1
|
Wang L, Chen X, Pollock NR, Villafuerte Gálvez JA, Alonso CD, Wang D, Daugherty K, Xu H, Yao J, Chen Y, Kelly CP, Cao Y. Metagenomic analysis reveals distinct patterns of gut microbiota features with diversified functions in C. difficile infection (CDI), asymptomatic carriage and non-CDI diarrhea. Gut Microbes 2025; 17:2505269. [PMID: 40366862 PMCID: PMC12080279 DOI: 10.1080/19490976.2025.2505269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025] Open
Abstract
Clostridioides difficile infection (CDI) has been recognized as a leading cause of healthcare-associated infections and a considerable threat to public health globally. Increasing evidence suggests that the gut microbiota plays a key role in the pathogenesis of CDI. The taxonomic composition and functional capacity of the gut microbiota associated with CDI have not been studied systematically. Here, we performed a comprehensive shotgun metagenomic sequencing in a well-characterized human cohort to reveal distinct patterns of gut microbiota and potential functional features associated with CDI. Fecal samples were collected from 104 inpatients, including : (1) patients with clinically significant diarrhea and positive nucleic acid amplification testing (NAAT) and received CDI treatment (CDI, n = 47); (2) patients with positive stool NAAT but without diarrhea (Carrier, n = 17); (3) patients with negative stool NAAT but with diarrhea (Diarrhea, n = 14); and (4) patients with negative stool NAAT and without diarrhea (Control, n = 26). Downstream statistical analyses (including alpha and beta diversity analysis, differential abundance analysis, correlation network analysis, and potential functional analysis) were then performed. The gut microbiota in the Control group showed higher Chao1 index (p < 0.05), while Shannon index at KEGG module level was higher in CDI than in Carrier and Control (p < 0.05). Beta diversity for species composition differed significantly between CDI vs Carrier/Control cohorts (p < 0.05). Microbial Linear discriminant analysis Effect Size and ANCOM analysis both identified 8 species (unclassified_f_Enterobacteriaceae, Veillonella_parvula, unclassified_g_Klebsiella and etc.) were enriched in CDI, Enterobacter_aerogenes was enriched in Diarrhea, Collinsella_aerofaciens, Collinsella_sp_4_8_47FAA, Collinsella_tanakaei and Collinsella_sp_CAG_166 were enriched in Control (LDA >3.0, adjusted p < 0.05). Correlation network complexity was higher in CDI with more negative correlations than in other three cohorts. Modules involved in iron complex transport system (M00240) was enriched in CDI, ABC-2 type transport system (M00254), aminoacyl-tRNA biosynthesis (M00359), histidine biosynthesis (M00026) and inosine monophosphate biosynthesis (M00048) were enriched in Carrier, ribosome (M00178 and M00179) was enriched in Diarrhea, fluoroquinolone resistance (M00729) and aminoacyl-tRNA biosynthesis (M00360) were enriched in Control (LDA > 2.5, adjusted p < 0.05). Resistance functions of acriflavine and glycylcycline were enriched in CDI, while resistance function of bacitracin was enriched in Carrier (LDA > 3.0, adjusted p < 0.05), and the contributions of phylum and species to resistance functions differed among the four groups. Our results reveal alterations of gut microbiota composition and potential functions among four groups of differential colonization/infection status of Clostridioides difficile. These findings support the potential roles of gut microbiota and their potential functions in the pathogenesis of CDI.
Collapse
Affiliation(s)
- Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nira R. Pollock
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Javier A. Villafuerte Gálvez
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carolyn D. Alonso
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaitlyn Daugherty
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Xu
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ciaran P. Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Zhu D, Wozniak KJ, Midani F, Wang S, Sun X, Britton RA. Control of Clostridioides difficile virulence and physiology by the flagellin homeostasis checkpoint FliC-FliW-CsrA in the absence of motility. mBio 2025; 16:e0380124. [PMID: 39882902 PMCID: PMC11898703 DOI: 10.1128/mbio.03801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Mutations affecting Clostridioides difficile flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving fliC, fliW, and csrA, which creates a feedback system to regulate flagella production. Through genomic analysis of C. difficile clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene fliC and regulatory gene fliW. We therefore investigated the roles of fliC, fliW, and csrA in the clade 5 ribotype 078 strain C. difficile 1015, which lacks flagella and is non-motile. Analysis of mutations in fliC, fliW, and csrA (and all combinations) on C. difficile pathogenesis indicated that FliW plays a central role in C. difficile virulence as animals infected with strains carrying a deletion of fliW showed decreased survival and increased disease severity. These in vivo findings were supported by in vitro studies showing that mutations impacting the activity of FliW showed increased toxin production. We further identified that FliW can interact with the toxin-positive regulator TcdR, indicating that modulation of toxin production via FliW occurs by sequestering TcdR from activating toxin transcription. Furthermore, disruption of the fliC-fliW-csrA network results in significant changes in carbon source utilization and sporulation. This work highlights that key proteins involved in flagellar biosynthesis retain their regulatory roles in C. difficile pathogenesis and physiology independent of their functions in motility. IMPORTANCE Clostridioides difficile is a leading cause of nosocomial antibiotic-associated diarrhea in developed countries with many known virulence factors. In several pathogens, motility and virulence are intimately linked by regulatory networks that allow coordination of these processes in pathogenesis and physiology. Regulation of C. difficile toxin production by FliC has been demonstrated in vitro and in vivo and has been proposed to link motility and virulence. Here, we show that clinically important, non-motile C. difficile strains have conserved FliC and regulatory partners FliW and CsrA, despite lacking the rest of the machinery to produce functional flagella. Our work highlights a novel role for flagellin outside of its role in motility and FliW in the pathogenesis and physiology of C. difficile.
Collapse
Affiliation(s)
- Duolong Zhu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Katherine J. Wozniak
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Firas Midani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Marvaud JC, Bouttier S, Saunier J, Kansau I. Clostridioides difficile Flagella. Int J Mol Sci 2024; 25:2202. [PMID: 38396876 PMCID: PMC10889297 DOI: 10.3390/ijms25042202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Clostridioides difficile is an important pathogen for humans with a lead in nosocomial infection, but it is also more and more common in communities. Our knowledge of the pathology has historically been focused on the toxins produced by the bacteria that remain its major virulence factors. But the dysbiosis of the intestinal microbiota creating the conditions for the colonization appears to be fundamental for our understanding of the disease. Colonization implies several steps for the bacteria that do or do not use their capacity of motility with the synthesis of flagella. In this review, we focus on the current understanding of different topics on the C. difficile flagellum, ranging from its genetic organization to the vaccinal interest in it.
