1
|
Yukawa K. [Elucidating the Pathophysiology of Various Diseases by Investigating the Role of Molecules in Brain Wiring]. YAKUGAKU ZASSHI 2025; 145:133-143. [PMID: 39894482 DOI: 10.1248/yakushi.24-00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Semaphorins and their receptors plexins are axon guidance molecules that navigate axons to their final destinations during neural development. Semaphorins and plexins exert distinct roles in regulating biological functions such as the immune system and bone homeostasis. They also participate in the development and progression of various diseases such as osteoporosis and allergic diseases. This review describes the varied phenotypes revealed by the analysis of semaphorin or plexin knockout mice and discusses the association with pathogenesis and therapy of atherosclerosis, agenesis of the corpus callosum, and neuropsychiatric diseases. The deletion of semaphorin 4D in atherosclerosis-prone Apolipoprotein E-deficient mice mitigated atherosclerotic lesions, indicating its crucial involvement in the progression of atherosclerosis. Semaphorin 4D is also implicated in apoptosis induced by the estrogen-dependent generation of soluble semaphorin 4D and the active form of plexin-B1 in the postnatal vaginal opening in mice. Plexin-A1 knockout BALB/cA mice exhibited the agenesis of corpus callosum. This study indicates the crucial role of plexin-A1 in the midline crossing of callosal pioneer axons projecting from the cerebral cortex during the early phase of callosal formation. Adult plexin-A1-deficient mice exhibit reduced prepulse inhibition deficit, an endophenotype of schizophrenia, in addition to excessive self-grooming. Parvalbumin-expressing interneurons in the medial prefrontal cortex are significantly decreased in plexin-A1 knockout mice. In the parvalbumin neurons, oxidative stress is significantly increased in plexin-A1 knockout mice. Accordingly, plexin-A1 deficiency may augment oxidative stress in parvalbumin neurons, thereby impairing the parvalbumin neuron network and leading to behavioral abnormalities relevant to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Kazunori Yukawa
- Faculty of Pharmacy, Meijo University
- Graduate School of Pharmacy, Meijo University
| |
Collapse
|
2
|
Ullah R, Xue C, Wang S, Qin Z, Rauf N, Zhan S, Khan NU, Shen Y, Zhou YD, Fu J. Alternate-day fasting delays pubertal development in normal-weight mice but prevents high-fat diet-induced obesity and precocious puberty. Nutr Diabetes 2024; 14:82. [PMID: 39366955 PMCID: PMC11452675 DOI: 10.1038/s41387-024-00335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND/OBJECTIVES Childhood obesity, particularly in girls, is linked to early puberty onset, heightening risks for adult-onset diseases. Addressing childhood obesity and precocious puberty is vital to mitigate societal burdens. Despite existing costly and invasive medical interventions, introducing lifestyle-based alternatives is essential. Our study investigates alternate-day fasting's (ADF) impact on pubertal development in normal-weight and high-fat diet (HFD)-induced obese female mice. METHODS Four groups of female mice were utilized, with dams initially fed control chow during and before pregnancy. Post-parturition, two groups continued on control chow, while two switched to an HFD. Offspring diets mirrored maternal exposure. One control and one HFD group were subjected to ADF. Morphometry and hormone analyses at various time points were performed. RESULTS Our findings demonstrate that ADF in normal-weight mice led to reduced body length, weight, uterine, and ovarian weights, accompanied by delayed puberty and lower levels of sex hormones and growth hormone (GH). Remarkably, GH treatment effectively prevented ADF-induced growth reduction but did not prevent delayed puberty. Conversely, an HFD increased body length, induced obesity and precocious puberty, and altered sex hormones and leptin levels, which were counteracted by ADF regimen. Our data indicate ADF's potential in managing childhood obesity and precocious puberty. CONCLUSIONS ADF reduced GH and sex hormone levels, contributing to reduced growth and delayed puberty, respectively. Therefore, parents of normal-weight children should be cautious about prolonged overnight fasting. ADF prevented HFD-induced obesity and precocious puberty, offering an alternative to medical approaches; nevertheless, further studies are needed for translation into clinical practice.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China.
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310052, China.
| | - Chuqing Xue
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Senjie Wang
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Zhewen Qin
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Shumin Zhan
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Naimat Ullah Khan
- College of Veterinary Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310052, China.
