1
|
Kim H, Liu Y, Kim J, Kim Y, Klouda T, Fisch S, Baek SH, Liu T, Dahlberg S, Hu CJ, Tian W, Jiang X, Kosmas K, Christou HA, Korman BD, Vargas SO, Wu JC, Stenmark KR, Perez VDJ, Nicolls MR, Raby BA, Yuan K. Pericytes contribute to pulmonary vascular remodeling via HIF2α signaling. EMBO Rep 2024; 25:616-645. [PMID: 38243138 PMCID: PMC10897382 DOI: 10.1038/s44319-023-00054-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024] Open
Abstract
Vascular remodeling is the process of structural alteration and cell rearrangement of blood vessels in response to injury and is the cause of many of the world's most afflicted cardiovascular conditions, including pulmonary arterial hypertension (PAH). Many studies have focused on the effects of vascular endothelial cells and smooth muscle cells (SMCs) during vascular remodeling, but pericytes, an indispensable cell population residing largely in capillaries, are ignored in this maladaptive process. Here, we report that hypoxia-inducible factor 2α (HIF2α) expression is increased in the lung tissues of PAH patients, and HIF2α overexpressed pericytes result in greater contractility and an impaired endothelial-pericyte interaction. Using single-cell RNAseq and hypoxia-induced pulmonary hypertension (PH) models, we show that HIF2α is a major molecular regulator for the transformation of pericytes into SMC-like cells. Pericyte-selective HIF2α overexpression in mice exacerbates PH and right ventricular hypertrophy. Temporal cellular lineage tracing shows that HIF2α overexpressing reporter NG2+ cells (pericyte-selective) relocate from capillaries to arterioles and co-express SMA. This novel insight into the crucial role of NG2+ pericytes in pulmonary vascular remodeling via HIF2α signaling suggests a potential drug target for PH.
Collapse
Affiliation(s)
- Hyunbum Kim
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu Liu
- Stanford Cardiovascular Institute; Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Jiwon Kim
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yunhye Kim
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy Klouda
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sudeshna Fisch
- Department of Medicine, Brigham and Women Hospital, Boston, MA, USA
| | - Seung Han Baek
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiffany Liu
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suzanne Dahlberg
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Wen Tian
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford University, Stanford, CA, USA
| | - Xinguo Jiang
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford University, Stanford, CA, USA
| | - Kosmas Kosmas
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Helen A Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Korman
- Division of Allergy/Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Sara O Vargas
- Division of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute; Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford University, Stanford, CA, USA
| | - Mark R Nicolls
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford University, Stanford, CA, USA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ke Yuan
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Hopkins CD, Wessel C, Chen O, El-Kersh K, Cathey D, Cave MC, Cai L, Huang J. A hypothesis: Potential contributions of metals to the pathogenesis of pulmonary artery hypertension. Life Sci 2024; 336:122289. [PMID: 38007143 PMCID: PMC10872724 DOI: 10.1016/j.lfs.2023.122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Pulmonary artery hypertension (PAH) is characterized by vasoconstriction and vascular remodeling resulting in both increased pulmonary vascular resistance (PVR) and pulmonary artery pressure (PAP). The chronic and high-pressure stress experienced by endothelial cells can give rise to inflammation, oxidative stress, and infiltration by immune cells. However, there is no clearly defined mechanism for PAH and available treatment options only provide limited symptomatic relief. Due to the far-reaching effects of metal exposures, the interaction between metals and the pulmonary vasculature is of particular interest. This review will briefly introduce the pathophysiology of PAH and then focus on the potential roles of metals, including essential and non-essential metals in the pathogenic process in the pulmonary arteries and right heart, which may be linked to PAH. Based on available data from human studies of occupational or environmental metal exposure, including lead, antimony, iron, and copper, the hypothesis of metals contributing to the pathogenesis of PAH is proposed as potential risk factors and underlying mechanisms for PAH. We propose that metals may initiate or exacerbate the pathogenesis of PAH, by providing potential mechanism by which metals interact with hypoxia-inducible factor and tumor suppressor p53 to modulate their downstream cellular proliferation pathways. These need further investigation. Additionally, we present future research directions on roles of metals in PAH.