Collapse
Affiliation(s)
- Jean-Christophe Marvaud
- Institut MICALIS, INRAE, AgroParisTech, Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay, 91400 Orsay, France (I.K.)
| | - Sylvie Bouttier
- Institut MICALIS, INRAE, AgroParisTech, Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay, 91400 Orsay, France (I.K.)
| | - Johanna Saunier
- Matériaux et Santé, Faculté de pharmacie, Université Paris Saclay, 91400 Orsay, France
| | - Imad Kansau
- Institut MICALIS, INRAE, AgroParisTech, Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay, 91400 Orsay, France (I.K.)
| |
Collapse
|
4
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Li P, Zong W, Zhang Z, Lv W, Ji X, Zhu D, Du X, Wang S. Effects and molecular mechanism of flagellar gene flgK on the motility, adhesion/invasion, and desiccation resistance of Cronobacter sakazakii. Food Res Int 2023; 164:112418. [PMID: 36738023 DOI: 10.1016/j.foodres.2022.112418] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Cronobacter sakazakii (C. sakazakii), a food-borne pathogen, can infect neonates, elderly and immunocompromised populations with a high infection and mortality rate. However, the specific molecular mechanism of its motility, biofilm formation, cell adhesion, and desiccation resistance remains unclear, and flagellum hook associated protein (FlgK), a main component of the flagellar complex, may be an important determinant of its virulence and desiccation resistance. In this study, the flgK mutant strain (ΔflgK) was constructed using the homologous recombination method, and the cpflgK complementary strain was obtained by gene complementation, followed by analysis of the difference between the wild type (WT), mutant, and complementary strains in mobility, biofilm formation, cell adhesion, and desiccation resistance. Results indicated that flgK gene played a positive role in motility and invasion, with no significant effect on biofilm formation. Interestingly, flagellar assembly gene deletion showed increased resistance of C. sakazakii to dehydration. The mechanism underlying the negative correlation of flgK gene with dehydration resistance was further investigated by using the high-throughput sequencing technology to compare the gene expression between WT and ΔflgK strains after drying. The results revealed up-regulation in the expression of 54 genes, including genes involved in osmosis and formate dehydrogenase, while down-regulation in the expression of 50 genes, including genes involved in flagellum hook and nitrate reductase. qRT-PCR analysis of the RNA-seq data further indicated that the flgK gene played an important role in the environmental stress resistance of C. sakazakii by up-regulating the formate dehydrogenase, betaine synthesis, and arginine deiminase pathways, due to dynamic proton imbalance caused by lack of flagella. This study facilitates our understanding of the roles of flgK in motion-related functions and the molecular mechanism of desiccation resistance in C. sakazakii.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenyue Zong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengyang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen Lv
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, College of Medicine, Nankai University, Tianjin 300071, China
| | - Dongdong Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, College of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Genomic and Phenotypic Characterization of Clostridium botulinum Isolates from an Infant Botulism Case Suggests Adaptation Signatures to the Gut. mBio 2022; 13:e0238421. [PMID: 35499308 PMCID: PMC9239077 DOI: 10.1128/mbio.02384-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In early life, the immature human gut microbiota is prone to colonization by pathogens that are usually outcompeted by mature microbiota in the adult gut. Colonization and neurotoxin production by a vegetative Clostridium botulinum culture in the gut of an infant can lead to flaccid paralysis, resulting in a clinical outcome known as infant botulism, a potentially life-threatening condition. Beside host factors, little is known of the ecology, colonization, and adaptation of C. botulinum to the gut environment. In our previous report, an infant with intestinal botulism was shown to be colonized by neurotoxigenic C. botulinum culture for 7 months. In an effort to gain ecological and evolutionary insights into this unusually long gut colonization by C. botulinum, we analyzed and compared the genomes of C. botulinum isolates recovered from the infant feces during the course of intoxication and isolates from the infant household dust. A number of observed mutations and genomic alterations pinpointed at phenotypic traits that may have promoted colonization and adaptation to the gut environment and to the host. These traits include motility, quorum-sensing, sporulation, and carbohydrate metabolism. We provide novel perspectives and suggest a tentative model of the pathogenesis of C. botulinum in infant botulism.
Collapse
|
7
|
Nibbering B, Gerding DN, Kuijper EJ, Zwittink RD, Smits WK. Host Immune Responses to Clostridioides difficile: Toxins and Beyond. Front Microbiol 2022; 12:804949. [PMID: 34992590 PMCID: PMC8724541 DOI: 10.3389/fmicb.2021.804949] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is often resistant to the actions of antibiotics to treat other bacterial infections and the resulting C. difficile infection (CDI) is among the leading causes of nosocomial infectious diarrhea worldwide. The primary virulence mechanism contributing to CDI is the production of toxins. Treatment failures and recurrence of CDI have urged the medical community to search for novel treatment options. Strains that do not produce toxins, so called non-toxigenic C. difficile, have been known to colonize the colon and protect the host against CDI. In this review, a comprehensive description and comparison of the immune responses to toxigenic C. difficile and non-toxigenic adherence, and colonization factors, here called non-toxin proteins, is provided. This revealed a number of similarities between the host immune responses to toxigenic C. difficile and non-toxin proteins, such as the influx of granulocytes and the type of T-cell response. Differences may reflect genuine variation between the responses to toxigenic or non-toxigenic C. difficile or gaps in the current knowledge with respect to the immune response toward non-toxigenic C. difficile. Toxin-based and non-toxin-based immunization studies have been evaluated to further explore the role of B cells and reveal that plasma cells are important in protection against CDI. Since the success of toxin-based interventions in humans to date is limited, it is vital that future research will focus on the immune responses to non-toxin proteins and in particular non-toxigenic strains.