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310052, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
3
|
Amin A, Badenes M, Tüshaus J, de Carvalho É, Burbridge E, Faísca P, Trávníčková K, Barros A, Carobbio S, Domingos PM, Vidal-Puig A, Moita LF, Maguire S, Stříšovský K, Ortega FJ, Fernández-Real JM, Lichtenthaler SF, Adrain C. Semaphorin 4B is an ADAM17-cleaved adipokine that inhibits adipocyte differentiation and thermogenesis. Mol Metab 2023; 73:101731. [PMID: 37121509 PMCID: PMC10197113 DOI: 10.1016/j.molmet.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
OBJECTIVE The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis. METHODS We used histopathology, molecular, proteomic, transcriptomic, in vivo integrative physiological and ex vivo biochemical approaches to determine the impact of adipose tissue-specific deletion of ADAM17 upon adipocyte and whole organism metabolic physiology. RESULTS ADAM17adipoq-creΔ/Δ mice exhibited a hypermetabolic phenotype characterized by elevated energy consumption and increased levels of adipocyte thermogenic gene expression. On a high fat diet, these mice were more thermogenic, while exhibiting elevated expression levels of genes associated with lipid oxidation and lipolysis. This hypermetabolic phenotype protected mutant mice from obesogenic challenge, limiting weight gain, hepatosteatosis and insulin resistance. Activation of beta-adrenoceptors by the neurotransmitter norepinephrine, a key regulator of adipocyte physiology, triggered the shedding of ADAM17 substrates, and regulated ADAM17 expression at the mRNA and protein levels, hence identifying a functional connection between thermogenic licensing and the regulation of ADAM17. Proteomic studies identified Semaphorin 4B (SEMA4B), as a novel ADAM17-shed adipokine, whose expression is regulated by physiological thermogenic cues, that acts to inhibit adipocyte differentiation and dampen thermogenic responses in adipocytes. Transcriptomic data showed that cleaved SEMA4B acts in an autocrine manner in brown adipocytes to repress the expression of genes involved in adipogenesis, thermogenesis, and lipid uptake, storage and catabolism. CONCLUSIONS Our findings identify a novel ADAM17-dependent axis, regulated by beta-adrenoceptors and mediated by the ADAM17-cleaved form of SEMA4B, that modulates energy balance in adipocytes by inhibiting adipocyte differentiation, thermogenesis and lipid catabolism.
Collapse
Affiliation(s)
- Abdulbasit Amin
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Marina Badenes
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Faculty of Veterinary Medicine, Lusofona University, Lisbon, Portugal; Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Érika de Carvalho
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Emma Burbridge
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Květa Trávníčková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - André Barros
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Stefania Carobbio
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Pedro M Domingos
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Antonio Vidal-Puig
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Kvido Stříšovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Francisco J Ortega
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - José Manuel Fernández-Real
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland.
| |
Collapse
|
4
|
Zheng N, Zhang W, Zhang X, Li B, Wu Z, Weng Y, Wang W, Miao J, Yang J, Zhang M, Xia W. RA-RAR signaling promotes mouse vaginal opening through increasing β-catenin expression and vaginal epithelial cell apoptosis. Reprod Biol Endocrinol 2023; 21:36. [PMID: 37041518 PMCID: PMC10088237 DOI: 10.1186/s12958-023-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Retinoic acid (RA) plays important role in the maintenance and differentiation of the Müllerian ducts during the embryonic stage via RA receptors (RARs). However, the function and mechanism of RA-RAR signaling in the vaginal opening are unknown. METHOD We used the Rarα knockout mouse model and the wild-type ovariectomized mouse models with subcutaneous injection of RA (2.5 mg/kg) or E2 (0.1 µg/kg) to study the role and mechanism of RA-RAR signaling on the vaginal opening. The effects of Rarα deletion on Ctnnb1 mRNA levels and cell apoptosis in the vaginas were analyzed by real-time PCR and immunofluorescence, respectively. The effects of RA on the expression of β-catenin and apoptosis in the vaginas were analyzed by real-time PCR and western blotting. The effects of E2 on RA signaling molecules were analyzed by real-time PCR and western blotting. RESULTS RA signaling molecules were expressed in vaginal epithelial cells, and the mRNA and/or protein levels of RALDH2, RALDH3, RARα and RARγ reached a peak at the time of vaginal opening. The deletion of Rarα resulted in 25.0% of females infertility due to vaginal closure, in which the mRNA (Ctnnb1, Bak and Bax) and protein (Cleaved Caspase-3) levels were significantly decreased, and Bcl2 mRNA levels were significantly increased in the vaginas. The percentage of vaginal epithelium with TUNEL- and Cleaved Caspase-3-positive signals were also significantly decreased in Rarα-/- females with vaginal closure. Furthermore, RA supplementation of ovariectomized wild-type (WT) females significantly increased the expression of β-catenin, active β-catenin, BAK and BAX, and significantly decreased BCL2 expression in the vaginas. Thus, the deletion of Rarα prevents vaginal opening by reducing the vaginal β-catenin expression and epithelial cell apoptosis. The deletion of Rarα also resulted in significant decreases in serum estradiol (E2) and vagina Raldh2/3 mRNA levels. E2 supplementation of ovariectomized WT females significantly increased the expression of RA signaling molecules in the vaginas, suggesting that the up-regulation of RA signaling molecules in the vaginas is dependent on E2 stimulation. CONCLUSION Taken together, we propose that RA-RAR signaling in the vaginas promotes vaginal opening through increasing β-catenin expression and vaginal epithelial cell apoptosis.
