1
|
Gamboa M, Gotoh Y, Doloiras-Laraño A, Watanabe K. Response of wild aquatic insect communities to thermal variation through comparative landscape transcriptomics. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22137. [PMID: 39137227 DOI: 10.1002/arch.22137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Fluctuations in temperature are recognized as a potent driver of selection pressure, fostering genomic variations that are crucial for the adaptation and survival of organisms under selection. Notably, water temperature is a pivotal factor influencing aquatic organism persistence. By comprehending how aquatic organisms respond to shifts in water temperature, we can understand their potential physiological adaptations to environmental change in one or multiple species. This, in turn, contributes to the formulation of biologically relevant guidelines for the landscape scale transcriptome profile of organisms in lotic systems. Here, we investigated the distinct responses of seven stream stonefly species, collected from four geographical regions across Japan, to variations in temperature, including atmospheric and water temperatures. We achieved this by assessing the differences in gene expression through RNA-sequencing within individual species and exploring the patterns of community-genes among different species. We identified 735 genes that exhibited differential expressions across the temperature gradient. Remarkably, the community displayed expression levels differences of respiration and metabolic genes. Additionally, the diversity in molecular functions appeared to be linked to spatial variation, with water temperature differences potentially contributing to the overall functional diversity of genes. We found 22 community-genes with consistent expression patterns among species in response to water temperature variations. These genes related to respiration, metabolism and development exhibited a clear gradient providing robust evidence of divergent adaptive responses to water temperature. Our findings underscore the differential adaptation of stonefly species to local environmental conditions, suggesting that shared responses in gene expression may occur across multiple species under similar environmental conditions. This study emphasizes the significance of considering various species when assessing the impacts of environmental changes on aquatic insect communities and understanding potential mechanisms to cope with such changes.
Collapse
Affiliation(s)
- Maribet Gamboa
- Department of Ecology, Faculty of Science, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Yusuke Gotoh
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
| | | | - Kozo Watanabe
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
- Ehime University, Center Marine Environmental Studies (CMES), Matsuyama, Japan
| |
Collapse
|
2
|
DiLeo MF, Nonaka E, Husby A, Saastamoinen M. Effects of environment and genotype on dispersal differ across departure, transfer and settlement in a butterfly metapopulation. Proc Biol Sci 2022; 289:20220322. [PMID: 35673865 PMCID: PMC9174707 DOI: 10.1098/rspb.2022.0322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Active dispersal is driven by extrinsic and intrinsic factors at the three stages of departure, transfer and settlement. Most empirical studies capture only one stage of this complex process, and knowledge of how much can be generalized from one stage to another remains unknown. Here we use genetic assignment tests to reconstruct dispersal across 5 years and 232 habitat patches of a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We link individual dispersal events to weather, landscape structure, size and quality of habitat patches, and individual genotype to identify the factors that influence the three stages of dispersal and post-settlement survival. We found that nearly all tested factors strongly affected departure probabilities, but that the same factors explained very little variation in realized dispersal distances. Surprisingly, we found no effect of dispersal distance on post-settlement survival. Rather, survival was influenced by weather conditions, quality of the natal habitat patch, and a strong interaction between genotype and occupancy status of the settled habitat patch, with more mobile genotypes having higher survival as colonists rather than as immigrants. Our work highlights the multi-causality of dispersal and that some dispersal costs can only be understood by considering extrinsic and intrinsic factors and their interaction across the entire dispersal process.
