1
|
Jiang C, Liang J, Hu K, Ye Y, Yang J, Zhang X, Ye G, Zhang J, Zhang D, Zhong B, Yu P, Wang L, Zeng B. Identification of tryptophan metabolism-related biomarkers for nonalcoholic fatty liver disease through network analysis. Endocr Connect 2025; 14:e240470. [PMID: 40183447 PMCID: PMC12023734 DOI: 10.1530/ec-24-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/20/2025] [Accepted: 04/04/2025] [Indexed: 04/05/2025]
Abstract
Background Increasing evidence demonstrates that tryptophan metabolism is closely related to the development of nonalcoholic fatty liver disease (NAFLD). This study aimed to identify specific biomarkers of NAFLD associated with tryptophan metabolism and research its functional mechanism. Methods We downloaded NAFLD RNA-sequencing data from GSE89632 and GSE24807, and obtained tryptophan metabolism-related genes (TMRGs) from the MsigDB database. The R package limma and WGCNA were used to identify TMRGs-DEGs, and GO, KEGG and Cytoscape were used to analyze and visualize the data. Immune cell infiltration analysis was used to explore the immune mechanism of NAFLD and the biomarkers. We also validated extended levels of biomarkers. Results We identified 375 NAFLD differentially expressed genes (DEGs) and 85 TMRGs-DEGs. GO/KEGG analysis revealed that TMRGs-DEGs were mainly enriched in triglyceride and cholesterol metabolism. ROC curves identified CCL20 (AUC = 0.917), CD160 (AUC = 0.933) and CYP7A1 (AUC = 1) as biomarkers of NAFLD. Immune infiltration analysis showed significant differences in ten immune cells, and the activation of dendritic cells and mast cells were highly positively correlated with NAFLD. CCL20, CD160 and CYP7A1 were highly correlated with M2 macrophage, neutrophil and mast cells activation, respectively. Twenty-seven TMRGs correlated with hub genes, and gene set enrichment analysis demonstrated their function in tryptophan- and lysine-containing metabolic process. We identified 41 therapeutic drug matches which corresponded to two hub genes and four drugs which co-targeted CCL20 and CYP7A1. Finally, three hub genes were validated in our mouse model. Conclusions CCL20, CD160 and CYP7A1 are tryptophan metabolism-related biomarkers of NAFLD, related to glycerol ester and cholesterol metabolism. We screened four compounds which co-target CCL29 and CYP7A1 to provide potential experimental drugs for NAFLD.
Collapse
Affiliation(s)
- Cuihua Jiang
- Department of Pain Management, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Jianqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Ye
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajia Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiaozhi Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Guilin Ye
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Bin Zhong
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liefeng Wang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
- China Medical University, Shenyang, China
| | - Bin Zeng
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- China Medical University, Shenyang, China
| |
Collapse
|
2
|
Zhang M, Sun J, Zhao H, Liu Y, Tang Z, Wen Y, Ma Q, Zhang L, Zhang Y. Alginate oligosaccharides relieve estrogen-deprived osteosarcopenia by affecting intestinal Th17 differentiation and systemic inflammation through the manipulation of bile acid metabolism. Int J Biol Macromol 2025; 295:139581. [PMID: 39788237 DOI: 10.1016/j.ijbiomac.2025.139581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Alginate oligosaccharides (AOS) have gained attention for their capacity to regulate human health as prebiotics. Osteosarcopenia is a progressive disease of the musculoskeletal system and result in heavy burden of patients. Studies suggest that gut microbiota is involved in the pathogenesis of osteosarcopenia, whether AOS can improve the symptoms of osteosarcopenia by modulating gut microbiota remains to be elucidated. In this study, we proved that 200 mg/kg body weight AOS (MW = 4.9 kDa, G/M = 1.88) treatment significantly increased bone mass, boosted muscle function, and promoted gut barrier integrity in ovariectomized (OVX) mice. After AOS treatment, a marked reduction in the proportion of intestinal Th17 subsets and in peripheral levels of relevant inflammatory cytokines was observed compared to the OVX group. 16S rRNA sequencing indicated that AOS treatment could restore the imbalance of gut microbiota caused by estrogen deficiency. Additionally, the impact of AOS on bile acid changes was revealed according to metabolomics. In particular, the Th17 differentiation inhibitor, such as isoLCA, were significantly upregulated after AOS treatment. In conclusion, AOS can alleviate the symptoms of osteoporosis by modulating the relative abundance of gut microbiota and bile acid metabolism, thereby reducing the proportion of intestinal Th17 cells and peripheral Inflammation.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Jin Sun
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Heping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Yingxiang Liu
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zhen Tang
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yanhua Wen
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Qiong Ma
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lijuan Zhang
- American Institute of Translational Medicine and Therapeutics, St. Charles 63301, MO, USA
| | - Yiran Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China.
| |
Collapse
|
3
|
Mashaal A, El-Yamany HY, Mansour HAEH. Systemic/Immune-Modulation of Olea europaea Leaf Extract in Fetuses of Alloxan-Induced T1 Diabetic Rats. J Med Food 2024; 27:981-992. [PMID: 38979597 DOI: 10.1089/jmf.2024.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Maternal glucose is the principal macronutrient that sustains fetal growth. Prolonged exposure of the fetus to hyperglycemia from the early stages of pregnancy accelerates the maturation of the stimulus-secretion coupling mechanism in β cell autoimmunity, which leads to early hyperinsulinemia in type 1 diabetes mellitus (T1DM). Nowadays, diabetes mellitus (DM) is the most common medical complication of pregnancy, and among young women, the prevalence of overt diabetes and undiagnosed hyperglycemia is rising. Even though conventional medication is effective in treating DM, it is expensive and has harmful side effects. Herbal medicine will thus incorporate alternative therapy and be more effective and less toxic. Due to their bioactive components, olive leaves (Olea europaea) are frequently used medicinally; however, little is known about how this plant affects the immune system when it comes to diabetes. The current study used a pregnant mother rat model of alloxan-induced T1DM to examine the antidiabetic properties and embryonic safety of olive leaves. Forty adult female Sprague Dawley rats were split up into four groups as follows: nondiabetic, diabetic, olive, and diabetic-olive groups. All the mother rats were sacrificed on the 20th day of pregnancy, and fetuses were collected for further investigations. In diabetic pregnant mothers, fetuses had systemic modulation-negative effects. These effects were significantly reversed when the diabetic groups were supplemented with extracts from olive leaves. The findings showed that the olive leaf extract inhibits the diabetogenic effect mediated by alloxan with effective and protective systemic immunomodulation during embryonic development.
Collapse
Affiliation(s)
- Alya Mashaal
- Immunology Zoology and Entomology Department , Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Heba Y El-Yamany
- Histology and Cell Biology, Histology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Hend Abd El-Halim Mansour
- Embryology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Yaghmaei H, Nojoumi SA, Soltanipur M, Yarmohammadi H, Mirhosseini SM, Rezaei M, Jalali Nadoushan M, Siadat SD. The role of gut microbiota in non-alcoholic fatty liver disease pathogenesis. OBESITY MEDICINE 2024; 50:100551. [DOI: 10.1016/j.obmed.2024.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
|
5
|
Yang M, Liu S, Sui Y, Zhang C. Macrophage metabolism impacts metabolic dysfunction-associated steatotic liver disease and its progression. IMMUNOMETABOLISM 2024; 6:e00047. [DOI: 10.1097/in9.0000000000000047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), with a progressive form of metabolic dysfunction-associated steatohepatitis (MASH), is the leading chronic liver disease worldwide, which can progress to advanced liver disease and hepatocellular carcinoma. MASLD is tightly associated with metabolic disorders such as obesity, insulin resistance, and type 2 diabetes. Macrophages, as an innate immune component and a linker of adaptive immune response, play important roles in the pathogenesis and treatment of MASLD or MASH. Metabolic reprogramming can regulate macrophage activation and polarization to inhibit MASLD or MASH progression to advanced liver disease. Here, we summarize the underlying mechanisms of how different metabolites such as amino acids, glucose, and fatty acids can regulate macrophage function and phenotype, the factors that regulate macrophage metabolism, and potential treatment options to regulate macrophage function in MASLD or MASH, as well as other associated metabolic disorders.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Connecticut Health, School of Medicine, Farmington, CT, USA
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen, China
| | - Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
6
|
Abdulazeez I, Ismail IS, Mohd Faudzi SM, Christianus A, Chong SG. Study on the acute toxicity of sodium taurocholate via zebrafish mortality, behavioral response, and NMR-metabolomics analysis. Drug Chem Toxicol 2024; 47:115-130. [PMID: 37548163 DOI: 10.1080/01480545.2023.2242005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Sodium taurocholate (NaT) is a hydrophobic bile salt that exhibits varying toxicity and antimicrobial activity. The accumulation of BSs during their entero-hepatic cycle causes cytotoxicity in the liver and intestine and could also alter the intestinal microbiome leading to various diseases. In this research, the acute toxicity of sodium taurocholate in different concentrations (3000 mg/L, 1500 mg/L, 750 mg/L, 375 mg/L, and 0 mg/L) was investigated on four months old zebrafish by immersion in water for 96 h. The results were determined based on the fish mortality, behavioral response, and NMR metabolomics analysis which revealed LC50 of 1760.32 mg/L and 1050.42 mg/L after 72 and 96 h treatment, respectively. However, the non-lethal NaT concentrations of 750 mg/L and 375 mg/L at 96 h exposure significantly (p ≤ 0.05) decreased the total distance traveled and the activity duration, also caused surface respiration on the zebrafish. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) revealed that the metabolome of the fish treated with 750 mg/L was discriminated from that of the control by PC1. Major significantly downregulated metabolites by NaT-induction include valine, isoleucine, 2-hydroxyvalerate, glycine, glycerol, choline, glucose, pyruvate, anserine, threonine, carnitine and homoserine. On the contrary, taurine, creatine, lactate, acetate and 3-hydroxybutyrate were upregulated suggesting cellular consumption of lipids, glucose and amino acids for adenosine triphosphate (ATP) generation during immune and inflammatory response. whereby these metabolites were released in the process. In conclusion, the research revealed the toxic effect of NaT and its potential to trigger changes in zebrafish metabolism.