Collapse
Affiliation(s)
- Nana Zheng
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenbo Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodan Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Biao Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhanying Wu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yashuang Weng
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Weiyong Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jingjing Miao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Meijia Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Wei Xia
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
5
|
MiR-125b Suppression Inhibits Apoptosis and Negatively Regulates Sema4D in Avian Leukosis Virus-Transformed Cells. Viruses 2019; 11:v11080728. [PMID: 31394878 PMCID: PMC6723722 DOI: 10.3390/v11080728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Subgroup J avian leukosis virus (ALV-J), an oncogenic retrovirus, causes hemangiomas and myeloid tumors in chickens. We previously showed that miR-125b is down-regulated in ALV-J-induced tumors. This study aimed to investigate the possible role of miR-125b in ALV-J-mediated infection and tumorigenesis. Knockdown of miR-125b expression in HP45 cells reduced, whereas over-expression induced late-stage apoptosis. Bioinformatics analysis and luciferase activity assays indicate that miR-125b targets Semaphorin 4D/CD100 (Sema4D) by binding the 3'-untranslated region of messenger RNA (mRNA). Up-regulation of miR-125b in the DF1 cell line suppressed Sema4D expression, whereas miR-125 down-regulation increased Sema4D expression levels. To uncover the function of Sema4D during ALV-J infection, animal infection experiments and in vitro assays were performed and show that Sema4D mRNA levels were up-regulated in ALV-J-infected tissues and cells. Finally, functional experiments show that miR-125 down-regulation and Sema4D over-expression inhibited apoptosis in HP45 cells. These results suggest that miR-125b and its target Sema4D might play an important role in the aggressive growth of HP45 cells induced by avian leukosis viruses (ALVs). These findings improve our understanding of the underlying mechanism of ALV-J infection and tumorigenesis.
Collapse
|
6
|
Ke Y, Dang E, Shen S, Zhang T, Qiao H, Chang Y, Liu Q, Wang G. Semaphorin4D Drives CD8 + T-Cell Lesional Trafficking in Oral Lichen Planus via CXCL9/CXCL10 Upregulations in Oral Keratinocytes. J Invest Dermatol 2017; 137:2396-2406. [PMID: 28760660 DOI: 10.1016/j.jid.2017.07.818] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
Chemokine-mediated CD8+ T-cell recruitment is an essential but not well-established event for the persistence of oral lichen planus (OLP). Semaphorin 4D (Sema4D)/CD100 is implicated in immune dysfunction, chemokine modulation, and cell migration, which are critical aspects for OLP progression, but its implication in OLP pathogenesis has not been determined. In this study, we sought to explicate the effect of Sema4D on human oral keratinocytes and its capacity to drive CD8+ T-cell lesional trafficking via chemokine modulation. We found that upregulations of sSema4D in OLP tissues and blood were positively correlated with disease severity and activity. In vitro observation revealed that Sema4D induced C-X-C motif chemokine ligand 9/C-X-C motif chemokine ligand 10 production by binding to plexin-B1 via protein kinase B-NF-κB cascade in human oral keratinocytes, which elicited OLP CD8+ T-cell migration. We also confirmed using clinical samples that elevated C-X-C motif chemokine ligand 9/C-X-C motif chemokine ligand 10 levels were positively correlated with sSema4D levels in OLP lesions and serum. Notably, we determined matrix metalloproteinase-9 as a new proteolytic enzyme for the cleavage of sSema4D from the T-cell surface, which may contribute to the high levels of sSema4D in OLP lesions and serum. Our findings conclusively revealed an amplification feedback loop involving T cells, chemokines, and Sema4D-dependent signal that promotes OLP progression.
