1
|
Ma Y, Yan Q, Wang P, Guo W, Yu L. Therapeutic potential of ghrelin/GOAT/GHSR system in gastrointestinal disorders. Front Nutr 2024; 11:1422431. [PMID: 39246401 PMCID: PMC11380557 DOI: 10.3389/fnut.2024.1422431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Ghrelin, a peptide primarily secreted in the stomach, acts via the growth hormone secretagogue receptor (GHSR). It regulates several physiological processes, such as feeding behavior, energy homeostasis, glucose and lipid metabolism, cardiovascular function, bone formation, stress response, and learning. GHSR exhibits significant expression within the central nervous system. However, numerous murine studies indicate that ghrelin is limited in its ability to enter the brain from the bloodstream and is primarily confined to specific regions, such as arcuate nucleus (ARC) and median eminence (ME). Nevertheless, the central ghrelin system plays an essential role in regulating feeding behavior. Furthermore, the role of vagal afferent fibers in regulating the functions of ghrelin remains a major topic of discussion among researchers. In recent times, numerous studies have elucidated the substantial therapeutic potential of ghrelin in most gastrointestinal (GI) diseases. This has led to the development of numerous pharmaceutical agents that target the ghrelin system, some of which are currently under examination in clinical trials. Furthermore, ghrelin is speculated to serve as a promising biomarker for GI tumors, which indicates its potential use in tumor grade and stage evaluation. This review presents a summary of recent findings in research conducted on both animals and humans, highlighting the therapeutic properties of ghrelin system in GI disorders.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qihui Yan
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
2
|
Iwakura H, Ensho T, Ueda Y. Desacyl-ghrelin, not just an inactive form of ghrelin?-A review of current knowledge on the biological actions of desacyl-ghrelin. Peptides 2023:171050. [PMID: 37392995 DOI: 10.1016/j.peptides.2023.171050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Desacyl-ghrelin is a form of ghrelin which lacks acyl-modification of the third serine residue of ghrelin. Originally, desacyl-ghrelin was considered to be just an inactive form of ghrelin. More recently, however, it has been suggested to have various biological activities, including control of food intake, growth hormone, glucose metabolism, and gastric movement, and is involved in cell survival. In this review, we summarize the current knowledge of the biological actions of desacyl-ghrelin and the proposed mechanisms by which it exerts the effects.
Collapse
Affiliation(s)
- Hiroshi Iwakura
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan.
| | - Takuya Ensho
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| | - Yoko Ueda
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| |
Collapse
|
3
|
Bianzano S, Henrich A, Herich L, Kalsch B, Sarubbi D, Seitz F, Forst T. Efficacy and safety of the ghrelin-O-acyltransferase inhibitor BI 1356225 in overweight/obesity: Data from two Phase I, randomised, placebo-controlled studies. Metabolism 2023; 143:155550. [PMID: 36958671 DOI: 10.1016/j.metabol.2023.155550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Obesity is a complex disease associated with multiple concurrent complications, and the coordinated targeting of multiple pathways in pharmacological treatment may improve weight loss outcomes. During synthesis, ghrelin is converted from the 'inactive' unacylated ghrelin (UAG) to the active acylated ghrelin (AG) by the enzyme ghrelin-O-acyltransferase (GOAT), stimulating appetite and food intake. AIMS To report the results of two Phase I studies investigating single rising doses (SRDs) or multiple rising doses (MRDs) of the novel oral GOAT inhibitor BI 1356225 versus placebo in male and postmenopausal/sterilised female subjects with overweight or obesity. METHODS The SRD study investigated single doses of BI 1356225 (0.1-20.0 mg) in healthy male subjects with a BMI of 18.5-29.9 kg/m2 (SRD cohort) and assessed doses of 2.5 mg BI 1356225 under fed and fasted conditions (bioavailability [BA] cohort). The MRD study investigated multiple doses of BI 1356225 (0.2, 1.0, 2.5 or 10.0 mg) or 5.0 mg BI 1356225 with a single dose of midazolam and celecoxib (drug-drug interaction part) over 28 days in adults with a BMI of 27.0-39.9 kg/m2. RESULTS Sixty-five subjects were treated in the SRD study. Drug-related adverse events (AEs) were reported for five subjects (9.1 %) in the SRD cohort and two subjects (20.0 %) in the BA cohort, with the most frequent being headache (SRD: n = 4, 9.8 %; BA: n = 1, 10.0 %). In the MRD study, two (2.3 %) of the 87 subjects treated discontinued treatment because of AEs. Drug-related AEs were reported for 18 subjects (20.7 %), did not increase with dose and were most frequently reported as headache (n = 5, 5.7 %) and gastrointestinal disorders (n = 5, 5.7 %). In both studies, exposure parameters (area under the concentration-time curve [AUC] and maximum plasma concentration [Cmax]) of BI 1356225 increased across dose groups, although this was less than dose-proportional across the entire dose range. In the BA cohort of the SRD study, AUC0-∞ was slightly increased and Cmax slightly decreased in fed versus fasted conditions, with fed/fasted ratios (90 % CI) of 101.10 % (92.42, 110.60) and 91.67 % (78.50, 107.05), respectively. In both studies, AG concentrations and the AG/UAG ratio were dose-dependently decreased after BI 1356225 treatment from baseline versus placebo. In the MRD study, UAG concentrations were increased from baseline, but not dose-dependently. No differences were observed in bodyweight, appetite, food cravings, ad libitum food uptake or obesity-related biomarkers after 28 days of treatment with BI 1356225. CONCLUSIONS Treatment with SRDs and MRDs of BI 1356225 was well tolerated by healthy males and subjects with overweight/obesity. BI 1356225 treatment over 28 days reduced AG concentrations and the AG/UAG ratio by >80 %, but no effect was seen on bodyweight, hunger/satiety, control of eating or energy intake. Although, at 4 weeks, the MRD study was fairly short, a reduction in bodyweight would be expected to be evident by this time, suggesting that a reduction of AG via a GOAT inhibitor is not sufficient to induce clinically relevant bodyweight loss.