Collapse
Affiliation(s)
- Michelle F. DiLeo
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, ON, Canada
| | - Etsuko Nonaka
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Vieira J, Freitas FCP, Cristino AS, Moda LMR, Martins JR, Bitondi MMG, Simões ZLP, Barchuk AR. miRNA-34 and miRNA-210 target hexamerin genes enhancing their differential expression during early brain development of honeybee (Apis mellifera) castes. INSECT MOLECULAR BIOLOGY 2021; 30:594-604. [PMID: 34309096 DOI: 10.1111/imb.12728] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
During the honeybee larval stage, queens develop larger brains than workers, with morphological differentiation appearing at the fourth larval phase (L4), just after a boost in nutritional difference both prospective females experience. The molecular promoters of this caste-specific brain development are already ongoing in previous larval phases. Transcriptomic analyses revealed a set of differentially expressed genes in the L3 brains of queens and workers, which represents the early molecular response to differential feeding females receive during larval development. Three genes of this set, hex70b, hex70c and hex110, are more highly transcribed in the brain of workers than in queens. The microRNAs miR-34, miR-210 and miR-317 are in higher levels in the queens' brain at the same phase of larval development. Here, we tested the hypothesis that the brain of workers expresses higher levels of hexamerins than that of queens during key phases of larval development and that this differential hexamerin genes expression is further enhanced by the repressing activity of miR-34, miR-210 and miR-317. Our transcriptional analyses showed that hex70b, hex70c and hex110 genes are differentially expressed in the brain of L3 and L4 larval phases of honeybee queens and workers. In silico reconstructed miRNA-mRNA interaction networks were validated using luciferase assays, which showed miR-34 and miR-210 negatively regulate hex70b and hex110 genes by directly and redundantly binding their 3'UTR (untranslated region) sequences. Taken together, our results suggest that miR-34 and miR-210 act together promoting differential brain development in honeybee castes by downregulating the expression of the putative antineurogenic hexamerin genes hex70b and hex110.
Collapse
Affiliation(s)
- J Vieira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - F C P Freitas
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A S Cristino
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - L M R Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - J R Martins
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - M M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Z L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A R Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
4
|
Wang Z, Cong H. Antagonistic pleiotropy can promote adaptation to patchy environments. Evolution 2020; 75:197-199. [PMID: 33215705 DOI: 10.1111/evo.14133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/08/2020] [Indexed: 11/29/2022]
Abstract
How do gene variants with opposing effects on fitness in juvenile and adult insects perform in different ecological settings? Marden et al. used alleles of two antagonistic genes involved in metabolism and oxygen sensing in the Glanville fritillary butterfly as a model to demonstrate how these genes can antagonistically affect larval development and the adaptation of adults to different landscapes. This paper provides a case study for understanding how antagonistic pleiotropy can contribute to species adaption in patchy environments.
Collapse
Affiliation(s)
- Zinan Wang
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824
| | - Haosu Cong
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
5
|
Gamboa M. Hemocyanin and hexamerins expression in response to hypoxia in stoneflies (Plecoptera, Insecta). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21743. [PMID: 32979236 DOI: 10.1002/arch.21743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Many freshwater ecosystems worldwide undergo hypoxia events that can trigger physiological, behavioral, and molecular responses in many organisms. Among such molecular responses, the regulation of the hemocyanin (Hc) protein expression which plays a major role in oxygen transportation within aquatic insects remains poorly understood. The stoneflies (Plecoptera) are aquatic insects that possess a functional Hc in the hemolymph similar to crustacean that co-occurs with a nonfunctional Hc protein, hexamerins (Hx). However, the role of both proteins during hypoxia remains undetermined. Here, we evaluated the effect of hypoxia on the expression of Hc and Hx proteins via a comparison between hypoxia and normoxia amino acid sequence variation and protein expression pattern within 23 stonefly species. We induced short-term hypoxia in wild-caught stoneflies species, sequenced the target region of Hc and Hx by complementary DNA synthesis, characterized the protein biochemistry using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, ultrafiltration, and polarographic fluorometric method, and amplified the genome region of the hypoxia-inducible factor (HIF) transcriptional response element that regulated Hc using genome walking library approach. We found a lack of Hc expression in all examined species during hypoxia conditions, despite recognition of the HIF gene region as a possible regulatory factor of Hc, suggesting that compensatory responses as metabolic changes or behavioral tracheal movements to enhance respiratory efficiency could be possible mechanics to compensate for hypoxia. A short Hc-like novel isoform was detected instead in these 23 species, possibly due to either protein degradation or alternative splicing mechanisms, suggesting that the protein could be performing a different function other than oxygen transportation. Hx during hypoxia was expressed and exhibited species-level amino acid changes, highlighting a possible role during hypoxia. Our results demonstrate that hypoxia could enable a similar potential adaptive response of multiple species regarding specific physiological requirements, thereby shedding light on community behavior in stress environments that may help us to improve conservation practices and biomonitoring.
