1
|
Famurewa AC, Akhigbe RE, George MY, Adekunle YA, Oyedokun PA, Akhigbe TM, Fatokun AA. Mechanisms of ferroptotic and non-ferroptotic organ toxicity of chemotherapy: protective and therapeutic effects of ginger, 6-gingerol and zingerone in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4747-4778. [PMID: 39636404 PMCID: PMC11985630 DOI: 10.1007/s00210-024-03623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Chemotherapy (CT) is one of the flagship options for the treatment of cancers worldwide. It involves the use of cytotoxic anticancer agents to kill or inhibit the proliferation of cancer cells. However, despite its clinical efficacy, CT triggers side effect toxicities in several organs, which may impact cancer patient's quality of life and treatment outcomes. While the side effect toxicity is consistent with non-ferroptotic mechanisms involving oxidative stress, inflammation, mitochondrial impairment and other aberrant signalling leading to apoptosis and necroptosis, recent studies show that ferroptosis, a non-apoptotic, iron-dependent cell death pathway, is also involved in the pathophysiology of CT organ toxicity. CT provokes organ ferroptosis via system Xc-/GPX-4/GSH/SLC7A11 axis depletion, ferritinophagy, iron overload, lipid peroxidation and upregulation of ferritin-related proteins. Cisplatin (CP) and doxorubicin (DOX) are common CT drugs indicated to induce ferroptosis in vitro and in vivo. Studies have explored natural preventive and therapeutic strategies using ginger rhizome and its major bioactive compounds, 6-gingerol (6G) and zingerone (ZG), to combat mechanisms of CT side effect toxicity. Ginger extract, 6G and ZG mitigate non-ferroptotic oxidative inflammation, apoptosis and mitochondrial dysfunction mechanisms of CT side effect toxicity, but their effects on CT-induced ferroptosis remain unclear. Systematic investigations are, therefore, needed to unfold the roles of ginger, 6G and ZG on ferroptosis involved in CT side effect toxicity, as they are potential natural agents for the prevention of CT toxicity. This review reveals the ferroptotic and non-ferroptotic toxicity mechanisms of CT and the protective mechanisms of ginger, 6G and ZG against CT-induced, ferroptotic and non-ferroptotic organ toxicities.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria.
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Roland E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Yemi A Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Precious A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Tunmise M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - Amos A Fatokun
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
2
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Ayustaningwarno F, Anjani G, Ayu AM, Fogliano V. A critical review of Ginger's ( Zingiber officinale) antioxidant, anti-inflammatory, and immunomodulatory activities. Front Nutr 2024; 11:1364836. [PMID: 38903613 PMCID: PMC11187345 DOI: 10.3389/fnut.2024.1364836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Ginger (Zingiber officinale) is a rhizome that has been used as a healthy herbal plant for years. Ginger's chemical components are recognized to provide beneficial health effects, namely as antioxidants and anti-inflammatory agents with the potential to operate as immunomodulators. This literature review covers numerous publications concerning ginger's immunomodulatory potential, associated with antioxidant and anti-inflammatory effects in modifying the body's immune system. Pathophysiology of oxidative stress and inflammation were introduced before diving deep down into the herbal plants as an immunomodulator. Ginger's antioxidant and anti-inflammatory properties are provided by gingerol, shogaols, paradol, and zingerone. Ginger's antioxidant mechanism is linked to Nrf2 signaling pathway activation. Its anti-inflammatory mechanism is linked to Akt inhibition and NF-KB activation, triggering the release of anti-inflammatory cytokines while reducing proinflammatory cytokines. Ginger consumption as food and drink was also explored. Overall, ginger and its active components have been shown to have strong antioxidant properties and the potential to reduce inflammation. Challenges and future prospects of ginger are also elaborated for future development. Future collaborations between researchers from various fields, including chemists, biologists, clinicians, pharmacists, and the food industry, are required further to investigate the effect of ginger on human immunity. Collaboration between researchers and industry can help accelerate the advancement of ginger applications.
