1
|
Luo N, Cheng A, Wang M, Chen S, Liu M, Zhu D, Wu Y, Tian B, Ou X, Huang J, Wu Z, Yin Z, Jia R. Up-regulated Lnc BTU promotes the production of duck plague virus DNA polymerase and inhibits the activation of JAK-STAT pathway to facilitate duck plague virus replication. Poult Sci 2024; 103:104238. [PMID: 39383668 PMCID: PMC11490923 DOI: 10.1016/j.psj.2024.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/11/2024] Open
Abstract
Duck plague virus (DPV) is the only herpes virus known to be transmissible among aquatic animals, leading to immunosuppression in ducks, geese and swans. Long noncoding RNAs (LncRNA) are known to participate in viral infections, acting as either immune defenders or viral targets to evade the host response, but their precise roles in waterfowl virus infections are yet to be fully understood. This study aimed to investigate the role of LncRNA in DPV-induced innate immune responses. Results showed that DPV infection greatly upregulated Lnc BTU expression in duck embryo fibroblasts (DEF) and Lnc BTU promoted DPV replication. Mechanically, 4 DPV proteins, namely UL46, UL42, VP22 and US10, interacted with Lnc BTU, leading to its upregulation. Specifically, Lnc BTU facilitated the production of DNA polymerase by enhancing UL42 expression, thereby promoting DPV replication. Additionally, Lnc BTU suppressed STAT1 expression by targeting the DNA binding domain (DBD) and promoting STAT1 degradation through the proteasome pathway. Furthermore, Lnc BTU inhibited the production of key antiviral factors such as IFN-α, IFN-β, MX and OASL during DPV infection. Treatment with 2 JAK-STAT pathway activators in DEFs resulted in the inhibition of Lnc BTU expression and DPV replication. Interestingly, DPV infection led to a decrease in STAT1 levels, which was reversed by Si-Lnc BTU. These findings suggest that DPV relies on Lnc BTU to inhibit the activation of the JAK-STAT pathway and limit the production of type 1 interferons (IFN) to complete immune evasion. Our study highlights the novel role of DPV proteins UL46, UL42, VP22, US10 as RNA-binding proteins in modulating the innate antiviral immune response, and discover the role of a new host factor, Lnc BTU, in DPV immune evasion, Lnc BTU and STAT1 can be used as a potential therapeutic target for DPV infection and immune evasion.
Collapse
Affiliation(s)
- Ning Luo
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Yoon C, Kim HK, Ham YS, Gil WJ, Mun SJ, Cho E, Yuk JM, Yang CS. Toxoplasma gondii macrophage migration inhibitory factor shows anti- Mycobacterium tuberculosis potential via AZIN1/STAT1 interaction. SCIENCE ADVANCES 2024; 10:eadq0101. [PMID: 39453997 PMCID: PMC11506136 DOI: 10.1126/sciadv.adq0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Mycobacterium tuberculosis (MTB) is a pathogenic bacterium, belonging to the family Mycobacteriaceae, that causes tuberculosis (TB). Toxoplasma gondii macrophage migration inhibitory factor (TgMIF), a protein homolog of macrophage migration inhibitory factor, has been explored for its potential to modulate immune responses during MTB infections. We observed that TgMIF that interacts with CD74, antizyme inhibitor 1 (AZIN1), and signal transducer and activator of transcription 1 (STAT1) modulates endocytosis, restoration of mitochondrial function, and macrophage polarization, respectively. These interactions promote therapeutic efficacy in mice infected with MTB, thereby presenting a potential route to host-directed therapy development. Furthermore, TgMIF, in combination with first-line TB drugs, significantly inhibited drug-resistant MTB strains, including multidrug-resistant TB. These results demonstrate that TgMIF is potentially a multifaceted therapeutic agent against TB, acting through immune modulation, enhancement of mitochondrial function, and dependent on STAT1 and AZIN1 pathways.