Collapse
Affiliation(s)
- C Danielle Hopkins
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Caitlin Wessel
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Oscar Chen
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Karim El-Kersh
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Dakotah Cathey
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Matthew C Cave
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA; The Transplant Program at University of Louisville Health - Jewish Hospital Trager Transplant Center, Louisville, KY, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA; Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA; The Transplant Program at University of Louisville Health - Jewish Hospital Trager Transplant Center, Louisville, KY, USA; Cardiovascular Innovation Institute, Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
3
|
Wang E, Zhou S, Zeng D, Wang R. Molecular regulation and therapeutic implications of cell death in pulmonary hypertension. Cell Death Discov 2023; 9:239. [PMID: 37438344 DOI: 10.1038/s41420-023-01535-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a clinical and pathophysiological syndrome caused by changes in pulmonary vascular structure or function that results in increased pulmonary vascular resistance and pulmonary arterial pressure, and it is characterized by pulmonary endothelial dysfunction, pulmonary artery media thickening, pulmonary vascular remodeling, and right ventricular hypertrophy, all of which are driven by an imbalance between the growth and death of pulmonary vascular cells. Programmed cell death (PCD), different from cell necrosis, is an active cellular death mechanism that is activated in response to both internal and external factors and is precisely regulated by cells. More than a dozen PCD modes have been identified, among which apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and cuproptosis have been proven to be involved in the pathophysiology of PH to varying degrees. This article provides a summary of the regulatory patterns of different PCD modes and their potential effects on PH. Additionally, it describes the current understanding of this complex and interconnected process and analyzes the therapeutic potential of targeting specific PCD modes as molecular targets.
Collapse
Affiliation(s)
- Enze Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei third clinical college of Anhui Medical University, Hefei, 230022, China
| | - Daxiong Zeng
- Department of pulmonary and critical care medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215006, China.
| | - Ran Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China.
| |
Collapse
|
4
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|
5
|
Antigny F, Mercier O, Humbert M, Sabourin J. Excitation-contraction coupling and relaxation alteration in right ventricular remodelling caused by pulmonary arterial hypertension. Arch Cardiovasc Dis 2020; 113:70-84. [DOI: 10.1016/j.acvd.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/09/2023]
|
6
|
Graham BB, Kumar R, Mickael C, Kassa B, Koyanagi D, Sanders L, Zhang L, Perez M, Hernandez-Saavedra D, Valencia C, Dixon K, Harral J, Loomis Z, Irwin D, Nemkov T, D’Alessandro A, Stenmark KR, Tuder RM. Vascular Adaptation of the Right Ventricle in Experimental Pulmonary Hypertension. Am J Respir Cell Mol Biol 2018; 59:479-489. [PMID: 29851508 PMCID: PMC6178158 DOI: 10.1165/rcmb.2018-0095oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/31/2018] [Indexed: 01/25/2023] Open
Abstract
Optimal right ventricular (RV) function in pulmonary hypertension (PH) requires structural and functional coupling between the RV cardiomyocyte and its adjacent capillary network. Prior investigations have indicated that RV vascular rarefaction occurs in PH, which could contribute to RV failure by reduced delivery of oxygen or other metabolic substrates. However, it has not been determined if rarefaction results from relative underproliferation in the setting of tissue hypertrophy or from actual loss of vessels. It is also unknown if rarefaction results in inadequate substrate delivery to the RV tissue. In the present study, PH was induced in rats by SU5416-hypoxia-normoxia exposure. The vasculature in the RV free wall was assessed using stereology. Steady-state metabolomics of the RV tissue was performed by mass spectrometry. Complementary studies were performed in hypoxia-exposed mice and rats. Rats with severe PH had evidence of RV failure by decreased cardiac output and systemic hypotension. By stereology, there was significant RV hypertrophy and increased total vascular length in the RV free wall in close proportion, with evidence of vessel proliferation but no evidence of endothelial cell apoptosis. There was a modest increase in the radius of tissue served per vessel, with decreased arterial delivery of metabolic substrates. Metabolomics revealed major metabolic alterations and metabolic reprogramming; however, metabolic substrate delivery was functionally preserved, without evidence of either tissue hypoxia or depletion of key metabolic substrates. Hypoxia-treated rats and mice had similar but milder alterations. There is significant homeostatic vascular adaptation in the right ventricle of rodents with PH.