Collapse
Affiliation(s)
- Susanna Bianzano
- Boehringer Ingelheim International GmbH, 55216 Ingelheim am Rhein, Germany.
| | - Andrea Henrich
- Pharmetheus AB, 75237 Uppsala, Sweden; Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | | | - Brigitte Kalsch
- CRS Clinical Research Services Mannheim GmbH, 68167 Mannheim, Germany
| | - Donald Sarubbi
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Friedeborg Seitz
- CRS Clinical Research Services Mannheim GmbH, 68167 Mannheim, Germany
| | - Thomas Forst
- CRS Clinical Research Services Mannheim GmbH, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Li N, Li N, Yang L, Gu H, Ji J, Zhou H, Zhu Q, Yu M, Sun Y, Zhou Y. GHSR1a deficiency suppresses inhibitory drive on dCA1 pyramidal neurons and contributes to memory reinforcement. Cereb Cortex 2023; 33:2612-2625. [PMID: 35797708 DOI: 10.1093/cercor/bhac230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/12/2022] Open
Abstract
Growth hormone secretagogue receptor 1a (GHSR1a)-the receptor for orexigenic hormone ghrelin-is a G protein-coupled receptor that is widely distributed in the brain, including the hippocampus. Studies have demonstrated that genetic deletion of GHSR1a affects memory, suggesting the importance of ghrelin/GHSR1a signaling in cognitive control. However, current reports are controversial, and the mechanism underlying GHSR1a modulation of memory is uncertain. Here, we first report that global GHSR1a knockout enhances hippocampus-dependent memory, facilitates initial LTP in dorsal hippocampal Schaffer Collateral-CA1 synapses, and downregulates Akt activity in the hippocampus. Moreover, we show that the intrinsic excitability of GAD67+ interneurons-rather than neighboring pyramidal neurons in the dCA1-is suppressed by GHSR1a deletion, an effect that is antagonized by acute application of the Akt activator SC79. In addition, the inhibitory postsynaptic currents (IPSCs) on dCA1 pyramidal neurons are selectively reduced in mice with a GHSR1a deficiency. Finally, we demonstrate that selectively increasing the excitability of parvalbumin-expressing interneurons by hM3Dq-DREADDs increases IPSCs on dCA1 pyramidal neurons and normalizes memory in Ghsr1a KO mice. Our findings thus reveal a novel mechanism underlying memory enhancement of GHSR1a deficiency and herein support an adverse effect of GHSR1a signaling in hippocampus-dependent memory processes.
Collapse
Affiliation(s)
- Na Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Medicine, Qingdao Binhai University, 425 West Jialing River Rd, Qingdao, Shandong, 266555, China
| | - Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Rd, Qingdao, Shandong, 266000, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Huating Gu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Junjie Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Hao Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Qianqian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Rd, Qingdao, Shandong, 266000, China
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, 750 Agronomy Rd, College Station, TX, 77843, United States
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Rd, Qingdao, Shandong, 266000, China
- Department of Physiology, Institute of Brain Sciences and Related Disorders, Qingdao University, 308 Ningxia Rd., Qingdao, Shandong, 266071, China
- Department of rehabilitation medicine, Affiliated Hospital of Qingdao University, 16 Jiangsu Rd., Qingdao, Shandong, 266000, China
| |
Collapse
|
5
|
Yu M, Zhu QQ, Niu ML, Li N, Ren BQ, Yu TB, Zhou ZS, Guo JD, Zhou Y. Ghrelin infusion into the basolateral amygdala suppresses CTA memory formation in rats via the PI3K/Akt/mTOR and PLC/PKC signaling pathways. Acta Pharmacol Sin 2022; 43:2242-2252. [PMID: 35169271 PMCID: PMC9433413 DOI: 10.1038/s41401-022-00859-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Ghrelin is a circulating orexigenic hormone that promotes feeding behavior and regulates metabolism in humans and rodents. We previously reported that local infusion of ghrelin into the basolateral amygdala (BLA) blocked memory acquisition for conditioned taste aversion (CTA) by activating growth hormone secretagogue receptor 1a. In this study, we further explored the underlying mechanism and signaling pathways mediating ghrelin modulation of CTA memory in rats. Pharmacological agents targeting distinct signaling pathways were infused into the BLA during conditioning. We showed that preadministration of the PI3K inhibitor LY294002 abolished the repressive effect of ghrelin on CTA memory. Moreover, LY294002 pretreatment prevented ghrelin from inhibiting Arc and zif268 mRNA expression in the BLA triggered by CTA memory retrieval. Preadministration of rapamycin eliminated the repressive effect of ghrelin, while Gsk3 inhibitors failed to mimic ghrelin's effect. In addition, PLC and PKC inhibitors microinfused in the BLA blocked ghrelin's repression of CTA acquisition. These results demonstrate that ghrelin signaling in the BLA shapes CTA memory via the PI3K/Akt/mTOR and PLC/PKC pathways. We conducted in vivo multichannel recordings from mouse BLA neurons and found that microinjection of ghrelin (20 µM) suppressed intrinsic excitability. By means of whole-cell recordings from rat brain slices, we showed that bath application of ghrelin (200 nM) had no effect on basal synaptic transmission or synaptic plasticity of BLA pyramidal neurons. Together, this study reveals the mechanism underlying ghrelin-induced interference with CTA memory acquisition in rats, i.e., suppression of intrinsic excitability of BLA principal neurons via the PI3K/Akt/mTOR and PLC/PKC pathways.
Collapse
Affiliation(s)
- Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Qian-Qian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Ming-Lu Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Bai-Qing Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Teng-Bo Yu
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhi-Shang Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Ji-Dong Guo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China.
