1
|
Kumar R, Kumari P, Kumar R. Central Nervous System Response Against Ionizing Radiation Exposure: Cellular, Biochemical, and Molecular Perspectives. Mol Neurobiol 2025; 62:7268-7295. [PMID: 39875779 DOI: 10.1007/s12035-025-04712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Gamma radiation is known to induce several detrimental effects on the nervous system. The hippocampus region, specifically the dentate gyrus (DG) and subventricular zone (SVZ), have been identified as a radiation-sensitive neurogenic niche. Radiation alters the endogenous redox status of neural stem cells (NSCs) and other proliferative cells, especially in the hippocampus region, leading to oxidative stress, neuroinflammation, and cell death. Planned (i.e., radiotherapy of brain tumor patients) or unplanned radiation exposure (i.e., accidental radiation exposure) can induce nonspecific damage to neuronal tissues, resulting in chronic or acute radiation syndrome. Although anatomical alterations in the neuronal tissues have been reported at higher doses of gamma radiation, biochemical and molecular perturbations may be evident even at much lower radiation doses. They may manifest in the form of neuronal deficits and cognitive impairment. In the present review, several molecular events and signaling pathways, such as oxidative stress, neuroinflammation, apoptosis, cognition, neuroplasticity, and neurotoxicity induced in neuronal cells upon ionizing radiation exposure, are reviewed. Furthermore, brain-specific radioprotectors and mitigators that protect normal neuronal cells and tissues against ionizing radiation during radiotherapy of cancer patients or nuclear emergencies are also discussed.
Collapse
Affiliation(s)
- Ravi Kumar
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Pratibha Kumari
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Raj Kumar
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
2
|
Arias E, Haynes ME, Nadkarni NA, Lipfert ZK, Muller WA, Batra A, Sullivan DP. EdU tracking of leukocyte recruitment in mouse models of ischemic stroke and sterile lung inflammation. J Cell Sci 2025; 138:jcs263835. [PMID: 40260638 DOI: 10.1242/jcs.263835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
The discovery of copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry) has significantly advanced the detection of proliferating cells by utilizing 5-ethynyl-2'-deoxyuridine (EdU). EdU, a thymidine analogue, is incorporated into DNA during replication and detected by the direct reaction with an azide-conjugated fluorophore. Traditionally, dividing cells are labeled using 5-bromodeoxyuridine (BrdU), another nucleotide analogue. However, BrdU detection is a harsh method that requires substantial sample processing, unlike EdU detection. EdU is classically used to identify proliferating cells; however, we report a streamlined methodology that uses EdU to label and track leukocyte recruitment that is compatible with flow cytometry and microscopy and preserves transgenic fluorophores. EdU labeling was performed in two different models of sterile inflammation: ischemic stroke and hydrochloric acid aspiration. EdU injection was timed to differentially label circulating monocytes, neutrophils and T cells. Tissue analysis showed EdU-positive monocytes and T cells were enriched in both inflammatory models. This suggests that recently divided monocytes and T cells are preferentially recruited to these vascular beds during inflammation and highlights the utility of this labeling approach to track leukocyte subtypes longitudinally during inflammation.
Collapse
Affiliation(s)
- Erika Arias
- Department of Pathology, Northwestern University, Chicago, IL 60643, USA
| | - Maureen E Haynes
- Department of Pathology, Northwestern University, Chicago, IL 60643, USA
| | - Neil A Nadkarni
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zoie K Lipfert
- Department of Neurology, Northwestern University, Chicago, IL 60643, USA
| | - William A Muller
- Department of Pathology, Northwestern University, Chicago, IL 60643, USA
| | - Ayush Batra
- Department of Pathology, Northwestern University, Chicago, IL 60643, USA
- Department of Neurology, Northwestern University, Chicago, IL 60643, USA
| | - David P Sullivan
- Department of Pathology, Northwestern University, Chicago, IL 60643, USA
| |
Collapse
|
3
|
Kricha A, Bouchmaa N, Ben Mkaddem S, Abbaoui A, Ben Mrid R, El Fatimy R. Glioblastoma-associated macrophages: A key target in overcoming glioblastoma therapeutic resistance. Cytokine Growth Factor Rev 2024; 80:97-108. [PMID: 39510901 DOI: 10.1016/j.cytogfr.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Glioblastoma multiforme (GBM) is recognized as the most aggressive and malignant form of brain cancer, characterized by a highly heterogeneous phenotype, poor prognosis, and a median survival time of less than 16 months. Recent studies have highlighted the critical role of glioblastoma-associated macrophages (GAMs) in promoting tumor progression and resistance not only to immunotherapy but also to radiotherapy and chemotherapy. GAMs actively suppress immune responses, promote angiogenesis, facilitate tumor metastasis, and induce therapy resistance, through various mechanisms such as cytokines production, signaling pathways regulation, and angiogenesis. In this context, understanding these regulatory mechanisms is essential for developing efficient therapies. Preclinical studies have investigated diverse approaches to target these cells, both as monotherapies or in combination with other treatments. While these approaches have shown promise in strengthening antitumor immune responses in animal models, their clinical success remains to be fully determined. Herein, we provide a comprehensive overview of GAMs's role in GBM therapeutic resistance and summarizes existing approaches to target GAMs in overcoming tumor resistance.
Collapse
Affiliation(s)
- Aymane Kricha
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Najat Bouchmaa
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Sanae Ben Mkaddem
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Abdellatif Abbaoui
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Reda Ben Mrid
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Rachid El Fatimy
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| |
Collapse
|
4
|
Chi J, Gao Q, Liu D. Tissue-Resident Macrophages in Cancer: Friend or Foe? Cancer Med 2024; 13:e70387. [PMID: 39494816 PMCID: PMC11533131 DOI: 10.1002/cam4.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Macrophages are essential in maintaining homeostasis, combating infections, and influencing the process of various diseases, including cancer. Macrophages originate from diverse lineages: Notably, tissue-resident macrophages (TRMs) differ from hematopoietic stem cells and circulating monocyte-derived macrophages based on genetics, development, and function. Therefore, understanding the recruited and TRM populations is crucial for investigating disease processes. METHODS By searching literature databses, we summarized recent relevant studies. Research has shown that tumor-associated macrophages (TAMs) of distinct origins accumulate in tumor microenvironment (TME), with TRM-derived TAMs closely resembling gene signatures of normal TRMs. RESULTS Recent studies have revealed that TRMs play a crucial role in cancer progression. However, organ-specific effects complicate TRM investigations. Nonetheless, the precise involvement of TRMs in tumors is unclear. This review explores the multifaceted roles of TRMs in cancer, presenting insights into their origins, proliferation, the latest research methodologies, their impact across various tumor sites, their potential and strategies as therapeutic targets, interactions with other cells within the TME, and the internal heterogeneity of TRMs. CONCLUSIONS We believe that a comprehensive understanding of the multifaceted roles of TRMs will pave the way for targeted TRM therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Jianhua Chi
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Richard SA, Roy SK, Asiamah EA. Pivotal Role of Cranial Irradiation-Induced Peripheral, Intrinsic, and Brain-Engrafting Macrophages in Malignant Glioma. Clin Med Insights Oncol 2024; 18:11795549241282098. [PMID: 39421649 PMCID: PMC11483687 DOI: 10.1177/11795549241282098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Malignant (high-grade) gliomas are aggressive intrinsic brain tumors that diffusely infiltrate the brain parenchyma. They comprise of World Health Organization (WHO) grade III and IV gliomas. Ionizing radiation or irradiation (IR) is frequently utilized in the treatment of both primary as well as metastatic brain tumors. On the contrary, macrophages (MΦ) are the most copious infiltrating immune cells of all the different cell types colonizing glioma. MΦ at tumor milieu are referred to as tumor-associated macrophages (TAMΦ). In malignant gliomas milieu, TAMΦ are also polarized into two distinct phenotypes such as M1 TAMΦ or M2 TAMΦ, which are capable of inhibiting or promoting tumor growth, respectively. Cranial-IR such as x- and γ-IR are sufficient to induce the migration of peripherally derived MΦ into the brain parenchyma. The IR facilitate a more immunosuppressive milieu via the stimulation of efferocytosis in TAMΦ, and an upsurge of tumor cell engulfment by TAMΦ exhibited detrimental effect of the anti-tumoral immune response in glioma. The MΦ inside the tumor mass are associated with multiple phenomena that include IR resistance and enrichment of the M2 MΦ after IR is able to facilitate glioblastoma multiforme (GBM) recurrence. Reviews on the role of cranial IR-induced peripheral and brain-engrafting macrophages (BeMΦ) in glioma are lacking. Specifically, most studies on peripheral, intrinsic as well as beMΦ on IR focus on WHO grade III and IV. Thus, this review precisely focuses primary on WHO grade III as well as IV gliomas.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), UK, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Sagor Kumar Roy
- Department of Neurology, TMSS Medical College and Hospital, Bogura, Bangladesh
| | - Emmanuel Akomanin Asiamah
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
6
|
Strohm AO, Johnston C, Hernady E, Marples B, O'Banion MK, Majewska AK. Cranial irradiation disrupts homeostatic microglial dynamic behavior. J Neuroinflammation 2024; 21:82. [PMID: 38570852 PMCID: PMC10993621 DOI: 10.1186/s12974-024-03073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Cranial irradiation causes cognitive deficits that are in part mediated by microglia, the resident immune cells of the brain. Microglia are highly reactive, exhibiting changes in shape and morphology depending on the function they are performing. Additionally, microglia processes make dynamic, physical contacts with different components of their environment to monitor the functional state of the brain and promote plasticity. Though evidence suggests radiation perturbs homeostatic microglia functions, it is unknown how cranial irradiation impacts the dynamic behavior of microglia over time. Here, we paired in vivo two-photon microscopy with a transgenic mouse model that labels cortical microglia to follow these cells and determine how they change over time in cranial irradiated mice and their control littermates. We show that a single dose of 10 Gy cranial irradiation disrupts homeostatic cortical microglia dynamics during a 1-month time course. We found a lasting loss of microglial cells following cranial irradiation, coupled with a modest dysregulation of microglial soma displacement at earlier timepoints. The homogeneous distribution of microglia was maintained, suggesting microglia rearrange themselves to account for cell loss and maintain territorial organization following cranial irradiation. Furthermore, we found cranial irradiation reduced microglia coverage of the parenchyma and their surveillance capacity, without overtly changing morphology. Our results demonstrate that a single dose of radiation can induce changes in microglial behavior and function that could influence neurological health. These results set the foundation for future work examining how cranial irradiation impacts complex cellular dynamics in the brain which could contribute to the manifestation of cognitive deficits.