Collapse
Affiliation(s)
- Maribet Gamboa
- Department of Civil and Environmental Engineering, Faculty of Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
6
|
Marden JH, Langford EA, Robertson MA, Fescemyer HW. Alleles in metabolic and oxygen-sensing genes are associated with antagonistic pleiotropic effects on life history traits and population fitness in an ecological model insect. Evolution 2020; 75:116-129. [PMID: 32895932 DOI: 10.1111/evo.14095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 01/02/2023]
Abstract
Genes with opposing effects on fitness at different life stages are the mechanistic basis for evolutionary theories of aging and life history. Examples come from studies of mutations in model organisms, but there is little knowledge of genetic bases of life history tradeoffs in natural populations. Here, we test the hypothesis that alleles affecting oxygen sensing in Glanville fritillary butterflies have opposing effects on larval versus adult fitness-related traits. Intermediate-frequency alleles in Succinate dehydrogenase d, and to a lesser extent Hypoxia inducible factor 1α, are associated in larvae with variation in metabolic rate and activation of the hypoxia inducible factor (HIF) pathway, which affects tracheal development and delivery of oxygen to adult flight muscles. A dominant Sdhd allele is likely to cause antagonistic pleiotropy for fitness through its opposing effects on larval metabolic and growth rate versus adult flight and dispersal, and may have additional effects arising from sensitivity to low-iron host plants. Prior results in Glanville fritillaries indicate that fitness of alleles in Sdhd and another antagonistically pleiotropic metabolic gene, Phosphoglucose isomerase, depend strongly on the size and distribution of host plant patches. Hence, these intermediate-frequency alleles are involved in ecoevolutionary dynamics involving life history tradeoffs.
Collapse
Affiliation(s)
- James H Marden
- Department of Biology, Pennsylvania State University.,Huck Institutes of the Life Sciences, Pennsylvania State University
| | | | | | | |
Collapse
|
7
|
Goossens S, Wybouw N, Van Leeuwen T, Bonte D. The physiology of movement. MOVEMENT ECOLOGY 2020; 8:5. [PMID: 32042434 PMCID: PMC7001223 DOI: 10.1186/s40462-020-0192-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/08/2020] [Indexed: 05/05/2023]
Abstract
Movement, from foraging to migration, is known to be under the influence of the environment. The translation of environmental cues to individual movement decision making is determined by an individual's internal state and anticipated to balance costs and benefits. General body condition, metabolic and hormonal physiology mechanistically underpin this internal state. These physiological determinants are tightly, and often genetically linked with each other and hence central to a mechanistic understanding of movement. We here synthesise the available evidence of the physiological drivers and signatures of movement and review (1) how physiological state as measured in its most coarse way by body condition correlates with movement decisions during foraging, migration and dispersal, (2) how hormonal changes underlie changes in these movement strategies and (3) how these can be linked to molecular pathways. We reveale that a high body condition facilitates the efficiency of routine foraging, dispersal and migration. Dispersal decision making is, however, in some cases stimulated by a decreased individual condition. Many of the biotic and abiotic stressors that induce movement initiate a physiological cascade in vertebrates through the production of stress hormones. Movement is therefore associated with hormone levels in vertebrates but also insects, often in interaction with factors related to body or social condition. The underlying molecular and physiological mechanisms are currently studied in few model species, and show -in congruence with our insights on the role of body condition- a central role of energy metabolism during glycolysis, and the coupling with timing processes during migration. Molecular insights into the physiological basis of movement remain, however, highly refractory. We finalise this review with a critical reflection on the importance of these physiological feedbacks for a better mechanistic understanding of movement and its effects on ecological dynamics at all levels of biological organization.
Collapse
Affiliation(s)
- Steven Goossens
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Dries Bonte
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Ovaskainen O, Saastamoinen M. Frontiers in Metapopulation Biology: The Legacy of Ilkka Hanski. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review of metapopulation biology has a special focus on Professor Ilkka Hanski's (1953–2016) research. Hanski made seminal contributions to both empirical and theoretical metapopulation biology throughout his scientific career. Hanski's early research focused on ecological aspects of metapopulation biology, in particular how the spatial structure of a landscape influences extinction thresholds and how habitat loss and fragmentation can result in extinction debt. Hanski then used the Glanville fritillary system as a natural laboratory within which he studied genetic and evolutionary processes, such as the influence of inbreeding on extinction risk and variation in selection for dispersal traits generated by landscape variation. During the last years of his career, Hanski's work was in the forefront of the rapidly developing field of eco-evolutionary dynamics. Hanski was a pioneer in showing how molecular-level underpinnings of trait variation can explain why evolutionary change can occur rapidly in natural populations and how these changes can subsequently influence ecological dynamics.