Collapse
Affiliation(s)
- Fitriyono Ayustaningwarno
- Nutrition Science Department, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Center of Nutrition Research (CENURE), Universitas Diponegoro, Semarang, Indonesia
| | - Gemala Anjani
- Nutrition Science Department, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Center of Nutrition Research (CENURE), Universitas Diponegoro, Semarang, Indonesia
| | - Azzahra Mutiara Ayu
- Nutrition Science Department, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
4
|
Li Q, Xiao C, Gu J, Chen X, Yuan J, Li S, Li W, Gao D, Li L, Liu Y, Shen F. 6-Gingerol ameliorates alveolar hypercoagulation and fibrinolytic inhibition in LPS-provoked ARDS via RUNX1/NF-κB signaling pathway. Int Immunopharmacol 2024; 128:111459. [PMID: 38181675 DOI: 10.1016/j.intimp.2023.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alveolar hypercoagulation and fibrinolytic inhibition play a central role in refractory hypoxemia in acute respiratory distress syndrome (ARDS), but it lacks effective drugs for prevention and treatment of this pathophysiology. Our previous experiment confirmed that RUNX1 promoted alveolar hypercoagulation and fibrinolytic inhibition through NF-κB pathway. Other studies demonstrated that 6-gingerol regulated inflammation and metabolism by inhibiting the NF-κB signaling pathway. We assume that 6-gingerol would ameliorate alveolar hypercoagulation and fibrinolytic inhibition via RUNX1/ NF-κB pathway in LPS-induced ARDS. METHODS Rat ARDS model was replicated through LPS inhalation. Before LPS inhalation, the rats were intraperitoneally treated with different doses of 6-gingerol or the same volume of normal saline (NS) for 12 h, and then intratracheal inhalation of LPS for 24 h. In cell experiment, alveolar epithelial cell type II (AECII) was treated with 6-gingerol for 6 h and then with LPS for another 24 h. RUNX1 gene was down-regulated both in pulmonary tissue and in cells. Tissue factor (TF), plasminogen Activator Inhibitor 1(PAI-1) and thrombin were determined by Wester-blot (WB), qPCR or by enzyme-linked immunosorbent (ELISA). Lung injury score, pulmonary edema and pulmonary collagen III in rat were assessed. NF-κB pathway were also observed in vivo and in vitro. The direct binding capability of 6-gingerol to RUNX1 was confirmed by using Drug Affinity Responsive Target Stability test (DARTS). RESULTS 6-gingerol dose-dependently attenuated LPS-induced lung injury and pulmonary edema. LPS administration caused excessive TF and PAI-1 expression both in pulmonary tissue and in AECII cell and a large amount of TF, PAI-1 and thrombin in bronchial alveolar lavage fluid (BALF), which all were effectively decreased by 6-gingerol treatment in a dose-dependent manner. The high collagen Ⅲ level in lung tissue provoked by LPS was significantly abated by 6-gingerol. 6-gingerol was seen to dramatically inhibit the LPS-stimulated activation of NF-κB pathway, indicated by decreases of p-p65/total p65, p-IKKβ/total IKKβ, and also to suppress the RUNX1 expression. RUNX1 gene knock down or RUNX1 inhibitor Ro5-3335 significantly enhanced the efficacies of 6-gingerol in vivo and in vitro, but RUNX1 over expression remarkably impaired the effects of 6-gingerol on TF, PAI-1 and on NF-κB pathway. DARTS result showed that 6-gingerol directly bond to RUNX1 molecules. CONCLUSIONS Our experimental data demonstrated that 6-gingerol ameliorates alveolar hypercoagulation and fibrinolytic inhibition via RUNX1/NF-κB pathway in LPS-induced ARDS. 6-gingerol is expected to be an effective drug in ARDS.
Collapse
Affiliation(s)
- Qing Li
- Department of Intensive Care Unit, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Chuan Xiao
- Department of Intensive Care Unit, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - JiaRun Gu
- Emergency department, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Xianjun Chen
- Department of Intensive Care Unit, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Jia Yuan
- Department of Intensive Care Unit, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Shuwen Li
- Department of Intensive Care Unit, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Wei Li
- Department of Intensive Care Unit, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Daixiu Gao
- Department of Intensive Care Unit, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Lu Li
- Department of Intensive Care Unit, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Ying Liu
- Department of Intensive Care Unit, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Feng Shen
- Department of Intensive Care Unit, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
Shi Z, Takeuchi T, Nakanishi Y, Kato T, Beck K, Nagata R, Kageyama T, Ito A, Ohno H, Satoh-Takayama N. A Japanese Herbal Formula, Daikenchuto, Alleviates Experimental Colitis by Reshaping Microbial Profiles and Enhancing Group 3 Innate Lymphoid Cells. Front Immunol 2022; 13:903459. [PMID: 35720414 PMCID: PMC9201393 DOI: 10.3389/fimmu.2022.903459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Daikenchuto (DKT) is one of the most widely used Japanese herbal formulae for various gastrointestinal disorders. It consists of Zanthoxylum Fructus (Japanese pepper), Zingiberis Siccatum Rhizoma (processed ginger), Ginseng radix, and maltose powder. However, the use of DKT in clinical settings is still controversial due to the limited molecular evidence and largely unknown therapeutic effects. Here, we investigated the anti-inflammatory actions of DKT in the dextran sodium sulfate (DSS)-induced colitis model in mice. We observed that DKT remarkably attenuated the severity of experimental colitis while maintaining the members of the symbiotic microbiota such as family Lactobacillaceae and increasing levels of propionate, an immunomodulatory microbial metabolite, in the colon. DKT also protected colonic epithelial integrity by upregulating the fucosyltransferase gene Fut2 and the antimicrobial peptide gene Reg3g. More remarkably, DKT restored the reduced colonic group 3 innate lymphoid cells (ILC3s), mainly RORγthigh-ILC3s, in DSS-induced colitis. We further demonstrated that ILC3-deficient mice showed increased mortality during experimental colitis, suggesting that ILC3s play a protective function on colonic inflammation. These findings demonstrate that DKT possesses anti-inflammatory activity, partly via ILC3 function, to maintain the colonic microenvironment. Our study also provides insights into the molecular basis of herbal medicine effects, promotes more profound mechanistic studies towards herbal formulae and contributes to future drug development.