Collapse
Affiliation(s)
- Alexandra O Strohm
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Carl Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eric Hernady
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
7
|
Janssen P, De Pauw L, Mambretti M, Lara O, Walckiers J, Mackens L, Rooman I, Guillaume B, De Ridder M, Ates G, Massie A. Characterization of the long-term effects of lethal total body irradiation followed by bone marrow transplantation on the brain of C57BL/6 mice. Int J Radiat Biol 2023; 100:385-398. [PMID: 37976378 DOI: 10.1080/09553002.2023.2283092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Total body irradiation (TBI) followed by bone marrow transplantation (BMT) is used in pre-clinical research to generate mouse chimeras that allow to study the function of a protein specifically on immune cells. Adverse consequences of irradiation on the juvenile body and brain are well described and include general fatigue, neuroinflammation, neurodegeneration and cognitive impairment. Yet, the long-term consequences of TBI/BMT performed on healthy adult mice have been poorly investigated. MATERIAL AND METHODS We developed a robust protocol to achieve near complete bone marrow replacement in mice using 2x550cGy TBI and evaluated the impact of the procedure on their general health, mood disturbances, memory, brain atrophy, neurogenesis, neuroinflammation and blood-brain barrier (BBB) permeability 2 and/or 16 months post-BMT. RESULTS We found a persistent decrease in weight along with long-term impact on locomotion after TBI and BMT. Although the TBI/BMT procedure did not lead to anxiety- or depressive-like behavior 2- or 16-months post-BMT, long-term spatial memory of the irradiated mice was impaired. We also observed radiation-induced impaired neurogenesis and cortical microglia activation 2 months post-BMT. Moreover, higher levels of hippocampal IgG in aged BMT mice suggest an enhanced age-related increase in BBB permeability that could potentially contribute to the observed memory deficit. CONCLUSIONS Overall health of the mice did not seem to be majorly impacted by TBI followed by BMT during adulthood. Yet, TBI-induced alterations in the brain and behavior could lead to erroneous conclusions on the function of a protein on immune cells when comparing mouse chimeras with different genetic backgrounds that might display altered susceptibility to radiation-induced damage. Ultimately, the BMT model we here present could also be used to study the related long-term consequences of TBI and BMT seen in patients.
Collapse
Affiliation(s)
- P Janssen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - L De Pauw
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - M Mambretti
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - O Lara
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - J Walckiers
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - L Mackens
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - I Rooman
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - B Guillaume
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Centre hospitalier de Jolimont, Service de Biochimie Médicale, La Louvière, Belgium
| | - M De Ridder
- Department of Radiotherapy, UZ Brussel, VUB, Brussels, Belgium
| | - G Ates
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - A Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
8
|
Gan C, Li W, Xu J, Pang L, Tang L, Yu S, Li A, Ge H, Huang R, Cheng H. Advances in the study of the molecular biological mechanisms of radiation-induced brain injury. Am J Cancer Res 2023; 13:3275-3299. [PMID: 37693137 PMCID: PMC10492106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
Radiation therapy is one of the most commonly used treatments for head and neck cancers, but it often leads to radiation-induced brain injury. Patients with radiation-induced brain injury have a poorer quality of life, and no effective treatments are available. The pathogenesis of this condition is unknown. This review summarizes the molecular biological mechanism of radiation-induced brain injury and provides research directions for future studies. The molecular mechanisms of radiation-induced brain injury are diverse and complex. Radiation-induced chronic neuroinflammation, destruction of the blood-brain barrier, oxidative stress, neuronal damage, and physiopathological responses caused by specific exosome secretion lead to radiation-induced brain injury.
Collapse
Affiliation(s)
- Chen Gan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Jian Xu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lulian Pang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Anlong Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Han Ge
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Runze Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Shenzhen Hospital of Southern Medical UniversityShenzhen, Guangdong, China
| |
Collapse
|
9
|
Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8 + T lymphocytes. Neuron 2023; 111:696-710.e9. [PMID: 36603584 DOI: 10.1016/j.neuron.2022.12.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/03/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
The crosstalk between the nervous and immune systems has gained increasing attention for its emerging role in neurological diseases. Radiation-induced brain injury (RIBI) remains the most common medical complication of cranial radiotherapy, and its pathological mechanisms have yet to be elucidated. Here, using single-cell RNA and T cell receptor sequencing, we found infiltration and clonal expansion of CD8+ T lymphocytes in the lesioned brain tissues of RIBI patients. Furthermore, by strategies of genetic or pharmacologic interruption, we identified a chemotactic action of microglia-derived CCL2/CCL8 chemokines in mediating the infiltration of CCR2+/CCR5+ CD8+ T cells and tissue damage in RIBI mice. Such a chemotactic axis also participated in the progression of cerebral infarction in the mouse model of ischemic injury. Our findings therefore highlight the critical role of microglia in mediating the dysregulation of adaptive immune responses and reveal a potential therapeutic strategy for non-infectious brain diseases.
Collapse
|
10
|
Erbani J, Boon M, Akkari L. Therapy-induced shaping of the glioblastoma microenvironment: Macrophages at play. Semin Cancer Biol 2022; 86:41-56. [PMID: 35569742 DOI: 10.1016/j.semcancer.2022.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023]
Abstract
The intricate cross-talks between tumor cells and their microenvironment play a key role in cancer progression and resistance to treatment. In recent years, targeting pro-tumorigenic components of the tumor microenvironment (TME) has emerged as a tantalizing strategy to improve the efficacy of standard-of-care (SOC) treatments, particularly for hard-to-treat cancers such as glioblastoma. In this review, we explore how the distinct microenvironmental niches characteristic of the glioblastoma TME shape response to therapy. In particular, we delve into the interplay between tumor-associated macrophages (TAM) and glioblastoma cells within angiogenic and hypoxic niches, and interrogate their dynamic co-evolution upon SOC therapies that fuels malignancy. Resolving the complexity of therapy-induced alterations in the glioblastoma TME and their impact on disease relapse is a stepping stone to identify targetable pro-tumorigenic pathways and TAM subsets, and may open the way to efficient combination therapies that will improve clinical outcomes.
Collapse
Affiliation(s)
- Johanna Erbani
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Miller KB, Mi KL, Nelson GA, Norman RB, Patel ZS, Huff JL. Ionizing radiation, cerebrovascular disease, and consequent dementia: A review and proposed framework relevant to space radiation exposure. Front Physiol 2022; 13:1008640. [PMID: 36388106 PMCID: PMC9640983 DOI: 10.3389/fphys.2022.1008640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 09/05/2023] Open
Abstract
Space exploration requires the characterization and management or mitigation of a variety of human health risks. Exposure to space radiation is one of the main health concerns because it has the potential to increase the risk of cancer, cardiovascular disease, and both acute and late neurodegeneration. Space radiation-induced decrements to the vascular system may impact the risk for cerebrovascular disease and consequent dementia. These risks may be independent or synergistic with direct damage to central nervous system tissues. The purpose of this work is to review epidemiological and experimental data regarding the impact of low-to-moderate dose ionizing radiation on the central nervous system and the cerebrovascular system. A proposed framework outlines how space radiation-induced effects on the vasculature may increase risk for both cerebrovascular dysfunction and neural and cognitive adverse outcomes. The results of this work suggest that there are multiple processes by which ionizing radiation exposure may impact cerebrovascular function including increases in oxidative stress, neuroinflammation, endothelial cell dysfunction, arterial stiffening, atherosclerosis, and cerebral amyloid angiopathy. Cerebrovascular adverse outcomes may also promote neural and cognitive adverse outcomes. However, there are many gaps in both the human and preclinical evidence base regarding the long-term impact of ionizing radiation exposure on brain health due to heterogeneity in both exposures and outcomes. The unique composition of the space radiation environment makes the translation of the evidence base from terrestrial exposures to space exposures difficult. Additional investigation and understanding of the impact of low-to-moderate doses of ionizing radiation including high (H) atomic number (Z) and energy (E) (HZE) ions on the cerebrovascular system is needed. Furthermore, investigation of how decrements in vascular systems may contribute to development of neurodegenerative diseases in independent or synergistic pathways is important for protecting the long-term health of astronauts.
Collapse
Affiliation(s)
| | | | - Gregory A. Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Ryan B. Norman
- NASA Langley Research Center, Hampton, VA, United States
| | - Zarana S. Patel
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Janice L. Huff
- NASA Langley Research Center, Hampton, VA, United States
| |
Collapse
|
12
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23:8286. [PMID: 35955439 PMCID: PMC9368164 DOI: 10.3390/ijms23158286] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly important factor affecting the prognosis of patients with head and neck tumor. With the delivery of high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype, upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently activated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI. Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Mengyun Duan
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Qun Yang
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Boxu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
13
|
Brain Metastases Management in Oncogene-Addicted Non-Small Cell Lung Cancer in the Targeted Therapies Era. Int J Mol Sci 2022; 23:ijms23126477. [PMID: 35742920 PMCID: PMC9223862 DOI: 10.3390/ijms23126477] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
The therapeutic landscape in patients with advanced non-small-cell lung cancer harboring oncogenic biomarkers has radically changed with the development of targeted therapies. Although lung cancers are known to frequently metastasize to the brain, oncogene-driven non-small-cell lung cancer patients show a higher incidence of both brain metastases at baseline and a further risk of central nervous system progression/relapse. Recently, a new generation of targeted agents, highly active in the central nervous system, has improved the control of intracranial disease. The intracranial activity of these drugs poses a crucial issue in determining the optimal management sequence in oncogene-addicted non-small-cell lung cancer patients with brain metastases, with a potential change of paradigm from primary brain irradiation to central nervous system penetrating targeted inhibitors.