Collapse
Affiliation(s)
- Britt Nibbering
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dale N Gerding
- Department of Veterans Affairs, Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Zhu D, Wang S, Sun X. FliW and CsrA Govern Flagellin (FliC) Synthesis and Play Pleiotropic Roles in Virulence and Physiology of Clostridioides difficile R20291. Front Microbiol 2021; 12:735616. [PMID: 34675903 PMCID: PMC8523840 DOI: 10.3389/fmicb.2021.735616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile flagellin FliC is associated with toxin gene expression, bacterial colonization, and virulence, and is also involved in pleiotropic gene regulation during in vivo infection. However, how fliC expression is regulated in C. difficile remains unclear. In Bacillus subtilis, flagellin homeostasis and motility are coregulated by flagellar assembly factor (FliW), flagellin Hag (FliC homolog), and Carbon storage regulator A (CsrA), which is referred to as partner-switching mechanism "FliW-CsrA-Hag." In this study, we characterized FliW and CsrA functions by deleting or overexpressing fliW, csrA, and fliW-csrA in C. difficile R20291. We showed that fliW deletion, csrA overexpression in R20291, and csrA complementation in R20291ΔWA (fliW-csrA codeletion mutant) dramatically decreased FliC production, but not fliC gene transcription. Suppression of fliC translation by csrA overexpression can be relieved mostly when fliW was coexpressed, and no significant difference in FliC production was detected when only fliW was complemented in R20291ΔWA. Further, loss of fliW led to increased biofilm formation, cell adhesion, toxin production, and pathogenicity in a mouse model of C. difficile infection (CDI), while fliW-csrA codeletion decreased toxin production and mortality in vivo. Our data suggest that CsrA negatively modulates fliC expression and FliW indirectly affects fliC expression through inhibition of CsrA post-transcriptional regulation. In light of "FliW-CsrA-Hag" switch coregulation mechanism reported in B. subtilis, our data also suggest that "FliW-CsrA-fliC/FliC" can regulate many facets of C. difficile R20291 pathogenicity. These findings further aid us in understanding the virulence regulation in C. difficile.
Collapse
Affiliation(s)
| | | | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
9
|
Haddad NS, Nozick S, Kim G, Ohanian S, Kraft C, Rebolledo PA, Wang Y, Wu H, Bressler A, Le SNT, Kuruvilla M, Cannon LE, Lee FEH, Daiss JL. Novel immunoassay for diagnosis of ongoing Clostridioides difficile infections using serum and medium enriched for newly synthesized antibodies (MENSA). J Immunol Methods 2021; 492:112932. [PMID: 33221459 DOI: 10.1016/j.jim.2020.112932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Clostridioides difficile infections (CDI) have been a challenging and increasingly serious concern in recent years. While early and accurate diagnosis is crucial, available assays have frustrating limitations. OBJECTIVE Develop a simple, blood-based immunoassay to accurately diagnose patients suffering from active CDI. MATERIALS AND METHODS Uninfected controls (N = 95) and CDI patients (N = 167) were recruited from Atlanta area hospitals. Blood samples were collected from patients within twelve days of a positive CDI test and processed to yield serum and PBMCs cultured to yield medium enriched for newly synthesized antibodies (MENSA). Multiplex immunoassays measured Ig responses to ten recombinant C. difficile antigens. RESULTS Sixty-six percent of CDI patients produced measurable responses to C. difficile antigens in their serum or MENSA within twelve days of a positive CDI test. Fifty-two of the 167 CDI patients (31%) were detectable in both serum and MENSA, but 32/167 (19%) were detectable only in MENSA, and 27/167 (16%) were detectable only in serum. DISCUSSION We describe the results of a multiplex immunoassay for the diagnosis of ongoing CDI in hospitalized patients. Our assay resolved patients into four categories: MENSA-positive only, serum-positive only, MENSA- and serum-positive, and MENSA- and serum-negative. The 30% of patients who were MENSA-positive only may be accounted for by nascent antibody secretion prior to seroconversion. Conversely, the serum-positive only subset may have been more advanced in their disease course. Immunocompromise and misdiagnosis may have contributed to the 34% of CDI patients who were not identified using MENSA or serum immunoassays. IMPORTANCE While there was considerable overlap between patients identified through MENSA and serum, each method detected a distinctive patient group. The combined use of both MENSA and serum to detect CDI patients resulted in the greatest identification of CDI patients. Together, longitudinal analysis of MENSA and serum will provide a more accurate evaluation of successful host humoral immune responses in CDI patients.
Collapse
Affiliation(s)
| | | | | | | | - Colleen Kraft
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Paulina A Rebolledo
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Grady Memorial Hospital, Atlanta, GA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Adam Bressler
- Infectious Disease Specialists of Atlanta, Decatur, GA, USA
| | - Sang Nguyet Thi Le
- Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Merin Kuruvilla
- Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - F Eun-Hyung Lee
- MicroB-plex, Inc., Atlanta, GA, USA; Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - John L Daiss
- MicroB-plex, Inc., Atlanta, GA, USA; Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
10
|
Homologous Recombination in Clostridioides difficile Mediates Diversification of Cell Surface Features and Transport Systems. mSphere 2020; 5:5/6/e00799-20. [PMID: 33208516 PMCID: PMC7677006 DOI: 10.1128/msphere.00799-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Infections with C. difficile result in up to half a million illnesses and tens of thousands of deaths annually in the United States. The severity of C. difficile illness is dependent on both host and bacterial factors. Illness caused by the pathogen Clostridioides difficile is widespread and can range in severity from mild diarrhea to sepsis and death. Strains of C. difficile isolated from human infections exhibit great genetic diversity, leading to the hypothesis that the genetic background of the infecting strain at least partially determines a patient’s clinical course. However, although certain strains of C. difficile have been suggested to be associated with increased severity, strain typing alone has proved insufficient to explain infection severity. The limited explanatory power of strain typing has been hypothesized to be due to genetic variation within strain types, as well as genetic elements shared between strain types. Homologous recombination is an evolutionary mechanism that can result in large genetic differences between two otherwise clonal isolates, and also lead to convergent genotypes in distantly related strains. More than 400 C. difficile genomes were analyzed here to assess the effect of homologous recombination within and between C. difficile clades. Almost three-quarters of single nucleotide variants in the C. difficile phylogeny are predicted to be due to homologous recombination events. Furthermore, recombination events were enriched in genes previously reported to be important to virulence and host-pathogen interactions, such as flagella, cell wall proteins, and sugar transport and metabolism. Thus, by exploring the landscape of homologous recombination in C. difficile, we identified genetic loci whose elevated rates of recombination mediated diversification, making them strong candidates for being mediators of host-pathogen interaction in diverse strains of C. difficile. IMPORTANCE Infections with C. difficile result in up to half a million illnesses and tens of thousands of deaths annually in the United States. The severity of C. difficile illness is dependent on both host and bacterial factors. Studying the evolutionary history of C. difficile pathogens is important for understanding the variation in pathogenicity of these bacteria. This study examines the extent and targets of homologous recombination, a mechanism by which distant strains of bacteria can share genetic material, in hundreds of C. difficile strains and identifies hot spots of realized recombination events. The results of this analysis reveal the importance of homologous recombination in the diversification of genetic loci in C. difficile that are significant in its pathogenicity and host interactions, such as flagellar construction, cell wall proteins, and sugar transport and metabolism.