Collapse
Affiliation(s)
- Zhengzheng Shi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Katharina Beck
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ritsu Nagata
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tomoko Kageyama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Ayumi Ito
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
6
|
Takasu C, Miyazaki K, Yoshikawa K, Nishi M, Tokunaga T, Kashihara H, Yoshimoto T, Ogawa H, Morine Y, Shimada M. Effect of TU-100 on Peyer's patches in a bacterial translocation rat model. Ann Gastroenterol Surg 2021; 5:683-691. [PMID: 34585053 PMCID: PMC8452476 DOI: 10.1002/ags3.12460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 02/25/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Daikenchuto (TU-100), a Japanese herbal medicine, is widely used for various gastrointestinal diseases. We have previously reported that TU-100 suppresses CPT-11-induced bacterial translocation (BT) by maintaining the diversity of the microbiome. In this study we show that TU-100 modulates the immune response during BT by inducing PD-1 expression in Peyer's patches. METHODS Eighteen male Wistar rats were divided into four groups: a control group; a control + TU-100 group, given TU-100 1000 mg/kg orally for 5 d; a BT group, given CPT-11 250 mg/kg intra-peritoneal for 2 d; and a TU-100 group, given TU-100 1000 mg/kg orally for 5 d with CPT-11 250 mg/kg intra-peritoneal on days 4 and 5. RESULTS The size of Peyer's patch was significantly bigger in the BT group compared to the control group (9.0 × 104 µm2 vs 29.4 × 104 µm2, P < .05), but improved in the TU-100 group (15.4 × 104 µm2, P < .005). TU-100 significantly induced PD-1 expression in Peyer's patch compared to the control group and the BT group (control vs BT vs TU-100 = 4.3 ± 4.9 vs 5.1 ± 10.3 vs 17.9 ± 17.8). The CD4+ cells were increased in the BT group (P < .05) compared to the control group but decreased in the TU-100 group. The Foxp3+ cells were increased in the BT group compared to the control group (P < .05), and further increased in the TU-100 group compared to the BT group. CPT-11 significantly increased TLR4, NF-κβ, TNF-α mRNA expressions in the BT group. TU-100 cotreatment significantly reversed these mRNA expressions. CONCLUSION TU-100 may have a protective effect against BT through PD-1 expression in Peyer's patch.
Collapse
Affiliation(s)
- Chie Takasu
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Katsuki Miyazaki
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Kozo Yoshikawa
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Masaaki Nishi
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Takuya Tokunaga
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Hideya Kashihara
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Toshiaki Yoshimoto
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory MedicineTokushima University Graduate SchoolTokushimaJapan
| | - Yuji Morine
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Mitsuo Shimada
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
7
|
Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat Med 2021; 27:1212-1222. [PMID: 34183837 DOI: 10.1038/s41591-021-01390-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/07/2021] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a complex chronic inflammatory disorder of the gastrointestinal tract. Extracellular adenosine triphosphate (eATP) produced by the commensal microbiota and host cells activates purinergic signaling, promoting intestinal inflammation and pathology. Based on the role of eATP in intestinal inflammation, we developed yeast-based engineered probiotics that express a human P2Y2 purinergic receptor with up to a 1,000-fold increase in eATP sensitivity. We linked the activation of this engineered P2Y2 receptor to the secretion of the ATP-degrading enzyme apyrase, thus creating engineered yeast probiotics capable of sensing a pro-inflammatory molecule and generating a proportional self-regulated response aimed at its neutralization. These self-tunable yeast probiotics suppressed intestinal inflammation in mouse models of IBD, reducing intestinal fibrosis and dysbiosis with an efficacy similar to or higher than that of standard-of-care therapies usually associated with notable adverse events. By combining directed evolution and synthetic gene circuits, we developed a unique self-modulatory platform for the treatment of IBD and potentially other inflammation-driven pathologies.
Collapse
|
8
|
Ergang P, Vagnerová K, Hermanová P, Vodička M, Jágr M, Šrůtková D, Dvořáček V, Hudcovic T, Pácha J. The Gut Microbiota Affects Corticosterone Production in the Murine Small Intestine. Int J Mol Sci 2021; 22:ijms22084229. [PMID: 33921780 PMCID: PMC8073041 DOI: 10.3390/ijms22084229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Glucocorticoids (GCs) are hormones that are released in response to stressors and exhibit many activities, including immunomodulatory and anti-inflammatory activities. They are primarily synthesized in the adrenal gland but are also produced in peripheral tissues via regeneration of adrenal 11-oxo metabolites or by de novo synthesis from cholesterol. The present study investigated the influence of the microbiota on de novo steroidogenesis and regeneration of corticosterone in the intestine of germ-free (GF) and specific pathogen-free mice challenged with a physical stressor (anti-CD3 antibody i.p. injection). In the small intestine, acute immune stress resulted in increased mRNA levels of the proinflammatory cytokines IL1β, IL6 and Tnfα and genes involved in de novo steroidogenesis (Stard3 and Cyp11a1), as well as in regeneration of active GCs from their 11-oxo metabolites (Hsd11b1). GF mice showed a generally reduced transcriptional response to immune stress, which was accompanied by decreased intestinal corticosterone production and reduced expression of the GC-sensitive marker Fkbp5. In contrast, the interaction between stress and the microbiota was not detected at the level of plasma corticosterone or the transcriptional response of adrenal steroidogenic enzymes. The results indicate a differential immune stress-induced intestinal response to proinflammatory stimuli and local corticosterone production driven by the gut microbiota.
Collapse
Affiliation(s)
- Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic; (P.E.); (K.V.); (M.V.)
| | - Karla Vagnerová
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic; (P.E.); (K.V.); (M.V.)
| | - Petra Hermanová
- Institute of Microbiology, Czech Academy of Sciences, CZ-549 22 Nový Hrádek, Czech Republic; (P.H.); (D.Š.); (T.H.)