Collapse
Affiliation(s)
- Isah Abdulazeez
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Intan Safinar Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
- Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience (IBS), Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Annie Christianus
- Department of Aquaculture, Faculty of Agricultural Sciences, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Seok-Giok Chong
- Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience (IBS), Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| |
Collapse
|
7
|
Chen S, Shao Q, Chen J, Lv X, Ji J, Liu Y, Song Y. Bile acid signalling and its role in anxiety disorders. Front Endocrinol (Lausanne) 2023; 14:1268865. [PMID: 38075046 PMCID: PMC10710157 DOI: 10.3389/fendo.2023.1268865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Anxiety disorder is a prevalent neuropsychiatric disorder that afflicts 7.3%~28.0% of the world's population. Bile acids are synthesized by hepatocytes and modulate metabolism via farnesoid X receptor (FXR), G protein-coupled receptor (TGR5), etc. These effects are not limited to the gastrointestinal tract but also extend to tissues and organs such as the brain, where they regulate emotional centers and nerves. A rise in serum bile acid levels can promote the interaction between central FXR and TGR5 across the blood-brain barrier or activate intestinal FXR and TGR5 to release fibroblast growth factor 19 (FGF19) and glucagon-like peptide-1 (GLP-1), respectively, which in turn, transmit signals to the brain via these indirect pathways. This review aimed to summarize advancements in the metabolism of bile acids and the physiological functions of their receptors in various tissues, with a specific focus on their regulatory roles in brain function. The contribution of bile acids to anxiety via sending signals to the brain via direct or indirect pathways was also discussed. Different bile acid ligands trigger distinct bile acid signaling cascades, producing diverse downstream effects, and these pathways may be involved in anxiety regulation. Future investigations from the perspective of bile acids are anticipated to lead to novel mechanistic insights and potential therapeutic targets for anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Chen J, Zhang S. The Role of Inflammation in Cholestatic Liver Injury. J Inflamm Res 2023; 16:4527-4540. [PMID: 37854312 PMCID: PMC10581020 DOI: 10.2147/jir.s430730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Cholestasis is a common clinical event in which bile formation and excretion are blocked, leading to retention of bile acids or bile salts; whether it occurs intra- or extrahepatically, primary or secondary, its pathogenesis is still unclear and is influenced by a combination of factors. In a variety of inflammatory and immune cells such as neutrophils, macrophages (intrahepatic macrophages are also known as Kupffer cells), mast cells, NK cells, and even T cells in humoral immunity and B cells in cellular immunity, inflammation can be a "second strike" against cholestatic liver injury. These cells, stimulated by a variety of factors such as bile acids, inflammatory chemokines, and complement, can be activated and accumulate in the cholestatic liver, and with the involvement of inflammatory mediators and modulation by cytokines, can lead to destruction of hepatocytes and bile duct epithelial cells and exacerbate (and occasionally retard) the progression of cholestatic liver disease. In this paper, we summarized the new research advances proposed so far regarding the relationship between inflammation and cholestasis, aiming to provide reference for researchers and clinicians in the field of cholestatic liver injury research.
Collapse
Affiliation(s)
- Jie Chen
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
9
|
Pokhrel S, Dilts M, Stahl Z, Boehme S, Frame G, Chiang JY, Ferrell JM. Tgr5-/- mice are protected from ethanol-induced metabolic alterations through enhanced leptin and Fgf21 signaling. Hepatol Commun 2023; 7:e0138. [PMID: 37185802 PMCID: PMC10145946 DOI: 10.1097/hc9.0000000000000138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/23/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is caused by chronic use of alcohol and ranges from hepatic steatosis to fibrosis and cirrhosis. Bile acids are physiological detergents that also regulate hepatic glucose and lipid homeostasis by binding to several receptors. One such receptor, Takeda G protein-coupled receptor 5 (TGR5), may represent a therapeutic target for ALD. Here, we used a chronic 10-day + binge ethanol-feeding model in mice to study the role of TGR5 in alcohol-induced liver injury. METHODS Female C57BL/6J wild-type mice and Tgr5-/- mice were pair-fed Lieber-DeCarli liquid diet with ethanol (5% v/v) or isocaloric control diet for 10 days followed by a gavage of 5% ethanol or isocaloric maltose control, respectively, to represent a binge-drinking episode. Tissues were harvested 9 hours following the binge, and metabolic phenotypes were characterized through examination of liver, adipose, and brain mechanistic pathways. RESULTS Tgr5-/- mice were protected from alcohol-induced accumulation of hepatic triglycerides. Interestingly, liver and serum levels of Fgf21 were significantly increased during ethanol feeding in Tgr5-/- mice, as was phosphorylation of Stat3. Parallel to Fgf21 levels, increased leptin gene expression in white adipose tissue and increased leptin receptor in liver were detected in Tgr5-/- mice fed ethanol diet. Adipocyte lipase gene expression was significantly increased in Tgr5-/- mice regardless of diet, whereas adipose browning markers were also increased in ethanol-fed Tgr5-/- mice, indicating potential for enhanced white adipose metabolism. Lastly, hypothalamic mRNA targets of leptin, involved in the regulation of food intake, were significantly increased in Tgr5-/- mice fed ethanol diet. CONCLUSIONS Tgr5-/- mice are protected from ethanol-induced liver damage and lipid accumulation. Alterations in lipid uptake and Fgf21 signaling, and enhanced metabolic activity of white adipose tissue, may mediate these effects.
Collapse
Affiliation(s)
- Sabita Pokhrel
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Matthew Dilts
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Zachary Stahl
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Shannon Boehme
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - John Y.L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
10
|
Yahoo N, Dudek M, Knolle P, Heikenwälder M. Role of immune responses for development of NAFLD-associated liver cancer and prospects for therapeutic modulation. J Hepatol 2023:S0168-8278(23)00165-4. [PMID: 36893854 DOI: 10.1016/j.jhep.2023.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
The liver is the central metabolic organ of the body regulating energy and lipid metabolism and at the same time has potent immunological functions. Overwhelming the metabolic capacity of the liver by obesity and sedentary lifestyle leads to hepatic lipid accumulation, chronic necro-inflammation, enhanced mitochondrial/ER-stress and development of non-alcoholic fatty liver disease (NAFLD), with its pathologic form nonalcoholic steatohepatitis (NASH). Based on knowledge on pathophysiological mechanisms, specifically targeting metabolic diseases to prevent or slow down progression of NAFLD to liver cancer will become possible. Genetic/environmental factors contribute to development of NASH and liver cancer progression. The complex pathophysiology of NAFLD-NASH is reflected by environmental factors, particularly the gut microbiome and its metabolic products. NAFLD-associated HCC occurs in most of the cases in the context of a chronically inflamed liver and cirrhosis. Recognition of environmental alarmins or metabolites derived from the gut microbiota and the metabolically injured liver create a strong inflammatory milieu supported by innate and adaptive immunity. Several recent studies indicate that the chronic hepatic microenvironment of steatosis induces auto-aggressive CD8+CXCR6+PD1+ T cells secreting TNF and upregulating FasL to eliminate parenchymal and non-parenchymal cells in an antigen independent manner. This promotes chronic liver damage and a pro-tumorigenic environment. CD8+CXCR6+PD1+ T cells possess an exhausted, hyperactivated, resident phenotype and trigger NASH to HCC transition, and might be responsible for a less efficient treatment response to immune-check-point inhibitors - in particular atezolizumab/bevacizumab. Here, we provide an overview of NASH-related inflammation/pathogenesis focusing on new discoveries on the role of T cells in NASH-immunopathology and therapy response. This review discusses preventive measures to halt disease progression to liver cancer and therapeutic strategies to manage NASH-HCC patients.
Collapse
Affiliation(s)
- Neda Yahoo
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; The M3 Research Institute, Karl Eberhards Universitaet Tübingen, Medizinische Fakultät, Otfried-Müller-Straße 37, 72076 Tübingen.
| |
Collapse
|
11
|
Aseem SO, Hylemon PB, Zhou H. Bile Acids and Biliary Fibrosis. Cells 2023; 12:cells12050792. [PMID: 36899928 PMCID: PMC10001305 DOI: 10.3390/cells12050792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Biliary fibrosis is the driving pathological process in cholangiopathies such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Cholangiopathies are also associated with cholestasis, which is the retention of biliary components, including bile acids, in the liver and blood. Cholestasis may worsen with biliary fibrosis. Furthermore, bile acid levels, composition and homeostasis are dysregulated in PBC and PSC. In fact, mounting data from animal models and human cholangiopathies suggest that bile acids play a crucial role in the pathogenesis and progression of biliary fibrosis. The identification of bile acid receptors has advanced our understanding of various signaling pathways involved in regulating cholangiocyte functions and the potential impact on biliary fibrosis. We will also briefly review recent findings linking these receptors with epigenetic regulatory mechanisms. Further detailed understanding of bile acid signaling in the pathogenesis of biliary fibrosis will uncover additional therapeutic avenues for cholangiopathies.