Collapse
|
11
|
Yuille S, Mackay WG, Morrison DJ, Tedford MC. Drivers of Clostridioides difficile hypervirulent ribotype 027 spore germination, vegetative cell growth and toxin production in vitro. Clin Microbiol Infect 2019; 26:941.e1-941.e7. [PMID: 31715298 DOI: 10.1016/j.cmi.2019.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/18/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI) is a considerable healthcare and economic burden worldwide. Faecal microbial transplant remains the most effective treatment for CDI, but is not at the present time the recommended standard of care. We hereby investigate which factors derived from a healthy gut microbiome might constitute the colonization resistance barrier (CRB) in the gut, inhibiting CDI. METHODS CRB drivers pH, short chain fatty acid (SCFA), and oxidation-reduction potential (ORP) were investigated in vitro using C. difficile NAP1/BI/027. Readouts for inhibitory mechanisms included germination, growth, toxin production and virulence gene expression. pH ranges (3-7.6), SCFA concentrations (25-200 mM) and ORP (-300 to 200 mV) were manipulated in brain heart infusion broth cultures under anaerobic conditions to assess the inhibitory action of these mechanisms. RESULTS A pH < 5.3 completely inhibited C. difficile growth to optical density (OD) 0.019 vs. 1.19 for control pH 7.5. Toxin production was reduced to 25 units vs. 3125 units for pH 7.6 (1 in 5 dilutions). Virulence gene expression reduced by 150-fold compared with pH 7.6 (p < 0.05). Germination and proliferation of spores below pH 6.13 yielded an average OD of 0.006 vs. 0.99 for control. SCFA were potent regulators of toxin production at 25 mM and above (p < 0.05). Acetate significantly inhibited toxin production to 25 units independent of OD (0.8733) vs. control (OD 0.6 and toxin titre 3125) (p < 0.05). ORP did not impact C. difficile growth. CONCLUSIONS This study highlights the critical role that pH has in the CRB, regulating CDI in vitro and that SCFA can regulate C. difficile function independent of pH.
Collapse
Affiliation(s)
- S Yuille
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| | - W G Mackay
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - D J Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, UK
| | - M C Tedford
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK.
| |
Collapse
|
12
|
Sievers S, Metzendorf NG, Dittmann S, Troitzsch D, Gast V, Tröger SM, Wolff C, Zühlke D, Hirschfeld C, Schlüter R, Riedel K. Differential View on the Bile Acid Stress Response of Clostridioides difficile. Front Microbiol 2019; 10:258. [PMID: 30833939 PMCID: PMC6387971 DOI: 10.3389/fmicb.2019.00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/31/2019] [Indexed: 12/16/2022] Open
Abstract
Clostridioides difficile is an intestinal human pathogen that uses the opportunity of a depleted microbiota to cause an infection. It is known, that the composition of the intestinal bile acid cocktail has a great impact on the susceptibility toward a C. difficile infection. However, the specific response of growing C. difficile cells to diverse bile acids on the molecular level has not been described yet. In this study, we recorded proteome signatures of shock and long-term (LT) stress with the four main bile acids cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and lithocholic acid (LCA). A general overlapping response to all tested bile acids could be determined particularly in shock experiments which appears plausible in the light of their common steroid structure. However, during LT stress several proteins showed an altered abundance in the presence of only a single or a few of the bile acids indicating the existence of specific adaptation mechanisms. Our results point at a differential induction of the groEL and dnaKJgrpE chaperone systems, both belonging to the class I heat shock genes. Additionally, central metabolic pathways involving butyrate fermentation and the reductive Stickland fermentation of leucine were effected, although CA caused a proteome signature different from the other three bile acids. Furthermore, quantitative proteomics revealed a loss of flagellar proteins in LT stress with LCA. The absence of flagella could be substantiated by electron microscopy which also indicated less flagellated cells in the presence of DCA and CDCA and no influence on flagella formation by CA. Our data break down the bile acid stress response of C. difficile into a general and a specific adaptation. The latter cannot simply be divided into a response to primary and secondary bile acids, but rather reflects a complex and variable adaptation process enabling C. difficile to survive and to cause an infection in the intestinal tract.
Collapse
Affiliation(s)
- Susanne Sievers
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Nicole G Metzendorf
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Silvia Dittmann
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Daniel Troitzsch
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Viola Gast
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sophie Marlen Tröger
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Christian Wolff
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically-relevant faecal environment, with implications for pathogenicity. Sci Rep 2018; 8:16691. [PMID: 30420658 PMCID: PMC6232153 DOI: 10.1038/s41598-018-35050-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility.
Collapse
|
14
|
Tanca A, Abbondio M, Palomba A, Fraumene C, Marongiu F, Serra M, Pagnozzi D, Laconi E, Uzzau S. Caloric restriction promotes functional changes involving short-chain fatty acid biosynthesis in the rat gut microbiota. Sci Rep 2018; 8:14778. [PMID: 30283130 PMCID: PMC6170429 DOI: 10.1038/s41598-018-33100-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Caloric restriction (CR) is known to promote health and longevity, likely via modification of the gut microbiota (GM). However, functional and metabolic changes induced in the GM during CR are still unidentified. Here, we investigated the short- and long-term effects of CR on the rat GM using a metaproteogenomic approach. We show that a switch from ad libitum (AL) low fat diet to CR in young rats is able to induce rapid and deep changes in their GM metaproteomic profile, related to a reduction of the Firmicutes/Bacteroidetes ratio and an expansion of lactobacilli. Specifically, we observed a significant change in the expression of the microbial enzymes responsible for short-chain fatty acid biosynthesis, with CR boosting propionogenesis and limiting butyrogenesis and acetogenesis. Furthermore, these CR-induced effects were maintained up to adulthood and started to be reversed after a short-term diet change. We also found that CR alters the abundance of an array of host proteins released in stool, mainly related to epithelial barrier integrity and inflammation. Hence, our results provide thorough information about CR-induced modifications to GM and host functional activity, and might constitute the basis for novel GM-based approaches aimed at monitoring the effectiveness of dietary interventions.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Cristina Fraumene
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Monica Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy.