Collapse
|
14
|
Al Dahhan NZ, Cox E, Nieman BJ, Mabbott DJ. Cross-translational models of late-onset cognitive sequelae and their treatment in pediatric brain tumor survivors. Neuron 2022; 110:2215-2241. [PMID: 35523175 DOI: 10.1016/j.neuron.2022.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Pediatric brain tumor treatments have a high success rate, but survivors are at risk of cognitive sequelae that impact long-term quality of life. We summarize recent clinical and animal model research addressing pathogenesis or evaluating candidate interventions for treatment-induced cognitive sequelae. Assayed interventions encompass a broad range of approaches, including modifications to radiotherapy, modulation of immune response, prevention of treatment-induced cell loss or promotion of cell renewal, manipulation of neuronal signaling, and lifestyle/environmental adjustments. We further emphasize the potential of neuroimaging as a key component of cross-translation to contextualize laboratory research within broader clinical findings. This cross-translational approach has the potential to accelerate discovery to improve pediatric cancer survivors' long-term quality of life.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Cox
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Brian J Nieman
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
15
|
de Guzman AE, Ahmed M, Perrier S, Hammill C, Li YQ, Wong CS, Nieman BJ. Protection from radiation-induced neuroanatomical deficits by CCL2-deficiency is dependent on sex. Int J Radiat Oncol Biol Phys 2022; 113:390-400. [PMID: 35143888 DOI: 10.1016/j.ijrobp.2022.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Cranial radiation therapy for the treatment of paediatric brain tumours results in changes to brain development that are detectable with magnetic resonance imaging (MRI). We have previously demonstrated similar structural changes in both humans and mice. The goal of the current study was to examine the role of inflammation in this response. Since neuroanatomical volume deficits in paediatric survivors are more pronounced in females, we also evaluated possible dependence on sex. EXPERIMENTAL DESIGN Male mice deficient in the C-C chemokine ligand 2 gene (Ccl2; previously Mcp-1) have been shown by others to have a muted neuroinflammatory response after irradiation. We irradiated Ccl2-/- (HOM; females[f]=12, males[m]=13), Ccl2+/- (HET; f=13, m=16), and Ccl2+/+ (WT; f=11, m=13) mice with a whole brain dose of 7 Gy during infancy. Control mice (with approximately equal groups sizes) were anaesthetized but not irradiated. In vivo MR images were acquired at 4 time points up to 3 months following irradiation, and deformation-based morphometry was used to identify volume differences. RESULTS Irradiation of WT mice resulted in a deficit in neuroanatomical growth with limited sex dependence. HOM and HET males were significantly protected from this radiation-induced damage, while HOM and HET females were not. We conclude that interventions aimed at mitigating the effects of cranial radiation therapy in paediatric cancer survivors by modulating inflammatory response will need to consider patient sex.
Collapse
Affiliation(s)
- A Elizabeth de Guzman
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto, Ontario, M5T 3H7, Canada; Translational Medicine, Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Rm 7-411, Toronto, Ontario, M5G 2M9, Canada
| | - Mashal Ahmed
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto, Ontario, M5T 3H7, Canada; Translational Medicine, Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada
| | - Stefanie Perrier
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto, Ontario, M5T 3H7, Canada; Translational Medicine, Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada
| | - Christopher Hammill
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto, Ontario, M5T 3H7, Canada
| | - Yu-Qing Li
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - C Shun Wong
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Rm 7-411, Toronto, Ontario, M5G 2M9, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada; Department of Radiation Oncology, University of Toronto, 149 College Street - Stewart Building, Suite 504, Toronto, Ontario, M5T 1P5, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto, Ontario, M5T 3H7, Canada; Translational Medicine, Hospital for Sick Children, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Rm 7-411, Toronto, Ontario, M5G 2M9, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Batra A, Bui TM, Rehring JF, Yalom LK, Muller WA, Sullivan DP, Sumagin R. Experimental Colitis Enhances Temporal Variations in CX3CR1 Cell Colonization of the Gut and Brain Following Irradiation. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:295-307. [PMID: 34767810 PMCID: PMC8908021 DOI: 10.1016/j.ajpath.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Abstract
Peripheral monocyte-derived CX3C chemokine receptor 1 positive (CX3CR1+) cells play important roles in tissue homeostasis and gut repopulation. Increasing evidence also supports their role in immune repopulation of the brain parenchyma in response to systemic inflammation. Adoptive bone marrow transfer from CX3CR1 fluorescence reporter mice and high-resolution confocal microscopy was used to assess the time course of CX3CR1+ cell repopulation of steady-state and dextran sodium sulfate (DSS)-inflamed small intestine/colon and the brain over 4 weeks after irradiation. CX3CR1+ cell colonization and morphologic polarization into fully ramified cells occurred more rapidly in the small intestine than in the colon. For both organs, the crypt/mucosa was more densely populated than the serosa/muscularis layer, indicating preferential temporal and spatial occupancy. Repopulation of the brain was delayed compared with that of gut tissue, consistent with the immune privilege of this organ. However, DSS-induced colon injury accelerated the repopulation. Expression analyses confirmed increased chemokine levels and macrophage colonization within the small intestine/colon and the brain by DSS-induced injury. Early increases of transmembrane protein 119 and ionized calcium binding adaptor molecule 1 expression within the brain after colon injury suggest immune-priming effect of brain resident microglia in response to systemic inflammation. These findings identify temporal differences in immune repopulation of the gut and brain in response to inflammation and show that gut inflammation can impact immune responses within the brain.
Collapse
Affiliation(s)
- Ayush Batra
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jacob F Rehring
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lenore K Yalom
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
17
|
Gutierrez-Quintana R, Walker DJ, Williams KJ, Forster DM, Chalmers AJ. Radiation-induced neuroinflammation: a potential protective role for poly(ADP-ribose) polymerase inhibitors? Neurooncol Adv 2022; 4:vdab190. [PMID: 35118383 PMCID: PMC8807076 DOI: 10.1093/noajnl/vdab190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy (RT) plays a fundamental role in the treatment of glioblastoma (GBM). GBM are notoriously invasive and harbor a subpopulation of cells with stem-like features which exhibit upregulation of the DNA damage response (DDR) and are radioresistant. High radiation doses are therefore delivered to large brain volumes and are known to extend survival but also cause delayed toxicity with 50%-90% of patients developing neurocognitive dysfunction. Emerging evidence identifies neuroinflammation as a critical mediator of the adverse effects of RT on cognitive function. In addition to its well-established role in promoting repair of radiation-induced DNA damage, activation of poly(ADP-ribose) polymerase (PARP) can exacerbate neuroinflammation by promoting secretion of inflammatory mediators. Therefore, PARP represents an intriguing mechanistic link between radiation-induced activation of the DDR and subsequent neuroinflammation. PARP inhibitors (PARPi) have emerged as promising new agents for GBM when given in combination with RT, with multiple preclinical studies demonstrating radiosensitizing effects and at least 3 compounds being evaluated in clinical trials. We propose that concomitant use of PARPi could reduce radiation-induced neuroinflammation and reduce the severity of radiation-induced cognitive dysfunction while at the same time improving tumor control by enhancing radiosensitivity.
Collapse
Affiliation(s)
- Rodrigo Gutierrez-Quintana
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David J Walker
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Duncan M Forster
- Division of Informatics, Imaging and Data Sciences, Manchester Molecular Imaging Centre, The University of Manchester, Manchester, UK
| | - Anthony J Chalmers
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Del Pilar C, Lebrón-Galán R, Pérez-Martín E, Pérez-Revuelta L, Ávila-Zarza CA, Alonso JR, Clemente D, Weruaga E, Díaz D. The Selective Loss of Purkinje Cells Induces Specific Peripheral Immune Alterations. Front Cell Neurosci 2021; 15:773696. [PMID: 34916910 PMCID: PMC8671039 DOI: 10.3389/fncel.2021.773696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
The progression of neurodegenerative diseases is reciprocally associated with impairments in peripheral immune responses. We investigated different contexts of selective neurodegeneration to identify specific alterations of peripheral immune cells and, at the same time, discover potential biomarkers associated to this pathological condition. Consequently, a model of human cerebellar degeneration and ataxia -the Purkinje Cell Degeneration (PCD) mouse- has been employed, as it allows the study of different processes of selective neuronal death in the same animal, i.e., Purkinje cells in the cerebellum and mitral cells in the olfactory bulb. Infiltrated leukocytes were studied in both brain areas and compared with those from other standardized neuroinflammatory models obtained by administering either gamma radiation or lipopolysaccharide. Moreover, both myeloid and lymphoid splenic populations were analyzed by flow cytometry, focusing on markers of functional maturity and antigen presentation. The severity and type of neural damage and inflammation affected immune cell infiltration. Leukocytes were more numerous in the cerebellum of PCD mice, being located predominantly within those cerebellar layers mostly affected by neurodegeneration, in a completely different manner than the typical models of induced neuroinflammation. Furthermore, the milder degeneration of the olfactory bulb did not foster leukocyte attraction. Concerning the splenic analysis, in PCD mice we found: (1) a decreased percentage of several myeloid cell subsets, and (2) a reduced mean fluorescence intensity in those myeloid markers related to both antigen presentation and functional maturity. In conclusion, the selective degeneration of Purkinje cells triggers a specific effect on peripheral immune cells, fostering both attraction and functional changes. This fact endorses the employment of peripheral immune cell populations as concrete biomarkers for monitoring different neuronal death processes.
Collapse
Affiliation(s)
- Carlos Del Pilar
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Ester Pérez-Martín
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Laura Pérez-Revuelta
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Carmelo Antonio Ávila-Zarza
- IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Applied Statistics Group, Department of Statistics, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón Alonso
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Eduardo Weruaga
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - David Díaz
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
19
|
Whitelaw BS, Tanny S, Johnston CJ, Majewska AK, O'Banion MK, Marples B. In Vivo Imaging of the Microglial Landscape After Whole Brain Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:1066-1071. [PMID: 34314813 PMCID: PMC8530951 DOI: 10.1016/j.ijrobp.2021.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE Whole brain radiation therapy (WBRT) is an important treatment for patients with multiple brain metastases, but can also cause cognitive deterioration. Microglia, the resident immune cells of the brain, promote a proinflammatory environment and likely contribute to cognitive decline after WBRT. To investigate the temporal dynamics of the microglial reaction in individual mice to WBRT, we developed a novel in vivo experimental model using cranial window implants and longitudinal imaging. METHODS AND MATERIALS Chronic cranial windows were surgically implanted over the somatosensory cortex of transgenic Cx3cr1-enhanced green fluorescent protein (EGFP)/+ C57BL/6 mice, where microglia were fluorescently tagged with EGFP. Cx3cr1-EGFP/+ mice were also crossed with Thy1-YFP mice to fluorescently dual label microglia and subsets of neurons throughout the brain. Three weeks after window implantation and recovery, computed tomography image guided WBRT was delivered (single dose 10 Gy using two 5 Gy parallel-opposed lateral beams). Radiation dosing was confirmed using radiochromic film. Then, in vivo 2-photon microscopy was used to longitudinally image the microglial landscape and microglial motility at 7 days and 16 days after irradiation in the same mice. RESULTS Film dosimetry confirmed the average delivered dose per beam at midpoint was accurate within 2%, with no attenuation from the window frame. By 7 days after WBRT, significant changes in the microglial landscape were seen, characterized by apparent loss of microglial cells (20%) and significant rearrangements of microglial location with time after irradiation (36% of cells not found in original location). CONCLUSIONS Using longitudinal in vivo 2-photon imaging, this study demonstrated the feasibility of imaging microglia-neuron interactions and defining how microglia react to WBRT in the same mouse. Having demonstrated utility of the model, this experimental paradigm can be used to investigate the dynamic changes of many different brain cell types and their interactions after WBRT and uncover the underlying cellular mechanisms of WBRT-induced cognitive decline.