Collapse
Affiliation(s)
- Sayed Obaidullah Aseem
- Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
12
|
Luo Y, Kang J, Luo J, Yan Z, Li S, Lu Z, Song Y, Zhang X, Yang J, Liu A. Hepatocytic AP-1 and STAT3 contribute to chemotaxis in alphanaphthylisothiocyanate-induced cholestatic liver injury. Toxicol Lett 2023; 373:184-193. [PMID: 36460194 DOI: 10.1016/j.toxlet.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The development of cholestatic liver injury (CLI) involves inflammation, but the dominant pathway mediating the chemotaxis is not yet established. This work explored key signaling pathway mediating chemotaxis in CLI and the role of Kupffer cells in the inflammatory liver injury. Probe inhibitors T-5224 (100 mg/kg) for AP-1 and C188-9 (100 mg/kg) for STAT3 were used to validate key inflammatory pathways in alpha-naphthylisothiocyanate (ANIT, 100 mg/kg)-induced CLI. Two doses of GdCl3 (10 mg/kg and 40 mg/kg) were used to delete Kupffer cells and explore their role in CLI. Serum and liver samples were collected for biochemical and mechanism analysis. The liver injury in ANIT-treated mice were significantly increased supported by biochemical and histopathological changes, and neutrophils gathering around the necrotic loci. Inhibitor treatments down-regulated liver injury biomarkers except the level of total bile acid. The chemokine Ccl2 increased by 170-fold and to a less degree Cxcl2 by 45-fold after the ANIT treatment. p-c-Jun and p-STAT3 were activated in the group A but inhibited by the inhibitors in western blot analysis. The immunofluorescence results showed AP-1 not STAT3 responded to inhibitors in ANIT-induced CLI. With or without GdCl3, there was no significant difference in liver injury among the CLI groups. In necrotic loci in CLI, CXCL2 colocalized with hepatocyte biomarker Albumin, not with the F4/80 in Kupffer cells. Conclusively, AP-1 played a more critical role in the inflammation cascade than STAT3 in ANIT-induced CLI. Hepatocytes, not the Kupffer cells released chemotactic factors mediating the chemotaxis in CLI.
Collapse
Affiliation(s)
- Yishuang Luo
- School of Medicine, Ningbo University, 315211 Ningbo, China; Ningbo Haishu District Center for Disease Control and Prevention, 315000 Ningbo, China
| | - Jinyu Kang
- School of Medicine, Ningbo University, 315211 Ningbo, China; The Affiliated Lihuili Hospital, Ningbo University, 315000 Ningbo, China
| | - Jia Luo
- School of Medicine, Ningbo University, 315211 Ningbo, China
| | - Zheng Yan
- School of Medicine, Ningbo University, 315211 Ningbo, China
| | - Shengtao Li
- School of Medicine, Ningbo University, 315211 Ningbo, China
| | - Zhuoheng Lu
- School of Medicine, Ningbo University, 315211 Ningbo, China
| | - Yufei Song
- The Affiliated Lihuili Hospital, Ningbo University, 315000 Ningbo, China
| | - Xie Zhang
- The Affiliated Lihuili Hospital, Ningbo University, 315000 Ningbo, China
| | - Julin Yang
- Ningbo College of Health Sciences, 315100 Ningbo, China
| | - Aiming Liu
- School of Medicine, Ningbo University, 315211 Ningbo, China.
| |
Collapse
|
13
|
Ginsenoside compound K increases glucagon-like peptide-1 release and L-cell abundance in db/db mice through TGR5/YAP signaling. Int Immunopharmacol 2022; 113:109405. [DOI: 10.1016/j.intimp.2022.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
|
14
|
Pezzino S, Sofia M, Faletra G, Mazzone C, Litrico G, La Greca G, Latteri S. Gut-Liver Axis and Non-Alcoholic Fatty Liver Disease: A Vicious Circle of Dysfunctions Orchestrated by the Gut Microbiome. BIOLOGY 2022; 11:1622. [PMID: 36358323 PMCID: PMC9687983 DOI: 10.3390/biology11111622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 09/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent, multifactorial, and poorly understood liver disease with an increasing incidence worldwide. NAFLD is typically asymptomatic and coupled with other symptoms of metabolic syndrome. The prevalence of NAFLD is rising in tandem with the prevalence of obesity. In the Western hemisphere, NAFLD is one of the most prevalent causes of liver disease and liver transplantation. Recent research suggests that gut microbiome dysbiosis may play a significant role in the pathogenesis of NAFLD by dysregulating the gut-liver axis. The so-called "gut-liver axis" refers to the communication and feedback loop between the digestive system and the liver. Several pathological mechanisms characterized the alteration of the gut-liver axis, such as the impairment of the gut barrier and the increase of the intestinal permeability which result in endotoxemia and inflammation, and changes in bile acid profiles and metabolite levels produced by the gut microbiome. This review will explore the role of gut-liver axis disruption, mediated by gut microbiome dysbiosis, on NAFLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| |
Collapse
|
15
|
Shulpekova Y, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Synitsyna A, Izotov A, Butkova T, Shulpekova N, Lapina N, Nechaev V, Kardasheva S, Okhlobystin A, Ivashkin V. The Role of Bile Acids in the Human Body and in the Development of Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113401. [PMID: 35684337 PMCID: PMC9182388 DOI: 10.3390/molecules27113401] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Bile acids are specific and quantitatively important organic components of bile, which are synthesized by hepatocytes from cholesterol and are involved in the osmotic process that ensures the outflow of bile. Bile acids include many varieties of amphipathic acid steroids. These are molecules that play a major role in the digestion of fats and the intestinal absorption of hydrophobic compounds and are also involved in the regulation of many functions of the liver, cholangiocytes, and extrahepatic tissues, acting essentially as hormones. The biological effects are realized through variable membrane or nuclear receptors. Hepatic synthesis, intestinal modifications, intestinal peristalsis and permeability, and receptor activity can affect the quantitative and qualitative bile acids composition significantly leading to extrahepatic pathologies. The complexity of bile acids receptors and the effects of cross-activations makes interpretation of the results of the studies rather difficult. In spite, this is a very perspective direction for pharmacology.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Maria Zharkova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Pyotr Tkachenko
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Igor Tikhonov
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexander Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Alexandra Synitsyna
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Alexander Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Tatyana Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | | | - Natalia Lapina
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Nechaev
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Svetlana Kardasheva
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexey Okhlobystin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| |
Collapse
|
16
|
Chiang JYL, Ferrell JM. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol Cell Endocrinol 2022; 548:111618. [PMID: 35283218 PMCID: PMC9038687 DOI: 10.1016/j.mce.2022.111618] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
Abstract
In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases.
Collapse
Affiliation(s)
- John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4029 SR 44, P.O. Box 95, Rootstown, OH, 44272, United States.
| | - Jessica M Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4029 SR 44, P.O. Box 95, Rootstown, OH, 44272, United States
| |
Collapse
|
17
|
Huang R, Gao Y, Chen J, Duan Q, He P, Zhang J, Huang H, Zhang Q, Ma G, Zhang Y, Nie K, Wang L. TGR5 agonist INT-777 alleviates inflammatory neurodegeneration in parkinson’s disease mouse model by modulating mitochondrial dynamics in microglia. Neuroscience 2022; 490:100-119. [DOI: 10.1016/j.neuroscience.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
|
18
|
Zhou Y, Ye D, Yuan X, Zhou Y, Xia J. Serum Bile Acid Profiles in Latent Autoimmune Diabetes in Adults and Type 2 Diabetes Patients. J Diabetes Res 2022; 2022:2391188. [PMID: 35242878 PMCID: PMC8888061 DOI: 10.1155/2022/2391188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Impaired bile acid (BA) metabolism has been associated with the progression of type 2 diabetes (T2D). However, the contribution of BAs to the pathogenesis of latent autoimmune diabetes in adults (LADA) remains unclear. This study was aimed at investigating the association of serum BAs with different diabetes types and analyzing its correlation with main clinical and laboratory parameters. METHODS Patients with LADA, patients with T2D, and healthy controls (HCs) were enrolled. Serum BA profiles and inflammatory cytokines were measured. The correlation of BA species with different indicators was assessed by Spearman's correlation method. RESULTS Patients with diabetes (LADA and T2D) had significantly higher serum BAs, especially conjugated BAs, compared with those in HCs. Nevertheless, serum BA profiles had no special role in the progression of LADA, because no significant differences in BAs were observed between LADA and T2D patients. Interestingly, HbA1c levels and HOMA-β were found to be correlated with a series of BA species. Proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and anti-inflammatory cytokine (IL-10) were all positively associated with several BA species, especially the conjugated secondary BAs. CONCLUSION Serum BAs regulate glucose homeostasis, but have no special value in the pathogenesis of LADA patients. Our study adds further information about the potential value of serum BAs in different types of diabetes.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| | - Deli Ye
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| | - Xiaofen Yuan
- Hangzhou Calibra Diagnostics Co., Ltd, Gene Town, Zijin Park, 859 Shixiang West Road, Xihu District, Hangzhou, Zhejiang, China
| | - Yonglie Zhou
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| | - Jun Xia
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| |
Collapse
|
19
|
Fan M, Wang Y, Jin L, Fang Z, Peng J, Tu J, Liu Y, Zhang E, Xu S, Liu X, Huo Y, Sun Z, Chao X, Ding WX, Yan Q, Huang W. Bile Acid-Mediated Activation of Brown Fat Protects From Alcohol-Induced Steatosis and Liver Injury in Mice. Cell Mol Gastroenterol Hepatol 2021; 13:809-826. [PMID: 34896286 PMCID: PMC8802063 DOI: 10.1016/j.jcmgh.2021.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Alcohol-associated liver disease (AALD) is one of the most common causes of liver injury and failure. Limited knowledge of the mechanisms underlying AALD impedes the development of efficacious therapies. Bile acid (BA) signaling was shown to participate in the progression of AALD. However, the mechanisms remain poorly understood. METHODS C57BL/6J wild-type (WT), Takeda G-protein-coupled bile acid receptor 5 (TGR5) knockout (KO) and brown adipose tissue (BAT)-specific TGR5 knockdown mice were subjected to ethanol feeding-induced AALD. Liver samples from alcoholic hepatitis patients were used to examine the BA circulation signaling. Human Embryonic Kidney Cells 293 were used for the TGR5 reporter assay. 23(S)-methyl-lithocholic acid was used as a molecular tool to confirm the regulatory functions of BAT in the AALD mouse model. RESULTS Ethanol feeding increased the expression of the thermogenesis genes downstream of TGR5 in BAT of WT, but not TGR5 KO, mice. TGR5 deficiency significantly blocked BAT activity and energy expenditure in mice after ethanol feeding. Alcohol increased serum BA levels in mice and human beings through altering BA transportation, and the altered BAs activated TGR5 signaling to regulate metabolism. Compared with ethanol-fed WT mice, ethanol-fed TGR5 KO mice showed less free fatty acid (FFA) β-oxidation in BAT, leading to higher levels of FFA in the circulation, increased liver uptake of FFAs, and exacerbated AALD. BAT-specific TGR5 knockdown mice showed similar results with TGR5 KO mice in AALD. Agonist treatment significantly activated TGR5 signaling in BAT, increased thermogenesis, reduced serum FFA level, and ameliorated hepatic steatosis and injury in AALD mice, while these effects were lost in TGR5 KO mice. CONCLUSIONS BA signaling plays a protective role in AALD by enhancing BAT thermogenesis. Targeting TGR5 in BAT may be a promising approach for the treatment of AALD.