Collapse
Affiliation(s)
- Chanjin Yoon
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588, South Korea
| | - Hyo Keun Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Yu Seong Ham
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Woo Jin Gil
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul 04673, South Korea
| | - Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul 04673, South Korea
| | - Jae-Min Yuk
- Department of Infection Biology and Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
- Department of Medicinal and Life Science, Hanyang University, Ansan 15588, South Korea
| |
Collapse
|
3
|
Dong Y, Dong Y, Zhu C, Yang L, Wang H, Li J, Zheng Z, Zhao H, Xie W, Chen M, Jie Z, Li J, Zang Y, Shi J. Targeting CCL2-CCR2 signaling pathway alleviates macrophage dysfunction in COPD via PI3K-AKT axis. Cell Commun Signal 2024; 22:364. [PMID: 39014433 PMCID: PMC11253350 DOI: 10.1186/s12964-024-01746-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) remains a leading cause of morbidity and mortality worldwide, characterized by persistent respiratory symptoms and airflow limitation. The involvement of C-C motif chemokine ligand 2 (CCL2) in COPD pathogenesis, particularly in macrophage regulation and activation, is poorly understood despite its recognized role in chronic inflammation. Our study aims to elucidate the regulatory role and molecular mechanisms of CCL2 in the pathogenesis of COPD, providing new insights for therapeutic strategies. METHODS This study focused on the CCL2-CCR2 signaling pathway, exploring its role in COPD pathogenesis using both Ccl2 knockout (KO) mice and pharmacological inhibitors. To dissect the underlying mechanisms, we employed various in vitro and in vivo methods to analyze the secretion patterns and pathogenic effects of CCL2 and its downstream molecular signaling through the CCL2-CCR2 axis. RESULTS Elevated Ccl2 expression was confirmed in the lungs of COPD mice and was associated with enhanced recruitment and activation of macrophages. Deletion of Ccl2 in knockout mice, as well as treatment with a Ccr2 inhibitor, resulted in protection against CS- and LPS-induced alveolar injury and airway remodeling. Mechanistically, CCL2 was predominantly secreted by bronchial epithelial cells in a process dependent on STAT1 phosphorylation and acted through the CCR2 receptor on macrophages. This interaction activated the PI3K-AKT signaling pathway, which was pivotal for macrophage activation and the secretion of inflammatory cytokines, further influencing the progression of COPD. CONCLUSIONS The study highlighted the crucial role of CCL2 in mediating inflammatory responses and remodeling in COPD. It enhanced our understanding of COPD's molecular mechanisms, particularly how CCL2's interaction with the CCR2 activates critical signaling pathways. Targeting the CCL2-CCR2 axis emerged as a promising strategy to alleviate COPD pathology.
Collapse
Affiliation(s)
- Yue Dong
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Dong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chengyue Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China
| | - Lan Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hanlin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junqing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Zixuan Zheng
- Department of General Medicine, Zhuanqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Hanwei Zhao
- Department of General Medicine, Zhuanqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Wanji Xie
- Department of General Medicine, Hongqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Meiting Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhijun Jie
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Yi Zang
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China.
| | - Jindong Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Arun S, Patel PK, Lakshmanan K, Rajangopal K, Swaminathan G, Byran G. Targeting STAT3 Enzyme for Cancer Treatment. Mini Rev Med Chem 2024; 24:1252-1261. [PMID: 38299278 DOI: 10.2174/0113895575254012231024062619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/03/2023] [Accepted: 09/14/2023] [Indexed: 02/02/2024]
Abstract
A category of cytoplasmic transcription factors called STATs mediates intracellular signaling, which is frequently generated at receptors on cell surfaces and subsequently sent to the nucleus. STAT3 is a member of a responsible for a variety of human tumor forms, including lymphomas, hematological malignancies, leukemias, multiple myeloma and several solid tumor types. Numerous investigations have demonstrated constitutive STAT3 activation lead to cancer development such as breast, head and neck, lung, colorectal, ovarian, gastric, hepatocellular, and prostate cancers. It's possible to get a hold of the book here. Tumor cells undergo apoptosis when STAT3 activation is suppressed. This review highlights the STAT3 activation and inhibition which can be used for further studies.