Collapse
Affiliation(s)
| | | | | | - Ania K Majewska
- Department of Neuroscience; Center for Visual Science; Del Monte Neuroscience Institute, University of Rochester, Rochester, New York
| | - M Kerry O'Banion
- Department of Neuroscience; Department of Neurology; Del Monte Neuroscience Institute, University of Rochester, Rochester, New York
| | | |
Collapse
|
20
|
Feng X, Frias ES, Paladini MS, Chen D, Boosalis Z, Becker M, Gupta S, Liu S, Gupta N, Rosi S. Functional role of brain-engrafted macrophages against brain injuries. J Neuroinflammation 2021; 18:232. [PMID: 34654458 PMCID: PMC8520231 DOI: 10.1186/s12974-021-02290-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Brain-resident microglia have a distinct origin compared to macrophages in other organs. Under physiological conditions, microglia are maintained by self-renewal from the local pool, independent of hematopoietic progenitors. Pharmacological depletion of microglia during whole-brain radiotherapy prevents synaptic loss and long-term recognition memory deficits. However, the origin or repopulated cells and the mechanisms behind these protective effects are unknown. METHODS CD45low/int/CD11b+ cells from naïve brains, irradiated brains, PLX5622-treated brains and PLX5622 + whole-brain radiotherapy-treated brains were FACS sorted and sequenced for transcriptomic comparisons. Bone marrow chimeras were used to trace the origin and long-term morphology of repopulated cells after PLX5622 and whole-brain radiotherapy. FACS analyses of intrinsic and exotic synaptic compartments were used to measure phagocytic activities of microglia and repopulated cells. In addition, concussive brain injuries were given to PLX5622 and brain-irradiated mice to study the potential protective functions of repopulated cells after PLX5622 + whole-brain radiotherapy. RESULTS After a combination of whole-brain radiotherapy and microglia depletion, repopulated cells are brain-engrafted macrophages that originate from circulating monocytes. Comparisons of transcriptomes reveal that brain-engrafted macrophages have an intermediate phenotype that resembles both monocytes and embryonic microglia. In addition, brain-engrafted macrophages display reduced phagocytic activity for synaptic compartments compared to microglia from normal brains in response to a secondary concussive brain injury. Importantly, replacement of microglia by brain-engrafted macrophages spare mice from whole-brain radiotherapy-induced long-term cognitive deficits, and prevent concussive injury-induced memory loss. CONCLUSIONS Brain-engrafted macrophages prevent radiation- and concussion-induced brain injuries and cognitive deficits.
Collapse
Affiliation(s)
- Xi Feng
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, USA
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Building 1, Room 101, San Francisco, CA, 94110, USA
| | - Elma S Frias
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, USA
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Building 1, Room 101, San Francisco, CA, 94110, USA
| | - Maria S Paladini
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, USA
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Building 1, Room 101, San Francisco, CA, 94110, USA
| | - David Chen
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, USA
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Building 1, Room 101, San Francisco, CA, 94110, USA
| | - Zoe Boosalis
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, USA
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Building 1, Room 101, San Francisco, CA, 94110, USA
| | - McKenna Becker
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, USA
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Building 1, Room 101, San Francisco, CA, 94110, USA
| | - Sonali Gupta
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, USA
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Building 1, Room 101, San Francisco, CA, 94110, USA
| | - Sharon Liu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
- Brain Tumor Research Center, University of California San Francisco, San Francisco, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, USA
| | - Susanna Rosi
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, USA.
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Building 1, Room 101, San Francisco, CA, 94110, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, USA.
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, USA.
- Kavli Institute of Fundamental Neuroscience, University of California San Francisco, San Francisco, USA.
| |
Collapse
|
21
|
Brain metastases in patients with oncogenic-driven non-small cell lung cancer: Pros and cons for early radiotherapy. Cancer Treat Rev 2021; 100:102291. [PMID: 34587557 DOI: 10.1016/j.ctrv.2021.102291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023]
Abstract
Non-small cell lung cancer (NSCLC) with oncogenic driver mutations such as EGFR or ALK has a high predilection for brain metastases (BMs) compared to unselected patients. Historically, whole brain radiotherapy (WBRT) was adopted widely for patients with BM. More recently, stereotactic radiosurgery (SRS) has become a standard approach for patients with 1 - 4 metastatic brain lesions. However, data on overall survival benefit with WBRT/SRS compared to target agents are conflicting, with a significant compromise of loss of neurocognitive function. Newer target agents with improved CNS efficacy have challenged the use of early radiotherapy in NSCLC patients with oncogenic driver mutations. Optimal treatment approach and timing of radiotherapy remain unclear, especially under the various clinical contexts. The purpose of this review is to summarize the available data on the possible benefits and risks of early radiotherapy for oncogenic-driven NSCLC patients with brain metastases. Clinical decisions should consider both intracranial efficacy and patient quality of life, given that patients are surviving long enough to experience the long-term consequences of radiation therapy.
Collapse
|
22
|
Boyd A, Byrne S, Middleton RJ, Banati RB, Liu GJ. Control of Neuroinflammation through Radiation-Induced Microglial Changes. Cells 2021; 10:2381. [PMID: 34572030 PMCID: PMC8468704 DOI: 10.3390/cells10092381] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia, the innate immune cells of the central nervous system, play a pivotal role in the modulation of neuroinflammation. Neuroinflammation has been implicated in many diseases of the CNS, including Alzheimer's disease and Parkinson's disease. It is well documented that microglial activation, initiated by a variety of stressors, can trigger a potentially destructive neuroinflammatory response via the release of pro-inflammatory molecules, and reactive oxygen and nitrogen species. However, the potential anti-inflammatory and neuroprotective effects that microglia are also thought to exhibit have been under-investigated. The application of ionising radiation at different doses and dose schedules may reveal novel methods for the control of microglial response to stressors, potentially highlighting avenues for treatment of neuroinflammation associated CNS disorders, such as Alzheimer's disease and Parkinson's disease. There remains a need to characterise the response of microglia to radiation, particularly low dose ionising radiation.
Collapse
Affiliation(s)
- Alexandra Boyd
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
| | - Sarah Byrne
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
| | - Richard B. Banati
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
23
|
Establishment and Validation of CyberKnife Irradiation in a Syngeneic Glioblastoma Mouse Model. Cancers (Basel) 2021; 13:cancers13143416. [PMID: 34298631 PMCID: PMC8303959 DOI: 10.3390/cancers13143416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Stereotactic radiosurgery (SRS) provides precise high-dose irradiation of intracranial tumors. However, its radiobiological mechanisms are not fully understood. This study aims to establish CyberKnife SRS on an intracranial glioblastoma tumor mouse model and assesses the early radiobiological effects of radiosurgery. Following exposure to a single dose of 20 Gy, the tumor volume was evaluated using MRI scans, whereas cellular proliferation and apoptosis, tumor vasculature, and immune response were evaluated using immunofluorescence staining. The mean tumor volume was significantly reduced by approximately 75% after SRS. The precision of irradiation was verified by the detection of DNA damage consistent with the planned dose distribution. Our study provides a suitable mouse model for reproducible and effective irradiation and further investigation of radiobiological effects and combination therapies of intracranial tumors using CyberKnife. Abstract CyberKnife stereotactic radiosurgery (CK-SRS) precisely delivers radiation to intracranial tumors. However, the underlying radiobiological mechanisms at high single doses are not yet fully understood. Here, we established and evaluated the early radiobiological effects of CK-SRS treatment at a single dose of 20 Gy after 15 days of tumor growth in a syngeneic glioblastoma-mouse model. Exact positioning was ensured using a custom-made, non-invasive, and trackable frame. One superimposed target volume for the CK-SRS planning was created from the fused tumor volumes obtained from MRIs prior to irradiation. Dose calculation and delivery were planned using a single-reference CT scan. Six days after irradiation, tumor volumes were measured using MRI scans, and radiobiological effects were assessed using immunofluorescence staining. We found that CK-SRS treatment reduced tumor volume by approximately 75%, impaired cell proliferation, diminished tumor vasculature, and increased immune response. The accuracy of the delivered dose was demonstrated by staining of DNA double-strand breaks in accordance with the planned dose distribution. Overall, we confirmed that our proposed setup enables the precise irradiation of intracranial tumors in mice using only one reference CT and superimposed MRI volumes. Thus, our proposed mouse model for reproducible CK-SRS can be used to investigate radiobiological effects and develop novel therapeutic approaches.
Collapse
|
24
|
Boerma M, Davis CM, Jackson IL, Schaue D, Williams JP. All for one, though not one for all: team players in normal tissue radiobiology. Int J Radiat Biol 2021; 98:346-366. [PMID: 34129427 PMCID: PMC8781287 DOI: 10.1080/09553002.2021.1941383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE As part of the special issue on 'Women in Science', this review offers a perspective on past and ongoing work in the field of normal (non-cancer) tissue radiation biology, highlighting the work of many of the leading contributors to this field of research. We discuss some of the hypotheses that have guided investigations, with a focus on some of the critical organs considered dose-limiting with respect to radiation therapy, and speculate on where the field needs to go in the future. CONCLUSIONS The scope of work that makes up normal tissue radiation biology has and continues to play a pivotal role in the radiation sciences, ensuring the most effective application of radiation in imaging and therapy, as well as contributing to radiation protection efforts. However, despite the proven historical value of preclinical findings, recent decades have seen clinical practice move ahead with altered fractionation scheduling based on empirical observations, with little to no (or even negative) supporting scientific data. Given our current appreciation of the complexity of normal tissue radiation responses and their temporal variability, with tissue- and/or organ-specific mechanisms that include intra-, inter- and extracellular messaging, as well as contributions from systemic compartments, such as the immune system, the need to maintain a positive therapeutic ratio has never been more urgent. Importantly, mitigation and treatment strategies, whether for the clinic, emergency use following accidental or deliberate releases, or reducing occupational risk, will likely require multi-targeted approaches that involve both local and systemic intervention. From our personal perspective as five 'Women in Science', we would like to acknowledge and applaud the role that many female scientists have played in this field. We stand on the shoulders of those who have gone before, some of whom are fellow contributors to this special issue.
Collapse
Affiliation(s)
- Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
25
|
Gibson EM, Monje M. Microglia in Cancer Therapy-Related Cognitive Impairment. Trends Neurosci 2021; 44:441-451. [PMID: 33674135 PMCID: PMC8593823 DOI: 10.1016/j.tins.2021.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Millions of cancer survivors experience a persistent neurological syndrome that includes deficits in memory, attention, information processing, and mental health. Cancer therapy-related cognitive impairment can cause mild to severe disruptions to quality of life for these cancer survivors. Understanding the cellular and molecular underpinnings of this disorder will facilitate new therapeutic strategies aimed at ameliorating these long-lasting impairments. Accumulating evidence suggests that a range of cancer therapies induce persistent activation of the brain's resident immune cells, microglia. Cancer therapy-induced microglial activation disrupts numerous mechanisms of neuroplasticity, and emerging findings suggest that this impairment in plasticity is central to cancer therapy-related cognitive impairment. This review explores reactive microglial dysregulation of neural circuit structure and function following cancer therapy.