Collapse
Affiliation(s)
- Mingjie Fan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, China,Department of Diabetes Complications and Metabolism, Duarte, California
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Duarte, California
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Duarte, California
| | - Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Duarte, California
| | - Jiangling Peng
- Department of Diabetes Complications and Metabolism, Duarte, California
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Duarte, California
| | - Yanjun Liu
- Department of Diabetes Complications and Metabolism, Duarte, California
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Duarte, California
| | - Senlin Xu
- Department of Diabetes Complications and Metabolism, Duarte, California,Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Xiaoqian Liu
- Department of Diabetes Complications and Metabolism, Duarte, California
| | - Yuqing Huo
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhaoli Sun
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Qingfeng Yan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, China,Qingfeng Yan, PhD, College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang, China. fax: 01186-571-88206646.
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Duarte, California,Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California,Correspondence Address correspondence to: Wendong Huang, PhD, Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010. fax: (626) 256-8704.
| |
Collapse
|
20
|
Park E, Jeong JJ, Won SM, Sharma SP, Gebru YA, Ganesan R, Gupta H, Suk KT, Kim DJ. Gut Microbiota-Related Cellular and Molecular Mechanisms in the Progression of Nonalcoholic Fatty Liver Disease. Cells 2021; 10:2634. [PMID: 34685614 PMCID: PMC8534099 DOI: 10.3390/cells10102634] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common and increasing liver diseases worldwide. NAFLD is a term that involves a variety of conditions such as fatty liver, steatohepatitis, or fibrosis. Gut microbiota and its products have been extensively studied because of a close relation between NAFLD and microbiota in pathogenesis. In the progression of NAFLD, various microbiota-related molecular and cellular mechanisms, including dysbiosis, leaky bowel, endotoxin, bile acids enterohepatic circulation, metabolites, or alcohol-producing microbiota, are involved. Currently, diagnosis and treatment techniques using these mechanisms are being developed. In this review, we will introduce the microbiota-related mechanisms in the progression of NAFLD and future directions will be discussed.
Collapse
|
21
|
Abstract
Bile acids (BAs) are a family of hydroxylated steroids secreted by the liver that aid in the breakdown and absorption of dietary fats. BAs also function as nutrient and inflammatory signaling molecules, acting through cognate receptors, to coordinate host metabolism. Commensal bacteria in the gastrointestinal tract are functional modifiers of the BA pool, affecting composition and abundance. Deconjugation of host BAs creates a molecular network that inextricably links gut microtia with their host. In this review we highlight the roles of BAs in mediating this mutualistic relationship with a focus on those events that impact host physiology and metabolism.
Collapse
Affiliation(s)
- James C Poland
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
22
|
Ding L, Yang Q, Zhang E, Wang Y, Sun S, Yang Y, Tian T, Ju Z, Jiang L, Wang X, Wang Z, Huang W, Yang L. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice. Acta Pharm Sin B 2021; 11:1541-1554. [PMID: 34221867 PMCID: PMC8245856 DOI: 10.1016/j.apsb.2021.03.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
Obesity and its associated complications are highly related to a current public health crisis around the world. A growing body of evidence has indicated that G-protein coupled bile acid (BA) receptor TGR5 (also known as Gpbar-1) is a potential drug target to treat obesity and associated metabolic disorders. We have identified notoginsenoside Ft1 (Ft1) from Panax notoginseng as an agonist of TGR5 in vitro. However, the pharmacological effects of Ft1 on diet-induced obese (DIO) mice and the underlying mechanisms are still elusive. Here we show that Ft1 (100 mg/100 diet) increased adipose lipolysis, promoted fat browning in inguinal adipose tissue and induced glucagon-like peptide-1 (GLP-1) secretion in the ileum of wild type but not Tgr5 -/- obese mice. In addition, Ft1 elevated serum free and taurine-conjugated bile acids (BAs) by antagonizing Fxr transcriptional activities in the ileum to activate Tgr5 in the adipose tissues. The metabolic benefits of Ft1 were abolished in Cyp27a1 -/- mice which have much lower BA levels. These results identify Ft1 as a single compound with opposite activities on two key BA receptors to alleviate high fat diet-induced obesity and insulin resistance in mice.
Collapse
Key Words
- ANOVA, analysis of variance
- AUC, area under the curve
- BAT, brown adipose tissue
- BAs, bile acids
- Bile acids
- DIO, diet-induced obesity
- FGF, fibroblast growth factor
- FXR
- Ft1, notoginsenoside Ft1
- Fxr, nuclear farnesoid X receptor
- GLP-1
- GLP-1, glucagon-like peptide-1
- GTT, glucose tolerance test
- HFD, high fat diet
- ITT, insulin tolerance test
- Insulin resistance
- KO, knockout
- Metabolic disorders
- Notoginsenoside Ft1
- Obesity
- TGR5
- Tgr5, membrane-bound G protein-coupled receptor
- Ucp, uncoupling protein
- Wt, wild-type
- cAMP, adenosine 3′,5′ cyclic monophosphate
- eWAT, epididymal white adipose tissue
- iWAT, inguinal white adipose tissue
Collapse
Affiliation(s)
- Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Qiaoling Yang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Eryun Zhang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Siming Sun
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yingbo Yang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Tian
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengcai Ju
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linshan Jiang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Graduate School of Biological Science, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
23
|
Toppo E, Al-Dhabi NA, Sankar C, Kumar SN, Buvanesvaragurunathan K, Darvin SS, Stalin A, Balakrishna K, Ceasar SA, Pandikumar P, Ignacimuthu S, Sivasankaran K, Agastian P. Hepatoprotective effect of selected isoandrographolide derivatives on steatotic HepG2 cells and High Fat Diet fed rats. Eur J Pharmacol 2021; 899:174056. [PMID: 33753108 DOI: 10.1016/j.ejphar.2021.174056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is one of the growing epidemics of the globe. This study was aimed to evaluate the anti-NAFLD effect of selected IAN derivatives using in silico, in vitro and in vivo models. In silico tools viz., DataWarrior, SwissADME and Gaussian 09 were used to predict the pharmacokinetic properties and electronic distribution patterns of the derivatives; docking analysis was done with Autodock against PPARα. Toxicities of the derivatives were assessed in HepG2 cells using MTT assay. Anti-NAFLD efficacies of the derivatives were assessed in free fatty acid induced steatotic HepG2 cells. In vivo anti-NAFLD effect of active isoandrographolide (IAN) derivative, 19-propionyl isoandrographolide (IAN-19P) was assessed in High Fat Diet fed rats. In silico and in vitro studies indicated that IAN-19P showed improved drug-likeness and drug score. The toxicity of IAN-19P to HepG2 cells was comparatively less than IAN and other derivatives. In free fatty acid induced steatotic HepG2 cells, treatment with IAN-19P significantly lowered intracellular triglyceride content and leakage of LDH and transaminases. Treating High Fat Diet fed animals with IAN-19P significantly lowered plasma lipids, transaminases, LDH and GGT levels. The treatment with IAN-19P upregulated the expressions of PPARα and CPT-1. IAN-19P did not produce any noticeable adverse effect till 2 g/kg concentration in acute and 250 mg/kg concentration in subacute toxicity studies. This study indicated the beneficial effect of IAN-19P for the treatment of NAFLD; however robust investigations are needed to establish the potential of IAN-19P to treat NAFLD.
Collapse
Affiliation(s)
- Erenius Toppo
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India; St Xavier's College, Tejpur, Sonabheel Solabsti, Bokajan, Assam, 784105, India
| | - Naif Abdullah Al-Dhabi
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Chinnakulandai Sankar
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India
| | | | | | | | - Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Kedeke Balakrishna
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Biosciences Department, Rajagiri College of Social Sciences, Cochin, Kerala, 683104, India
| | - Perumal Pandikumar
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India.
| | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India; Bharath Institute of Higher Education and Research, Selaiyur, Tambaram, Chennai, Tamil Nadu, 600073, India.