Collapse
Affiliation(s)
- Brian B. Graham
- Program in Translation Lung Research, Department of Medicine
| | - Rahul Kumar
- Program in Translation Lung Research, Department of Medicine
| | - Claudia Mickael
- Program in Translation Lung Research, Department of Medicine
| | - Biruk Kassa
- Program in Translation Lung Research, Department of Medicine
| | - Dan Koyanagi
- Program in Translation Lung Research, Department of Medicine
| | - Linda Sanders
- Program in Translation Lung Research, Department of Medicine
| | - Li Zhang
- Program in Translation Lung Research, Department of Medicine
| | - Mario Perez
- Program in Translation Lung Research, Department of Medicine
| | | | | | | | | | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver–Anschutz Medical Campus, Aurora, Colorado
| | | | - Rubin M. Tuder
- Program in Translation Lung Research, Department of Medicine
| |
Collapse
|
7
|
Beneficial effects of fenofibrate in pulmonary hypertension in rats. Mol Cell Biochem 2018; 449:185-194. [DOI: 10.1007/s11010-018-3355-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
|
8
|
Breen EC, Scadeng M, Lai NC, Murray F, Bigby TD. Functional magnetic resonance imaging for in vivo quantification of pulmonary hypertension in the Sugen 5416/hypoxia mouse. Exp Physiol 2017; 102:347-353. [PMID: 27897352 DOI: 10.1113/ep086067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/25/2016] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? Non-invasive, quantitative methods to assess right cardiac function in mice with pulmonary hypertension have not been demonstrated. What is the main finding and its importance? This study shows the potential of magnetic resonance imaging to estimate right ventricular ejection fraction and measure spatial, dynamic changes in cardiac structure in the Sugen 5416/hypoxia mouse model of pulmonary hypertension. Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery pressures and right heart failure. Mouse models of PAH are instrumental in understanding the disease pathophysiology. However, few methods are available to evaluate right cardiac function in small animals. In this study, magnetic resonance imaging was used to measure in vivo cardiac dimensions in the Sugen 5416/hypoxia mouse model. Pulmonary hypertension (PH) was induced in C57BL/6 mice by 3 weeks of exposure to 10% oxygen and vascular endothelial growth factor receptor inhibition (20 mg kg-1 SU5416). Control mice were housed in room air and received vehicle (DMSO). Right ventricular pressures were recorded with a pressure-conductance transducer. Short-axis contiguous 1-mm-thick slices were acquired through the heart and great vessels using a fast low-angle shot (FLASH)-cine sequence. Thirteen images were collected throughout each cardiac cycle. Right ventricular systolic pressure was elevated in PH mice (23.6 ± 6 versus 41.0 ± 11 mmHg, control versus PH, respectively; P < 0.001, n = 5-11). Right ventricular wall thickness was greater in PH than in control mice at end diastole (0.30 ± 0.05 versus 0.48 ± 0.06 mm, control versus PH, respectively; P < 0.01, n = 6), but measurements were not different at end systole (control versus PH, 0.59 ± 0.11 versus 0.70 ± 0.11 mm, respectively). Right ventricular ejection fraction was decreased in PH mice (72 ± 3 versus 58 ± 5%, control versus PH, respectively; P < 0.04, n = 6). These data demonstrate that magnetic resonance imaging is a precise method to monitor right ventricular remodelling and cardiac output longitudinally in mouse models of PH.