Collapse
Affiliation(s)
- Sowmiya Arun
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 643001, Tamil Nadu, India
| | - Praveen Kumar Patel
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 643001, Tamil Nadu, India
| | - Kaviarasan Lakshmanan
- Department of Pharmaceutical Chemistry, School of Pharmacy, Satyabhama Institute of Science and Technology, Chennai, India
| | - Kalirajan Rajangopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 643001, Tamil Nadu, India
| | - Gomathi Swaminathan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 643001, Tamil Nadu, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 643001, Tamil Nadu, India
| |
Collapse
|
5
|
Staines-Boone AT, Vignesh P, Tsumura M, de la Garza Fernández G, Tyagi R, Rawat A, Das J, Tomomasa D, Asano T, Hijikata A, Salazar-Gálvez Y, Kanegane H, Okada S, Reyes SOL. Fatal COVID-19 Infection in Two Children with STAT1 Gain-of-Function. J Clin Immunol 2023; 44:20. [PMID: 38129739 DOI: 10.1007/s10875-023-01634-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
While SARS-CoV-2 infection causes a mild disease in most children, SARS-CoV-2 infection may be lethal in a few of them. In the defense against SARS-CoV-2, type I interferons are key players, and several studies have identified a defective or neutralized interferon response as the cause of overwhelming viral infection. However, inappropriate, untimely, or excessive interferon production may also be detrimental to the host. Here, we describe two patients with STAT1 gain-of-function (GOF), a known type I interferonopathy, who died of COVID-19. Whole-exome sequencing and interferon-gamma-activated sequence (GAS) and interferon-sensitive responsive element (ISRE) reporter assay were performed to identify and characterize STAT1 variants. Patient 1 developed hemophagocytic lymphohistiocytosis (HLH) in the context of COVID-19 infection and died in less than a week at the age of 4 years. Patient 2 developed a high fever, cough, and hypoxemia and succumbed to COVID-19 pneumonia at the age of 5 years. Two heterozygous missense variants, p.E563Q and p.K344E, in STAT1 were identified. Functional validation by reporter assay and immunoblot confirmed that both variants are gain-of-function (GOF). GOF variants transiently expressing cells exhibited enhanced upregulation of downstream genes, including ISG15, MX1, and OAS1, in response to IFN-α stimulation. A catastrophic course with HLH or acute respiratory failure is thought to be associated with inappropriate immunoregulatory mechanisms to handle SARS-CoV-2 in STAT1 GOF. While most patients with inborn errors of immunity who developed COVID-19 seem to handle it well, these cases suggest that patients with STAT1-GOF might be at risk of developing fatal complications due to SARS-CoV-2.
Collapse
Affiliation(s)
- Aidé Tamara Staines-Boone
- Immunology Service at Hospital de Especialidades UMAE 25 Mexican Social Security, Institute (IMSS), Monterrey, Mexico
| | - Pandiarajan Vignesh
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Germán de la Garza Fernández
- Immune Deficiencies Laboratory at the National Institute of Pediatrics, Health Secretariat, Av Iman 1, Piso 9 Torre de Investigación, Col. Insurgentes Cuicuilco, Coyoacán, 04530, Mexico City, CDMX, Mexico
| | - Reva Tyagi
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Rawat
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jhumki Das
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuridia Salazar-Gálvez
- Immunology Service at Hospital de Especialidades UMAE 25 Mexican Social Security, Institute (IMSS), Monterrey, Mexico
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan.
| | - Saul O Lugo Reyes
- Immune Deficiencies Laboratory at the National Institute of Pediatrics, Health Secretariat, Av Iman 1, Piso 9 Torre de Investigación, Col. Insurgentes Cuicuilco, Coyoacán, 04530, Mexico City, CDMX, Mexico.
| |
Collapse
|
6
|
Behrendsen LS, Menon PR, Khan MJ, Gregus A, Wirths O, Meyer T, Staab J. Evaluation of the putative lymphoma-associated point mutation D427H in the STAT3 transcription factor. BMC Mol Cell Biol 2022; 23:23. [PMID: 35752777 PMCID: PMC9233852 DOI: 10.1186/s12860-022-00422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor that promotes cell proliferation and immunomodulation in untransformed cells and maintains stemness of transformed cells, facilitating invasion and metastasis. Numerous point mutations in the STAT3 protein have been identified that drive malignancy in various tumor entities. The missense mutation D427H localized in the STAT3 DNA-binding domain has been previously reported in patients with NK/T cell lymphomas. To assess the biological activity of this missense mutation, we compared the STAT3-D427H mutant to wild-type (WT) protein as well as the known hyper-active mutant F174A. Results Although previously reported as an activating mutation, the STAT3-D427H mutant neither showed elevated cytokine-induced tyrosine phosphorylation nor altered nuclear accumulation, as compared to the WT protein. However, the D427H mutant displayed enhanced binding to STAT-specific DNA-binding sites but a reduced sequence specificity and dissociation rate from DNA, which was demonstrated by electrophoretic mobility shift assays. This observation is consistent with the phenotype of the homologous E421K mutation in the STAT1 protein, which also displayed enhanced binding to DNA but lacked a corresponding increase in transcriptional activity. Conclusions Based on our data, it is unlikely that the D427H missense mutation in the STAT3 protein possesses an oncogenic potential beyond the WT molecule. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00422-9.