Collapse
Affiliation(s)
- Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, FI-00014 Helsinki, Finland;,
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, FI-00014 Helsinki, Finland;,
| |
Collapse
|
9
|
Pekny JE, Smith PB, Marden JH. Enzyme polymorphism, oxygen and injury: a lipidomic analysis of flight-induced oxidative damage in a succinate dehydrogenase d ( Sdhd)-polymorphic insect. ACTA ACUST UNITED AC 2018; 221:jeb.171009. [PMID: 29444838 DOI: 10.1242/jeb.171009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/04/2018] [Indexed: 12/19/2022]
Abstract
When active tissues receive insufficient oxygen to meet metabolic demand, succinate accumulates and has two fundamental effects: it causes ischemia-reperfusion injury while also activating the hypoxia-inducible factor pathway (HIF). The Glanville fritillary butterfly (Melitaea cinxia) possesses a balanced polymorphism in Sdhd, shown previously to affect HIF pathway activation and tracheal morphology and used here to experimentally test the hypothesis that variation in succinate dehydrogenase affects oxidative injury. We stimulated butterflies to fly continuously in a respirometer (3 min duration), which typically caused episodes of exhaustion and recovery, suggesting a potential for cellular injury from hypoxia and reoxygenation in flight muscles. Indeed, flight muscle from butterflies flown on consecutive days had lipidome profiles similar to those of rested paraquat-injected butterflies, but distinct from those of rested untreated butterflies. Many butterflies showed a decline in flight metabolic rate (FMR) on day 2, and there was a strong inverse relationship between the ratio of day 2 to day 1 FMR and the abundance of sodiated adducts of phosphatidylcholines and co-enzyme Q (CoQ). This result is consistent with elevation of sodiated lipids caused by disrupted intracellular ion homeostasis in mammalian tissues after hypoxia-reperfusion. Butterflies carrying the Sdhd M allele had a higher abundance of lipid markers of cellular damage, but the association was reversed in field-collected butterflies, where focal individuals typically flew for seconds at a time rather than continuously. These results indicate that Glanville fritillary flight muscles can be injured by episodes of high exertion, but injury severity appears to be determined by an interaction between SDH genotype and behavior (prolonged versus intermittent flight).
Collapse
Affiliation(s)
- Julianne E Pekny
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip B Smith
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA .,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Gamboa M, Tsuchiya MC, Matsumoto S, Iwata H, Watanabe K. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21422. [PMID: 28925517 DOI: 10.1002/arch.21422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proteome variation among natural populations along an environmental gradient may provide insights into how the biological functions of species are related to their local adaptation. We investigated protein expression in five stream stonefly species from four geographic regions along a latitudinal gradient in Japan with varying climatic conditions. The extracted proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization of time-of-flight (MALDI TOF/TOF), yielding 446 proteins. Low interspecies variation in the proteome profiles was observed among five species within geographical regions, presumably due to the co-occurring species sharing the environments. However, large spatial variations in protein expression were found among four geographic regions, suggesting strong regulation of protein expression in heterogeneous environments, where the spatial variations were positively correlated with water temperature. We identified 21 unique proteins expressed specifically in a geographical region and six common proteins expressed throughout all regions. In warmer regions, metabolic proteins were upregulated, whereas proteins related to cold stress, the photoperiod, and mating were downregulated. Oxygen-related and energy-production proteins were upregulated in colder regions with higher altitudes. Thus, our proteomic approach is useful for identifying and understanding important biological functions related to local adaptations by populations of stoneflies.