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
15
|
Brown AWW, Wilson RB. Clostridium difficile colitis and zoonotic origins-a narrative review. Gastroenterol Rep (Oxf) 2018; 6:157-166. [PMID: 30151199 PMCID: PMC6101521 DOI: 10.1093/gastro/goy016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a major cause of hospital-associated diarrhoea, and in severe cases leads to pseudomembranous colitis and toxic megacolon. The frequency of C. difficile infection (CDI) has increased in recent decades, with 453 000 cases identified in 2011 in the USA. This is related to antibiotic-selection pressure, disruption of normal host intestinal microbiota and emergence of antibiotic-resistant C. difficile strains. The burden of community-acquired CDI has been increasingly appreciated, with disease identified in patients previously considered low-risk, such as young women or patients with no prior antibiotic exposure. C. difficile has been identified in livestock animals, meat products, seafood and salads. It has been postulated that the pool of C. difficile in the agricultural industry may contribute to human CDI. There is widespread environmental dispersal of C. difficile spores. Domestic households, turf lawns and public spaces are extensively contaminated, providing a potential reservoir for community-acquired CDI. In Australia, this is particularly associated with porcine-derived C. difficile UK PCR ribotype 014/020. In this article, the epidemiological differences between hospital- and community-acquired CDI are discussed, including some emerging evidence for community-acquired CDI being a possible zoonosis.
Collapse
Affiliation(s)
- Alexander W W Brown
- General Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, NSW, Australia
| | - Robert B Wilson
- General Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, NSW, Australia
| |
Collapse
|
16
|
Pantaléon V, Monot M, Eckert C, Hoys S, Collignon A, Janoir C, Candela T. Clostridium difficile forms variable biofilms on abiotic surface. Anaerobe 2018; 53:34-37. [PMID: 29859742 DOI: 10.1016/j.anaerobe.2018.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 01/06/2023]
Abstract
Clostridium difficile can form biofilms. Thirty-seven strains were characterized for their ability to form a biofilm, adhesion on an inert surface and hydrophobicity. No correlation between the ability to form a biofilm and the strain virulence was highlighted. However, non-motile strains were not able to form a high biofilm.
Collapse
Affiliation(s)
- V Pantaléon
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - M Monot
- Département de Microbiologie, Institut Pasteur, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France; Département de Microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - C Eckert
- National Reference Laboratory for C. difficile, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France; Sorbonne Université, Centre d'immunologie et des Maladies Infectieuses-Paris, Cimi-Paris, Département de Bactériologie, AP-HP, Hôpitaux Universitaires de l'Est Parisien, F-75012 Paris, France
| | - S Hoys
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - A Collignon
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - C Janoir
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - T Candela
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
17
|
Bruxelle JF, Mizrahi A, Hoÿs S, Collignon A, Janoir C, Péchiné S. Clostridium difficile flagellin FliC: Evaluation as adjuvant and use in a mucosal vaccine against Clostridium difficile. PLoS One 2017; 12:e0187212. [PMID: 29176760 PMCID: PMC5703446 DOI: 10.1371/journal.pone.0187212] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022] Open
Abstract
The immunogenicity of bacterial flagellin has been reported in different studies. By its close interaction with the immune system, the flagellin represents an interesting adjuvant and vaccine candidate. Salmonella Typhimurium flagellin has already been tested as adjuvant to stimulate mucosal immunity. Here, we assessed the ability of Clostridium difficile flagellin FliC to act as a mucosal adjuvant, first combined with ovalbumin as antigen and second with a C. difficile surface protein, the precursor of the S-layer proteins SlpA. Using ovalbumin as antigen, we compared the gut mucosal adjuvanticity of FliC to Salmonella Typhimurium flagellin and cholera toxin. Two routes of immunization were tested in a mouse model: intra-rectal and intra-peritoneal, following which, gut mucosal and systemic antibody responses against ovalbumin (Immunoglobulins G and Immunoglobulins A) were analyzed by Enzyme-Linked Immuno Assay in intestinal contents and in sera. In addition, ovalbumin-specific immunoglobulin producing cells were detected in the intestinal lamina propria by Enzyme-Linked Immunospot. Results showed that FliC as adjuvant for immunization targeting ovalbumin was able to stimulate a gut mucosal and systemic antibody response independently of the immunization route. In order to develop a mucosal vaccine to prevent C. difficile intestinal colonization, we assessed in a mouse model the efficacy of FliC as adjuvant compared with cholera toxin co-administrated with the C. difficile S-layer precursor SlpA as antigen. After challenge, a significant decrease of C. difficile intestinal colonization was observed in immunized groups compared to the control group. Our results showed that C. difficile FliC could be used as adjuvant in mucosal vaccination strategy against C. difficile infections.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
| | - Assaf Mizrahi
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
- Service de Microbiologie Clinique, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Sandra Hoÿs
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
| | - Anne Collignon
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
| | - Claire Janoir
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
| | - Séverine Péchiné
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
- * E-mail:
| |
Collapse
|
18
|
Abstract
Clostridium difficile is a leading cause of nosocomial infections, causing disease that ranges from mild diarrhea to potentially fatal colitis. A variety of surface proteins, including flagella, enable C. difficile colonization of the intestine. Once in the intestine, toxigenic C. difficile secretes two glucosylating toxins, TcdA and TcdB, which elicit inflammation and diarrheal disease symptoms. Regulation of colonization factors and TcdA and TcdB is an intense area of research in C. difficile biology. A recent publication from our group describes a novel regulatory mechanism that mediates the ON/OFF expression of co-regulated virulence factors of C. difficile, flagella and toxins. Herein, we review key findings from our work, present new data, and speculate the functional consequence of the ON/OFF expression of these virulence factors during host infection.
Collapse
Affiliation(s)
- Brandon R. Anjuwon-Foster
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,CONTACT Rita Tamayo 125 Mason Farm Rd., CB #7290, Chapel Hill, NC, 27599
| |
Collapse
|
19
|
Clostridium difficile flagella induce a pro-inflammatory response in intestinal epithelium of mice in cooperation with toxins. Sci Rep 2017; 7:3256. [PMID: 28607468 PMCID: PMC5468286 DOI: 10.1038/s41598-017-03621-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/02/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is the most important enteropathogen involved in gut nosocomial post-antibiotic infections. The emergence of hypervirulent strains has contributed to increased mortality and morbidity of CDI. The C. difficile toxins contribute directly to CDI-associated lesions of the gut, but other bacterial factors are needed for the bacteria to adhere and colonize the intestinal epithelium. The C. difficile flagella, which confer motility and chemotaxis for successful intestinal colonization, could play an additional role in bacterial pathogenesis by contributing to the inflammatory response of the host and mucosal injury. Indeed, by activating the TLR5, flagella can elicit activation of the MAPK and NF-κB cascades of cell signaling, leading to the secretion of pro-inflammatory cytokines. In the current study, we demonstrate, by using an animal model of CDI, a synergic effect of flagella and toxins in eliciting an inflammatory mucosal response. In this model, the absence of flagella dramatically decreases the degree of mucosal inflammation in mice and the sole presence of toxins without flagella was not enough to elicit epithelial lesions. These results highlight the important role of C. difficile flagella in eliciting mucosal lesions as long as the toxins exert their action on the epithelium.