Collapse
|
7
|
A short deletion in the DNA-binding domain of STAT3 suppresses growth and progression of colon cancer cells. Aging (Albany NY) 2021; 13:5185-5196. [PMID: 33535185 PMCID: PMC7950243 DOI: 10.18632/aging.202439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/25/2020] [Indexed: 01/14/2023]
Abstract
In this study, we investigated the effect of a short deletion in the DNA-binding domain of STAT3 (STAT3del) on the transcriptional activation of STAT3 target genes and its relationship with colon carcinogenesis. We used the CRISPR-CAS9 gene editing system to delete a short sequence encoding amino acids 400-411 in the DNA-binding domain (amino acid sequence: 317-567) from STAT3 gene in SW480, SW620 and HCT116 colon cancer cells. ChIP sequencing analysis showed that STAT3del occupancy was significantly reduced in 1029 genes and significantly increased in 475 genes compared to wild-type STAT3. The mutation altered the DNA motifs recognized by STAT3del as compared to the wild-type STAT3. We observed a strong correlation between expression of the STAT3 target genes and the loss or gain of STAT3del binding to their promoters. CCK-8, wound healing, and TUNEL assays showed reduced proliferation, migration, and survival of SW480, SW620 and HCT-116 cells expressing STAT3del as compared to the corresponding controls. These findings demonstrate that a short deletion in the DNA-binding domain of STAT3 alters its genome-wide DNA-binding and transcriptional profile of STAT3-target proteins, and suppresses the growth, progression and survival of colon cancer cells.
Collapse
|
8
|
Lawrence DW, Willard PA, Cochran AM, Matchett EC, Kornbluth J. Natural Killer Lytic-Associated Molecule (NKLAM): An E3 Ubiquitin Ligase With an Integral Role in Innate Immunity. Front Physiol 2020; 11:573372. [PMID: 33192571 PMCID: PMC7658342 DOI: 10.3389/fphys.2020.573372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Natural Killer Lytic-Associated Molecule (NKLAM), also designated RNF19B, is a unique member of a small family of E3 ubiquitin ligases. This 14-member group of ligases has a characteristic cysteine-rich RING-IBR-RING (RBR) domain that mediates the ubiquitination of multiple substrates. The consequence of substrate ubiquitination varies, depending on the type of ubiquitin linkages formed. The most widely studied effect of ubiquitination of proteins is proteasome-mediated substrate degradation; however, ubiquitination can also alter protein localization and function. Since its discovery in 1999, much has been deciphered about the role of NKLAM in innate immune responses. We have discerned that NKLAM has an integral function in both natural killer (NK) cells and macrophages in vitro and in vivo. NKLAM expression is required for each of these cell types to mediate maximal killing activity and cytokine production. However, much remains to be determined. In this review, we summarize what has been learned about NKLAM expression, structure and function, and discuss new directions for investigation. We hope that this will stimulate interest in further exploration of NKLAM.
Collapse
Affiliation(s)
- Donald W Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Paul A Willard
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Allyson M Cochran
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Emily C Matchett
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States.,St. Louis VA Health Care System, St. Louis, MO, United States
| |
Collapse
|
9
|
Jägle S, Heeg M, Grün S, Rensing-Ehl A, Maccari ME, Klemann C, Jones N, Lehmberg K, Bettoni C, Warnatz K, Grimbacher B, Biebl A, Schauer U, Hague R, Neth O, Mauracher A, Pachlopnik Schmid J, Fabre A, Kostyuchenko L, Führer M, Lorenz MR, Schwarz K, Rohr J, Ehl S. Distinct molecular response patterns of activating STAT3 mutations associate with penetrance of lymphoproliferation and autoimmunity. Clin Immunol 2019; 210:108316. [PMID: 31770611 DOI: 10.1016/j.clim.2019.108316] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 01/12/2023]
Abstract
Germline STAT3 gain-of-function (GOF) mutations have been linked to poly-autoimmunity and lymphoproliferation with variable expressivity and incomplete penetrance. Here we studied the impact of 17 different STAT3 GOF mutations on the canonical STAT3 signaling pathway and correlated the molecular results with clinical manifestations. The mutations clustered in three groups. Group 1 mutants showed altered STAT3 phosphorylation kinetics and strong basal transcriptional activity. They were associated with the highest penetrance of lymphoproliferation and autoimmunity. Group 2 mutants showed a strongly inducible transcriptional reporter activity and were clinically less penetrant. Group 3 mutants were mostly located in the DNA binding domain and showed the strongest DNA binding affinity despite a poor transcriptional reporter response. Thus, the GOF effect of STAT3 mutations is determined by a heterogeneous response pattern at the molecular level. The correlation of response pattern and clinical penetrance indicates a significant contribution of mutation-determined effects on disease manifestations.