- Department of rehabilitation medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
6
|
Hajishizari S, Imani H, Mehranfar S, Saeed Yekaninejad M, Mirzababaei A, Clark CCT, Mirzaei K. The association of appetite and hormones (leptin, ghrelin, and Insulin) with resting metabolic rate in overweight/ obese women: a case-control study. BMC Nutr 2022; 8:37. [PMID: 35484608 PMCID: PMC9052687 DOI: 10.1186/s40795-022-00531-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Low resting metabolic rate (RMR), as a risk factor for weight gain and obesity, can be influenced by many factors. Empirical research has confirmed the role of appetite and related hormones in obesity and energy intake. This study aimed to investigate the relationship between appetite and related hormones in overweight or obese Iranian women with normal and hypo RMR. Methods This case–control study was conducted on 42 Iranian adult women (21 cases, and 21 controls), aged 18–48 years. An impedance body analyzer was used to obtain the body composition and an indirect calorimeter was used to assess the RMR. The Flint questionnaire was used to assess appetite, dietary intake, and physical activity were assessed by FFQ and IPAQ questionnaires respectively, and ELISA kits were used to assess leptin, ghrelin, and insulin hormones. Results The results of the study demonstrated a negative association between ghrelin hormone level (β = -0.34, 95%CI = -61.70,-3.86, P-value = 0.027) and RMR, and a positive association between insulin hormone level (β = 0.48, 95%CI = 9.38–34.35, P-value = 0.001) and RMR. Also, results of the appetite questionnaire showed that, in general, both appetite (β = 0.32, 95%CI = -0.10–2.99 P-value = 0.044) and hunger variable (β = 0.30, 95%CI = 0.04–5.87, P-value = 0.047) have a positive association with RMR. There was no significant association between leptin levels and RMR. Conclusion It is evident that appetite and related hormones have a potential role in promoting a normal RMR.
Collapse
Affiliation(s)
- Sara Hajishizari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Imani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sanaz Mehranfar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
7
|
Sassi M, Morgan AH, Davies JS. Ghrelin Acylation-A Post-Translational Tuning Mechanism Regulating Adult Hippocampal Neurogenesis. Cells 2022; 11:cells11050765. [PMID: 35269387 PMCID: PMC8909677 DOI: 10.3390/cells11050765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Adult hippocampal neurogenesis—the generation of new functional neurones in the adult brain—is impaired in aging and many neurodegenerative disorders. We recently showed that the acylated version of the gut hormone ghrelin (acyl-ghrelin) stimulates adult hippocampal neurogenesis while the unacylated form of ghrelin inhibits it, thus demonstrating a previously unknown function of unacyl-ghrelin in modulating hippocampal plasticity. Analysis of plasma samples from Parkinson’s disease patients with dementia demonstrated a reduced acyl-ghrelin:unacyl-ghrelin ratio compared to both healthy controls and cognitively intact Parkinson’s disease patients. These data, from mouse and human studies, suggest that restoring acyl-ghrelin signalling may promote the activation of pathways to support memory function. In this short review, we discuss the evidence for ghrelin’s role in regulating adult hippocampal neurogenesis and the enzymes involved in ghrelin acylation and de-acylation as targets to treat mood-related disorders and dementia.
Collapse
|
8
|
Abstract
The stomach hormone, ghrelin, which is released during food restriction, provides a link between circulating energy state and adaptive brain function. The maintenance of such homeostatic systems is essential for an organism to survive and thrive, and accumulating evidence points to ghrelin being a key regulator of adult hippocampal neurogenesis and memory function. Aberrant neurogenesis is linked to cognitive decline in aging and neurodegeneration. Therefore, identifying endogenous metabolic factors that regulate new adult-born neuron formation is an important objective in understanding the link between nutritional status and CNS function. Here, we review current developments in our understanding of ghrelin's role in regulating neurogenesis and memory function.
Collapse
Affiliation(s)
- Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
9
|
Hornsby AK, Buntwal L, Carisi MC, Santos VV, Johnston F, Roberts LD, Sassi M, Mequinion M, Stark R, Reichenbach A, Lockie SH, Siervo M, Howell O, Morgan AH, Wells T, Andrews ZB, Burn DJ, Davies JS. Unacylated-Ghrelin Impairs Hippocampal Neurogenesis and Memory in Mice and Is Altered in Parkinson's Dementia in Humans. CELL REPORTS MEDICINE 2020; 1:100120. [PMID: 33103129 PMCID: PMC7575905 DOI: 10.1016/j.xcrm.2020.100120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/20/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022]
Abstract
Blood-borne factors regulate adult hippocampal neurogenesis and cognition in mammals. We report that elevating circulating unacylated-ghrelin (UAG), using both pharmacological and genetic methods, reduced hippocampal neurogenesis and plasticity in mice. Spatial memory impairments observed in ghrelin-O-acyl transferase-null (GOAT−/−) mice that lack acyl-ghrelin (AG) but have high levels of UAG were rescued by acyl-ghrelin. Acyl-ghrelin-mediated neurogenesis in vitro was dependent on non-cell-autonomous BDNF signaling that was inhibited by UAG. These findings suggest that post-translational acylation of ghrelin is important to neurogenesis and memory in mice. To determine relevance in humans, we analyzed circulating AG:UAG in Parkinson disease (PD) patients diagnosed with dementia (PDD), cognitively intact PD patients, and controls. Notably, plasma AG:UAG was only reduced in PDD. Hippocampal ghrelin-receptor expression remained unchanged; however, GOAT+ cell number was reduced in PDD. We identify UAG as a regulator of hippocampal-dependent plasticity and spatial memory and AG:UAG as a putative circulating diagnostic biomarker of dementia. Circulating unacylated-ghrelin (UAG) reduces hippocampal neurogenesis Circulating acyl-ghrelin (AG) rescues spatial memory deficit in GOAT−/− mice UAG blocks the AG induced survival of newborn hippocampal cells Plasma AG:UAG and hippocampal GOAT+ cells are reduced in Parkinson’s dementia
Collapse
Affiliation(s)
- Amanda K.E. Hornsby
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Luke Buntwal
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Maria Carla Carisi
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Vanessa V. Santos
- Biomedical Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Fionnuala Johnston
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Luke D. Roberts
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Martina Sassi
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Mathieu Mequinion
- Biomedical Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Romana Stark
- Biomedical Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Alex Reichenbach
- Biomedical Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Sarah H. Lockie
- Biomedical Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Mario Siervo
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- School of Life Sciences, Queen's Medical Centre, The University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Owain Howell
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Alwena H. Morgan
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Timothy Wells
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Zane B. Andrews
- Biomedical Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - David J. Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jeffrey S. Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
- Corresponding author
| |
Collapse
|
10
|
Su M, Yan M, Yao J, Fang Y, Jin H, Gong Y. Unacylated Ghrelin Regulates Glucose-Sensitive Neurons Activity and Glycolipid Metabolism via Orexin-A Neurons in the Lateral Hypothalamic Area. Horm Metab Res 2020; 52:747-754. [PMID: 32731263 DOI: 10.1055/a-1207-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of the study was to investigate the regulatory actions of unacylated ghrelin (UAG) on glucose-sensitive (GS) neurons and glycolipid metabolism in the lateral hypothalamus area (LHA) and its involvement with orexin-A-immunopositive neurons. The effects of UAG administered into the LHA on GS neurons discharges and glycolipid metabolism were detected by single neuron discharge recording, biochemical index analysis and quantitative real-time PCR; the level of c-fos protein in orexin-A-immunopositive neurons was observed using immunofluorescence staining. UAG microinjected into the LHA activated glucose-inhibited neurons, which were partially blocked by pre-administration of anti-orexin-A antibody in the LHA. Furthermore, UAG microinjected into the LHA significantly reduced serum triglycerides (TG), total cholesterol, low-density lipoprotein cholesterol, blood glucose, insulin and hepatic TG levels, while elevated serum high-density lipoprotein cholesterol levels. UAG elevated the mRNA expression of carnitine palmitoyltransferase-1 and reduced the mRNA expression of acetyl-CoA carboxylase-1 in the liver. The above-mentioned effects of UAG were partially blocked by pre-administration of anti-orexin-A antibody. The expressions of orexin-A and c-fos were observed in the LHA. After UAG injection into the LHA, some neurons showed double labeling, and the percentage of double-labeled orexin-A/c-fos neurons in orexin-A-immunopositive neurons increased significantly. UAG in the LHA regulates glycolipid metabolism by activating orexin-A-immunopositive neurons in the LHA.