Collapse
|
20
|
Anjuwon-Foster BR, Tamayo R. A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genet 2017; 13:e1006701. [PMID: 28346491 PMCID: PMC5386303 DOI: 10.1371/journal.pgen.1006701] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/10/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
In the human intestinal pathogen Clostridium difficile, flagella promote adherence to intestinal epithelial cells. Flagellar gene expression also indirectly impacts production of the glucosylating toxins, which are essential to diarrheal disease development. Thus, factors that regulate the expression of the flgB operon will likely impact toxin production in addition to flagellar motility. Here, we report the identification a "flagellar switch" that controls the phase variable production of flagella and glucosylating toxins. The flagellar switch, located upstream of the flgB operon containing the early stage flagellar genes, is a 154 bp invertible sequence flanked by 21 bp inverted repeats. Bacteria with the sequence in one orientation expressed flagellum and toxin genes, produced flagella, and secreted the toxins ("flg phase ON"). Bacteria with the sequence in the inverse orientation were attenuated for flagellar and toxin gene expression, were aflagellate, and showed decreased toxin secretion ("flg phase OFF"). The orientation of the flagellar switch is reversible during growth in vitro. We provide evidence that gene regulation via the flagellar switch occurs post-transcription initiation and requires a C. difficile-specific regulatory factor to destabilize or degrade the early flagellar gene mRNA when the flagellar switch is in the OFF orientation. Lastly, through mutagenesis and characterization of flagellar phase locked isolates, we determined that the tyrosine recombinase RecV, which catalyzes inversion at the cwpV switch, is also responsible for inversion at the flagellar switch in both directions. Phase variable flagellar motility and toxin production suggests that these important virulence factors have both advantageous and detrimental effects during the course of infection.
Collapse
Affiliation(s)
- Brandon R. Anjuwon-Foster
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
21
|
Dehoux P, Marvaud JC, Abouelleil A, Earl AM, Lambert T, Dauga C. Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BMC Genomics 2016; 17:819. [PMID: 27769168 PMCID: PMC5073890 DOI: 10.1186/s12864-016-3152-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. RESULTS The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. CONCLUSION Genomic comparison of C. bolteae and C. clostridiofrome revealed functional differences in butyrate pathways and in flagellar systems, which play a critical role within human microbiota. Most of the resistance genes detected in both species were previously characterized in other bacterial species. A few of them were related to antibiotics inactive against Clostridium spp. Some were part of mobile genetic elements suggesting that these commensals of the human microbiota act as reservoir of antimicrobial resistances.
Collapse
Affiliation(s)
- Pierre Dehoux
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Jean Christophe Marvaud
- Faculté de Pharmacie, EA4043 “Unité Bactéries Pathogènes et Santé” (UBaPS), Université Paris Sud, Châtenay-Malabry Cedex, 92296 France
| | - Amr Abouelleil
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ashlee M. Earl
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Thierry Lambert
- Faculté de Pharmacie, EA4043 “Unité Bactéries Pathogènes et Santé” (UBaPS), Université Paris Sud, Châtenay-Malabry Cedex, 92296 France
- Antibacterial Agents Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Catherine Dauga
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
- International Group of Data Analysis, Centre for Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| |
Collapse
|
22
|
Bouché L, Panico M, Hitchen P, Binet D, Sastre F, Faulds-Pain A, Valiente E, Vinogradov E, Aubry A, Fulton K, Twine S, Logan SM, Wren BW, Dell A, Morris HR. The Type B Flagellin of Hypervirulent Clostridium difficile Is Modified with Novel Sulfonated Peptidylamido-glycans. J Biol Chem 2016; 291:25439-25449. [PMID: 27758867 PMCID: PMC5207245 DOI: 10.1074/jbc.m116.749481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
Glycosylation of flagellins is a well recognized property of many bacterial species. In this study, we describe the structural characterization of novel flagellar glycans from a number of hypervirulent strains of C. difficile. We used mass spectrometry (nano-LC-MS and MS/MS analysis) to identify a number of putative glycopeptides that carried a variety of glycoform substitutions, each of which was linked through an initial N-acetylhexosamine residue to Ser or Thr. Detailed analysis of a LLDGSSTEIR glycopeptide released by tryptic digestion, which carried two variant structures, revealed that the glycopeptide contained, in addition to carbohydrate moieties, a novel structural entity. A variety of electrospray-MS strategies using Q-TOF technology were used to define this entity, including positive and negative ion collisionally activated decomposition MS/MS, which produced unique fragmentation patterns, and high resolution accurate mass measurement to allow derivation of atomic compositions, leading to the suggestion of a taurine-containing peptidylamido-glycan structure. Finally, NMR analysis of flagellin glycopeptides provided complementary information. The glycan portion of the modification was assigned as α-Fuc3N-(1→3)-α-Rha-(1→2)-α-Rha3OMe-(1→3)-β-GlcNAc-(1→)Ser, and the novel capping moiety was shown to be comprised of taurine, alanine, and glycine. This is the first report of a novel O-linked sulfonated peptidylamido-glycan moiety decorating a flagellin protein.
Collapse
Affiliation(s)
- Laura Bouché
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Maria Panico
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paul Hitchen
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Daniel Binet
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey JE2 7LA, United Kingdom
| | - Federico Sastre
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Alexandra Faulds-Pain
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Esmeralda Valiente
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Evgeny Vinogradov
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Annie Aubry
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Kelly Fulton
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Susan Twine
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Susan M Logan
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Brendan W Wren
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Anne Dell
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom,
| | - Howard R Morris
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey JE2 7LA, United Kingdom
| |
Collapse
|
23
|
Valiente E, Bouché L, Hitchen P, Faulds-Pain A, Songane M, Dawson LF, Donahue E, Stabler RA, Panico M, Morris HR, Bajaj-Elliott M, Logan SM, Dell A, Wren BW. Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation. J Biol Chem 2016; 291:25450-25461. [PMID: 27703012 PMCID: PMC5207246 DOI: 10.1074/jbc.m116.749523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/27/2016] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C. difficile lineages by mutagenesis of five putative glycosyltransferases and biosynthetic genes. We reveal their roles in the biosynthesis of the flagellin glycan chain and demonstrate that flagellar post-translational modification affects motility and adhesion-related bacterial properties of these strains. We show that the glycosyltransferases 1 and 2 (GT1 and GT2) are responsible for the sequential addition of a GlcNAc and two rhamnoses, respectively, and that GT3 is associated with the incorporation of a novel sulfonated peptidyl-amido sugar moiety whose structure is reported in our accompanying paper (Bouché, L., Panico, M., Hitchen, P., Binet, D., Sastre, F., Faulds-Pain, A., Valiente, E., Vinogradov, E., Aubry, A., Fulton, K., Twine, S., Logan, S. M., Wren, B. W., Dell, A., and Morris, H. R. (2016) J. Biol. Chem. 291, 25439–25449). GT2 is also responsible for methylation of the rhamnoses. Whereas type B modification is not required for flagellar assembly, some mutations that result in truncation or abolition of the glycan reduce bacterial motility and promote autoaggregation and biofilm formation. The complete lack of flagellin modification also significantly reduces adhesion of C. difficile to Caco-2 intestinal epithelial cells but does not affect activation of human TLR5. Our study advances our understanding of the genes involved in flagellar glycosylation and their biological roles in emerging hypervirulent C. difficile strains.