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic; (P.E.); (K.V.); (M.V.)
| | - Michal Jágr
- Crop Research Institute, CZ-161 06 Prague, Czech Republic; (M.J.); (V.D.)
| | - Dagmar Šrůtková
- Institute of Microbiology, Czech Academy of Sciences, CZ-549 22 Nový Hrádek, Czech Republic; (P.H.); (D.Š.); (T.H.)
| | - Václav Dvořáček
- Crop Research Institute, CZ-161 06 Prague, Czech Republic; (M.J.); (V.D.)
| | - Tomáš Hudcovic
- Institute of Microbiology, Czech Academy of Sciences, CZ-549 22 Nový Hrádek, Czech Republic; (P.H.); (D.Š.); (T.H.)
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic; (P.E.); (K.V.); (M.V.)
- Department of Physiology, Faculty of Science, Charles University, CZ-128 00 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
9
|
KONG LINGLING, HOSHI NAMIKO, WATANABE DAISUKE, YAMADA YASUTAKA, YASUTOMI EIICHIRO, ADACHI SOICHIRO, OOI MAKOTO, SUI YUNLONG, YOSHIDA RYUTARO, SEKIMOTO RYOHEI, TOKUNAGA ERI, MIYAZAKI HARUKA, KU YUNA, TAKENAKA HARUKA, KUNIHIRO TADAO, INOUE JUN, TIAN ZIBIN, KODAMA YUZO. Effect of Daikenchuto On Spontaneous Intestinal Tumors in Apc Min/+ Mice. THE KOBE JOURNAL OF MEDICAL SCIENCES 2021; 66:E139-E148. [PMID: 33994517 PMCID: PMC8212804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 06/12/2023]
Abstract
Daikenchuto (TU-100) is herbal medicine which predominantly contains ginger, Japanese pepper, and ginseng. We investigated whether TU-100 can affect the composition of gut flora and intestinal tumor development using ApcMin/+ mice, a murine model of intestinal tumor. Bacterial 16S rRNA sequencing and short-chain fatty acid analysis were performed on faecal samples. Tumor number and size were analysed. Any change in gene expression of the tumor tissues was assessed by real-time PCR. Principal coordinate analysis (PCoA) showed that the faecal microbiota cluster of TU-100-fed mice was different from the microbiota of control mice. However, no significant difference was observed in the concentration of short-chain fatty acids, tumor number, and gene expression levels between the two groups. Our data showed that TU-100 can affect the intestinal environment; however, it does not contribute in tumor progression or inhibition in our setting.
Collapse
Affiliation(s)
- LINGLING KONG
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - NAMIKO HOSHI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - DAISUKE WATANABE
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - YASUTAKA YAMADA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - EIICHIRO YASUTOMI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - SOICHIRO ADACHI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - MAKOTO OOI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - YUNLONG SUI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - RYUTARO YOSHIDA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - RYOHEI SEKIMOTO
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - ERI TOKUNAGA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - HARUKA MIYAZAKI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - YUNA KU
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - HARUKA TAKENAKA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | | | - JUN INOUE
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - ZIBIN TIAN
- Division of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - YUZO KODAMA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|
10
|
Wada Y, Tokuda K, Morine Y, Okikawa S, Yamashita S, Ikemoto T, Imura S, Saito Y, Yamada S, Shimada M. The inhibitory effect of TU-100 on hepatic stellate cell activation in the tumor microenvironment. Oncotarget 2020; 11:4593-4604. [PMID: 33346211 PMCID: PMC7733620 DOI: 10.18632/oncotarget.27835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION The tumor microenvironment is involved in acquiring tumor malignancies of colorectal liver metastasis (CRLM). We have reported that TU-100 (Daikenchuto) suppresses hepatic stellate cell (HSC) activation in obstructive jaundice. In this study, we report new findings as the direct and indirect inhibitory effects of TU-100 on cancer cell growth through the suppression of HSC activation. MATERIALS AND METHODS The HSCs (LX2) were cultured in colon cancer cells (HCT116 and HT29)-conditioned medium (CM) with or without TU-100 treatment (90, 270, 900 μg/ml). Activated HSCs (aHSCs) were detected by α-SMA and IL-6 mRNA expressions and cytokine arrays of HSC's culture supernatants. Cancer cell growth was analyzed for proliferation and migration ability, compared with TU-100 treatment. To investigate the direct anti-tumor effect of TU-100, cancer cells were cultured in the presence of aHSC-CM and TU-100 (90, 270, 900) or aHSC-CM alone, and assessed autophagosomes, conversion to LC3-II protein, and Beclin-1 mRNA expression. RESULTS Colon cancer-CM significantly increased α-SMA and IL-6 mRNA expressions of aHSC. α-SMA and IL-6 mRNA expressions of aHSC, and IL-6 secretions from aHSCs were significantly decreased with TU-100 (270, 900) treatment, compared to colon cancer-CM alone. Compared with normal culture medium, aHSC-CM led to a significantly increased cell number and modified HSC-CM (TU-100; 270, 900) significantly suppressed cancer cell growth and migration. TU-100 (900) treatment induced autophagy and significantly promoted the autophagic cell death. CONCLUSIONS TU-100 inhibited colon cancer cell malignant potential by both suppressing HSC activation and inducing directly autophagy of cancer cells.