Collapse
Affiliation(s)
- Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305, USA.
| | - Michelle Monje
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA; Stanford California Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
26
|
Radiation Triggers a Dynamic Sequence of Transient Microglial Alterations in Juvenile Brain. Cell Rep 2021; 31:107699. [PMID: 32492415 DOI: 10.1016/j.celrep.2020.107699] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/08/2019] [Accepted: 05/06/2020] [Indexed: 11/21/2022] Open
Abstract
Cranial irradiation (IR), an effective tool to treat malignant brain tumors, triggers a chronic pro-inflammatory microglial response, at least in the adult brain. Using single-cell and bulk RNA sequencing, combined with histology, we show that the microglial response in the juvenile mouse hippocampus is rapid but returns toward normal within 1 week. The response is characterized by a series of temporally distinct homeostasis-, sensome-, and inflammation-related molecular signatures. We find that a single microglial cell simultaneously upregulates transcripts associated with pro- and anti-inflammatory microglial phenotypes. Finally, we show that juvenile and adult irradiated microglia are already transcriptionally distinct in the early phase after IR. Our results indicate that microglia are involved in the initial stages but may not be responsible for driving long-term inflammation in the juvenile brain.
Collapse
|
27
|
Ene CI, Kreuser SA, Jung M, Zhang H, Arora S, White Moyes K, Szulzewsky F, Barber J, Cimino PJ, Wirsching HG, Patel A, Kong P, Woodiwiss TR, Durfy SJ, Houghton AM, Pierce RH, Parney IF, Crane CA, Holland EC. Anti-PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro Oncol 2021; 22:639-651. [PMID: 31793634 DOI: 10.1093/neuonc/noz226] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most glioblastomas recur near prior radiation treatment sites. Future clinical success will require achieving and optimizing an "abscopal effect," whereby unirradiated neoplastic cells outside treatment sites are recognized and attacked by the immune system. Radiation combined with anti-programmed cell death ligand 1 (PD-L1) demonstrated modest efficacy in phase II human glioblastoma clinical trials, but the mechanism and relevance of the abscopal effect during this response remain unknown. METHODS We modified an immune-competent, genetically driven mouse glioma model (forced platelet derived growth factor [PDGF] expression + phosphatase and tensin homolog loss) where a portion of the tumor burden is irradiated (PDGF) and another unirradiated luciferase-expressing tumor (PDGF + luciferase) is used as a readout of the abscopal effect following systemic anti-PD-L1 immunotherapy. We assessed relevance of tumor neoepitope during the abscopal response by inducing expression of epidermal growth factor receptor variant III (EGFRvIII) (PDGF + EGFRvIII). Statistical tests were two-sided. RESULTS Following radiation of one lesion, anti-PD-L1 immunotherapy enhanced the abscopal response to the unirradiated lesion. In PDGF-driven gliomas without tumor neoepitope (PDGF + luciferase, n = 8), the abscopal response occurred via anti-PD-L1 driven, extracellular signal-regulated kinase-mediated, bone marrow-derived macrophage phagocytosis of adjacent unirradiated tumor cells, with modest survival implications (median survival 41 days vs radiation alone 37.5 days, P = 0.03). In PDGF-driven gliomas with tumor neoepitope (PDGF + EGFRvIII, n = 8), anti-PD-L1 enhanced abscopal response was associated with macrophage and T-cell infiltration and increased survival benefit (median survival 36 days vs radiation alone 28 days, P = 0.001). CONCLUSION Our results indicate that anti-PD-L1 immunotherapy enhances a radiation- induced abscopal response via canonical T-cell activation and direct macrophage activation in glioblastoma.
Collapse
Affiliation(s)
- Chibawanye I Ene
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shannon A Kreuser
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Miyeon Jung
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Huajia Zhang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kara White Moyes
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jason Barber
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Patrick J Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, Washington
| | - Hans-Georg Wirsching
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Anoop Patel
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paul Kong
- Experimental Histopathology, Fred Hutchinson Cancer Research Center, Seattle Washington
| | - Timothy R Woodiwiss
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sharon J Durfy
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - A McGarry Houghton
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Robert H Pierce
- Experimental Histopathology, Fred Hutchinson Cancer Research Center, Seattle Washington
| | - Ian F Parney
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Courtney A Crane
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| | - Eric C Holland
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| |
Collapse
|
28
|
Maldonado F, Gonzalez-Ling A, Oñate-Ocaña LF, Cabrera-Miranda LA, Zatarain-Barrón ZL, Turcott JG, Flores-Estrada D, Lozano-Ruiz F, Cacho-Díaz B, Arrieta O. Prophylactic Cranial Irradiation in Patients With High-Risk Metastatic Non-Small Cell Lung Cancer: Quality of Life and Neurocognitive Analysis of a Randomized Phase II Study. Int J Radiat Oncol Biol Phys 2021; 111:81-92. [PMID: 33915217 DOI: 10.1016/j.ijrobp.2021.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE To this date, studies regarding the use of prophylactic cranial irradiation (PCI) versus standard of care (SoC) for patients with non-small cell lung cancer have shown limited benefit in survival outcomes, in addition to the potential effects on quality of life (QoL) and neurocognitive function (NCF). This randomized, phase II study evaluated the role of PCI in QoL and NCF, in a population comprised of subjects at a high risk for development of brain metastases (BM). METHODS AND MATERIALS Eligible patients had histologically confirmed non-small cell lung cancer without baseline BM, harboring epidermal growth factor receptor mutations, anaplastic lymphoma kinase rearrangements, or elevated carcinoembryonic antigen (CEA) at diagnosis. Participants were assigned to receive SoC or SoC plus PCI (25 Gy in 10 fractions). Primary endpoint was BM at 24 months (BM-24), for which the study was powered. Secondary endpoints included QoL assessed using the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire (QLQ-C30) and the Lung Cancer module (LC13) and NCF assessed using the Mini Mental State Examination (MMSE). Patients were followed every 3 months for a year for QoL and NCF. RESULTS From May 2012 to December 2017, 84 patients were enrolled in the study, 41 were allocated to PCI while 43 received SoC. Efficacy outcomes are discussed in a separate article. The global health-QoL scores were similar at 3, 6, 9, and 12 months after randomization between both study arms, with no significant differences when comparing by groups. At 1-year postrandomization, median global health QoL scores were 83 (p25-p75: 75-83) and 83 (p25-p75: 75-83) in the control and experimental arms, respectively. There were no significant changes in terms of the mean differences between subjects in either study arm when analyzing the change between baseline and 12-month scores (16.4 ± 19.9 vs 12.9 ± 14.7; P = .385). Seventeen patients were alive at database lockdown in February 2020, without significant differences in median MMSE (30 [p25-75: 29-30] vs 30 [p25-75: 28-30]) or QLQ-C30 scores (75.0 [p25-75: 50-87.2] vs 67.0 [p25-75: 50.0-100.0]). CONCLUSIONS Among a selected high-risk population for developing BM, PCI did not significantly decrease QoL or neurocognitive function as assessed using the MMSE. Future studies are warranted to assess this observation, using more varied and sensitive tools available to date.
Collapse
|
29
|
Casali BT, Reed-Geaghan EG. Microglial Function and Regulation during Development, Homeostasis and Alzheimer's Disease. Cells 2021; 10:957. [PMID: 33924200 PMCID: PMC8074610 DOI: 10.3390/cells10040957] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain, deriving from yolk sac progenitors that populate the brain parenchyma during development. During development and homeostasis, microglia play critical roles in synaptogenesis and synaptic plasticity, in addition to their primary role as immune sentinels. In aging and neurodegenerative diseases generally, and Alzheimer's disease (AD) specifically, microglial function is altered in ways that significantly diverge from their homeostatic state, inducing a more detrimental inflammatory environment. In this review, we discuss the receptors, signaling, regulation and gene expression patterns of microglia that mediate their phenotype and function contributing to the inflammatory milieu of the AD brain, as well as strategies that target microglia to ameliorate the onset, progression and symptoms of AD.
Collapse
Affiliation(s)
| | - Erin G. Reed-Geaghan
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| |
Collapse
|
30
|
Yang Q, Zhang J, Zhang X, Miao L, Zhang W, Jiang Z, Zhou W. C-C motif chemokine ligand 2/C-C receptor 2 is associated with glioma recurrence and poor survival. Exp Ther Med 2021; 21:564. [PMID: 33850536 PMCID: PMC8027722 DOI: 10.3892/etm.2021.9996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Several studies have explored the mechanisms of C-C motif chemokine ligand (CCL)2/CC receptor (R)2 function in tumorigenesis and inflammation. However, little is known about the role of CCL2/CCR2 in tumor recurrence, especially after radiotherapy. The present study aimed to determine the association between CCL2/CCR2 and glioma relapse. Moreover, the difference in the expression of CCL2/CCR2 between post-radiation and non-radiation recurrent glioma tissues was compared. A retrospective analysis of 80 patients with glioma who underwent tumor resection twice was performed. Primary group refers to glioma patients who received glioma resection surgery for the first time. Recurrent group refers to glioma patients who received glioma resection surgery after first relapse. In total, 10 patients with brain trauma who underwent partial resection of the normal brain as decompression treatment were used as controls. Protein expression levels of CCL2 and CCR2 were evaluated using immunohistochemistry. Prognostic analyses of patient survival using Kaplan-Meier curves and Cox regression models were performed. The expression levels of CCL2 and CCR2 were higher in recurrent glioma compared with the primary group. There was a positive correlation between tumor grade and protein expression of CCL2/CCR2. Furthermore, irradiation had a significant effect on CCR2 protein expression (P=0.014), but not on CCL2 protein expression (P=0.626). However, the expression of CCL2 and CCR2 showed no significant difference between primary and secondary glioblastoma. After adjusting for sex, radiotherapy and location of tumors in these gliomas, CCL2 was a prognostic factor for disease-free and overall survival (OS) times, as well as age and tumor grade. In the multivariate Cox modeling for glioma, CCR2 was significantly associated with OS rather than DFI. The significant correlations between CCL2/CCR2 expression and glioma tumor grade suggested that CCL2/CCR2 has a role in glioma progression. Combined with previous in vitro experiments, it was proposed that irradiation (radiotherapy)-induced expression of CCL2 is transient, while irradiation-induced expression of CCR2 is lasting. Therefore, CCL2/CCR2 is a potential therapeutic target for patients with glioma.
