We used various approaches to understand the codon usage pattern in mitochondrial CO (MT-CO) genes involved in complex IV of the respiratory chain (RC) as no work was reported yet. Our present study revealed that CUB was relatively high and the coding sequences were rich in A and T. Correspondence analysis further indicated that A/T compositional properties under mutational pressure might be affecting the codon usage pattern and was different in different classes for MT-CO gene. A highly significant correlation between A% and A3%, T% and T3%, G% and G3%, C% and C3%, GC% and GC3% in all the classes indicated that compositional constraints under mutational pressure and natural selection might affect the CUB. Neutrality plot indicated that both natural selection and mutational bias affected the CUB, where, natural selection played the major role as compared to mutational pressure.
Collapse
Affiliation(s)
- Gulshana A Mazumder
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Arif Uddin
- Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
49
|
Yu X, Gao K, Pi M, Li H, Zhong W, Li B, Ning Z. Phylogenetic and codon usage analysis for replicase and capsid genes of porcine circovirus 3. Vet Res Commun 2021; 45:353-361. [PMID: 34357481 DOI: 10.1007/s11259-021-09816-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
Porcine circovirus type 3 (PCV3) is a highly contagious virus belonging to the family Circoviridae that causes the severe dermatitis and nephropathy syndrome. To date, PCV3 has a worldwide distribution and bring huge economic losses to swine industry. Replicase (Rep) and capsid (Cap) are two major coded proteins of PCV3. Considering the large number of new PCV3 isolates were reported in the past few years and the research for the codon usage pattern of Rep and Cap genes was still a gap, phylogenetic and codon usage analysis of these two genes was performed. Phylogenetic analyses showed that Rep genes in PCV3a were dispersed with no clear clusters while corresponding sequences in PCV3b clustered into two groups and Cap genes clustered into distinct clades according to different genotypes. Relative synonymous codon usage (RSCU) analysis revealed that the codon usage bias existed and effective number of codon (ENC) analysis showed that the bias was slight low. ENC-GC3s plot indicated that mutational pressure and other factors both played a role in PCV3 codon usage and neutrality plot analysis showed that natural selection was the main force influencing the codon usage pattern. The results presented here provided the important basic data on codon usage pattern of Rep and Cap genes, and a better understanding of the evolution and potential origin of PCV3.
Collapse
Affiliation(s)
- Xianglong Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kuipeng Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Molin Pi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxia Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Baojian Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
50
|
Ata G, Wang H, Bai H, Yao X, Tao S. Edging on Mutational Bias, Induced Natural Selection From Host and Natural Reservoirs Predominates Codon Usage Evolution in Hantaan Virus. Front Microbiol 2021; 12:699788. [PMID: 34276633 PMCID: PMC8283416 DOI: 10.3389/fmicb.2021.699788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The molecular evolutionary dynamics that shape hantaviruses’ evolution are poorly understood even now, besides the contribution of virus-host interaction to their evolution remains an open question. Our study aimed to investigate these two aspects in Hantaan virus (HTNV)—the prototype of hantaviruses and an emerging zoonotic pathogen that infects humans, causing hemorrhagic fever with renal syndrome (HFRS): endemic in Far East Russia, China, and South Korea—via a comprehensive, phylogenetic-dependent codon usage analysis. We found that host- and natural reservoir-induced natural selection is the primary determinant of its biased codon choices, exceeding the mutational bias effect. The phylogenetic analysis of HTNV strains resulted in three distinct clades: South Korean, Russian, and Chinese. An effective number of codon (ENC) analysis showed a slightly biased codon usage in HTNV genomes. Nucleotide composition and RSCU analyses revealed a significant bias toward A/U nucleotides and A/U-ended codons, indicating the potential influence of mutational bias on the codon usage patterns of HTNV. Via ENC-plot, Parity Rule 2 (PR2), and neutrality plot analyses, we would conclude the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of HTNV; however, natural selection is the dominant factor influencing its codon usage bias. Codon adaptation index (CAI), Relative codon deoptimization index (RCDI), and Similarity Index (SiD) analyses uncovered the intense selection pressure from the host (Human) and natural reservoirs (Striped field mouse and Chinese white-bellied rat) in shaping HTNV biased codon choices. Our study clearly revealed the evolutionary processes in HTNV and the role of virus-host interaction in its evolution. Moreover, it opens the door for a more comprehensive codon usage analysis for all hantaviruses species to determine their molecular evolutionary dynamics and adaptability to several hosts and environments. We believe that our research will help in a better and deep understanding of HTNV evolution that will serve its future basic research and aid live attenuated vaccines design.
Collapse
Affiliation(s)
- Galal Ata
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Haoxiang Bai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|