Collapse
Affiliation(s)
- Yuma Wada
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,These authors contributed equally to this work
| | - Kazunori Tokuda
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,These authors contributed equally to this work
| | - Yuji Morine
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shohei Okikawa
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shoko Yamashita
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Satoru Imura
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yu Saito
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
11
|
Abe T, Kunimoto M, Hachiro Y, Ohara K, Murakami M. Clinical efficacy of Japanese herbal medicine daikenchuto in the management of fecal incontinence: A single-center, observational study. JOURNAL OF THE ANUS RECTUM AND COLON 2019; 3:160-166. [PMID: 31768466 PMCID: PMC6845288 DOI: 10.23922/jarc.2019-012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 01/03/2023]
Abstract
Objectives: The purpose of this study was to investigate whether the symptoms of fecal incontinence (FI) or anal sphincter dysfunction are improved by daikenchuto (DKT). Methods: This is a retrospective observational study that analyzes the effects of DKT. The study was conducted at Kunimoto Hospital. Patients who visited the hospital from January 2012 to December 2016 due to symptoms of FI with a certain degree of chronic constipation and who took DKT were enrolled. The drug to be evaluated was “Tsumura Daikenchuto Extract Granules for Ethical Use (TJ-100)” manufactured by Tsumura & Co., Tokyo, Japan. The primary outcome measures were changes in the scores of the Cleveland Clinic Incontinence Score (CCIS) and Constipation Scoring System (CSS) before and after the administration of DKT. Results: A total of 157 patients were enrolled. On the CCIS, “leakage of solid stool,” “leakage of liquid stool,” “pad use,” and “total score” were significantly improved. On the contrary, on the CSS, the score of “type of assistance” was significantly improved after the administration of DKT, but no significant difference was found in the total score. On the Bristol Stool Form Scale, the administration of DKT showed a tendency to normalize stool consistency. Maximum resting anal pressure and maximum squeeze anal pressure significantly increased after the administration of DKT. No side effects caused by DKT were observed during the study. Conclusions: DKT appears to be a safe and useful agent for the management of FI in patients with defecation disorders and internal anal sphincter dysfunction.
Collapse
Affiliation(s)
- Tatsuya Abe
- Department of Proctology, Kunimoto Hospital, Asahikawa, Japan
| | - Masao Kunimoto
- Department of Proctology, Kunimoto Hospital, Asahikawa, Japan
| | | | - Kei Ohara
- Department of Proctology, Kunimoto Hospital, Asahikawa, Japan
| | | |
Collapse
|
12
|
Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive Compounds and Bioactivities of Ginger ( Zingiber officinale Roscoe). Foods 2019; 8:E185. [PMID: 31151279 PMCID: PMC6616534 DOI: 10.3390/foods8060185] [Citation(s) in RCA: 465] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ginger (Zingiber officinale Roscoe) is a common and widely used spice. It is rich in various chemical constituents, including phenolic compounds, terpenes, polysaccharides, lipids, organic acids, and raw fibers. The health benefits of ginger are mainly attributed to its phenolic compounds, such as gingerols and shogaols. Accumulated investigations have demonstrated that ginger possesses multiple biological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, cardiovascular protective, respiratory protective, antiobesity, antidiabetic, antinausea, and antiemetic activities. In this review, we summarize current knowledge about the bioactive compounds and bioactivities of ginger, and the mechanisms of action are also discussed. We hope that this updated review paper will attract more attention to ginger and its further applications, including its potential to be developed into functional foods or nutraceuticals for the prevention and management of chronic diseases.
Collapse
Affiliation(s)
- Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Trust Beta
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Sawada R, Iwata M, Umezaki M, Usui Y, Kobayashi T, Kubono T, Hayashi S, Kadowaki M, Yamanishi Y. KampoDB, database of predicted targets and functional annotations of natural medicines. Sci Rep 2018; 8:11216. [PMID: 30046160 PMCID: PMC6060122 DOI: 10.1038/s41598-018-29516-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 07/12/2018] [Indexed: 11/18/2022] Open
Abstract
Natural medicines (i.e., herbal medicines, traditional formulas) are useful for treatment of multifactorial and chronic diseases. Here, we present KampoDB (http://wakanmoview.inm.u-toyama.ac.jp/kampo/), a novel platform for the analysis of natural medicines, which provides various useful scientific resources on Japanese traditional formulas Kampo medicines, constituent herbal drugs, constituent compounds, and target proteins of these constituent compounds. Potential target proteins of these constituent compounds were predicted by docking simulations and machine learning methods based on large-scale omics data (e.g., genome, proteome, metabolome, interactome). The current version of KampoDB contains 42 Kampo medicines, 54 crude drugs, 1230 constituent compounds, 460 known target proteins, and 1369 potential target proteins, and has functional annotations for biological pathways and molecular functions. KampoDB is useful for mode-of-action analysis of natural medicines and prediction of new indications for a wide range of diseases.