Collapse
Affiliation(s)
- Maribet Gamboa
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
| | - Maria Claret Tsuchiya
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Institute of Biological Sciences, University of the Philippines, Los Baños, Laguna, Philippines
| | - Suguru Matsumoto
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
11
|
Fountain T, Husby A, Nonaka E, DiLeo MF, Korhonen JH, Rastas P, Schulz T, Saastamoinen M, Hanski I. Inferring dispersal across a fragmented landscape using reconstructed families in the Glanville fritillary butterfly. Evol Appl 2017. [DOI: 10.1111/eva.12552] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Toby Fountain
- Department of Biosciences; University of Helsinki; Helsinki Finland
- Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Arild Husby
- Department of Biosciences; University of Helsinki; Helsinki Finland
| | - Etsuko Nonaka
- Department of Biosciences; University of Helsinki; Helsinki Finland
- Department of Biology; Lund University; Lund Sweden
| | | | - Janne H. Korhonen
- Department of Biosciences; University of Helsinki; Helsinki Finland
- Department of Computer Science; Aalto University; Aalto Finland
| | - Pasi Rastas
- Department of Biosciences; University of Helsinki; Helsinki Finland
- Department of Zoology; University of Cambridge; Cambridge UK
| | - Torsti Schulz
- Department of Biosciences; University of Helsinki; Helsinki Finland
| | | | - Ilkka Hanski
- Department of Biosciences; University of Helsinki; Helsinki Finland
| |
Collapse
|
12
|
Duplouy A, Wong SC, Corander J, Lehtonen R, Hanski I. Genetic effects on life-history traits in the Glanville fritillary butterfly. PeerJ 2017; 5:e3371. [PMID: 28560112 PMCID: PMC5446771 DOI: 10.7717/peerj.3371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/03/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Adaptation to local habitat conditions may lead to the natural divergence of populations in life-history traits such as body size, time of reproduction, mate signaling or dispersal capacity. Given enough time and strong enough selection pressures, populations may experience local genetic differentiation. The genetic basis of many life-history traits, and their evolution according to different environmental conditions remain however poorly understood. METHODS We conducted an association study on the Glanville fritillary butterfly, using material from five populations along a latitudinal gradient within the Baltic Sea region, which show different degrees of habitat fragmentation. We investigated variation in 10 principal components, cofounding in total 21 life-history traits, according to two environmental types, and 33 genetic SNP markers from 15 candidate genes. RESULTS We found that nine SNPs from five genes showed strong trend for trait associations (p-values under 0.001 before correction). These associations, yet non-significant after multiple test corrections, with a total number of 1,086 tests, were consistent across the study populations. Additionally, these nine genes also showed an allele frequency difference between the populations from the northern fragmented versus the southern continuous landscape. DISCUSSION Our study provides further support for previously described trait associations within the Glanville fritillary butterfly species across different spatial scales. Although our results alone are inconclusive, they are concordant with previous studies that identified these associations to be related to climatic changes or habitat fragmentation within the Åland population.
Collapse
Affiliation(s)
- Anne Duplouy
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| | - Swee C Wong
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.,Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rainer Lehtonen
- Institute of Biomedicine and Genome-Scale Biology Research Program, Biomedicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilkka Hanski
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Niitepõld K, Saastamoinen M. A Candidate Gene in an Ecological Model Species: Phosphoglucose Isomerase (Pgi) in the Glanville Fritillary Butterfly (Melitaea cinxia). ANN ZOOL FENN 2017. [DOI: 10.5735/086.054.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kristjan Niitepõld
- Metapopulation Research Centre, P.O. Box 65, FI-00014 University of Helsinki, Finland
| | - Marjo Saastamoinen
- Metapopulation Research Centre, P.O. Box 65, FI-00014 University of Helsinki, Finland
| |
Collapse
|
14
|
Ahola V, Wahlberg N, Frilander MJ. Butterfly Genomics: Insights from the Genome ofMelitaea cinxia. ANN ZOOL FENN 2017. [DOI: 10.5735/086.054.0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Virpi Ahola
- Department of Biosciences, P.O. Box 65, FI-00014 University of Helsinki, Finland
| | - Niklas Wahlberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Mikko J. Frilander
- Institute of Biotechnology, P.O. Box 56, FI-00014 University of Helsinki, Finland
| |
Collapse
|
15
|
Evans MJ, Banks SC, Driscoll DA, Hicks AJ, Melbourne BA, Davies KF. Short- and long-term effects of habitat fragmentation differ but are predicted by response to the matrix. Ecology 2017; 98:807-819. [PMID: 27987325 DOI: 10.1002/ecy.1704] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022]
Abstract
Habitat loss and fragmentation are major threats to biodiversity and ecosystem processes. Our current understanding of the impacts of habitat loss and fragmentation is based largely on studies that focus on either short-term or long-term responses. Short-term responses are often used to predict long-term responses and make management decisions. The lack of studies comparing short- and long-term responses to fragmentation means we do not adequately understand when and how well short-term responses can be extrapolated to predict long-term responses, and when or why they cannot. To address this gap, we used data from one of the world's longest-running fragmentation experiments, The Wog Wog Habitat Fragmentation Experiment. Using data for carabid beetles, we found that responses in the long term (more than 22 yr post-fragmentation ≈22 generations) often contrasted markedly with those in the short term (5 yr post-fragmentation). The total abundance of all carabids, species richness and the occurrence of six species declined in the short term in the fragments but increased over the long term. The occurrence of three species declined initially and continued to decline, whilst another species was positively affected initially but decreased in the long term. Species' responses to the matrix that surrounds the fragments strongly predicted both the direction (increase/decline in occurrence) and magnitude of their responses to fragmentation. Additionally, species' responses to the matrix were somewhat predicted by their preferences for different types of native habitat (open vs. shaded). Our study highlights the degree of the matrix's influence in fragmented landscapes, and how this influence can change over time. We urge caution in using short-term responses to forecast long-term responses in cases where the matrix (1) impacts species' responses to fragmentation (by isolating them, creating new habitat or altering fragment habitat) and (2) is likely to change through time.