Collapse
Affiliation(s)
- Manqing Su
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meixing Yan
- Qingdao Women and Children's Hospital, Qingdao, China
| | - Jiatong Yao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanpeng Fang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hong Jin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Unexpected Association of Desacyl-Ghrelin with Physical Activity and Chronic Food Restriction: A Translational Study on Anorexia Nervosa. J Clin Med 2020; 9:jcm9092782. [PMID: 32872151 PMCID: PMC7565884 DOI: 10.3390/jcm9092782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 01/20/2023] Open
Abstract
Anorexia nervosa (AN) is a severe metabopsychiatric disorder characterised by caloric intake restriction and often excessive physical exercise. Our aim is to assess in female AN patients and in a rodent model, the co-evolution of physical activity and potential dysregulation of acyl—(AG) and desacyl—(DAG) ghrelin plasma concentrations during denutrition and weight recovery. AN inpatients were evaluated at inclusion (T0, n = 29), half—(T1) and total (T2) weight recovery, and one month after discharge (T3, n = 13). C57/Bl6 mice with access to a running wheel, were fed ad libitum or submitted to short—(15 days) or long—(50 days) term quantitative food restriction, followed by refeeding (20 days). In AN patients, AG and DAG rapidly decreased during weight recovery (T0 to T2), AG increased significantly one-month post discharge (T3), but only DAG plasma concentrations at T3 correlated negatively with BMI and positively with physical activity. In mice, AG and DAG both increased during short- and long-term food restriction. After 20 days of ad libitum feeding, DAG was associated to persistence of exercise alteration. The positive association of DAG with physical activity during caloric restriction and after weight recovery questions its role in the adaptation mechanisms to energy deprivation that need to be considered in recovery process in AN.
Collapse
|
12
|
Dos-Santos RC, Reis LC, Perello M, Ferguson AV, Mecawi AS. The actions of ghrelin in the paraventricular nucleus: energy balance and neuroendocrine implications. Ann N Y Acad Sci 2019; 1455:81-97. [PMID: 31008525 DOI: 10.1111/nyas.14087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
Ghrelin is a peptide mainly produced and secreted by the stomach. Since its discovery, the impact of ghrelin on the regulation of food intake has been the most studied function of this hormone; however, ghrelin affects a wide range of physiological systems, many of which are controlled by the hypothalamic paraventricular nucleus (PVN). Several pathways may mediate the effects of ghrelin on PVN neurons, such as direct or indirect effects mediated by circumventricular organs and/or the arcuate nucleus. The ghrelin receptor is expressed in PVN neurons, and the peripheral or intracerebroventricular administration of ghrelin affects PVN neuronal activity. Intra-PVN application of ghrelin increases food intake and decreases fat oxidation, which chronically contribute to the increased adiposity. Additionally, ghrelin modulates the neuroendocrine axes controlled by the PVN, increasing the release of vasopressin and oxytocin by magnocellular neurons and corticotropin-releasing hormone by neuroendocrine parvocellular neurons, while possibly inhibiting the release of thyrotropin-releasing hormone. Thus, the PVN is an important target for the actions of ghrelin. Our review discusses the mechanisms of ghrelin actions in the PVN, and its potential implications for energy balance, neuroendocrine, and integrative physiological control.