| | - Kuppusamy Sivasankaran
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627002, India
| | - Paul Agastian
- Department of Plant Biology & Biotechnology, Loyola College, Chennai, Tamil Nadu, 600034, India
| |
Collapse
|
24
|
Xie G, Jiang R, Wang X, Liu P, Zhao A, Wu Y, Huang F, Liu Z, Rajani C, Zheng X, Qiu J, Zhang X, Zhao S, Bian H, Gao X, Sun B, Jia W. Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis. EBioMedicine 2021; 66:103290. [PMID: 33752128 PMCID: PMC8010625 DOI: 10.1016/j.ebiom.2021.103290] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Significantly elevated serum and hepatic bile acid (BA) concentrations have been known to occur in patients with liver fibrosis. However, the roles of different BA species in liver fibrogenesis are not fully understood. METHODS We quantitatively measured blood BA concentrations in nonalcoholic steatohepatitis (NASH) patients with liver fibrosis and healthy controls. We characterized BA composition in three mouse models induced by carbon tetrachloride (CCl4), streptozotocin-high fat diet (STZ-HFD), and long term HFD, respectively. The molecular mechanisms underlying the fibrosis-promoting effects of BAs were investigated in cell line models, a 3D co-culture system, and a Tgr5 (HSC-specific) KO mouse model. FINDINGS We found that a group of conjugated 12α-hydroxylated (12α-OH) BAs, such as taurodeoxycholate (TDCA) and glycodeoxycholate (GDCA), significantly increased in NASH patients and liver fibrosis mouse models. 12α-OH BAs significantly increased HSC proliferation and protein expression of fibrosis-related markers. Administration of TDCA and GDCA directly activated HSCs and promoted liver fibrogenesis in mouse models. Blockade of BA binding to TGR5 or inhibition of ERK1/2 and p38 MAPK signaling both significantly attenuated the BA-induced fibrogenesis. Liver fibrosis was attenuated in mice with Tgr5 depletion. INTERPRETATION Increased hepatic concentrations of conjugated 12α-OH BAs significantly contributed to liver fibrosis via TGR5 mediated p38MAPK and ERK1/2 signaling. Strategies to antagonize TGR5 or inhibit ERK1/2 and p38 MAPK signaling may effectively prevent or reverse liver fibrosis. FUNDINGS This study was supported by the National Institutes of Health/National Cancer Institute Grant 1U01CA188387-01A1, the National Key Research and Development Program of China (2017YFC0906800); the State Key Program of National Natural Science Foundation (81430062); the National Natural Science Foundation of China (81974073, 81774196), China Postdoctoral Science Foundation funded project, China (2016T90381), and E-institutes of Shanghai Municipal Education Commission, China (E03008).
Collapse
Affiliation(s)
- Guoxiang Xie
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Human Metabolomics Institute, Inc., Shenzhen, Guangdong 518109, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210009, China
| | - Xiaoning Wang
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Liu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiran Wu
- The iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Fengjie Huang
- Human Metabolomics Institute, Inc., Shenzhen, Guangdong 518109, China
| | - Zhipeng Liu
- Medical School of Southeast University, Nanjing, Jiangsu 210096, China
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiannan Qiu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoling Zhang
- Department of Hygienic Analysis and Detection, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Suwen Zhao
- The iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210009, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA; Hong Kong Traditional Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China; Lead contact.
| |
Collapse
|
25
|
Xiong F, Cao L, Wu XM, Chang MX. The function of zebrafish gpbar1 in antiviral response and lipid metabolism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103955. [PMID: 33285186 DOI: 10.1016/j.dci.2020.103955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
G protein-coupled bile acids receptor 1 (GPBAR1 or TGR5) has been widely studied as a metabolic regulator involved in bile acids synthesis, glucose metabolism and energy homeostasis. Several recent studies have shown that mammalian GPBAR1 is also involved in antiviral innate immune responses. However, the functions of piscine GPBAR1 in antibacterial or antiviral immune responses and lipid metabolism remain unclear. In the present study, we report the functional characterization of zebrafish gpbar1. Similar to mammalian GPBAR1, zebrafish gpbar1 contains similar domain composition, shows a dose-dependent activation by bile acids including INT777, LCA, DCA, CDCA and CA, and can be induced by viral infection. Compared with corresponding control groups, a significant antiviral activity against spring viremia of carp virus (SVCV) infection was observed in ZF4 cells overexpressing zebrafish gpbar1 with INT777 treatment, but not in ZF4 cells overexpressing zebrafish gpbar1 without INT777 treatment. The activation of zebrafish gpbar1 had no significant antibacterial effect against Edwardsiella piscicida infection in ZF4 cells in vitro. Transcriptome analysis revealed that zebrafish gpbar1 activation played a crucial role in activating RLR signaling pathway and inducing the production of ISGs, but not for bile acid biosynthesis and transportation. The co-occurrence analysis for antiviral-related and bile acids metabolism-related DEGs suggested a strong interaction among 2 bile acid receptors (gpbar1 and nr1h4), slco2b1 and the antiviral DEGs. The lipidomic analysis showed that zebrafish gpbar1 activation in ZF4 cells resulted a change of glycerophospholipids, but none of bile acids nor their derivatives, which were different from mammalian GPBAR1. All together, these results firstly demonstrate the conserved antiviral role of gpbar1 and its function in regulating glycerophospholipids metabolism in teleost.
Collapse
Affiliation(s)
- Fan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Rohr M, Aljabban J, Rudeski-Rohr T, Lessans S, Nakkina SP, Hadley D, Zhu X, Altomare DA. Meta-Analysis Reveals the Prognostic Relevance of Nuclear and Membrane-Associated Bile Acid Receptors in Gastric Cancer. Clin Transl Gastroenterol 2021; 12:e00295. [PMID: 33492921 PMCID: PMC7806235 DOI: 10.14309/ctg.0000000000000295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Bile acids (BAs) arising from duodenogastric reflux are known to facilitate gastric cancer (GC) development. Although BAs traditionally contribute to carcinogenesis through direct cellular cytotoxicity, increasing evidence implicates nuclear and membrane BA receptors (BARs) as additional factors influencing cancer risk. Indeed, some BARs are already linked with GC, but conflicting evidence and lack of information regarding other endogenous BARs warrant further investigation. In this study, we meta-analyzed multiple data sets to identify clinically relevant relationships between BAR expression and prognosis, clinicopathology, and activity in GC. METHODS We collected transcriptomic data from the Gene Expression Omnibus and The Cancer Genome Atlas to analyze associations between BAR expression and GC prognosis, subtype, and clinicopathology. We also used Ingenuity Pathway Analysis to assess and predict functions, upstream regulators, and downstream mediators of membrane and nuclear BARs in GC. RESULTS BARs showed differential distribution in GC; membrane BARs (G protein-coupled BAR 1, sphingosine-1-phosphate receptor 2, and cholinergic receptor muscarinic 2) were enriched in diffuse-, genome-stable, and mesenchymal-type tumors, whereas nuclear BARs (pregnane-X-receptor, constitutive androstane receptor, and farnesoid-X-receptor) were enriched in chromosome instability and metabolic subtypes. High expression of all membrane but not nuclear BARs was associated with poor prognosis and unfavorable GC clinicopathologic features. Similarly, expression patterns of membrane but not nuclear BARs varied geographically, aligning with Helicobacter pylori infection and GC mortality rates. Finally, GC-related oncogenes, namely transforming growth factor β1, were associated with membrane BARs, whereas many metabolic-associated genes were associated with nuclear BARs. DISCUSSION Through transcriptomic meta-analysis, we identified distinct expression profiles between nuclear and membrane BARs that demonstrate prognostic relevance and warrant further investigation.
Collapse
Affiliation(s)
- Michael Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jihad Aljabban
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Trina Rudeski-Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Spencer Lessans
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Dexter Hadley
- Department of Clinical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
27
|
Engin A. Bile Acid Toxicity and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:229-258. [PMID: 33539018 DOI: 10.1007/978-3-030-49844-3_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1β)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
28
|
Lo BC, Chen GY, Núñez G, Caruso R. Gut microbiota and systemic immunity in health and disease. Int Immunol 2020; 33:197-209. [PMID: 33367688 DOI: 10.1093/intimm/dxaa079] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian intestine is colonized by trillions of microorganisms that have co-evolved with the host in a symbiotic relationship. Although the influence of the gut microbiota on intestinal physiology and immunity is well known, mounting evidence suggests a key role for intestinal symbionts in controlling immune cell responses and development outside the gut. Although the underlying mechanisms by which the gut symbionts influence systemic immune responses remain poorly understood, there is evidence for both direct and indirect effects. In addition, the gut microbiota can contribute to immune responses associated with diseases outside the intestine. Understanding the complex interactions between the gut microbiota and the host is thus of fundamental importance to understand both immunity and human health.
Collapse
Affiliation(s)
- Bernard C Lo
- Department of Pathology and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine, the University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Roberta Caruso
- Department of Pathology and Rogel Cancer Center, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Liu JY, Chen HY, Zhang GX. Role and significance of bile acid membrane receptor GPBAR1 in pathogenesis of obstructive jaundice. Shijie Huaren Xiaohua Zazhi 2020; 28:1053-1058. [DOI: 10.11569/wcjd.v28.i21.1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
GPBAR1 is the first confirmed G protein coupled bile acid membrane receptor, which is widely expressed in the liver, gallbladder, kidney, intestine, and the nervous and cardiovascular systems. During the development of obstructive jaundice (OJ), GPBAR1 is activated by bile acid signal and mediates different signal transduction pathways, thus playing a corresponding role in the pathogenesis of OJ. GPBAR1 may be a potential therapeutic target for the treatment of OJ by controlling inflammation, regulating the function of bile duct epithelial barrier, inhibiting renal oxidative stress, and regulating intestinal mucosal barrier and intestinal flora, pruritus and sensory disturbance, and cardiovascular function. This article reviews the role and signficance of GPBAR1 in the pathogenesis of OJ.
Collapse
Affiliation(s)
- Jia-Yue Liu
- Laboratory of Clinical Key Disciplines of Integrated Traditional Chinese and Western Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hai-Yang Chen
- Laboratory of Clinical Key Disciplines of Integrated Traditional Chinese and Western Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Gui-Xin Zhang
- Laboratory of Clinical Key Disciplines of Integrated Traditional Chinese and Western Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China,Department of Acute Abdominal Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
30
|
Chiang JY, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. LIVER RESEARCH 2020; 4:47-63. [PMID: 34290896 PMCID: PMC8291349 DOI: 10.1016/j.livres.2020.05.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol 7 alpha-hydroxylase (CYP7A1, EC1.14) is the first and rate-limiting enzyme in the classic bile acid synthesis pathway. Much progress has been made in understanding the transcriptional regulation of CYP7A1 gene expression and the underlying molecular mechanisms of bile acid feedback regulation of CYP7A1 and bile acid synthesis in the last three decades. Discovery of bile acid-activated receptors and their roles in the regulation of lipid, glucose and energy metabolism have been translated to the development of bile acid-based drug therapies for the treatment of liver-related metabolic diseases such as alcoholic and non-alcoholic fatty liver diseases, liver cirrhosis, diabetes, obesity and hepatocellular carcinoma. This review will provide an update on the advances in our understanding of the molecular biology and mechanistic insights of the regulation of CYP7A1 in bile acid synthesis in the last 40 years.