Collapse
Affiliation(s)
- Maldwyn J Evans
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Sam C Banks
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Don A Driscoll
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, 3125, Australia
| | - Andrew J Hicks
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Brett A Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Kendi F Davies
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| |
Collapse
|
16
|
Woestmann L, Kvist J, Saastamoinen M. Fight or flight? - Flight increases immune gene expression but does not help to fight an infection. J Evol Biol 2016; 30:501-511. [PMID: 27864861 PMCID: PMC5347902 DOI: 10.1111/jeb.13007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life‐history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15‐min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight‐induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity‐related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight‐induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade‐off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up‐regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats.
Collapse
Affiliation(s)
- L Woestmann
- Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| | - J Kvist
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - M Saastamoinen
- Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Predictable allele frequency changes due to habitat fragmentation in the Glanville fritillary butterfly. Proc Natl Acad Sci U S A 2016; 113:2678-83. [PMID: 26903642 DOI: 10.1073/pnas.1600951113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Describing the evolutionary dynamics of now extinct populations is challenging, as their genetic composition before extinction is generally unknown. The Glanville fritillary butterfly has a large extant metapopulation in the Åland Islands in Finland, but declined to extinction in the nearby fragmented southwestern (SW) Finnish archipelago in the 20th century. We genotyped museum samples for 222 SNPs across the genome, including SNPs from candidate genes and neutral regions. SW Finnish populations had significantly reduced genetic diversity before extinction, and their allele frequencies gradually diverged from those in contemporary Åland populations over 80 y. We identified 15 outlier loci among candidate SNPs, mostly related to flight, in which allele frequencies have changed more than the neutral expectation. At outlier loci, allele frequencies in SW Finland shifted in the same direction as newly established populations deviated from old local populations in contemporary Åland. Moreover, outlier allele frequencies in SW Finland resemble those in fragmented landscapes as opposed to continuous landscapes in the Baltic region. These results indicate selection for genotypes associated with good colonization capacity in the highly fragmented landscape before the extinction of the populations. Evolutionary response to habitat fragmentation may have enhanced the viability of the populations, but it did not save the species from regional extinction in the face of severe habitat loss and fragmentation. These results highlight a potentially common situation in changing environments: evolutionary changes are not strong enough to fully compensate for the direct adverse effects of environmental change and thereby rescue populations from extinction.