Collapse
Affiliation(s)
- Qiuan Yang
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Junpeng Zhang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, Shandong 250200, P.R. China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lifeng Miao
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 253020, P.R. China
| | - Wei Zhang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Zhou
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
31
|
Jin Y, Kang Y, Peng X, Yang L, Li Q, Mei Q, Chen X, Hu G, Tang Y, Yuan X. Irradiation-Induced Activated Microglia Affect Brain Metastatic Colonization of NSCLC Cells via miR-9/ CDH1 Axis. Onco Targets Ther 2021; 14:1911-1922. [PMID: 33758511 PMCID: PMC7981147 DOI: 10.2147/ott.s301412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Brain metastasis is among the leading causes of death in patients with non-small-cell lung cancer (NSCLC). Through yet unknown mechanisms, prophylactic cranial irradiation (PCI) can significantly decrease the incidence of brain metastases. Given that PCI probably exerts indirect anti-tumoral effects by turning cerebral "soil" unfavorable for the colonization of metastatic tumor "seeds". This study aims to reveal how PCI regulates the brain microenvironment conducing to a reduction in brain metastases. MATERIALS AND METHODS Key markers of M1/M2 microglia types and mesenchymal-to-epithelial transition (MET) were analyzed by qRT-PCR and Western Blot in vitro. The target miR-9 was obtained by miRNA array analysis and confirmed by qRT-PCR in microglia. We used miRTarBase and TargetScan to analyze the target genes of miR-9 and confirmed by luciferase activity assay. Anti-metastatic effects of irradiation on the brain were evaluated by intravital imaging using a brain metastatic A549-F3 cell line in a nude mouse model. RESULTS Irradiation induced M1 microglia activation, which inhibited the MET process of A549 cell lines. Furthermore, levels of miR-9 secreted by irradiated M1 microglia significantly increased and played a vital role in the inhibition of the A549 MET process by directly targeting CDH1, concurrently decreasing cell capacity for localization in the brain, thus reducing brain metastases. CONCLUSION We demonstrated that miR-9 secreted by irradiated M1-type microglia played an important role in modulating A549 cell lines into mesenchymal phenotype and further decreased their localization capabilities in the brain. Our findings signify the modulating effect of irradiation on metastatic soil and the cross-talk between tumour cells and the metastatic microenvironment; importantly, they provide new opportunities for effective anti-metastasis therapies, especially for brain metastasis patients.
Collapse
Affiliation(s)
- Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Yalin Kang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Li Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Yang Tang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
32
|
Sorokina SS, Malkov AE, Shubina LV, Zaichkina SI, Pikalov VA. Low dose of carbon ion irradiation induces early delayed cognitive impairments in mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:61-71. [PMID: 33392787 DOI: 10.1007/s00411-020-00889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
People often encounter various sources of ionizing radiation, both in modern medicine and under various environmental conditions, such as space travel, nuclear power plants or in conditions of man-made disasters that may lead to long-term cognitive impairment. Whilst the effect of exposure to low and high doses of gamma and X-radiation on the central nervous system (CNS) has been well investigated, the consequences of protons and heavy ions irradiation are quite different and poorly understood. As for the assessment of long-term effects of carbon ions on cognitive abilities and neurodegeneration, very few data appeared in the literature. The main object of the research is to investigate the effects of accelerated carbon ions on the cognitive function. Experiments were performed on male SHK mice at an age of two months. Mice were irradiated with a dose of 0.7 Gy of accelerated carbon ions with an energy of 450 meV/n in spread-out Bragg peak (SOBP) on a U-70 particle accelerator (Protvino, Russia). Two months after the irradiation, mice were tested for total activity, spatial learning, as well as long- and short-term hippocampus-dependent memory. One month after the evaluation of cognitive activity, histological analysis of dorsal hippocampus was carried out to assess its morphological state and to reveal late neuronal degeneration. It was found that the mice irradiated with accelerated carbon ions develop an altered behavioral pattern characterized by anxiety and a shortage in hippocampal-dependent memory retention, but not in episodic memory. Nissl staining revealed a reduction in the number of cells in the dorsal hippocampus of irradiated mice, with the most pronounced reduction in cell density observed in the dentate gyrus (DG) hilus. Also, the length of the CA3 field of the dorsal hippocampus was significantly reduced, and the number of cells in it was moderately decreased. Experiments with the use of Fluoro-Jade B (FJB) staining revealed no FJB-positive regions in the dorsal hippocampus of irradiated and control animals 3 months after the irradiation. Thus, no morbid cells were detected in irradiated and control groups. The results obtained indicate that total irradiation with a low dose of carbon ions can produce a cognitive deficit in adult mice without evidence of neurodegenerative pathologic changes.
Collapse
Affiliation(s)
- S S Sorokina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia.
| | - A E Malkov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - L V Shubina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - S I Zaichkina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - V A Pikalov
- Institute of High Energy Physics Named by A.A. Logunov of National Research Centre "Kurchatov Institute", Protvino, Russia
| |
Collapse
|
33
|
Paladini MS, Feng X, Krukowski K, Rosi S. Microglia depletion and cognitive functions after brain injury: From trauma to galactic cosmic ray. Neurosci Lett 2021; 741:135462. [PMID: 33259927 DOI: 10.1016/j.neulet.2020.135462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
|
34
|
Reed-Geaghan EG, Croxford AL, Becher B, Landreth GE. Plaque-associated myeloid cells derive from resident microglia in an Alzheimer's disease model. J Exp Med 2020; 217:133630. [PMID: 31967645 PMCID: PMC7144522 DOI: 10.1084/jem.20191374] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/13/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is accompanied by a robust inflammatory response mediated by plaque-associated myeloid cells of the brain. These cells exhibit altered gene expression profiles and serve as a barrier, preventing neuritic dystrophy. The origin of these cells has been controversial and is of therapeutic importance. Here, we genetically labeled different myeloid populations and unequivocally demonstrated that plaque-associated myeloid cells in the AD brain are derived exclusively from resident microglia, with no contribution from circulating peripheral monocytes.
Collapse
Affiliation(s)
- Erin G Reed-Geaghan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Andrew L Croxford
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gary E Landreth
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, School of Medicine, Indiana University, Indianapolis, IN
| |
Collapse
|
35
|
Pariset E, Malkani S, Cekanaviciute E, Costes SV. Ionizing radiation-induced risks to the central nervous system and countermeasures in cellular and rodent models. Int J Radiat Biol 2020; 97:S132-S150. [PMID: 32946305 DOI: 10.1080/09553002.2020.1820598] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Harmful effects of ionizing radiation on the Central Nervous System (CNS) are a concerning outcome in the field of cancer radiotherapy and form a major risk for deep space exploration. Both acute and chronic CNS irradiation induce a complex network of molecular and cellular alterations including DNA damage, oxidative stress, cell death and systemic inflammation, leading to changes in neuronal structure and synaptic plasticity with behavioral and cognitive consequences in animal models. Due to this complexity, countermeasure or therapeutic approaches to reduce the harmful effects of ionizing radiation include a wide range of protective and mitigative strategies, which merit a thorough comparative analysis. MATERIALS AND METHODS We reviewed current approaches for developing countermeasures to both targeted and non-targeted effects of ionizing radiation on the CNS from the molecular and cellular to the behavioral level. RESULTS We focus on countermeasures that aim to mitigate the four main detrimental actions of radiation on CNS: DNA damage, free radical formation and oxidative stress, cell death, and harmful systemic responses including tissue death and neuroinflammation. We propose a comprehensive review of CNS radiation countermeasures reported for the full range of irradiation types (photons and particles, low and high linear energy transfer) and doses (from a fraction of gray to several tens of gray, fractionated and unfractionated), with a particular interest for exposure conditions relevant to deep-space environment and radiotherapy. Our review reveals the importance of combined strategies that increase DNA protection and repair, reduce free radical formation and increase their elimination, limit inflammation and improve cell viability, limit tissue damage and increase repair and plasticity. CONCLUSIONS The majority of therapeutic approaches to protect the CNS from ionizing radiation have been limited to acute high dose and high dose rate gamma irradiation, and few are translatable from animal models to potential human application due to harmful side effects and lack of blood-brain barrier permeability that precludes peripheral administration. Therefore, a promising research direction would be to focus on practical applicability and effectiveness in a wider range of irradiation paradigms, from fractionated therapeutic to deep space radiation. In addition to discovering novel therapeutics, it would be worth maximizing the benefits and reducing side effects of those that already exist. Finally, we suggest that novel cellular and tissue models for developing and testing countermeasures in the context of other impairments might also be applied to the field of CNS responses to ionizing radiation.
Collapse
Affiliation(s)
- Eloise Pariset
- Universities Space Research Association, Columbia, MD, USA.,Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sherina Malkani
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.,Young Scientist Program, Blue Marble Space Institute of Science, Moffett Field, CA, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
36
|
Abdel-Rafei MK, Thabet NM. Modulatory effect of methylsulfonylmethane against BPA/γ-radiation induced neurodegenerative alterations in rats: Influence of TREM-2/DAP-12/Syk pathway. Life Sci 2020; 260:118410. [PMID: 32926927 DOI: 10.1016/j.lfs.2020.118410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
AIMS Methylsulfonylmethane (MSM), is an organosulfur compound, has many health benefits. Bisphenol-A (BPA) and γ-radiation (R) are two risky environmental contaminants that human beings are exposed to in everyday life. This work aims at unveiling the modulatory role of MSM in combating BPA and R co-exposure induced neurodegenerative disorder (Alzheimer's (AD)-mimic neurotoxicity). MAIN METHODS Female rats were randomly divided into five groups. One group was normal control and the other four groups were subjected to subacute BPA intoxication and/or exposed to fractionated weekly doses of R for 4 weeks and either untreated or treated with MSM concomitantly. KEY FINDINGS BPA and R co-exposure induced typical hallmarks of neurodegenerative disorders as revealed by tremendously elevated oxidative stress, extensive neuroinflammation (tumor necrosis factor -α and interleukin-1β), elevated AD markers (amyloid-beta (Aβ42), acetylcholinesterase (AchE) activity and tau-phosphorylation) in cortex and hippocampus as well as up-regulation of microglial pro-inflammatory triggering receptor expressed on myeloid cell-2(TREM-2)/DNAX-activating protein of 12 kDa (DAP-12)/spleen-tyrosine kinase (Syk) pathway and its downstream targets (PLC-γ/DAG/p38-MAPK) in hippocampus. Also, neurodegenerative lesions were revealed in histopathological examination of cortex and hippocampus coupled with marked Aβ deposition in hippocampus. Whereas, MSM treatment improved histopathological insults and ameliorated level of oxidative stress, neuroinflammation and AD markers as well as modulated TREM-2/DAP-12/Syk pathway. SIGNIFICANCE Our data suggest that MSM afforded neuroprotection against BPA and R; supporting its potential application in the associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohamed K Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt.