Collapse
|
31
|
Gut metabolites and inflammation factors in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Sci Rep 2020; 10:8848. [PMID: 32483129 PMCID: PMC7264254 DOI: 10.1038/s41598-020-65051-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/23/2020] [Indexed: 01/30/2023] Open
Abstract
The interaction of gut microbiota, related metabolites and inflammation factors with nonalcoholic fatty liver disease (NAFLD) remains unclearly defined. The aim of this systematic review and meta-analysis was to synthesize previous study findings to better understand this interaction. Relevant research articles published not later than September, 2019 were searched in the following databases: Web of Science, PubMed, Embase, and Cochrane Library. The search strategy and inclusion criteria for this study yielded a total of 47 studies, of which only 11 were eligible for meta-analysis. The narrative analysis of these articles found that there is interplay between the key gut microbiota, related metabolites and inflammation factors, which modulate the development and progression of NAFLD. In addition, the results of meta-analysis showed that probiotic supplementation significantly decreased tumor necrosis factor-α (TNF-α) in NAFLD patients (standardized mean difference (SMD) = −0.52, confidence interval (CI): −0.86 to −0.18, and p = 0.003) and C-reactive protein (CRP) (SMD = −0.62, CI: −0.80 to −0.43, and p < 0.001). However, whether therapies can target TNF-α and CRP in order treat NAFLD still needs further investigation. Therefore, these results suggest that the interaction of the key gut microbiota, related metabolites and inflammation factors with NAFLD may provide a novel therapeutic target for the clinical and pharmacological treatment of NAFLD.
Collapse
|
32
|
Abstract
Ample evidence suggests that hepatic macrophages play key roles in the injury and repair mechanisms during liver disease progression. There are two major populations of hepatic macrophages: the liver resident Kupffer cells and the monocyte-derived macrophages, which rapidly infiltrate the liver during injury. Under different disease conditions, the tissue microenvironmental cues of the liver critically influence the phenotypes and functions of hepatic macrophages. Furthermore, hepatic macrophages interact with multiple cells types in the liver, such as hepatocytes, neutrophils, endothelial cells, and platelets. These crosstalk interactions are of paramount importance in regulating the extents of liver injury, repair, and ultimately liver disease progression. In this review, we summarize the novel findings highlighting the impact of injury-induced microenvironmental signals that determine the phenotype and function of hepatic macrophages. Moreover, we discuss the role of hepatic macrophages in homeostasis and pathological conditions through crosstalk interactions with other cells of the liver.
Collapse
Affiliation(s)
- Zhao Shan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
33
|
Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol 2020; 318:G554-G573. [PMID: 31984784 PMCID: PMC7099488 DOI: 10.1152/ajpgi.00223.2019] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acid synthesis is the most significant pathway for catabolism of cholesterol and for maintenance of whole body cholesterol homeostasis. Bile acids are physiological detergents that absorb, distribute, metabolize, and excrete nutrients, drugs, and xenobiotics. Bile acids also are signal molecules and metabolic integrators that activate nuclear farnesoid X receptor (FXR) and membrane Takeda G protein-coupled receptor 5 (TGR5; i.e., G protein-coupled bile acid receptor 1) to regulate glucose, lipid, and energy metabolism. The gut-to-liver axis plays a critical role in the transformation of primary bile acids to secondary bile acids, in the regulation of bile acid synthesis to maintain composition within the bile acid pool, and in the regulation of metabolic homeostasis to prevent hyperglycemia, dyslipidemia, obesity, and diabetes. High-fat and high-calorie diets, dysbiosis, alcohol, drugs, and disruption of sleep and circadian rhythms cause metabolic diseases, including alcoholic and nonalcoholic fatty liver diseases, obesity, diabetes, and cardiovascular disease. Bile acid-based drugs that target bile acid receptors are being developed for the treatment of metabolic diseases of the liver.
Collapse
Affiliation(s)
- John Y. L. Chiang
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica M. Ferrell
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
34
|
Vilas-Boas V, Gijbels E, Jonckheer J, De Waele E, Vinken M. Cholestatic liver injury induced by food additives, dietary supplements and parenteral nutrition. ENVIRONMENT INTERNATIONAL 2020; 136:105422. [PMID: 31884416 DOI: 10.1016/j.envint.2019.105422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Cholestasis refers to the accumulation of toxic levels of bile acids in the liver due to defective bile secretion. This pathological situation can be triggered by drugs, but also by ingredients contained in food, food supplements and parenteral nutrition. This paper provides an overview of the current knowledge on cholestatic injury associated with such ingredients, with particular emphasis on the underlying mechanisms of toxicity.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Joop Jonckheer
- Department of Intensive Care, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Elisabeth De Waele
- Department of Intensive Care, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
35
|
Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med 2020; 7:22. [PMID: 32158768 PMCID: PMC7052117 DOI: 10.3389/fcvm.2020.00022] [Citation(s) in RCA: 731] [Impact Index Per Article: 146.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue plays essential roles in maintaining lipid and glucose homeostasis. To date several types of adipose tissue have been identified, namely white, brown, and beige, that reside in various specific anatomical locations throughout the body. The cellular composition, secretome, and location of these adipose depots define their function in health and metabolic disease. In obesity, adipose tissue becomes dysfunctional, promoting a pro-inflammatory, hyperlipidemic and insulin resistant environment that contributes to type 2 diabetes mellitus (T2DM). Concurrently, similar features that result from adipose tissue dysfunction also promote cardiovascular disease (CVD) by mechanisms that can be augmented by T2DM. The mechanisms by which dysfunctional adipose tissue simultaneously promote T2DM and CVD, focusing on adipose tissue depot-specific adipokines, inflammatory profiles, and metabolism, will be the focus of this review. The impact that various T2DM and CVD treatment strategies have on adipose tissue function and body weight also will be discussed.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
36
|
Honda A, Miyazaki T, Iwamoto J, Hirayama T, Morishita Y, Monma T, Ueda H, Mizuno S, Sugiyama F, Takahashi S, Ikegami T. Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. J Lipid Res 2019; 61:54-69. [PMID: 31645370 DOI: 10.1194/jlr.ra119000395] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
The bile acid (BA) composition in mice is substantially different from that in humans. Chenodeoxycholic acid (CDCA) is an end product in the human liver; however, mouse Cyp2c70 metabolizes CDCA to hydrophilic muricholic acids (MCAs). Moreover, in humans, the gut microbiota converts the primary BAs, cholic acid and CDCA, into deoxycholic acid (DCA) and lithocholic acid (LCA), respectively. In contrast, the mouse Cyp2a12 reverts this action and converts these secondary BAs to primary BAs. Here, we generated Cyp2a12 KO, Cyp2c70 KO, and Cyp2a12/Cyp2c70 double KO (DKO) mice using the CRISPR-Cas9 system to study the regulation of BA metabolism under hydrophobic BA composition. Cyp2a12 KO mice showed the accumulation of DCAs, whereas Cyp2c70 KO mice lacked MCAs and exhibited markedly increased hepatobiliary proportions of CDCA. In DKO mice, not only DCAs or CDCAs but also DCAs, CDCAs, and LCAs were all elevated. In Cyp2c70 KO and DKO mice, chronic liver inflammation was observed depending on the hepatic unconjugated CDCA concentrations. The BA pool was markedly reduced in Cyp2c70 KO and DKO mice, but the FXR was not activated. It was suggested that the cytokine/c-Jun N-terminal kinase signaling pathway and the pregnane X receptor-mediated pathway are the predominant mechanisms, preferred over the FXR/small heterodimer partner and FXR/fibroblast growth factor 15 pathways, for controlling BA synthesis under hydrophobic BA composition. From our results, we hypothesize that these KO mice can be novel and useful models for investigating the roles of hydrophobic BAs in various human diseases.
Collapse
Affiliation(s)
- Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan; Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Junichi Iwamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Takeshi Hirayama
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Yukio Morishita
- Diagnostic Pathology Division, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Tadakuni Monma
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Hajime Ueda
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Tadashi Ikegami
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
37
|
Deng G, Ma C, Zhao H, Zhang S, Liu J, Liu F, Chen Z, Chen AT, Yang X, Avery J, Zou P, Du F, Lim KP, Holden D, Li S, Carson RE, Huang Y, Chen Q, Kimberly WT, Simard JM, Sheth KN, Zhou J. Anti-edema and antioxidant combination therapy for ischemic stroke via glyburide-loaded betulinic acid nanoparticles. Theranostics 2019; 9:6991-7002. [PMID: 31660082 PMCID: PMC6815966 DOI: 10.7150/thno.35791] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Stroke is a deadly disease without effective pharmacotherapies, which is due to two major reasons. First, most therapeutics cannot efficiently penetrate the brain. Second, single agent pharmacotherapy may be insufficient and effective treatment of stroke requires targeting multiple complementary targets. Here, we set to develop single component, multifunctional nanoparticles (NPs) for targeted delivery of glyburide to the brain for stroke treatment. Methods: To characterize the brain penetrability, we radiolabeled glyburide, intravenously administered it to stroke- bearing mice, and determined its accumulation in the brain using positron emission tomography-computed tomography (PET/CT). To identify functional nanomaterials to improve drug delivery to the brain, we developed a chemical extraction approach and tested it for isolation of nanomaterials from E. ulmoides, a medicinal herb. To assess the therapeutic benefits, we synthesized glyburide-loaded NPs and evaluated them in stroke- bearing mice. Results: We found that glyburide has a limited ability to penetrate the ischemic brain. We identified betulinic acid (BA) capable of forming NPs, which, after intravenous administration, efficiently penetrate the brain and significantly reduce ischemia-induced infarction as an antioxidant agent. We demonstrated that BA NPs enhance delivery of glyburide, leading to therapeutic benefits significantly greater than those achieved by either glyburide or BA NPs. Conclusion: This study suggests a new direction to identify functional nanomaterials and a simple approach to achieving anti-edema and antioxidant combination therapy. The resulting glyburide- loaded BA NPs may be translated into clinical applications to improve clinical management of stroke.