Collapse
Affiliation(s)
- Esmeralda Valiente
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Laura Bouché
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paul Hitchen
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Alexandra Faulds-Pain
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mario Songane
- the Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Lisa F Dawson
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Elizabeth Donahue
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Richard A Stabler
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Maria Panico
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Howard R Morris
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviours Road, Jersey JE2 7LA, United Kingdom
| | - Mona Bajaj-Elliott
- the Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Susan M Logan
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Anne Dell
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Brendan W Wren
- From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom,
| |
Collapse
|
24
|
Kansau I, Barketi-Klai A, Monot M, Hoys S, Dupuy B, Janoir C, Collignon A. Deciphering Adaptation Strategies of the Epidemic Clostridium difficile 027 Strain during Infection through In Vivo Transcriptional Analysis. PLoS One 2016; 11:e0158204. [PMID: 27351947 PMCID: PMC4924792 DOI: 10.1371/journal.pone.0158204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/13/2016] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is responsible for a wide spectrum of infection from asymptomatic carriage to severe, relapsing colitis. Since 2003, C. difficile infections have increased with a higher morbidity and mortality due to the emergence of epidemic and hypervirulent C. difficile strains such as those of the epidemic lineage 027/BI/NAP1. To decipher the hypervirulence and epidemicity of 027 strains, we analyzed gene expression profiles of the R20291 027 strain using a monoxenic mouse model during the first 38h of infection. A total of 741 genes were differentially expressed during the course of infection. They are mainly distributed in functional categories involved in host adaptation. Several genes of PTS and ABC transporters were significantly regulated during the infection, underlying the ability of strain R20291 to adapt its metabolism according to nutrient availability in the digestive tract. In this animal model, despite the early sporulation process, sporulation efficiency seems to indicate that growth of R20291 vegetative cells versus spores were favored during infection. The bacterial mechanisms associated to adaptability and flexibility within the gut environment, in addition to the virulence factor expression and antibiotic resistance, should contribute to the epidemicity and hypervirulence of the C. difficile 027 strains.
Collapse
Affiliation(s)
- Imad Kansau
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry Cedex, France
| | - Amira Barketi-Klai
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry Cedex, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 25–28, rue du Docteur Roux, 75015, Paris, France
| | - Sandra Hoys
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry Cedex, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 25–28, rue du Docteur Roux, 75015, Paris, France
| | - Claire Janoir
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry Cedex, France
| | - Anne Collignon
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry Cedex, France
- * E-mail:
| |
Collapse
|
25
|
Batah J, Denève-Larrazet C, Jolivot PA, Kuehne S, Collignon A, Marvaud JC, Kansau I. Clostridium difficile flagella predominantly activate TLR5-linked NF-κB pathway in epithelial cells. Anaerobe 2016; 38:116-124. [DOI: 10.1016/j.anaerobe.2016.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022]
|
26
|
Roy Chowdhury P, DeMaere M, Chapman T, Worden P, Charles IG, Darling AE, Djordjevic SP. Comparative genomic analysis of toxin-negative strains of Clostridium difficile from humans and animals with symptoms of gastrointestinal disease. BMC Microbiol 2016; 16:41. [PMID: 26971047 PMCID: PMC4789261 DOI: 10.1186/s12866-016-0653-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/02/2016] [Indexed: 12/13/2022] Open
Abstract
Background Clostridium difficile infections (CDI) are a significant health problem to humans and food animals. Clostridial toxins ToxA and ToxB encoded by genes tcdA and tcdB are located on a pathogenicity locus known as the PaLoc and are the major virulence factors of C. difficile. While toxin-negative strains of C. difficile are often isolated from faeces of animals and patients suffering from CDI, they are not considered to play a role in disease. Toxin-negative strains of C. difficile have been used successfully to treat recurring CDI but their propensity to acquire the PaLoc via lateral gene transfer and express clinically relevant levels of toxins has reinforced the need to characterise them genetically. In addition, further studies that examine the pathogenic potential of toxin-negative strains of C. difficile and the frequency by which toxin-negative strains may acquire the PaLoc are needed. Results We undertook a comparative genomic analysis of five Australian toxin-negative isolates of C. difficile that lack tcdA, tcdB and both binary toxin genes cdtA and cdtB that were recovered from humans and farm animals with symptoms of gastrointestinal disease. Our analyses show that the five C. difficile isolates cluster closely with virulent toxigenic strains of C. difficile belonging to the same sequence type (ST) and have virulence gene profiles akin to those in toxigenic strains. Furthermore, phage acquisition appears to have played a key role in the evolution of C. difficile. Conclusions Our results are consistent with the C. difficile global population structure comprising six clades each containing both toxin-positive and toxin-negative strains. Our data also suggests that toxin-negative strains of C. difficile encode a repertoire of putative virulence factors that are similar to those found in toxigenic strains of C. difficile, raising the possibility that acquisition of PaLoc by toxin-negative strains poses a threat to human health. Studies in appropriate animal models are needed to examine the pathogenic potential of toxin-negative strains of C. difficile and to determine the frequency by which toxin-negative strains may acquire the PaLoc. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0653-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Piklu Roy Chowdhury
- The ithree institute, University of Technology Sydney, Sydney, 2007, Australia. .,NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, PMB 8, Camden, NSW, 2570, Australia.
| | - Matthew DeMaere
- The ithree institute, University of Technology Sydney, Sydney, 2007, Australia
| | - Toni Chapman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, PMB 8, Camden, NSW, 2570, Australia
| | - Paul Worden
- The ithree institute, University of Technology Sydney, Sydney, 2007, Australia
| | - Ian G Charles
- The ithree institute, University of Technology Sydney, Sydney, 2007, Australia.,Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Aaron E Darling
- The ithree institute, University of Technology Sydney, Sydney, 2007, Australia
| | - Steven P Djordjevic
- The ithree institute, University of Technology Sydney, Sydney, 2007, Australia.