Collapse
|
18
|
Kvist J, Mattila ALK, Somervuo P, Ahola V, Koskinen P, Paulin L, Salmela L, Fountain T, Rastas P, Ruokolainen A, Taipale M, Holm L, Auvinen P, Lehtonen R, Frilander MJ, Hanski I. Flight-induced changes in gene expression in the Glanville fritillary butterfly. Mol Ecol 2015; 24:4886-900. [DOI: 10.1111/mec.13359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Jouni Kvist
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
| | - Anniina L. K. Mattila
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Panu Somervuo
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Virpi Ahola
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Patrik Koskinen
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Lars Paulin
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Leena Salmela
- Department of Computer Science and Helsinki Institute for Information Technology HIIT; University of Helsinki; P.O. Box 68 (Gustaf Hällströmin katu 2b) Helsinki Finland
| | - Toby Fountain
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Pasi Rastas
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Annukka Ruokolainen
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Minna Taipale
- Science for Life Laboratory; Department of Biosciences and Nutrition; Karolinska Institutet (Hälsovägen 7); SE-14157 Huddinge Sweden
| | - Liisa Holm
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Petri Auvinen
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Rainer Lehtonen
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Mikko J. Frilander
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
| | - Ilkka Hanski
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| |
Collapse
|
19
|
Ahola V, Koskinen P, Wong SC, Kvist J, Paulin L, Auvinen P, Saastamoinen M, Frilander MJ, Lehtonen R, Hanski I. Temperature- and sex-related effects of serine protease alleles on larval development in the Glanville fritillary butterfly. J Evol Biol 2015; 28:2224-35. [PMID: 26337146 DOI: 10.1111/jeb.12745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/30/2015] [Accepted: 08/14/2015] [Indexed: 11/28/2022]
Abstract
The body reserves of adult Lepidoptera are accumulated during larval development. In the Glanville fritillary butterfly, larger body size increases female fecundity, but in males fast larval development and early eclosion, rather than large body size, increase mating success and hence fitness. Larval growth rate is highly heritable, but genetic variation associated with larval development is largely unknown. By comparing the Glanville fritillary population living in the Åland Islands in northern Europe with a population in Nantaizi in China, within the source of the post-glacial range expansion, we identified candidate genes with reduced variation in Åland, potentially affected by selection under cooler climatic conditions than in Nantaizi. We conducted an association study of larval growth traits by genotyping the extremes of phenotypic trait distributions for 23 SNPs in 10 genes. Three genes in clip-domain serine protease family were associated with larval growth rate, development time and pupal weight. Additive effects of two SNPs in the prophenoloxidase-activating proteinase-3 (ProPO3) gene, related to melanization, showed elevated growth rate in high temperature but reduced growth rate in moderate temperature. The allelic effects of the vitellin-degrading protease precursor gene on development time were opposite in the two sexes, one genotype being associated with long development time and heavy larvae in females but short development time in males. Sexually antagonistic selection is here evident in spite of sexual size dimorphism.
Collapse
Affiliation(s)
- V Ahola
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - P Koskinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - S C Wong
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - J Kvist
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - L Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - P Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - M Saastamoinen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - M J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - R Lehtonen
- Department of Biosciences, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program & Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - I Hanski
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Christie MR, Knowles LL. Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes. Evol Appl 2015; 8:454-63. [PMID: 26029259 PMCID: PMC4430769 DOI: 10.1111/eva.12255] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/16/2015] [Indexed: 01/16/2023] Open
Abstract
Corridors are frequently proposed to connect patches of habitat that have become isolated due to human-mediated alterations to the landscape. While it is understood that corridors can facilitate dispersal between patches, it remains unknown whether corridors can mitigate the negative genetic effects for entire communities modified by habitat fragmentation. These negative genetic effects, which include reduced genetic diversity, limit the potential for populations to respond to selective agents such as disease epidemics and global climate change. We provide clear evidence from a forward-time, agent-based model (ABM) that corridors can facilitate genetic resilience in fragmented habitats across a broad range of species dispersal abilities and population sizes. Our results demonstrate that even modest increases in corridor width decreased the genetic differentiation between patches and increased the genetic diversity and effective population size within patches. Furthermore, we document a trade-off between corridor quality and corridor design whereby populations connected by high-quality habitat (i.e., low corridor mortality) are more resilient to suboptimal corridor design (e.g., long and narrow corridors). The ABM also revealed that species interactions can play a greater role than corridor design in shaping the genetic responses of populations to corridors. These results demonstrate how corridors can provide long-term conservation benefits that extend beyond targeted taxa and scale up to entire communities irrespective of species dispersal abilities or population sizes.