Collapse
Affiliation(s)
- Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chao Ma
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Haitian Zhao
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Ann T. Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Xin Yang
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jonathan Avery
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Pan Zou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Fengyi Du
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Keun-poong Lim
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Daniel Holden
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Richard E. Carson
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Yiyun Huang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - W. Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kevin N. Sheth
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
38
|
Ji Y, Yin Y, Li Z, Zhang W. Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2019; 11:nu11081712. [PMID: 31349604 PMCID: PMC6724003 DOI: 10.3390/nu11081712] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Human gut microbiota has been increasingly recognized as a pivotal determinant of non-alcoholic fatty liver disease (NAFLD). Apart from the changes in the composition of gut microbiota, the components and metabolites derived from intestinal microbiota have emerged as key factors in modulating the pathological process of NAFLD. Compelling evidences have revealed that gut microbiota generates a variety of bioactive substances that interact with the host liver cells through the portal vein. These substances include the components derived from bacteria such as lipopolysaccharides, peptidoglycan, DNA, and extracellular vesicles, as well as the metabolites ranging from short-chain fatty acids, indole and its derivatives, trimethylamine, secondary bile acids, to carotenoids and phenolic compounds. The mechanisms underlying the hepatic responses to the bioactive substances from gut bacteria have been associated with the regulation of glycolipid metabolism, immune signaling response, and redox homeostasis. Illuminating the interplay between the unique factors produced from gut microbiome and the liver will provide a novel therapeutical target for NAFLD. The current review highlights the recent advances on the mechanisms by which the key ingredients and metabolites from gut microbiota modulate the development and progression of NAFLD.
Collapse
Affiliation(s)
- Yun Ji
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
39
|
Role of Bile Acids in Dysbiosis and Treatment of Nonalcoholic Fatty Liver Disease. Mediators Inflamm 2019; 2019:7659509. [PMID: 31341422 PMCID: PMC6613006 DOI: 10.1155/2019/7659509] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health threat around the world and is characterized by dysbiosis. Primary bile acids are synthesized in the liver and converted into secondary bile acids by gut microbiota. Recent studies support the role of bile acids in modulating dysbiosis and NAFLD, while the mechanisms are not well elucidated. Dysbiosis may alter the size and the composition of the bile acid pool, resulting in reduced signaling of bile acid receptors such as farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). These receptors are essential in lipid and glucose metabolism, and impaired bile acid signaling may cause NAFLD. Bile acids also reciprocally regulate the gut microbiota directly via antibacterial activity and indirectly via FXR. Therefore, bile acid signaling is closely linked to dysbiosis and NAFLD. During the past decade, stimulation of bile acid receptors with their agonists has been extensively explored for the treatment of NAFLD in both animal models and clinical trials. Early evidence has suggested the potential of bile acid receptor agonists in NAFLD management, but their long-term safety and effectiveness need further clarification.
Collapse
|
40
|
Flynn CR, Albaugh VL, Abumrad NN. Metabolic Effects of Bile Acids: Potential Role in Bariatric Surgery. Cell Mol Gastroenterol Hepatol 2019; 8:235-246. [PMID: 31075353 PMCID: PMC6664228 DOI: 10.1016/j.jcmgh.2019.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Bariatric surgery is the most effective and durable treatment for morbid obesity, with an unexplained yet beneficial side effect of restoring insulin sensitivity and improving glycemia, often before weight loss is observed. Among the many contributing mechanisms often cited, the altered handling of intestinal bile acids is of considerable therapeutic interest. Here, we review a growing body of literature examining the metabolic effects of bile acids ranging from their physical roles in dietary fat handling within the intestine to their functions as endocrine and paracrine hormones in potentiating responses to bariatric surgery. The roles of 2 important bile acid receptors, Takeda G-protein coupled receptor (also known as G-protein coupled bile acid receptor) and farnesoid X receptor, are highlighted as is downstream signaling through glucagon-like polypeptide 1 and its cognate receptor. Additional improvements in other phenotypes and potential contributions of commensal gut bacteria, such as Akkermansia muciniphila, which are manifest after Roux-en-Y gastric bypass and other emulations, such as gallbladder bile diversion to the ileum, are also discussed.
Collapse
Affiliation(s)
- Charles R. Flynn
- Correspondence Address correspondence to: Charles R. Flynn, PhD, 1161 21st Avenue S, CCC-2308 MCN, Nashville, Tennessee 37232-2730. fax: (615) 343-6456.
| | | | | |
Collapse
|
41
|
Olive Leaf Extract (OleaVita) Suppresses Inflammatory Cytokine Production and NLRP3 Inflammasomes in Human Placenta. Nutrients 2019; 11:nu11050970. [PMID: 31035323 PMCID: PMC6566934 DOI: 10.3390/nu11050970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
The placenta is essential for pregnancy and produces both pro-inflammatory and anti-inflammatory cytokines. Excessive production of inflammatory cytokines, involving interleukin-1β (IL-1β), IL-6, and IL-8, from placental tissues is associated with pregnancy complications. Olive leaf extract has several health benefits, including anti-inflammatory functions. OleaVita is a new commercial olive leaf extract; it is hypothesized to suppress placental inflammation. In human placental tissue culture, OleaVita treatment inhibited the secretion of inflammatory cytokines and NF-κB p65 protein expression. OleaVita also suppressed toll-like receptor ligands-induced IL-1β secretion in human placental tissues. IL-1β is regulated by the NLRP3 inflammasomes, a pivotal regulator of various diseases. OleaVita significantly decreased NLRP3 and pro-IL-1β protein expression, suggesting that it has an inhibitory effect on NLRP3 inflammasome activation. Thus, OleaVita is beneficial as an inhibitor of inflammation and NLRP3 inflammasome activation, and may be used as a supplement for the treatment and prevention of inflammatory diseases.
Collapse
|
42
|
Liu J, Lu YF, Wu Q, Xu SF, Shi FG, Klaassen CD. Oleanolic acid reprograms the liver to protect against hepatotoxicants, but is hepatotoxic at high doses. Liver Int 2019; 39:427-439. [PMID: 30079536 DOI: 10.1111/liv.13940] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/14/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
Oleanolic acid (OA) is a triterpenoid that exists widely in fruits, vegetables and medicinal herbs. OA is included in some dietary supplements and is used as a complementary and alternative medicine (CAM) in China, India, Asia, the USA and European countries. OA is effective in protecting against various hepatotoxicants, and one of the protective mechanisms is reprogramming the liver to activate the nuclear factor erythroid 2-related factor 2 (Nrf2). OA derivatives, such as CDDO-Im and CDDO-Me, are even more potent Nrf2 activators. OA has recently been shown to also activate the Takeda G-protein-coupled receptor (TGR5). However, whereas a low dose of OA is hepatoprotective, higher doses and long-term use of OA can produce liver injury, characterized by cholestasis. This paradoxical hepatotoxic effect occurs not only for OA, but also for other OA-type triterpenoids. Dose and length of time of OA exposure differentiate the ability of OA to produce hepatoprotection vs hepatotoxicity. Hepatotoxicity produced by herbs is increasingly recognized and is of global concern. Given the appealing nature of OA in dietary supplements and its use as an alternative medicine around the world, as well as the development of OA derivatives (CDDO-Im and CDDO-Me) as therapeutics, it is important to understand not only that they program the liver to protect against hepatotoxic chemicals, but also how they produce hepatotoxicity.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas
| | - Yuan-Fu Lu
- Key Laboratory for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Laboratory for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
| | - Shang-Fu Xu
- Key Laboratory for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
| | - Fu-Guo Shi
- Key Laboratory for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
| | - Curtis D Klaassen
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kansas
| |
Collapse
|
43
|
Zhang Y, Lu Y, Ji H, Li Y. Anti-inflammatory, anti-oxidative stress and novel therapeutic targets for cholestatic liver injury. Biosci Trends 2019; 13:23-31. [PMID: 30814402 DOI: 10.5582/bst.2018.01247] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cholestasis is a pathological process in which bile drainage is poor for a variety of reasons. Many studies have shown that cholestatic liver injury is a neutrophil-mediated inflammatory response, and oxidative stress induced by neutrophils is the main mechanism of liver cell death. The literature summarizes the bile acid signaling pathway, the neutrophil chemotaxis recruitment process during cholestasis, and the oxidative stress damage produced by neutrophil activation, summarizes the latest research progress. Sphingosine-1-phosphate receptor (S1PR) is a potential therapeutic target for cholestasis that reduces neutrophil aggregation without inhibiting systemic immune status. Early growth response factor 1 (Egr-1) may play a central role in the inflammation induced by cholestasis, and it is also a potential therapeutic target to inhibit the inflammation induced by cholestasis. Strengthening the antioxidant system of hepatocytes to cope with oxidative stress of neutrophils is a feasible treatment for cholestatic liver injury.