Collapse
Affiliation(s)
- Raoni C Dos-Santos
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Luís C Reis
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, Argentina
| | - Alastair V Ferguson
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Dos-Santos RC, Grover HM, Reis LC, Ferguson AV, Mecawi AS. Electrophysiological Effects of Ghrelin in the Hypothalamic Paraventricular Nucleus Neurons. Front Cell Neurosci 2018; 12:275. [PMID: 30210300 PMCID: PMC6121211 DOI: 10.3389/fncel.2018.00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/07/2018] [Indexed: 12/05/2022] Open
Abstract
The paraventricular nucleus (PVN) is involved in the control of sympathetic tone and the secretion of hormones, both functions known to be influenced by ghrelin, suggesting direct effect of ghrelin in this nucleus. However, the effects of ghrelin on the excitability of different PVN neuronal populations have not been demonstrated. This study assessed the effects of ghrelin on the activity of PVN neurons, correlating the responses to subpopulations of PVN neurons. We used a 64 multielectrode array to examine the effects of ghrelin administration on extracellular spike frequency in PVN neurons recorded in brain slices obtained from male Sprague-Dawley rats. Bath administration of 10 nM ghrelin increased (29/97, 30%) or decreased (37/97, 38%) spike frequency in PVN neurons. The GABAA and glutamate receptors antagonists abolish the decrease in spike frequency, without changes in the proportion of increases in spike frequency (23/53, 43%) induced by ghrelin. The results indicate a direct effect of ghrelin increasing PVN neurons activity and a synaptic dependent effect decreasing PVN neurons activity. The patch clamp recordings showed similar proportions of PVN neurons influenced by 10 nM ghrelin (33/95, 35% depolarized; 29/95, 30% hyperpolarized). Using electrophysiological fingerprints to identify specific subpopulations of PVN neurons we observed that the majority of pre-autonomic neurons (11/18 -61%) were depolarized by ghrelin, while both neuroendocrine (29% depolarizations, 40% hyperpolarizations), and magnocellular neurons (29% depolarizations, 21% hyperpolarizations) showed mixed responses. Finally, to correlate the electrophysiological response and the neurochemical phenotype of PVN neurons, cell cytoplasm was collected after recordings and RT-PCR performed to assess the presence of mRNA for vasopressin, oxytocin, thyrotropin (TRH) and corticotropin (CRH) releasing hormones. The single-cell RT-PCR showed that most TRH-expressing (4/5) and CRH-expressing (3/4) neurons are hyperpolarized in response to ghrelin. In conclusion, ghrelin either directly increases or indirectly decreases the activity of PVN neurons, this suggests that ghrelin acts on inhibitory PVN neurons that, in turn, decrease the activity of TRH-expressing and CRH-expressing neurons in the PVN.
Collapse
Affiliation(s)
- Raoni C Dos-Santos
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Hanna M Grover
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Luís C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | | | - André S Mecawi
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil.,Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
AZP-531, an unacylated ghrelin analog, improves food-related behavior in patients with Prader-Willi syndrome: A randomized placebo-controlled trial. PLoS One 2018; 13:e0190849. [PMID: 29320575 PMCID: PMC5761957 DOI: 10.1371/journal.pone.0190849] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
Context and objective Prader-Willi syndrome (PWS) is characterized by early-onset hyperphagia and increased circulating levels of the orexigenic Acylated Ghrelin (AG) hormone with a relative deficit of Unacylated Ghrelin (UAG). AZP-531, a first-in-class UAG analog, was shown to inhibit the orexigenic effect of AG in animals, to improve glycemic control and decrease body weight in humans. We aimed to investigate the safety and efficacy of AZP-531 in patients with PWS for whom no approved treatment for hyperphagia is currently available. Methods and design Multi-center, randomized, double-blind, placebo-controlled trial. Forty-seven patients with genetically confirmed PWS and evidence of hyperphagia received daily subcutaneous injections of AZP-531 (3 and 4 mg for 50–70 kg and >70 kg body weight, respectively) or matching placebo for 14 days. Assessments included adverse events, vital signs, safety laboratory tests, the Hyperphagia Questionnaire (HQ), patient-reported appetite, body composition and glycemic measures. Results AZP-531 was well tolerated. There was a significant improvement with AZP-531 versus placebo in the mean total score, the 9-item score and the severity domain score of the HQ (p < .05). The highest reduction in the total and 9-item scores was observed in AZP-531 subjects with the highest hyperphagia score at baseline. Findings were supported by a reduction in appetite scores observed with AZP-531 only. Body weight did not change in both groups while a significant reduction in waist circumference and fat mass was observed only with AZP-531. AZP-531 significantly decreased post-prandial glucose levels in a baseline glucose dependent fashion. Conclusions AZP-531 may constitute a new treatment strategy to improve hyperphagia and metabolic issues in patients with PWS. These findings support further investigation in longer-term clinical trials.
Collapse
|
15
|
Yu AP, Ugwu FN, Tam BT, Lee PH, Lai CW, Wong CSC, Siu PM. Ghrelin Axis Reveals the Interacting Influence of Central Obesity and Hypertension. Front Endocrinol (Lausanne) 2018; 9:534. [PMID: 30258404 PMCID: PMC6145011 DOI: 10.3389/fendo.2018.00534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
Objective: This study aimed to investigate how central obesity and hypertension modulate unacylated ghrelin (UnAG), acylated ghrelin (AG), obestatin, growth hormone (GH), and the ratios of UnAG/obestatin, AG/obestatin, and total ghrelin/obestatin. Methods: Circulatory abundances of UnAG, AG, obestatin and GH were determined in 387 Hong Kong Chinese female adults with age between 24 to 86 years based on a 2 × 2 factorial design of hypertension (blood pressure ≥140/90 mmHg) and central obesity (waist circumference or WC ≥80 cm). Participants were categorized as neither hypertensive nor centrally obese (NHNO; n = 105), hypertensive but not centrally obese (HNO; n = 102), centrally obese but not hypertensive (NHO; n = 74) and hypertensive and centrally obese (NO; n = 106). Pearson's correlation analyses were performed to detect the association between the peptides examined with WC and blood pressure. The main and interaction effects of hypertension and central obesity were examined by generalized estimating equations analyses. Results: Correlation analyses revealed that systolic blood pressure was negatively correlated with AG/obestatin, UnAG/obestatin and total ghrelin/obestatin ratios, AG, total ghrelin, and GH, while diastolic blood pressure was negatively correlated with UnAG/obestatin, total ghrelin/obestatin ratios, and GH. WC was negatively correlated with AG/obestatin, UnAG/obestatin, and total ghrelin/obestatin ratios, UnAG, AG, total ghrelin, GH, and obestatin. Interaction effects of hypertension and central obesity were observed on UnAG/obestatin, AG/obestatin and total ghrelin/obestatin ratios, and obestatin. Obestatin in NHO group was significantly higher compared to NHNO and HO groups. UnAG/obestatin, AG/obestatin, and total ghrelin/obestatin ratios were higher in NHNO group compared to HNO and HO groups. Main effects of central obesity and hypertension were observed in UnAG, total ghrelin and GH. The HO group manifested the lowest level of UnAG, total ghrelin and GH among all the groups studied. Main effect of hypertension was observed on AG, suggesting that hypertensive individuals exhibited lower levels of AG regardless of central obesity. Conclusion: Circulatory ghrelin gene products and GH exhibit different modes of modulation in response to the co-manifestation of multiple cardiovascular risk factors compared with a single risk factor alone.