Collapse
Affiliation(s)
- Sabine Jägle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarah Grün
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Klemann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Neil Jones
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Claudia Bettoni
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Klaus Warnatz
- Divivion Immunodeficiency (CCI), Department of Rheumatology and Clinical Immunology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; DZIF, German Center for Infection Research, Satellite Center, Freiburg, Germany; Resist - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Ariane Biebl
- Department of Paediatric and Adolescent Medicine, Kepler University Hospital Linz, Linz, Austria
| | - Uwe Schauer
- University Children's Hospital, Ruhr University Bochum, Bochum, Germany
| | - Rosie Hague
- Paediatric Infectious Diseases and Immunology, Royal Hospital for Children, Glasgow, UK
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology, Hospital Universitario Virgen del Rocío, Instituto de Bioinvestigacion (IBIS), Sevilla, Spain
| | - Andrea Mauracher
- Division of Immunology, University Children's Hospital Zurich, Children's Research Center (CRC), Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Children's Research Center (CRC), Zurich, Switzerland
| | - Alexandre Fabre
- Service de Pédiatrie Multidisciplinaire, Hôpital de la Timone, APHM, Marseille, France; Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Larysa Kostyuchenko
- Center of Pediatric Immunology, Western Ukrainian Specialized Children's Medical Centre, Lviv, Ukraine
| | - Marita Führer
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | | | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg, Hessen, Ulm, Germany
| | - Jan Rohr
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Pediatrics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Lawrence DW, Kornbluth J. E3 ubiquitin ligase NKLAM ubiquitinates STAT1 and positively regulates STAT1-mediated transcriptional activity. Cell Signal 2016; 28:1833-1841. [PMID: 27570112 PMCID: PMC5206800 DOI: 10.1016/j.cellsig.2016.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) is critically important for the transcription of a large number of immunologically relevant genes. In macrophages, interferon gamma (IFNγ) signal transduction occurs via the JAK/STAT pathway and ends with the transcription of a number of genes necessary for a successful host immune response. The predominant mechanism of regulation of STAT1 is phosphorylation; however, there is a growing body of evidence that demonstrates STAT1 is also regulated by ubiquitination. In this report we show that JAK1 and STAT1 in macrophages deficient in an E3 ubiquitin ligase termed Natural Killer Lytic-Associated Molecule (NKLAM) are hyperphosphorylated following IFNγ stimulation. We found NKLAM was transiently localized to the IFNγ receptor complex during stimulation with IFNγ, where it bound to and mediated K63-linked ubiquitination of STAT1. In vitro nucleofection studies demonstrated that STAT1-mediated transcription was significantly reduced in NKLAM-KO macrophages. There was no obvious defect in STAT1 nuclear translocation; however, STAT1 from NKLAM-KO macrophages had a reduced ability to bind a functional gamma activation DNA sequence. There was also less mRNA expression of STAT1-mediated genes in NKLAM-KO macrophages treated with IFNγ. Our results demonstrate for the first time that NKLAM is a positive regulator of STAT1-mediated transcriptional activity and is an important component of the innate immune response.
Collapse
Affiliation(s)
- Donald W Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States; VA St. Louis Health Care System, St. Louis, MO 63106, United States.
| |
Collapse
|
11
|
The two interfaces of the STAT1 N-terminus exhibit opposite functions in IFNγ-regulated gene expression. Mol Immunol 2015; 67:596-606. [PMID: 26275341 DOI: 10.1016/j.molimm.2015.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 01/07/2023]
Abstract
Defective cooperative DNA binding of STAT1 (signal transducer and activator of transcription 1) transcription factor has impact on interferon-γ(IFNγ)-regulated transcriptional responses. In this study, we generated N-terminal gain-of-function mutants of this protein which exhibited hyperactive cooperativity and assessed their functional consequences on gene expression. Our data show that four negatively charged, surface-exposed amino acid residues in the N-terminal domain dimer are engaged in the disassembly of tyrosine-phosphorylated tetrameric complexes on DNA and prevent the occurrence of higher-order STAT1 oligomers on low-affinity DNA binding sites. Owing to their improved tetramer stability, the N-terminal mutants showed relaxed sequence requirements for the binding to DNA as compared to the wild-type protein. Similarly to a STAT1 mutant with impaired tetramerization, the N-terminal gain-of-function mutants showed elevated tyrosine-phosphorylation levels and prolonged nuclear accumulation upon stimulation of cells with IFNγ. However, in contrast to the global impairment of IFNγ signalling in tetramerization-deficient mutants, the transcriptional consequences of the N-terminal gain-of-function mutants are rather distinct and affect gene expression locally in a promoter-specific manner. Thus, we conclude that the STAT1 N-domain acts as a double-edged sword: while one interface is crucial for the formation of tetrameric complexes on IFNγ-regulated promoters, the opposite interface harbours an inhibitory mechanism that limits the accumulation of higher-order oligomers simply by disrupting cooperative DNA binding.
Collapse
|