Collapse
Affiliation(s)
- Yafei Zhang
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University
| | - Yuxuan Lu
- The High School Affiliated to xi'an Jiaotong University
| | - Hong Ji
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University
| | - Yiming Li
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
44
|
Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis. Lab Anim Res 2018; 34:140-146. [PMID: 30671099 PMCID: PMC6333617 DOI: 10.5625/lar.2018.34.4.140] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/05/2018] [Indexed: 12/28/2022] Open
Abstract
Though bile acids have been well known as digestive juice, recent studies have demonstrated that bile acids bind to their endogenous receptors, including Farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1; TGR5) and serve as hormone to control various biological processes, including cholesterol/bile acid metabolism, glucose/lipid metabolism, immune responses, and energy metabolism. Deficiency of those bile acid receptors has been reported to induce diverse metabolic syndromes such as obesity, hyperlipidemia, hyperglycemia, and insulin resistance. As consistent, numerous studies have reported alteration of bile acid signaling pathways in type II diabetes patients. Interestingly, bile acids have shown to activate TGR5 in intestinal L cells and enhance secretion of glucagon-like peptide 1 (GLP-1) to potentiate insulin secretion in response to glucose. Moreover, FXR has been shown to crosstalk with TGR5 to control GLP-1 secretion. Altogether, bile acid receptors, FXR and TGR5 are potent therapeutic targets for the treatment of metabolic diseases, including type II diabetes.
Collapse
|
45
|
Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile Acids Activated Receptors Regulate Innate Immunity. Front Immunol 2018; 9:1853. [PMID: 30150987 PMCID: PMC6099188 DOI: 10.3389/fimmu.2018.01853] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Once known exclusively for their role in nutrients absorption, primary bile acids, chenodeoxycholic and cholic acid, and secondary bile acids, deoxycholic and lithocholic acid, are signaling molecules, generated from cholesterol breakdown by the interaction of the host and intestinal microbiota, acting on several receptors including the G protein-coupled bile acid receptor 1 (GPBAR1 or Takeda G-protein receptor 5) and the Farnesoid-X-Receptor (FXR). Both receptors are placed at the interface of the host immune system with the intestinal microbiota and are highly represented in cells of innate immunity such as intestinal and liver macrophages, dendritic cells and natural killer T cells. Here, we review how GPBAR1 and FXR modulate the intestinal and liver innate immune system and contribute to the maintenance of a tolerogenic phenotype in entero-hepatic tissues, and how regulation of innate immunity might help to explain beneficial effects exerted by GPBAR1 and FXR ligands in immune and metabolic disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Section of Gastroenterology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Section of Gastroenterology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
46
|
Kim MS, Han JY, Kim SH, Kim HY, Jeon D, Lee K. Polyhexamethylene guanidine phosphate induces IL-6 and TNF-α expression through JNK-dependent pathway in human lung epithelial cells. J Toxicol Sci 2018; 43:485-492. [PMID: 30078834 DOI: 10.2131/jts.43.485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Polyhexamethylene guanidine phosphate (PHMG) is an antimicrobial biocide that causes severe lung injury accompanied with inflammation and subsequent fibrosis. Cytokines mediate the inflammatory response, leading to fibrosis in injured tissues. PHMG is known to induce the expression of various cytokines in vitro and in vivo. In the present study, we investigated the involvement of three MAPK subfamilies (JNK, p38 MAPK, and ERK) in PHMG-induced cytokine expression in A549 human lung epithelial cells. Our in vivo and in vitro data indicated that PHMG induced an increase in mRNA expression of IL-6 and TNF-α, and enhanced the phosphorylation of JNK, p38 MAPK, and ERK. Further, we investigated the involvement of MAPKs in PHMG-induced mRNA expression of IL-6 and TNF-α using JNK, p38 MAPK, and ERK inhibitors in A549 cells. Pre-treatment with the JNK inhibitor but not the p38 MAPK or ERK inhibitor, significantly attenuated the PHMG-induced mRNA expression of IL-6 and TNF-α. These results suggest that the activation of JNK is involved at least partially in the induction of IL-6 or TNF-α expression by PHMG in A549 cells.
Collapse
Affiliation(s)
- Min-Seok Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Korea
| | - Jin-Young Han
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Korea.,Department of human and environmental toxicology, University of Science & Technology, Korea
| | - Sung-Hwan Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Korea.,Department of human and environmental toxicology, University of Science & Technology, Korea
| | - Hyung-Young Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Korea
| | - Doin Jeon
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, Korea.,Department of human and environmental toxicology, University of Science & Technology, Korea
| |
Collapse
|
47
|
Abstract
Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders.
Collapse
Affiliation(s)
- John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
48
|
Sarathy J, Detloff SJ, Ao M, Khan N, French S, Sirajuddin H, Nair T, Rao MC. The Yin and Yang of bile acid action on tight junctions in a model colonic epithelium. Physiol Rep 2018; 5:e13294. [PMID: 28554966 PMCID: PMC5449568 DOI: 10.14814/phy2.13294] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal epithelial barrier loss due to tight junction (TJ) dysfunction and bile acid‐induced diarrhea are common in patients with inflammatory diseases. Although excess colonic bile acids are known to alter mucosal permeability, few studies have compared the effects of specific bile acids on TJ function. We report that the primary bile acid, chenodeoxycholic acid (CDCA), and its 7α‐dehydroxylated derivative, lithocholic acid (LCA) have opposite effects on epithelial integrity in human colonic T84 cells. CDCA decreased transepithelial barrier resistance (pore) and increased paracellular 10 kDa dextran permeability (leak), effects that were enhanced by proinflammatory cytokines (PiC [ng/mL]: TNFα[10] + IL‐1ß[10] + IFNγ[30]). CDCA reversed the cation selectivity of the monolayer and decreased intercellular adhesion. In contrast, LCA alone did not alter any of these parameters, but attenuated the effects of CDCA ± PiC on paracellular permeability. CDCA, but not PiC, decreased occludin and not claudin‐2 protein expression; CDCA also decreased occludin localization. LCA ± CDCA had no effects on occludin or claudin expression/localization. While PiC and CDCA increased IL‐8 production, LCA reduced both basal and PiC ± CDCA‐induced IL‐8 production. TNFα + IL1ß increased IFNγ, which was enhanced by CDCA and attenuated by LCA. CDCA±PiC increased production of reactive oxygen species (ROS) that was attenuated by LCA. Finally, scavenging ROS attenuated CDCA's leak, but not pore actions, and LCA enhanced this effect. Thus, in T84 cells, CDCA plays a role in the inflammatory response causing barrier dysfunction, while LCA restores barrier integrity. Understanding the interplay of LCA, CDCA, and PiC could lead to innovative therapeutic strategies for inflammatory and diarrheal diseases.
Collapse
Affiliation(s)
- Jayashree Sarathy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.,Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Sally Jo Detloff
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Mei Ao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nabihah Khan
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Sydney French
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Hafsa Sirajuddin
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Tanushree Nair
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
49
|
Hsieh CS, Chuang JH, Chou MH, Kao YH. Dexamethasone restores transforming growth factor-β activated kinase 1 expression and phagocytosis activity of Kupffer cells in cholestatic liver injury. Int Immunopharmacol 2018; 56:310-319. [PMID: 29414666 DOI: 10.1016/j.intimp.2018.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Abstract
The role of transforming growth factor-β activated kinase 1 (TAK1) in modulating the function of Kupffer cells (KCs) within cholestatic livers remains unclear. This study examined the immunopharmacological action of dexamethasone (DEX) in modulating hepatic TAK1 expression and related signaling activity in a rat model of bile duct ligation-mimicked obstructive jaundice. The in vitro effects of DEX on porcine biliary extract (PBE)-modulated gene expression and phagocytosis of KCs were examined using a rat alveolar macrophage cell line (NR8383 cells). Although DEX therapy did not restore the downregulated TAK1 expression and phosphorylation, it significantly attenuated the upregulation of high-mobility group box 1 expression and caspase-3 activation in whole liver extracts of cholestatic rats, possibly via enhancing extracellular signal-regulated kinase-mediated signaling. Dual immunofluorescence staining of cholestatic livers and western detection on primary KCs isolated from cholestatic livers identified that DEX treatment indeed increased both the expression and phosphorylation levels of TAK1 in the KCs of cholestatic livers. In vitro studies using alveolar NR8383 macrophages with KC-characteristic gene expression further demonstrated that DEX not only repressed the pro-inflammatory cytokine production including with respect to interleukin (IL)-1β and IL-6, but also enhanced gene expression of TAK1 and a phagocytic marker, natural-resistance-associated macrophage protein 1, under PBE-mimicked cholestatic conditions. However, WST-1 assay showed that DEX did not protect NR8383 macrophages against the PBE-induced cytotoxicity. Immunofluorescence visualization of cellular F-actin by phalloidin suggested that DEX sustained the PBE-induced phagocytosis morphology of NR8383 macrophages. In conclusion, DEX treatment may pharmacologically restore the expression and activity of TAK1 in KCs, and sustain the phagocytic phenotype of KCs in cholestatic livers.
Collapse
Affiliation(s)
- Chih-Sung Hsieh
- Department of Pediatric Surgery and Department of Teaching & Research, Pu-Li Christian Hospital, Nantou, Taiwan; Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Jiin-Haur Chuang
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Huei Chou
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for General Education, Cheng-Shiu University, Kaohsiung, Taiwan.
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
50
|
Dietary and metabolic modulators of hepatic immunity. Semin Immunopathol 2017; 40:175-188. [PMID: 29110070 DOI: 10.1007/s00281-017-0659-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
The liver is the central metabolic organ of the organism and is thus constantly exposed to gut-derived dietary and microbial antigens. The liver maintains homoeostatic tolerance to these mostly harmless antigens. However, the liver also functions as a barrier organ to harmful pathogens and is thus permissive to liver inflammation. The regulation of the delicate balance between liver tolerance and liver inflammation is of vital importance for the organism. In recent years, a general role for dietary components and metabolites as immune mediators has been emerging. However, although the liver is exposed to a great deal of metabolic mediators, surprisingly, little is known about their actual role in the regulation of hepatic immune responses. Here, we will explore the possible impacts of metabolic mediators for homoeostatic and pathological immunity in the liver, by highlighting selected examples of metabolic immune regulation in the liver.
Collapse
|