| |
Collapse
|
27
|
Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC. Emerg Microbes Infect 2016; 5:e8. [PMID: 26839147 PMCID: PMC4777929 DOI: 10.1038/emi.2016.8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/13/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022]
Abstract
Clostridium difficile is a Gram-positive bacillus and is the leading cause of toxin-mediated nosocomial diarrhea following antibiotic use. C. difficile flagella play a role in colonization, adherence, biofilm formation, and toxin production, which might contribute to the overall virulence of certain strains. Human and animal studies indicate that anti-flagella immune responses may play a role in protection against colonization by C. difficile and subsequent disease outcome. Here we report that recombinant C. difficile flagellin (FliC) is immunogenic and protective in a murine model of C. difficile infection (CDI) against a clinical C. difficile strain, UK1. Passive protection experiments using anti-FliC polyclonal serum in mice suggest this protection to be antibody-mediated. FliC immunization also was able to afford partial protection against CDI and death in hamsters following challenge with C. difficile 630Δerm. Additionally, immunization against FliC does not have an adverse effect on the normal gut flora of vaccinated hamsters as evidenced by comparing the fecal microbiome of vaccinated and control hamsters. Therefore, the use of FliC as a vaccine candidate against CDI warrants further testing.
Collapse
|
28
|
Janoir C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 2016; 37:13-24. [DOI: 10.1016/j.anaerobe.2015.10.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 02/08/2023]
|
29
|
Ünal CM, Steinert M. Novel therapeutic strategies for Clostridium difficile infections. Expert Opin Ther Targets 2015; 20:269-85. [PMID: 26565670 DOI: 10.1517/14728222.2016.1090428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In recent years, Clostridium difficile has become the primary cause of antibiotic-associated diarrhea and pseudomembranous colitis, resulting in long and complicated hospital stays that represent a serious burden for patients as well as health care systems. Currently, conservative treatment of C. difficile infection (CDI) relies on the antibiotics vancomycin, metronidazole or fidaxomicin, or in case of multiple recurrences, fecal microbiota transplantation (FMT). AREAS COVERED The fast-spreading, epidemic nature of this pathogen urgently necessitates the search for alternative treatment strategies as well as antibiotic targets. Accordingly, in this review, we highlight the recent findings regarding virulence associated traits of C. difficile, evaluate their potential as alternative drug targets, and present current efforts in designing inhibitory compounds, with the aim of pointing out possibilities for future treatment strategies. EXPERT OPINION Increased attention on systematic analysis of the virulence mechanisms of C. difficile has already led to the identification of several alternative drug targets. In the future, applying state of the art 'omics' and the development of novel infection models that mimic the human gut, a highly complex ecological niche, will unveil the genomic and metabolic plasticity of this pathogen and will certainly help dealing with future challenges.
Collapse
Affiliation(s)
- Can M Ünal
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,b 2 Türk-Alman Üniversitesi, Fen Fakültesi , Şahinkaya Cad. 86, 34820, Istanbul, Turkey
| | - Michael Steinert
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,c 3 Helmholtz Centre for Infection Research , Mascheroder Weg 1, 38124, Braunschweig, Germany
| |
Collapse
|
30
|
Hargreaves KR, Otieno JR, Thanki A, Blades MJ, Millard AD, Browne HP, Lawley TD, Clokie MRJ. As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile. Genome Biol Evol 2015; 7:1842-55. [PMID: 26019165 PMCID: PMC4524475 DOI: 10.1093/gbe/evv094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile “mobilome,” which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics.
Collapse
Affiliation(s)
- Katherine R Hargreaves
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom Department of Ecology and Evolutionary Biology, University of Arizona
| | - James R Otieno
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Anisha Thanki
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Matthew J Blades
- Bioinformatics and Biostatistics Analysis Support Hub (BBASH), Core Biotechnology Services, University of Leicester, United Kingdom
| | - Andrew D Millard
- Microbiology & Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Hilary P Browne
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Trevor D Lawley
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Martha R J Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| |
Collapse
|
31
|
The role of flagella in Clostridium difficile pathogenicity. Trends Microbiol 2015; 23:275-82. [PMID: 25659185 DOI: 10.1016/j.tim.2015.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/02/2014] [Accepted: 01/12/2015] [Indexed: 01/05/2023]
Abstract
Clostridium difficile is widely publicised as a problem in the health-care system. Disruption of the normal gut microbiota by antibiotic therapy allows C. difficile to colonise the colon. On colonisation, C. difficile produces two toxins that lead to disease, with symptoms ranging from mild-to-severe diarrhoea, to fulminant and often fatal pseudomembranous colitis (PMC). How C. difficile establishes initial colonisation of the host is an area of active investigation. Recently there has been increased research into the role of C. difficile flagella in colonisation and adherence. Novel research has also elucidated a more complex role of flagella in C. difficile virulence pertaining to the regulation of toxin gene expression. This review focuses on new insights into the specific role of C. difficile flagella in colonisation and toxin gene expression.
Collapse
|
32
|
Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect Immun 2014; 83:934-41. [PMID: 25534943 DOI: 10.1128/iai.02768-14] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) following antibiotic therapy is a major public health threat. While antibiotic disruption of the indigenous microbiota underlies the majority of cases of CDI, the early dynamics of infection in the disturbed intestinal ecosystem are poorly characterized. This study defines the dynamics of infection with C. difficile strain VPI 10463 throughout the gastrointestinal (GI) tract using a murine model of infection. After inducing susceptibility to C. difficile colonization via antibiotic administration, we followed the dynamics of spore germination, colonization, sporulation, toxin activity, and disease progression throughout the GI tract. C. difficile spores were able to germinate within 6 h postchallenge, resulting in the establishment of vegetative bacteria in the distal GI tract. Spores and cytotoxin activity were detected by 24 h postchallenge, and histopathologic colitis developed by 30 h. Within 36 h, all infected mice succumbed to infection. We correlated the establishment of infection with changes in the microbiota and bile acid profile of the small and large intestines. Antibiotic administration resulted in significant changes to the microbiota in the small and large intestines, as well as a significant shift in the abundance of primary and secondary bile acids. Ex vivo analysis suggested the small intestine as the site of spore germination. This study provides an integrated understanding of the timing and location of the events surrounding C. difficile colonization and identifies potential targets for the development of new therapeutic strategies.
Collapse
|