Collapse
Affiliation(s)
- Angus P. Yu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Felix N. Ugwu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bjorn T. Tam
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada
| | - Paul H. Lee
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Christopher W. Lai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Cesar S. C. Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Parco M. Siu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- *Correspondence: Parco M. Siu
| |
Collapse
|
16
|
Cleverdon ER, McGovern-Gooch KR, Hougland JL. The octanoylated energy regulating hormone ghrelin: An expanded view of ghrelin's biological interactions and avenues for controlling ghrelin signaling. Mol Membr Biol 2017; 33:111-124. [PMID: 29143554 DOI: 10.1080/09687688.2017.1388930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ghrelin is a small peptide hormone that requires a unique post-translational modification, serine octanoylation, to bind and activate the GHS-R1a receptor. Initially demonstrated to stimulate hunger and appetite, ghrelin-dependent signaling is implicated in a variety of neurological and physiological processes influencing diseases such as diabetes, obesity, and Prader-Willi syndrome. In addition to its cognate receptor, recent studies have revealed ghrelin interacts with a range of binding partners within the bloodstream. Defining the scope of ghrelin's interactions within the body, understanding how these interactions work in concert to modulate ghrelin signaling, and developing molecular tools for controlling ghrelin signaling are essential for exploiting ghrelin for therapeutic effect. In this review, we discuss recent findings regarding the biological effects of ghrelin signaling, outline binding partners that control ghrelin trafficking and stability in circulation, and summarize the current landscape of inhibitors targeting ghrelin octanoylation.
Collapse
Affiliation(s)
| | | | - James L Hougland
- a Department of Chemistry , Syracuse University , Syracuse , NY , USA
| |
Collapse
|
17
|
Abstract
Ghrelin and motilin are released from gastrointestinal endocrine cells during hunger, to act through G protein-coupled receptors that have closely related amino acid sequences. The actions of ghrelin are more complex than motilin because ghrelin also exists outside the GI tract, it is processed to des-acyl ghrelin which has activity, ghrelin can exist in truncated forms and retain activity, the ghrelin receptor can have constitutive activity and is subject to biased agonism and finally additional ghrelin-like and des-acyl ghrelin receptors are proposed. Both ghrelin and motilin can stimulate gastric emptying, acting via different pathways, perhaps influenced by biased agonism at the receptors, but research is revealing additional pathways of activity. For example, it is becoming apparent that reduction of nausea may be a key therapeutic target for ghrelin receptor agonists and perhaps for compounds that modulate the constitutive activity of the ghrelin receptor. Reduction of nausea may be the mechanism through which gastroparesis symptoms are reduced. Intriguingly, a potential ability of motilin to influence nausea is also becoming apparent. Ghrelin interacts with digestive function through its effects on appetite, and ghrelin antagonists may have a place in treating Prader-Willi syndrome. Unlike motilin, ghrelin receptor agonists also have the potential to treat constipation by acting at the lumbosacral defecation centres. In conclusion, agonists of both ghrelin and motilin receptors hold potential as treatments for specific subsets of digestive system disorders.
Collapse
|
18
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
19
|
Labarthe A, Tolle V. [Ghrelin: a gastric hormone at the crossroad between growth and appetite regulation]. Biol Aujourdhui 2017; 210:237-257. [PMID: 28327282 DOI: 10.1051/jbio/2016027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Ghrelin is a 28 amino acid peptide hormone synthesized within the gastrointestinal tract. Initially identified as the endogenous ligand of the GHS-R1a (Growth Hormone Secretagogue Receptor 1a), ghrelin is a powerful stimulator of growth hormone (GH) secretion. At the crossroad between nutrition, growth and long-term energy metabolism, ghrelin also plays a unique role as the first identified gastric hormone increasing appetite and adiposity. However, the role of the ghrelin/GHS-R system in the physiology of growth, feeding behaviour and energy homeostasis needs to be better understood. Utilization of pharmacological tools and complementary animal models with deficiency in preproghrelin, ghrelin-O-acyl-transferase (GOAT - the enzyme that acylates ghrelin -) or GHS-R in situations of chronic undernutrition or high fat diet gives a more precise overview of the role of ghrelin in the pathophysiology of eating and metabolic disorders.
Collapse
|
20
|
Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Front Endocrinol (Lausanne) 2017; 8:51. [PMID: 28377744 PMCID: PMC5359311 DOI: 10.3389/fendo.2017.00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
| | - Luis Miguel García-Segura
- Laboratory of Neuroactive Steroids, Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
21
|
Unacylated ghrelin analog prevents myocardial reperfusion injury independently of permeability transition pore. Basic Res Cardiol 2016; 112:4. [PMID: 27995363 DOI: 10.1007/s00395-016-0595-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
Reperfusion injury is responsible for an important part of myocardial infarct establishment due notably to triggering cardiomyocytes death at the first minutes of reperfusion. AZP-531 is an optimized analog of unacylated ghrelin currently in clinical development in several metabolic diseases. We investigated a potential cardioprotective effect of AZP-531 in ischemia/reperfusion (IR) and the molecular underlying mechanism(s) involved in this protection. In vivo postconditioning with AZP-531 in C57BL6 mouse IR model decreased infarct size. Western blot analysis on areas at risk from the different mouse groups showed that AZP-531 activates Akt, ERK1-2 as well as S6 and 4EBP1, mTORC1 effectors. We also showed an inhibition of caspase 3 cleavage and Bax translocation to the mitochondria. AZP-531 also stimulated the expression of antioxidants and was capable of decreasing mitochondrial H2O2 production, contributing to the reduction of ROS accumulation. AZP-531 exhibits cardioprotective effect when administrated for postconditioning in C57BL6 mouse IR model. Treatment with AZP-531 rescued the myocardium from cell death at early reperfusion by stimulating protein synthesis, inhibiting Bax/caspase 3-induced apoptosis as well as ROS accumulation and oxidative stress-induced necrosis. AZP-531 may prove useful in the treatment of IR injury.