Collapse
Affiliation(s)
- Ryusuke Sawada
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Michio Iwata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahito Umezaki
- Division of Chemo-Bioinformatics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshihiko Usui
- Division of Chemo-Bioinformatics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Toshikazu Kobayashi
- Division of Chemo-Bioinformatics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Takaki Kubono
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan. .,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
14
|
Nobutani K, Miyoshi J, Musch MW, Nishiyama M, Watanabe J, Kaneko A, Yamamoto M, Yoshida M, Kono T, Jeong H, Chang EB. Daikenchuto (TU-100) alters murine hepatic and intestinal drug metabolizing enzymes in an in vivo dietary model: effects of gender and withdrawal. Pharmacol Res Perspect 2018; 5. [PMID: 28971602 PMCID: PMC5625165 DOI: 10.1002/prp2.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Herbal medicines and natural products used for maintenance of health or treatment of diseases have many biological effects, including altering the pharmacokinetics and metabolism of other medications. Daikenchuto (TU‐100), an aqueous extract of ginger, ginseng, and Japanese green pepper fruit, is a commonly prescribed Kampo (Japanese herbal medicine) for postoperative ileus or bloating. The effects of TU‐100 on drug metabolism have not been investigated. In this study, we analyzed the effect of TU‐100 on expression of key drug‐metabolizing enzymes (DMEs) and drug transporters (DTs) in murine liver and gastrointestinal tract using a dietary model. Liver, jejunum, and proximal colon were analyzed for phase I and II DMEs and DT mRNA expression by reverse transcription (RT) first by nonquantitative and followed by quantitative polymerase chain reaction (PCR) and protein expression. Liver, jejunum, and proximal colon expressed some identical but also unique DMEs and DTs. TU‐100 increased the greatest changes in cytochrome (Cyp) 2b10 and Cyp3a11 and Mdr1a. Basal and TU‐100 stimulated levels of DME and DT expression were gender‐dependent, dose‐dependent and reversible after cessation of TU‐100 supplementation, except for some changes in the intestine. Quantitative Western blot analysis of protein extracts confirmed the quantitative PCR results.
Collapse
Affiliation(s)
- Kentaro Nobutani
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mark W Musch
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mitsue Nishiyama
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Junko Watanabe
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | | | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan.,Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hyunyoung Jeong
- Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Miyoshi J, Nobutani K, Musch MW, Ringus DL, Hubert NA, Yamamoto M, Kase Y, Nishiyama M, Chang EB. Time-, Sex-, and Dose-Dependent Alterations of the Gut Microbiota by Consumption of Dietary Daikenchuto (TU-100). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7415975. [PMID: 29681983 PMCID: PMC5842691 DOI: 10.1155/2018/7415975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/15/2018] [Indexed: 02/08/2023]
Abstract
Medications or dietary components can affect both the host and the host's gut microbiota. Changes in the microbiota may influence medication efficacy and interactions. Daikenchuto (TU-100), a herbal medication, comprised of ginger, ginseng, and Japanese pepper, is widely used in Japanese traditional Kampo medicine for intestinal motility and postoperative paralytic ileus. We previously showed in mice that consumption of TU-100 for 4 weeks changed the gut microbiota and increased bioavailability of bacterial ginsenoside metabolites. Since TU-100 is prescribed in humans for months to years, we examined the time- and sex-dependent effects of TU-100 on mouse gut microbiota. Oral administration of 1.5% TU-100 for 24 weeks caused more pronounced changes in gut microbiota in female than in male mice. Changes in both sexes largely reverted to baseline upon TU-100 withdrawal. Effects were time and dose dependent. The microbial profiles reverted to baseline within 4 weeks after withdrawal of 0.75% TU-100 but were sustained after withdrawal of 3% TU-100. In summary, dietary TU-100 changed mouse microbiota in a time-, sex-, and dose-dependent manner. These findings may be taken into consideration when determining optimizing dose for conditions of human health and disease with the consideration of differences in composition and response of the human intestinal microbiota.
Collapse
Affiliation(s)
- Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Kentaro Nobutani
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Mark W. Musch
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Daina L. Ringus
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | - Nathaniel A. Hubert
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| | | | - Yoshio Kase
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Mitsue Nishiyama
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Hasebe T, Matsukawa J, Ringus D, Miyoshi J, Hart J, Kaneko A, Yamamoto M, Kono T, Fujiya M, Kohgo Y, Wang CZ, Yuan CS, Bissonnette M, Musch MW, Chang EB. Daikenchuto (TU-100) Suppresses Tumor Development in the Azoxymethane and APC min/+ Mouse Models of Experimental Colon Cancer. Phytother Res 2017; 31:90-99. [PMID: 27730672 PMCID: PMC5590753 DOI: 10.1002/ptr.5735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/26/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023]
Abstract