Collapse
Affiliation(s)
- Yao Ke
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shengxian Shen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tongmei Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qing Liu
- Department of Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Piekarski DJ, Johnson CM, Boivin JR, Thomas AW, Lin WC, Delevich K, M Galarce E, Wilbrecht L. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res 2017; 1654:123-144. [PMID: 27590721 PMCID: PMC5283387 DOI: 10.1016/j.brainres.2016.08.042] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023]
Abstract
Postnatal brain development is studded with sensitive periods during which experience dependent plasticity is enhanced. This enables rapid learning from environmental inputs and reorganization of cortical circuits that matches behavior with environmental contingencies. Significant headway has been achieved in characterizing and understanding sensitive period biology in primary sensory cortices, but relatively little is known about sensitive period biology in associative neocortex. One possible mediator is the onset of puberty, which marks the transition to adolescence, when animals shift their behavior toward gaining independence and exploring their social world. Puberty onset correlates with reduced behavioral plasticity in some domains and enhanced plasticity in others, and therefore may drive the transition from juvenile to adolescent brain function. Pubertal onset is also occurring earlier in developed nations, particularly in unserved populations, and earlier puberty is associated with vulnerability for substance use, depression and anxiety. In the present article we review the evidence that supports a causal role for puberty in developmental changes in the function and neurobiology of the associative neocortex. We also propose a model for how pubertal hormones may regulate sensitive period plasticity in associative neocortex. We conclude that the evidence suggests puberty onset may play a causal role in some aspects of associative neocortical development, but that further research that manipulates puberty and measures gonadal hormones is required. We argue that further work of this kind is urgently needed to determine how earlier puberty may negatively impact human health and learning potential. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- David J Piekarski
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Carolyn M Johnson
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Josiah R Boivin
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco CA 94158, USA
| | - A Wren Thomas
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Kristen Delevich
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Ezequiel M Galarce
- School of Public Health, University of California, Berkeley, Berkeley CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA.
| |
Collapse
|
8
|
Sun T, Yang L, Kaur H, Pestel J, Looso M, Nolte H, Krasel C, Heil D, Krishnan RK, Santoni MJ, Borg JP, Bünemann M, Offermanns S, Swiercz JM, Worzfeld T. A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib. J Cell Biol 2016; 216:199-215. [PMID: 28007914 PMCID: PMC5223600 DOI: 10.1083/jcb.201602002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/30/2016] [Accepted: 11/13/2016] [Indexed: 11/22/2022] Open
Abstract
Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor βPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration.
Collapse
Affiliation(s)
- Tianliang Sun
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Lida Yang
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Harmandeep Kaur
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jenny Pestel
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hendrik Nolte
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Cornelius Krasel
- Institute of Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Daniel Heil
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Ramesh K Krishnan
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Marie-Josée Santoni
- Cell Polarity, Cell Signaling and Cancer, Equipe labellisée Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale, U1068, 13009 Marseille, France.,Institut Paoli-Calmettes, 13009 Marseille, France.,Aix-Marseille Université, 13284 Marseille, France.,Centre National de la Recherche Scientifique, UMR7258, 13273 Marseille, France
| | - Jean-Paul Borg
- Cell Polarity, Cell Signaling and Cancer, Equipe labellisée Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale, U1068, 13009 Marseille, France.,Institut Paoli-Calmettes, 13009 Marseille, France.,Aix-Marseille Université, 13284 Marseille, France.,Centre National de la Recherche Scientifique, UMR7258, 13273 Marseille, France
| | - Moritz Bünemann
- Institute of Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.,Medical Faculty, University of Frankfurt, 60590 Frankfurt am Main, Germany
| | - Jakub M Swiercz
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Worzfeld
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany .,Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
9
|
Wu M, Li J, Gao Q, Ye F. The role of Sema4D/CD100 as a therapeutic target for tumor microenvironments and for autoimmune, neuroimmune and bone diseases. Expert Opin Ther Targets 2016; 20:885-901. [PMID: 26732941 DOI: 10.1517/14728222.2016.1139083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Semaphorin 4D (Sema4D), also known as CD100, has been implicated in physiologic roles in the immune and nervous systems. However, the interaction of Sema4D with its high affinity receptor, Plexin-B1, reveals a novel role for Sema4D produced by the tumor microenvironment in tumor angiogenesis and metastasis. AREAS COVERED The ligation of Sema4D/CD100 with CD72 on immune and inflammatory cells is known to stimulate immune responses and regulation. Because CD100 and CD72 are expressed on lung immune and nonimmune cells, as well as on mast cells, the CD100/CD72 interaction plays another important role in allergic airway inflammation and mast cell functions. A better understanding of Sema4D-mediated cell signaling in physiological and pathological processes may be crucial for crafting new Sema4D-based therapeutics for human disease and tumor microenvironments. Strategies to achieve effective management through treatment with Sema4D include special siRNAs, neutralizing antibodies and knockdown. EXPERT OPINION This review focuses on the links between Sema4D and human diseases such as cancer, bone metabolism, immune responses and organ development. The current knowledge regarding the expression of Sema4D and its receptors and its functional roles is systemically reviewed to explore Sema4D as both a target and a therapeutic in human diseases.
Collapse
Affiliation(s)
- Mingfu Wu
- a Cancer Biology Research Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Jing Li
- a Cancer Biology Research Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Qinglei Gao
- a Cancer Biology Research Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Fei Ye
- b Department of Neurosurgery, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|