Collapse
|
22
|
Hassouna R, Labarthe A, Tolle V. Hypothalamic regulation of body growth and appetite by ghrelin-derived peptides during balanced nutrition or undernutrition. Mol Cell Endocrinol 2016; 438:42-51. [PMID: 27693419 DOI: 10.1016/j.mce.2016.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022]
Abstract
Among the gastrointestinal hormones that regulate food intake and energy homeostasis, ghrelin plays a unique role as the first one identified to increases appetite and stimulate GH secretion. This review highlights the latest mechanism by which ghrelin modulates body growth, appetite and energy metabolism by exploring pharmacological actions of the hormone and consequences of genetic or pharmacological blockade of the ghrelin/GHS-R (Growth Hormone Secretagogue Receptor) system on physiological responses in specific nutritional situations. Within the hypothalamus, novel mechanisms of action of this hormone involve its interaction with other ghrelin-derived peptides, such as desacyl ghrelin and obestatin, which are thought to act as functional ghrelin antagonists, and possible modulation of the GHS-R with other G-protein coupled receptors. During chronic undernutrition such as anorexia nervosa, variations of ghrelin-derived peptides may be an adaptative metabolic response to maintain normal glycemic control. Interestingly, some of ghrelin's metabolic actions are thought to be relayed through modulation of GH, an anabolic and hyperglycemic agent.
Collapse
Affiliation(s)
- Rim Hassouna
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France; Naomi Berrie Diabetes Center, Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alexandra Labarthe
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France
| | - Virginie Tolle
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France.
| |
Collapse
|
23
|
McGovern-Gooch KR, Rodrigues T, Darling JE, Sieburg MA, Abizaid A, Hougland JL. Ghrelin Octanoylation Is Completely Stabilized in Biological Samples by Alkyl Fluorophosphonates. Endocrinology 2016; 157:4330-4338. [PMID: 27623288 DOI: 10.1210/en.2016-1657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ghrelin is a peptide hormone involved in multiple physiological processes related to energy homeostasis. This hormone features a unique posttranslational serine octanoylation modification catalyzed by the enzyme ghrelin O-acyltransferase, with serine octanoylation essential for ghrelin to bind and activate its cognate receptor. Ghrelin deacylation rapidly occurs in circulation, with both ghrelin and desacyl ghrelin playing important roles in biological signaling. Understanding the regulation and physiological impact of ghrelin signaling requires the ability to rapidly protect ghrelin from deacylation in biological samples such as blood serum or cell lysates to preserve the relative concentrations of ghrelin and desacyl ghrelin. In in vitro ghrelin O-acyltransferase activity assays using insect microsomal protein fractions and mammalian cell lysate and blood serum, we demonstrate that alkyl fluorophosphonate treatment provides rapid, complete, and long-lasting protection of ghrelin acylation against serine ester hydrolysis without interference in enzyme assay or ELISA analysis. Our results support alkyl fluorophosphonate treatment as a general tool for stabilizing ghrelin and improving measurement of ghrelin and desacyl ghrelin concentrations in biochemical and clinical investigations and suggest current estimates for active ghrelin concentration and the ghrelin to desacyl ghrelin ratio in circulation may underestimate in vivo conditions.
Collapse
Affiliation(s)
- Kayleigh R McGovern-Gooch
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| | - Trevor Rodrigues
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| | - Joseph E Darling
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| | - Michelle A Sieburg
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| | - Alfonso Abizaid
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| | - James L Hougland
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| |
Collapse
|
24
|
Effects of central irisin administration on the uncoupling proteins in rat brain. Neurosci Lett 2016; 618:6-13. [DOI: 10.1016/j.neulet.2016.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/17/2016] [Accepted: 02/25/2016] [Indexed: 01/28/2023]
|
25
|
Fernandez G, Cabral A, Cornejo MP, De Francesco PN, Garcia-Romero G, Reynaldo M, Perello M. Des-Acyl Ghrelin Directly Targets the Arcuate Nucleus in a Ghrelin-Receptor Independent Manner and Impairs the Orexigenic Effect of Ghrelin. J Neuroendocrinol 2016; 28:12349. [PMID: 26661382 DOI: 10.1111/jne.12349] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/12/2015] [Accepted: 12/06/2015] [Indexed: 12/16/2022]
Abstract
Ghrelin is a stomach-derived octanoylated peptide hormone that plays a variety of well-established biological roles acting via its specific receptor known as growth hormone secretagogue receptor (GHSR). In plasma, a des-octanoylated form of ghrelin, named des-acyl ghrelin (DAG), also exists. DAG is suggested to be a signalling molecule that has specific targets, including the brain, and regulates some physiological functions. However, no specific receptor for DAG has been reported until now, and, consequently, the potential role of DAG as a hormone has remained a matter of debate. In the present study, we show that DAG specifically binds to and acts on a subset of arcuate nucleus (ARC) cells in a GHSR-independent manner. ARC cells labelled by a DAG fluorescent tracer include the neuropeptide Y (NPY) and non-NPY neurones. Given the well-established role of the ARC in appetite regulation, we tested the effect of centrally administered DAG on food intake. We found that DAG failed to affect dark phase feeding, as well as food intake, after a starvation period; however, it impaired the orexigenic actions of peripherally administered ghrelin. Thus, we conclude that DAG directly targets ARC neurones and antagonises the orexigenic effects of peripherally administered ghrelin.
Collapse
Affiliation(s)
- G Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - A Cabral
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - M P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - P N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - G Garcia-Romero
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - M Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - M Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| |
Collapse
|
26
|
Abstract
The gastrointestinal tract is the major source of the related hormones ghrelin and motilin, which act on structurally similar G protein-coupled receptors. Nevertheless, selective receptor agonists are available. The primary roles of endogenous ghrelin and motilin in the digestive system are to increase appetite or hedonic eating (ghrelin) and initiate phase III of gastric migrating myoelectric complexes (motilin). Ghrelin and motilin also both inhibit nausea. In clinical trials, the motilin receptor agonist camicinal increased gastric emptying, but at lower doses reduced gastroparesis symptoms and improved appetite. Ghrelin receptor agonists have been trialled for the treatment of diabetic gastroparesis because of their ability to increase gastric emptying, but with mixed results; however, relamorelin, a ghrelin agonist, reduced nausea and vomiting in patients with this disorder. Treatment of postoperative ileus with a ghrelin receptor agonist proved unsuccessful. Centrally penetrant ghrelin receptor agonists stimulate defecation in animals and humans, although ghrelin itself does not seem to control colorectal function. Thus, the most promising uses of motilin receptor agonists are the treatment of gastroparesis or conditions with slow gastric emptying, and ghrelin receptor agonists hold potential for the reduction of nausea and vomiting, and the treatment of constipation. Therapeutic, gastrointestinal roles for receptor antagonists or inverse agonists have not been identified.