| | - Noura M Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
37
|
Whole brain radiotherapy induces cognitive dysfunction in mice: key role of gut microbiota. Psychopharmacology (Berl) 2020; 237:2089-2101. [PMID: 32494972 DOI: 10.1007/s00213-020-05520-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Approximately 20-40% of patients with cancer will experience brain metastasis (BM), which has a great impact on the quality of life and survival rates of patients. Whole brain radiotherapy (WBRT) is an effective method for the treatment of BM. However, it cannot be ignored that WBRT might induce a series of neuropsychiatric side effects, including cognitive dysfunction (CD). Accumulating evidence shows that the gut microbiota and the gut-microbiota-brain axis may play a vital role in the pathogenesis of CD. OBJECTIVE AND METHODS We adopted WBRT to mimic CD after a hierarchical cluster analysis of the Morris water maze test (MWMT) results. In addition, we observed the effects of antibiotics and prebiotics on WBRT-induced CD. Variations were revealed via the 16S rRNA sequencing analysis at different levels. RESULTS The 16S rRNA sequencing analysis revealed an altered composition of gut microbiota between CD and non-CD phenotypes. Furthermore, we observed a decrease in the levels of Phylum-Bacteroidete, Class-Bacteroidia, and Order-Bacteroidales in the CD group and an increase in the Genus-Allobaculum level after WBRT. Pretreatment with antibiotics caused a significant decrease in the level of Phylum-TM7 01, whereas an increase in the levels of Class-Gammaproteobacteria, Order-Enterobacteriales, and Species-Escherichia coli. After pretreatment with probiotics, the levels of Phylum-Cyanobacteria, Class-4C0d-2, and Order-YS2 were decreased, while the levels of Family-Bacteroidaceae, Genus-Bacteroides, and Species-Parabacteroides distasonis were increased. CONCLUSIONS WBRT-induced CD might be highly related to abnormal composition of gut microbiota. Strategies improving the composition of the gut microbiota may provide beneficial effects on CD in individuals exposed to WBRT.
Collapse
|
38
|
The Acute and Early Effects of Whole-Brain Irradiation on Glial Activation, Brain Metabolism, and Behavior: a Positron Emission Tomography Study. Mol Imaging Biol 2020; 22:1012-1020. [PMID: 32052277 PMCID: PMC7343765 DOI: 10.1007/s11307-020-01483-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Purpose Radiotherapy is a frequently applied treatment modality for brain tumors. Concomitant irradiation of normal brain tissue can induce various physiological responses. The aim of this study was to investigate whether acute and early-delayed effects of brain irradiation on glial activation and brain metabolism can be detected with positron emission tomography (PET) and whether these effects are correlated with behavioral changes. Procedures Rats underwent 0-, 10-, or 25-Gy whole-brain irradiation. At 3 and 31 days post irradiation, 1-(2-chlorophenyl)-N-[11C]methyl-(1-methylpropyl)-3-isoquinoline carboxamide ([11C]PK11195) and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) PET scans were acquired to detect changes in glial activation (neuroinflammation) and glucose metabolism, respectively. The open-field test (OFT) was performed on days 6 and 27 to assess behavioral changes. Results Twenty-five-gray-irradiated rats showed higher [11C]PK11195 uptake in most brain regions than controls on day 3 (striatum, hypothalamus, accumbens, septum p < 0.05), although some brain regions had lower uptake (cerebellum, parietal association/retrosplenial visual cortex, frontal association/motor cortex, somatosensory cortex, p < 0.05). On day 31, several brain regions in 25-Gy-irradiated rats still showed significantly higher [11C]PK11195 uptake than controls and 10-Gy-irradiated group (p < 0.05). Within-group analysis showed that [11C]PK11195 uptake in individual brain regions of 25-Gy treated rats remained stable or slightly increased between days 3 and 31. In contrast, a significant reduction (p < 0.05) in tracer uptake between days 3 and 31 was found in all brain areas of controls and 10-Gy-irradiated animals. Moreover, 10-Gy treatment led to a significantly higher [18F]FDG uptake on day 3 (p < 0.05). [18F]FDG uptake decreased between days 3 and 31 in all groups; no significant differences between groups were observed anymore on day 31, except for increased uptake in the hypothalamus in the 10-Gy group. The OFT did not show any significant differences between groups. Conclusions Non-invasive PET imaging indicated that brain irradiation induces neuroinflammation and a metabolic flare, without causing acute or early-delayed behavioral changes. Electronic supplementary material The online version of this article (10.1007/s11307-020-01483-y) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Xu H, Zhou L, Lu Y, Su X, Cheng P, Li D, Gao H, Li H, Yuan W, Zhang L, Zhang T. Dual Targeting of the Epidermal Growth Factor Receptor Using Combination of Nimotuzumab and Erlotinib in Advanced Non-Small-Cell Lung Cancer with Leptomeningeal Metastases: A Report of Three Cases. Onco Targets Ther 2020; 13:647-656. [PMID: 32021306 PMCID: PMC6982442 DOI: 10.2147/ott.s230399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023] Open
Abstract
Leptomeningeal metastases (LM) occur in 3-5% of patients with advanced non-small-cell lung cancer (NSCLC) and are associated with a dismal prognosis. We report three cases of NSCLC with LM who were treated with the combination of nimotuzumab and erlotinib. Magnetic Resonance Imaging (MRI) evaluation during follow-up showed significant improvement in cancer symptoms and decreased tumor size in all three patients. Grade 3 and 4 toxicities were rarely seen. Based on apparent efficacy of the regimen and fewer side effects, we suggest that nimotuzumab in combination with erlotinib may be a promising option for the treatment of NSCLC with LM.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Lin Zhou
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - You Lu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaomei Su
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Peng Cheng
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Dong Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Hui Gao
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Hua Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Weiwei Yuan
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Ling Zhang
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| | - Tao Zhang
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| |
Collapse
|
40
|
Zhang P, Chen Y, Zhu H, Yan L, Sun C, Pei S, Lodhi AF, Ren H, Gao Y, Manzoor R, Li B, Deng Y, Ma H. The Effect of Gamma-Ray-Induced Central Nervous System Injury on Peripheral Immune Response: An In Vitro and In Vivo Study. Radiat Res 2019; 192:440-450. [PMID: 31393823 DOI: 10.1667/rr15378.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy to treat brain tumors can potentially harm the central nervous system (CNS). The radiation stimulates a series of immune responses in both the CNS as well as peripheral immune system. To date, studies have mostly focused on the changes occurring in the immune response within the CNS. In this study, we investigated the effect of γ-ray-induced CNS injury on the peripheral immune response using a cell co-culture model and a whole-brain irradiation (WBI) rat model. Nerve cells (SH-SY5Y and U87 MG cells) were γ-ray irradiated, then culture media of the irradiated cells (conditioned media) was used to culture immune cells (THP-1 cells or Jurkat cells). Analyses were performed based on the response of immune cells in conditioned media. Sprague-Dawley rats received WBI at different doses, and were fed for one week to one month postirradiation. Spleen and peripheral blood were then isolated and analyzed. We observed that the number of monocytes in peripheral blood, and the level of NK cells and NKT cells in spleen increased after CNS injury. However, the level of T cells in spleen did not change and the level of B cells in the spleen decreased after γ-ray-induced CNS injury. These findings indicate that CNS injury caused by ionizing radiation induces a series of changes in the peripheral immune system.
Collapse
Affiliation(s)
- Peng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Chen
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huiyang Zhu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liben Yan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunli Sun
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Sizhu Pei
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Adil Farooq Lodhi
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.,Department of Microbiology, Faculty of Health Sciences, Hazara University, Mansehra, Pakistan
| | - Hao Ren
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yanan Gao
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Robina Manzoor
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Li
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
41
|
Feng X, Liu S, Chen D, Rosi S, Gupta N. Rescue of cognitive function following fractionated brain irradiation in a novel preclinical glioma model. eLife 2018; 7:e38865. [PMID: 30421720 PMCID: PMC6234025 DOI: 10.7554/elife.38865] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/24/2018] [Indexed: 11/13/2022] Open
Abstract
More than half of long-term brain tumor survivors develop irreversible cognitive decline that severely affect their quality of life. However, there is no pre-clinical model that allows long-term assessment of cognition, and there is no treatment which ameliorates cognitive deficits in patients. Here, we report a novel glioma mouse model that offers manageable tumor growth and reliable assessment of cognitive functions in a post-treatment manner. Using this model, we found that fractionated whole-brain irradiation (fWBI), but not tumor growth, results in memory deficits. Transient inhibition of CSF-1R during fWBI prolongs survival of glioma-bearing mice and fully prevents fWBI-induced memory deficits. This result suggests that CSF-1R inhibition during radiotherapy can be explored as an approach to improve both survival and cognitive outcomes in patients who will receive fWBI. Taken together, the current study provides a proof of concept of a powerful tool to study radiation-induced cognitive deficits in glioma-bearing animals.
Collapse
Affiliation(s)
- Xi Feng
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoUnited States
- Department of Physical Therapy and Rehabilitation ScienceUniversity of California San FranciscoSan FranciscoUnited States
| | - Sharon Liu
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoUnited States
- Brain Tumor Research CenterUniversity of California San FranciscoSan FranciscoUnited States
| | - David Chen
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoUnited States
| | - Susanna Rosi
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoUnited States
- Department of Physical Therapy and Rehabilitation ScienceUniversity of California San FranciscoSan FranciscoUnited States
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoUnited States
- Weill Institute for NeuroscienceUniversity of California San FranciscoSan FranciscoUnited States
- Kavli Institute of Fundamental NeuroscienceUniversity of California San FranciscoSan FranciscoUnited States
| | - Nalin Gupta
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoUnited States
- Brain Tumor Research CenterUniversity of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
42
|
Yoshida Y, Sejimo Y, Kurachi M, Ishizaki Y, Nakano T, Takahashi A. X-ray irradiation induces disruption of the blood–brain barrier with localized changes in claudin-5 and activation of microglia in the mouse brain. Neurochem Int 2018; 119:199-206. [DOI: 10.1016/j.neuint.2018.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/24/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
43
|
Hamilton AM, Wong SM, Wong E, Foster PJ. Cranial irradiation increases tumor growth in experimental breast cancer brain metastasis. NMR IN BIOMEDICINE 2018; 31:e3907. [PMID: 29493009 DOI: 10.1002/nbm.3907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Whole-brain radiotherapy is the standard of care for patients with breast cancer with multiple brain metastases and, although this treatment has been essential in the management of existing brain tumors, there are many known negative consequences associated with the irradiation of normal brain tissue. In our study, we used in vivo magnetic resonance imaging analysis to investigate the influence of radiotherapy-induced damage of healthy brain on the arrest and growth of metastatic breast cancer cells in a mouse model of breast cancer brain metastasis. We observed that irradiated, but otherwise healthy, neural tissue had an increased propensity to support metastatic growth compared with never-irradiated controls. The elucidation of the impact of irradiation on normal neural tissue could have implications in clinical patient management, particularly in patients with residual systemic disease or with residual radio-resistant brain cancer.