Collapse
Affiliation(s)
- Mark R Christie
- Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA ; Department of Biological Sciences & Department of Forestry and Natural Resources, Purdue University West Lafayette, IN, USA
| | - L Lacey Knowles
- Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
21
|
Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P, Välimäki N, Paulin L, Kvist J, Wahlberg N, Tanskanen J, Hornett EA, Ferguson LC, Luo S, Cao Z, de Jong MA, Duplouy A, Smolander OP, Vogel H, McCoy RC, Qian K, Chong WS, Zhang Q, Ahmad F, Haukka JK, Joshi A, Salojärvi J, Wheat CW, Grosse-Wilde E, Hughes D, Katainen R, Pitkänen E, Ylinen J, Waterhouse RM, Turunen M, Vähärautio A, Ojanen SP, Schulman AH, Taipale M, Lawson D, Ukkonen E, Mäkinen V, Goldsmith MR, Holm L, Auvinen P, Frilander MJ, Hanski I. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat Commun 2014; 5:4737. [PMID: 25189940 PMCID: PMC4164777 DOI: 10.1038/ncomms5737] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/17/2014] [Indexed: 12/30/2022] Open
Abstract
Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393 Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n=31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n=31 for at least 140 My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths. Butterflies and moths (Lepidoptera) vary in chromosome number. Here, the authors sequence the genome of the Glanville fritillary butterfly, Melitaea cinxia, show it has the ancestral lepidopteran karyotype and provide insight into how chromosomal fusions have shaped karyotype evolution in butterflies and moths.
Collapse
Affiliation(s)
- Virpi Ahola
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2]
| | - Rainer Lehtonen
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [3] Institute of Biomedicine, University of Helsinki, FI-00014 Helsinki, Finland [4] Center of Excellence in Cancer Genetics, University of Helsinki, FI-00014 Helsinki, Finland [5] [6]
| | - Panu Somervuo
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [3]
| | - Leena Salmela
- Department of Computer Science &Helsinki Institute for Information Technology HIIT, University of Helsinki, FI-00014 Helsinki, Finland
| | - Patrik Koskinen
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pasi Rastas
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Niko Välimäki
- 1] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biomedicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jouni Kvist
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Niklas Wahlberg
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Jaakko Tanskanen
- 1] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [2] Biotechnology and Food Research, MTT Agrifood Research Finland, FI-31600 Jokioinen, Finland
| | - Emily A Hornett
- 1] Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK [2] Department of Biology, Pennsylvania State University, Pennsylvania 16802, USA
| | | | - Shiqi Luo
- College of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Zijuan Cao
- College of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Maaike A de Jong
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2] School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Anne Duplouy
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Rajiv C McCoy
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Kui Qian
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Wong Swee Chong
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Qin Zhang
- BioMediTech, University of Tampere, FI-33520 Tampere, Finland
| | - Freed Ahmad
- Department of Information Technology, University of Turku, FI-20014 Turku, Finland
| | - Jani K Haukka
- BioMediTech, University of Tampere, FI-33520 Tampere, Finland
| | - Aruj Joshi
- BioMediTech, University of Tampere, FI-33520 Tampere, Finland
| | - Jarkko Salojärvi
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Daniel Hughes
- 1] European Bioinformatics Institute, Hinxton CB10 1SD, UK [2] Baylor College of Medicine, Human Genome Sequencing Center, Houston, Texas 77030-3411, USA
| | - Riku Katainen
- 1] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biomedicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Esa Pitkänen
- 1] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biomedicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Johannes Ylinen
- Department of Computer Science &Helsinki Institute for Information Technology HIIT, University of Helsinki, FI-00014 Helsinki, Finland
| | - Robert M Waterhouse
- 1] Department of Genetic Medicine and Development, University of Geneva Medical School &Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Mikko Turunen
- Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland
| | - Anna Vähärautio
- 1] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [2] Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland [3] Science for Life Laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, SE-14183 Stockholm, Sweden
| | - Sami P Ojanen
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alan H Schulman
- 1] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [2] Biotechnology and Food Research, MTT Agrifood Research Finland, FI-31600 Jokioinen, Finland
| | - Minna Taipale
- 1] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [2] Science for Life Laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, SE-14183 Stockholm, Sweden
| | - Daniel Lawson
- European Bioinformatics Institute, Hinxton CB10 1SD, UK
| | - Esko Ukkonen
- Department of Computer Science &Helsinki Institute for Information Technology HIIT, University of Helsinki, FI-00014 Helsinki, Finland
| | - Veli Mäkinen
- Department of Computer Science &Helsinki Institute for Information Technology HIIT, University of Helsinki, FI-00014 Helsinki, Finland
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881-0816, USA
| | - Liisa Holm
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [3]
| | - Petri Auvinen
- 1] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [2]
| | - Mikko J Frilander
- 1] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [2]
| | - Ilkka Hanski
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|