Collapse
Affiliation(s)
- Ellen C Breen
- Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Miriam Scadeng
- Radiology, University of California, San Diego, La Jolla, CA, USA
| | - N Chin Lai
- Pulmonary & Critical Care, Veterans Administration San Diego, La Jolla, CA, USA
| | | | - Timothy D Bigby
- Medicine, University of California, San Diego, La Jolla, CA, USA.,Pulmonary & Critical Care, Veterans Administration San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Meghwani H, Prabhakar P, Mohammed SA, Seth S, Hote MP, Banerjee SK, Arava S, Ray R, Maulik SK. Beneficial effects of aqueous extract of stem bark of Terminalia arjuna (Roxb.), An ayurvedic drug in experimental pulmonary hypertension. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:184-194. [PMID: 27401289 DOI: 10.1016/j.jep.2016.07.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The stem bark of Terminalia arjuna (Roxb.) is widely used in Ayurveda in various cardiovascular diseases. Many animal and clinical studies have validated its anti-ischemic, antihypertensive, antihypertrophic and antioxidant effects. Pulmonary hypertension (PH) is a fatal disease which causes right ventricular hypertrophy and right heart failure. Pulmonary vascular smooth muscle hypertrophy and increased oxidative stress are major pathological features of PH. As available limited therapeutic options fail to reduce the mortality associated with PH, alternative areas of therapy are worth exploring for potential drugs, which might be beneficial in PH. AIM OF THE STUDY The effect of a standardised aqueous extract of the stem bark of Terminalia arjuna (Roxb.) in preventing monocrotaline (MCT)-induced PH in rat was investigated. MATERIALS AND METHODS The study was approved by Institutional Animal Ethics Committe. Male Wistar rats (150-200g) were randomly distributed into five groups; Control, MCT (50mg/kg subcutaneously once), sildenafil (175µg/kg/day three days after MCT for 25 days), and Arjuna extract (TA125 and TA250 mg/kg/day orally after MCT for 25 days). PH was confirmed by right ventricular weight to left ventricular plus septum weight (Fulton index), right ventricular systolic pressure (RVSP), echocardiography, percentage medial wall thickness of pulmonary arteries (%MWT). Oxidative stress in lung was assessed by super oxide dismutase (SOD), catalase, reduced glutathione (GSH) and thiobarbituric acid reactive substance (TBARS). The protein expressions of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX-1) in lung and gene expression of Bcl2 and Bax in heart were analyzed by Western blot and RT PCR respectively. RESULTS MCT caused right ventricular hypertrophy (0.58±0.05 vs 0.31±0.05; P<0.001 vs. control) and increase in RVSP (33.5±1.5 vs 22.3±4.7mm of Hg; P<0.001). Both sildenafil and Arjuna prevented hypertrophy and RVSP. Pulmonary artery acceleration time to ejection time ratio in echocardiography was decreased in PH rats (0.49±0.05 vs 0.32±0.06; P<0.001) which was prevented by sildenafil (0.44±0.06; P<0.01) and TA250 (0.45±0.06; P<0.01). % MWT of pulmonary arteries was increased in PH and was prevented by TA250. Increase in TBARS (132.7±18.4 vs 18.8±1.6nmol/mg protein; P<0.001) and decrease in SOD (58.4±14.1 vs 117.4±26.9U/mg protein; P<0.001) and catalase (0.30±0.05 vs 0.75±0.31U/mg protein; P<0.001) were observed in lung tissue of PH rats, which were prevented by sildenafil and both the doses of Arjuna extract. Protein expression of NOX1 was significantly increased in lung and gene expression of Bcl2/Bax ratio was significantly decreased in right ventricle in MCT-induced PH, both were significantly prevented by Arjuna and sildenafil. CONCLUSIONS Aqueous extract of Terminalia arjuna prevented MCT-induced pulmonary hypertension which may be attributed to its antioxidant as well as its effects on pulmonary arteriolar wall thickening.
Collapse
Affiliation(s)
- Himanshu Meghwani
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pankaj Prabhakar
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Soheb A Mohammed
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - Sandeep Seth
- Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Milind P Hote
- Cardiothoracic and Vascular Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sanjay K Banerjee
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - Sudheer Arava
- Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Ruma Ray
- Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Subir Kumar Maulik
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
10
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|