Collapse
Affiliation(s)
- Amanda M Hamilton
- Robarts Research Institute, Imaging Research Laboratories, University of Western Ontario, London, ON, Canada
| | - Suzanne M Wong
- Robarts Research Institute, Imaging Research Laboratories, University of Western Ontario, London, ON, Canada
| | - Eugene Wong
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Physics and Astronomy, Western University, London, ON, Canada
| | - Paula J Foster
- Robarts Research Institute, Imaging Research Laboratories, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
44
|
McGinnis GJ, Friedman D, Young KH, Torres ERS, Thomas CR, Gough MJ, Raber J. Neuroinflammatory and cognitive consequences of combined radiation and immunotherapy in a novel preclinical model. Oncotarget 2018; 8:9155-9173. [PMID: 27893434 PMCID: PMC5354722 DOI: 10.18632/oncotarget.13551] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022] Open
Abstract
Background Cancer patients often report behavioral and cognitive changes following cancer treatment. These effects can be seen in patients who have not yet received treatment or have received only peripheral (non-brain) irradiation. Novel treatments combining radiotherapy (RT) and immunotherapy (IT) demonstrate remarkable efficacy with respect to tumor outcomes by enhancing the proinflammatory environment in the tumor. However, a proinflammatory environment in the brain mediates cognitive impairments in other neurological disorders and may affect brain function in cancer patients receiving these novel treatments. Currently, gaps exist as to whether these treatments impact the brain in individuals with or without tumors and with regard to the underlying mechanisms. Results Combined treatment with precision RT and checkpoint inhibitor IT achieved control of tumor growth. However, BALB/c mice receiving combined treatment demonstrated changes in measures of anxiety levels, regardless of tumor status. C57BL/6J mice with tumors demonstrated increased anxiety, except following combined treatment. Object recognition memory was impaired in C57BL/6J mice without tumors following combined treatment. All mice with tumors showed impaired object recognition, except those treated with RT alone. Mice with tumors demonstrated impaired amygdala-dependent cued fear memory, while maintaining hippocampus-dependent context fear memory. These behavioral alterations and cognitive impairments were accompanied by increased microglial activation in mice receiving immunotherapy alone or combined with RT. Finally, based on tumor status, there were significant changes in proinflammatory cytokines (IFN-γ, IL-6, IL-5, IL-2, IL-10) and a growth factor (FGF-basic). Materials and Methods Here we test the hypothesis that IT combined with peripheral RT have detrimental behavioral and cognitive effects as a result of an enhanced proinflammatory environment in the brain. BALB/c mice with or without injected hind flank CT26 colorectal carcinoma or C57BL/6J mice with or without Lewis Lung carcinoma were used for all experiments. Checkpoint inhibitor IT, using an anti-CTLA-4 antibody, and precision CT-guided peripheral RT alone and combined were used to closely model clinical treatment. We assessed behavioral and cognitive performance and investigated the immune environment using immunohistochemistry and multiplex assays to analyze proinflammatory mediators. Conclusions Although combined treatment achieved tumor growth control, it affected the brain and induced changes in measures of anxiety, cognitive impairments, and neuroinflammation.
Collapse
Affiliation(s)
- Gwendolyn J McGinnis
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR.,Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR.,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR
| | - David Friedman
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR
| | - Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR
| | - Michael J Gough
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR.,Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR.,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR.,Department of Neurology, Oregon Health and Science University, Portland, OR.,Division of Neuroscience, Oregon National Primate Research Center, Portland, OR
| |
Collapse
|
45
|
Rosi S. Colony stimulating factor-1 receptor as a treatment for cognitive deficits postfractionated whole-brain irradiation. Brain Circ 2017; 3:180-182. [PMID: 30276322 PMCID: PMC6057695 DOI: 10.4103/bc.bc_25_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 11/17/2022] Open
Abstract
Whole-brain irradiation (WBI) is commonly used to treat primary tumors of the central nervous systems tumors as well as brain metastases. While this technique has increased survival among brain tumor patients, the side effects of including a decline in cognitive abilities that are generally progressive. In an effort to combat WBI side effects, researchers explored the treatment of colony stimulating factor-1 receptor (CSF-1R) inhibitor. Data show that when a CSF-1R inhibitor is administered with fractionated WBI treatment, there is a decline in the number of resident and peripheral mononuclear phagocytes, a decrease in dendritic spine loss and a reduction in functional and memory deficits. CSFR-1R inhibitors have displayed promising results as an effective counter-treatment for WBI-induced deficits. Further research is required to optimize treatment strategies, establish a treatment timeline and gain a better understanding of the long-term side effects of targeting CSF-1R as a treatment strategy for WBI symptoms. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Susanna Rosi
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| |
Collapse
|
46
|
Menzel F, Kaiser N, Haehnel S, Rapp F, Patties I, Schöneberg N, Haimon Z, Immig K, Bechmann I. Impact of X-irradiation on microglia. Glia 2017; 66:15-33. [DOI: 10.1002/glia.23239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
| | - Nicole Kaiser
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Susann Haehnel
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Felicitas Rapp
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ina Patties
- Department of Radiation Therapy; Leipzig University; Leipzig Germany
| | | | - Zhana Haimon
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| | - Kerstin Immig
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University; Leipzig Germany
| |
Collapse
|
47
|
McGinnis GJ, Raber J. CNS side effects of immune checkpoint inhibitors: preclinical models, genetics and multimodality therapy. Immunotherapy 2017; 9:929-941. [PMID: 29338610 PMCID: PMC6161123 DOI: 10.2217/imt-2017-0056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023] Open
Abstract
Following cancer treatment, patients often report behavioral and cognitive changes. Novel cancer immunotherapeutics have the potential to produce sustained cancer survivorship, meaning patients will live longer with the side effects of treatment. Given the role of inflammatory pathways in mediating behavioral and cognitive impairments seen in cancer, we aim in this review to discuss emerging evidence for the contribution of immune checkpoint blockade to exacerbate these CNS effects. We discuss ongoing studies regarding the ability of immune checkpoint inhibitors to reach the brain and how treatment responses to checkpoint inhibitors may be modulated by genetic factors. We further consider the use of preclinical tumor-models to study the role of tumor status in CNS effects of immune checkpoint inhibitors and multimodality therapy.
Collapse
Affiliation(s)
- Gwendolyn J McGinnis
- Department of Radiation Medicine, Oregon Health & Science University, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, OR, USA
| | - Jacob Raber
- Department of Radiation Medicine, Oregon Health & Science University, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, OR, USA
- Department of Neurology, Oregon Health & Science University, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| |
Collapse
|
48
|
Wu Q, Allouch A, Martins I, Modjtahedi N, Deutsch E, Perfettini JL. Macrophage biology plays a central role during ionizing radiation-elicited tumor response. Biomed J 2017; 40:200-211. [PMID: 28918908 PMCID: PMC6136289 DOI: 10.1016/j.bj.2017.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/01/2017] [Accepted: 06/11/2017] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.
Collapse
Affiliation(s)
- Qiuji Wu
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France; Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Hubei, China
| | - Awatef Allouch
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Isabelle Martins
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Nazanine Modjtahedi
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Eric Deutsch
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Jean-Luc Perfettini
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France.
| |
Collapse
|
49
|
Genard G, Lucas S, Michiels C. Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Front Immunol 2017; 8:828. [PMID: 28769933 PMCID: PMC5509958 DOI: 10.3389/fimmu.2017.00828] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play a central role in tumor progression, metastasis, and recurrence after treatment. Macrophage plasticity and diversity allow their classification along a M1–M2 polarization axis. Tumor-associated macrophages usually display a M2-like phenotype, associated with pro-tumoral features whereas M1 macrophages exert antitumor functions. Targeting the reprogramming of TAMs toward M1-like macrophages would thus be an efficient way to promote tumor regression. This can be achieved through therapies including chemotherapy, immunotherapy, and radiotherapy (RT). In this review, we first describe how chemo- and immunotherapies can target TAMs and, second, we detail how RT modifies macrophage phenotype and present the molecular pathways that may be involved. The identification of irradiation dose inducing macrophage reprogramming and of the underlying mechanisms could lead to the design of novel therapeutic strategies and improve synergy in combined treatments.
Collapse
Affiliation(s)
- Géraldine Genard
- URBC - NARILIS, University of Namur, Namur, Belgium.,Laboratory of Analysis by Nuclear Reaction (LARN/PMR) - NARILIS, University of Namur, Namur, Belgium
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN/PMR) - NARILIS, University of Namur, Namur, Belgium
| | | |
Collapse
|
50
|
Villapol S, Loane DJ, Burns MP. Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia 2017; 65:1423-1438. [PMID: 28608978 DOI: 10.1002/glia.23171] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
The activation of resident microglial cells, alongside the infiltration of peripheral macrophages, are key neuroinflammatory responses to traumatic brain injury (TBI) that are directly associated with neuronal death. Sexual disparities in response to TBI have been previously reported; however it is unclear whether a sex difference exists in neuroinflammatory progression after TBI. We exposed male and female mice to moderate-to-severe controlled cortical impact injury and studied glial cell activation in the acute and chronic stages of TBI using immunofluorescence and in situ hybridization analysis. We found that the sex response was completely divergent up to 7 days postinjury. TBI caused a rapid and pronounced cortical microglia/macrophage activation in male mice with a prominent activated phenotype that produced both pro- (IL-1β and TNFα) and anti-inflammatory (Arg1 and TGFβ) cytokines with a single-phase, sustained peak from 1 to 7 days. In contrast, TBI caused a less robust microglia/macrophage phenotype in females with biphasic pro-inflammatory response peaks at 4 h and 7 days, and a delayed anti-inflammatory mRNA peak at 30 days. We further report that female mice were protected against acute cell loss after TBI, with male mice demonstrating enhanced astrogliosis, neuronal death, and increased lesion volume through 7 days post-TBI. Collectively, these findings indicate that TBI leads to a more aggressive neuroinflammatory profile in male compared with female mice during the acute and subacute phases postinjury. Understanding how sex affects the course of neuroinflammation following brain injury is a vital step toward developing personalized and effective treatments for TBI.
Collapse
Affiliation(s)
- Sonia Villapol
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University, Washington, District of Columbia
| | - David J Loane
- Department of Anesthesiology, Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark P Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University, Washington, District of Columbia
| |
Collapse
|