Collapse
|
27
|
Chan YL, Saad S, Simar D, Oliver B, McGrath K, Reyk DV, Bertrand PP, Gorrie C, Pollock C, Chen H. Short term exendin-4 treatment reduces markers of metabolic disorders in female offspring of obese rat dams. Int J Dev Neurosci 2015; 46:67-75. [PMID: 26287659 DOI: 10.1016/j.ijdevneu.2015.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Maternal obesity imposes significant health risks in the offspring including diabetes and dyslipidemia. We previously showed that the hypoglycaemic agent exendin-4 (Ex-4) administered from weaning can reverse the maternal impact of 'transmitted disorders' in such offspring. However daily injection for six-weeks was required and the beneficial effect may lapse upon drug withdrawal. This study aimed to investigate whether short term Ex-4 treatment during suckling period in a rodent model can reverse transmitted metabolic disorders due to maternal obesity. METHODS Maternal obesity was induced in female Sprague Dawley rats by high-fat diet feeding for 6 weeks, throughout gestation and lactation. Female offspring were treated with Ex-4 (5μg/kg/day) between postnatal day (P) 4 and 14. Female offspring were harvested at weaning (P20). Lipid and glucose metabolic markers were measured in the liver and fat. Appetite regulators were measured in the plasma and hypothalamus. RESULTS Maternal obesity significantly increased body weight, fat mass, and liver weight in the offspring. There was an associated inhibition of peroxisomal proliferator activated receptor gamma coactivator 1α (PGC1α), increased fatty acid synthase (FASN) expression in the liver, and reduced adipocyte triglyceride lipase (ATGL) expression. It also increased the plasma gut hormone ghrelin and reduced glucagon-like peptide-1. Ex-4 treatment partially reversed the maternal impact on adiposity and impaired lipid metabolism in the offspring, with increased liver PGC1α and inhibition of FASN mRNA expression. Ex-4 treatment also increased the expression of a novel fat depletion gene a2-zinc-glycoprotein 1 in the fat tissue. CONCLUSION Short term Ex-4 treatment during the suckling period significantly improved the metabolic profile in the offspring from the obese mothers at weaning. Long-term studies are needed to follow such offspring to adulthood to examine the sustained effects of Ex-4 in preventing the development of metabolic disease.
Collapse
Affiliation(s)
- Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Sonia Saad
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Department of Medicine, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia
| | - David Simar
- Inflammation and Infection Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - David van Reyk
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Paul P Bertrand
- School of Medical Sciences, RMIT University, VIC, 3001, Australia
| | - Cathy Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Carol Pollock
- Department of Medicine, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
28
|
Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice. Pflugers Arch 2015; 467:2555-69. [PMID: 26228926 DOI: 10.1007/s00424-015-1721-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/21/2015] [Accepted: 07/13/2015] [Indexed: 01/04/2023]
Abstract
Impairment of insulin signaling in skeletal muscle detrimentally affects insulin-stimulated disposal of glucose. Restoration of insulin signaling in skeletal muscle is important as muscle is one of the major sites for disposal of blood glucose. Recently, unacylated ghrelin (UnAG) has received attention in diabetic research due to its favorable actions on improving glucose tolerance, glycemic control, and insulin sensitivity. The investigation of UnAG has entered phase Ib clinical trial in type 2 diabetes and phase II clinical trial in hyperphagia in Prader-Willi syndrome. Nonetheless, the precise mechanisms responsible for the anti-diabetic actions of UnAG remain incompletely understood. In this study, we examined the effects of UnAG on restoring the impaired insulin signaling in skeletal muscle of db/db diabetic mice. Our results demonstrated that UnAG effectively restored the impaired insulin signaling in diabetic muscle. UnAG decreased insulin receptor substrate (IRS) phosphorylation, increased protein kinase B (Akt) phosphorylation, and, hence, suppressed mTOR signaling. Consequently, UnAG enhanced Glut4 localization and increased PDH activity in the diabetic skeletal muscle. Intriguingly, our data indicated that UnAG normalized the suppressed autophagic signaling in diabetic muscle. In conclusion, our findings illustrated that UnAG restored the impaired insulin and autophagic signaling in skeletal muscle of diabetic mice, which are valuable to understand the underlying mechanisms of the anti-diabetic action of UnAG at peripheral skeletal muscle level.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To discuss recent research on the role of ghrelin in the regulation of carbohydrate and lipid metabolism in the context of its wider role in regulating energy balance. RECENT FINDINGS Ghrelin possesses a range of centrally and peripherally mediated metabolic actions influencing insulin glucose homeostasis and fatty acid metabolism and appetite. Although acyl ghrelin was previously thought to be the active hormone, recent evidence suggests that des-acyl ghrelin also possesses activity, and the enzyme ghrelin-O-acyl transferase regulates their interconversion. In partnership with insulin and leptin, ghrelin defends against energy deficit by enhancing hunger, conserving carbohydrate and promoting fat oxidation. In the postprandial state, it contributes to satiety, energy storage and favours glucose oxidation. New research suggests a range of new roles including addictive behaviours, cardiovascular protection, neuroprotection and regeneration and perhaps the ageing process. SUMMARY Ghrelin functions primarily as a short-term metabolic switch at the onset of fasting, gearing the fuel economy away from glucose uptake, conserving glucose for vital functions, favouring fatty acid oxidation and triggering food-seeking behaviour. The ghrelin system is a potential target for a range of pharmacological interventions, but its pleiotropic nature makes selective treatments challenging.
Collapse
Affiliation(s)
- Jonathan Pinkney
- Centre for Clinical Trials and Population Studies, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
| |
Collapse
|