Chemopreventative properties of traditional medicines and underlying mechanisms of action are incompletely investigated. This study demonstrates that dietary daikenchuto (TU-100), comprised of ginger, ginseng, and Japanese pepper effectively suppresses intestinal tumor development and progression in the azoxymethane (AOM) and APCmin/+ mouse models. For the AOM model, TU-100 was provided after the first of six biweekly AOM injections. Mice were sacrificed at 30 weeks. APCmin/+ mice were fed diet without or with TU-100 starting at 6 weeks, and sacrificed at 24 weeks. In both models, dietary TU-100 decreased tumor size. In APC min/+ mice, the number of small intestinal tumors was significantly decreased. In the AOM model, both TU-100 and Japanese ginseng decreased colon tumor numbers. Decreased Ki-67 and β-catenin immunostaining and activation of numerous transduction pathways involved in tumor initiation and progression were observed. EGF receptor expression and stimulation/phosphorylation in vitro were investigated in C2BBe1 cells. TU-100, ginger, and 6-gingerol suppressed EGF receptor induced Akt activation. TU-100 and ginseng and to a lesser extent ginger or 6-gingerol inhibited EGF ERK1/2 activation. TU-100 and some of its components and metabolites of these components inhibit tumor progression in two mouse models of colon cancer by blocking downstream pathways of EGF receptor activation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Takumu Hasebe
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Jun Matsukawa
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Daina Ringus
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura and Co., Ami, Ibaraki, Japan
| | | | - Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan
- Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Chong-Zi Wang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Marc Bissonnette
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Mark W. Musch
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Tsuchiya K, Kubota K, Ohbuchi K, Kaneko A, Ohno N, Mase A, Matsushima H, Yamamoto M, Miyano K, Uezono Y, Kono T. Transient receptor potential ankyrin 1 agonists improve intestinal transit in a murine model of postoperative ileus. Neurogastroenterol Motil 2016; 28:1792-1805. [PMID: 27284001 DOI: 10.1111/nmo.12877] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Stimulation of transient receptor potential ankyrin 1 (TRPA1), which abundantly expressed in enterochromaffin cells (ECC), has been reported to exert apparently contradictory results in in vitro contractility and in vivo gastrointestinal (GI) transit evaluations. The pharmaceutical-grade Japanese traditional medicine daikenchuto (TU-100) has been reported to be beneficial for postoperative ileus (POI) and accelerate GI transit in animals and humans. TU-100 was recently shown to increase intestinal blood flow via stimulation of TRPA1 in the epithelial cells of the small intestine (SI). METHODS The effects of various TRPA1 agonists on motility were examined in a manipulation-induced murine POI model, in vitro culture of SI segments and an ECC model cell line, RIN-14B. KEY RESULTS Orally administered TRPA1 agonists, aryl isothiocyanate (AITC) and cinnamaldehyde (CA), TU-100 ingredients, [6]-shogaol (6S) and γ-sanshool (GS), improved SI transit in a POI model. The effects of AITC, 6S and GS but not CA were abrogated in TRPA1-deficient mice. SI segments show periodic peristaltic motor activity whose periodicity disappeared in TRPA1-deficient mice. TU-100 augmented the motility. AITC, CA and 6S increased 5-HT release from isolated SI segments and the effects of all these compounds except for CA were lost in TRPA1-deficient mice. 6S and GS induced a release of 5-HT from RIN-14B cells in a dose- and TRPA1-dependent manner. CONCLUSIONS & INFERENCES Intraluminal TRPA1 stimulation is a potential therapeutic strategy for GI motility disorders. Further investigation is required to determine whether 5-HT and/or ECC are involved in the effect of TRPA1 on motility.
Collapse
Affiliation(s)
- K Tsuchiya
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - K Kubota
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - K Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - A Kaneko
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - N Ohno
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - A Mase
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - H Matsushima
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - M Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - K Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Y Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - T Kono
- Laboratory of Pathophysiology & Therapeutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
18
|
Hasebe T, Ueno N, Musch MW, Nadimpalli A, Kaneko A, Kaifuchi N, Watanabe J, Yamamoto M, Kono T, Inaba Y, Fujiya M, Kohgo Y, Chang EB. Daikenchuto (TU-100) shapes gut microbiota architecture and increases the production of ginsenoside metabolite compound K. Pharmacol Res Perspect 2016; 4:e00215. [PMID: 26977303 PMCID: PMC4777267 DOI: 10.1002/prp2.215] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/29/2022] Open
Abstract
Many pharmaceutical agents not only require microbial metabolism for increased bioavailability and bioactivity, but also have direct effects on gut microbial assemblage and function. We examined the possibility that these actions are not mutually exclusive and may be mutually reinforcing in ways that enhance long‐term of these agents. Daikenchuto, TU‐100, is a traditional Japanese medicine containing ginseng. Conversion of the ginsenoside Rb1 (Rb1) to bioactive compound K (CK) requires bacterial metabolism. Diet‐incorporated TU‐100 was administered to mice over a period of several weeks. T‐RFLP and 454 pyrosequencing were performed to analyze the time‐dependent effects on fecal microbial membership. Fecal microbial capacity to metabolize Rb1 to CK was measured by adding TU‐100 or ginseng to stool samples to assess the generation of bioactive metabolites. Levels of metabolized TU‐100 components in plasma and in stool samples were measured by LC‐MS/MS. Cecal and stool short‐chain fatty acids were measured by GC‐MS. Dietary administration of TU‐100 for 28 days altered the gut microbiota, increasing several bacteria genera including members of Clostridia and Lactococcus lactis. Progressive capacity of microbiota to convert Rb1 to CK was observed over the 28 days administration of dietary TU‐100. Concomitantly with these changes, increases in all SCFA were observed in cecal contents and in acetate and butyrate content of the stool. Chronic consumption of dietary TU‐100 promotes changes in gut microbiota enhancing metabolic capacity of TU‐100 and increased bioavailability. We believe these findings have broad implications in optimizing the efficacy of natural compounds that depend on microbial bioconversion in general.
Collapse
Affiliation(s)
- Takumu Hasebe
- Department of Medicine Inflammatory Bowel Disease Center The University of Chicago Chicago Illinois; Division of Gastroenterology and Hematology/Oncology Department of Medicine Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Nobuhiro Ueno
- Department of Medicine Inflammatory Bowel Disease Center The University of Chicago Chicago Illinois; Division of Gastroenterology and Hematology/Oncology Department of Medicine Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Mark W Musch
- Department of Medicine Inflammatory Bowel Disease Center The University of Chicago Chicago Illinois
| | - Anuradha Nadimpalli
- Department of Medicine Inflammatory Bowel Disease Center The University of Chicago Chicago Illinois
| | - Atsushi Kaneko
- Tsumura Research Laboratories Tsumura & Co., Ami Ibaraki Japan
| | - Noriko Kaifuchi
- Tsumura Research Laboratories Tsumura & Co., Ami Ibaraki Japan
| | - Junko Watanabe
- Tsumura Research Laboratories Tsumura & Co., Ami Ibaraki Japan
| | | | - Toru Kono
- Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Hokkaido Japan; Center for Clinical and Biomedical Research Sapporo Higashi Tokushukai Hospital Sapporo Hokkaido Japan
| | - Yuhei Inaba
- Division of Gastroenterology and Hematology/Oncology Department of Medicine Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology Department of Medicine Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology Department of Medicine Asahikawa Medical University Asahikawa Hokkaido Japan
| | - Eugene B Chang
- Department of Medicine Inflammatory Bowel Disease Center The University of Chicago Chicago Illinois
| |
Collapse
|
19
|
Wang CZ, Qi LW, Yuan CS. Cancer Chemoprevention Effects of Ginger and its Active Constituents: Potential for New Drug Discovery. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1351-63. [PMID: 26477795 DOI: 10.1142/s0192415x15500767] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ginger is a commonly used spice and herbal medicine worldwide. Besides its extensive use as a condiment, ginger has been used in traditional Chinese medicine for the management of various medical conditions. In recent years, ginger has received wide attention due to its observed antiemetic and anticancer activities. This paper reviews the potential role of ginger and its active constituents in cancer chemoprevention. The phytochemistry, bioactivity, and molecular targets of ginger constituents, especially 6-shogaol, are discussed. The content of 6-shogaol is very low in fresh ginger, but significantly higher after steaming. With reported anti-cancer activities, 6-shogaol can be served as a lead compound for new drug discovery. The lead compound derivative synthesis, bioactivity evaluation, and computational docking provide a promising opportunity to identify novel anticancer compounds originating from ginger.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- * Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, Pritzker School of Medicine, USA
| | - Lian-Wen Qi
- * Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, Pritzker School of Medicine, USA
- ‡ State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Chun-Su Yuan
- * Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, Pritzker School of Medicine, USA
- † Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Kono T, Shimada M, Yamamoto M, Kaneko A, Oomiya Y, Kubota K, Kase Y, Lee K, Uezono Y. Complementary and synergistic therapeutic effects of compounds found in Kampo medicine: analysis of daikenchuto. Front Pharmacol 2015; 6:159. [PMID: 26300774 PMCID: PMC4523940 DOI: 10.3389/fphar.2015.00159] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/17/2015] [Indexed: 01/17/2023] Open
Abstract
Herbal medicines have been used in Japan for more than 1500 years and traditional Japanese medicines (Kampo medicines) are now fully integrated into the modern healthcare system. In total, 148 Kampo formulae are officially approved as prescription drugs and covered by the national health insurance system in Japan. However, despite their long track record of clinical use, the multi-targeted, multi-component properties of Kampo medicines, which are fundamentally different from Western medicines, have made it difficult to create a suitable framework for conducting well-designed, large-scale clinical trials. In turn, this has led to misconceptions among western trained physicians concerning the paucity of scientific evidence for the beneficial effects of Kampo medicines. Fortunately, there has been a recent surge in scientifically robust data from basic and clinical studies for some of the Kampo medicines, e.g., daikenchuto (TU-100). Numerous basic and clinical studies on TU-100, including placebo-controlled double-blind studies for various gastrointestinal disorders, and absorption, distribution, metabolism and excretion (ADME) studies, have been conducted or are in the process of being conducted in both Japan and the USA. Clinical studies suggest that TU-100 is beneficial for postoperative complications, especially ileus and abdominal bloating. ADME and basic studies indicate that the effect of TU-100 is a composite of numerous actions mediated by multiple compounds supplied via multiple routes. In addition to known mechanisms of action via enteric/sensory nerve stimulation, novel mechanisms via the TRPA1 channel and two pore domain potassium channels have recently been elucidated. TU-100 compounds target these channels with and without absorption, both before and after metabolic activation by enteric flora, with different timings and possibly with synergism.
Collapse
Affiliation(s)
- Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital Sapporo, Hokkaido, Japan ; Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University Sapporo, Japan ; Department of Surgery, Institute of Health Biosciences, Graduate School of Medicine, Tokushima University Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Health Biosciences, Graduate School of Medicine, Tokushima University Tokushima, Japan
| | - Masahiro Yamamoto
- Kampo Scientific Strategies Division, Tsumura Research Laboratories, Tsumura & CO. Ami, Japan
| | - Atushi Kaneko
- Kampo Scientific Strategies Division, Tsumura Research Laboratories, Tsumura & CO. Ami, Japan
| | - Yuji Oomiya
- Kampo Scientific Strategies Division, Tsumura Research Laboratories, Tsumura & CO. Ami, Japan
| | - Kunitsugu Kubota
- Kampo Scientific Strategies Division, Tsumura Research Laboratories, Tsumura & CO. Ami, Japan
| | - Yoshio Kase
- Kampo Scientific Strategies Division, Tsumura Research Laboratories, Tsumura & CO. Ami, Japan
| | - Keiko Lee
- Kampo Scientific Strategies Division, International Pharmaceutical Development Department, Tsumura & CO. Tokyo, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute Tokyo, Japan
| |
Collapse
|