1
|
Alhazmi AI, El-Refaei MF, Abdallah EAA. Protective effects of gallic acid against nickel-induced kidney injury: impact of antioxidants and transcription factor on the incidence of nephrotoxicity. Ren Fail 2024; 46:2344656. [PMID: 38685608 PMCID: PMC11062283 DOI: 10.1080/0886022x.2024.2344656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Nickel (Ni) is a common metal with a nephrotoxic effect, damaging the kidneys. This study investigated the mechanism by which gallic acid (GA) protects mice kidneys against renal damage induced by Nickel oxide nanoparticles (NiO-NPs). Forty male Swiss albino mice were randomly assigned into four groups, each consisting of ten mice (n = 10/group): Group I the control group, received no treatment; Group II, the GA group, was administrated GA at a dosage of 110 mg/kg/day body weight; Group III, the NiO-NPs group, received injection of NiO-NPs at a concentration of 20 mg/kg body weight for 10 consecutive days; Group IV, the GA + NiO-NPs group, underwent treatment with both GA and NiO-NPs. The results showed a significant increase in serum biochemical markers and a reduction in antioxidant activities. Moreover, levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), phosphorylated nuclear factor kappa B (p65), and protein carbonyl (PC) were significantly elevated in group III compared with group I. Furthermore, the western blot analysis revealed significant high NF-κB p65 expression, immunohistochemistry of the NF-κB and caspase-1 expression levels were significantly increased in group III compared to group I. Additionally, the histopathological inspection of the kidney in group III exhibited a substantial increase in extensive necrosis features compared with group I. In contrast, the concomitant coadministration of GA and NiO-NPs in group IV showed significant biochemical, antioxidant activities, immunohistochemical and histopathological improvements compared with group III. Gallic acid has a protective role against kidney dysfunction and renal damage in Ni-nanoparticle toxicity.
Collapse
Affiliation(s)
| | - Mohamed F. El-Refaei
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Biochemistry and Molecular Biology, Genetic Institute, Sadat City University, Sadat City, Egypt
| | - Eman A. A. Abdallah
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
2
|
Cui Y, Leng X, Zhao Y, Zhao Y, Wang Q. Effects of dietary Artemisia annua supplementation on growth performance, antioxidant capacity, immune function, and gut microbiota of geese. Poult Sci 2024; 103:103594. [PMID: 38479097 PMCID: PMC10950859 DOI: 10.1016/j.psj.2024.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/24/2024] Open
Abstract
This experiment aimed to study the effect of 1% Artemisia annua added to the diet on growth performance, antioxidant capacity, immunity and intestinal morphology, and gut microbiota of geese. Seventy-two 35-day-old male geese (Zi goose) with similar body weight were selected and randomly divided into 2 groups. Each treatment group of 36 geese was divided into 6 subgroups, each having 6 male geese. The experiment lasted for 21 d. Control group (CON) was fed a basal diet and the experimental group (AAL) was fed a basal diet + 1% Artemisia annua. BW, ADG, and ADFI of the AAL group increased (p < 0.05) and the FCR decreased (p < 0.05) compared with the CON group. The addition of Artemisia annua to the diet increased catalase (CAT), glutathione peroxidase (GSH-px), and superoxide dismutase (SOD) enzyme activities, increased total antioxidant capacity (T-AOC), and decreased malondialdehyde (MDA) content in serum and jejunum of geese (p < 0.05). Meanwhile, serum IgA, IgG, IgM, and lysozyme (LZM), increased at different time points in the AAL group compared to the CON group (p < 0.05), and decrease in the content of interferon-γ (IFN-γ) , IL-6 (p < 0.05), but no effect on complement C3 and C4. Morphological observation of the small intestine showed that the jejunal crypt depth was decreased in the AAL group (p < 0.05) while elevating the jejunal villus height/crypt depth (p < 0.05). 16S rRNA sequencing results showed the Artemisia annua increased the diversity of cecum microbiota, increasing the relative abundance of Bacteroides, Fecalibacterium, and Paraprevotella. In conclusion, the addition of 1% Artemisia annua to the diet could improve the growth performance, antioxidant and immune ability of geese, as well as improve the development of the jejunum intestinal tract of geese, and change the structure of the cecum microbiota, which had a positive effect on the growth and development of geese. Artemisia annua can be further developed as a feed additive.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, Daqing, Heilongjiang 163319, China
| | - Xinyang Leng
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, Daqing, Heilongjiang 163319, China
| | - Yujie Zhao
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, Daqing, Heilongjiang 163319, China
| | - Yu Zhao
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, Daqing, Heilongjiang 163319, China
| | - Qiuju Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
3
|
Althobaiti SA, Qahl SH, Toufig H, Almalki DA, Nasir O, Soliman MM. Protective impacts of Artemisia annua against hepatic toxicity induced by gentamicin. Toxicol Res (Camb) 2024; 13:tfad121. [PMID: 38162595 PMCID: PMC10753289 DOI: 10.1093/toxres/tfad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
The current study aimed to investigate the ameliorative effects of Artemisia annua (RA) extract on hepatic toxicity induced by gentamicin injection mice. Sixteen mice were divided into four groups; the control group received saline, the second group received 1% A. annua (RA) extract, third group injected 80 mg/kg gentamicin (GEN) intraperitoneally. The protective group treated with a combination of GEN and A. annua. All mice were treated for consecutive 15 days. Results confirmed that hepatic biomarkers (GPT, GCT, GOT, IL-6 and IL-1β), all were altered after gentamycin injection. The histological analysis confirmed that gentamycin injected mice showed portal vein congestion, micro and macro steatosis, and nuclear pyknosis of hepatocytes. The protective group showed intact central vein with less microsteatosis of some hepatocytes. Immunochemistry analysis confirmed that the immunoreactivity of COX-2 gene showed negative impact in examined groups. Unlike, NF-κB gene exhibited diffuse positive expression in the gentamicin group. TGF-β1 immunoreactivity was mild positive in control and highly upregulated in gentamicin treated mice, all were normalized after RA administration. In conclusion, RA showed a beneficial impact against gentamycin induced hepatic toxicity at cellular and biochemical levels by regulating proteins and inflammatory markers associated with liver activity.
Collapse
Affiliation(s)
- Saed A Althobaiti
- Department of Biology, Taif University, Turabah University College, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Safa H Qahl
- Department of Biological Science, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hind Toufig
- Department of Surgery, College of Medicine, King Faisal University, P.O. Box-400, Al-Ahsa 31982, Saudi Arabia
| | - Daklallah A Almalki
- Department of Biology, Faculty of Sciences and Arts (Qelwah), Al-Baha University, Al-Baha 65528, Saudi Arabia
| | - Omaima Nasir
- Department of Biology, Taif University, Turabah University College, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Taif University, Turabah University College, Taif 21995, Saudi Arabia
| |
Collapse
|
4
|
Thompson A, Hynicka LM, Shere-Wolfe KD. A Comprehensive Review of Herbal Supplements Used for Persistent Symptoms Attributed to Lyme Disease. Integr Med (Encinitas) 2023; 22:30-38. [PMID: 37101730 PMCID: PMC10124234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Context Lyme disease is the most common, tick-borne disease in the USA. While most patients successfully recover with antibiotics, some patients experience persistent symptoms for months to years. Patients who attribute chronic symptoms to Lyme disease commonly use herbal supplements. The complexity, variability in dose and formulation, and lack of data for these herbal compounds make it difficult to assess their efficacy and safety. Objective This review examines the evidence for the antimicrobial activity, safety, and drug-drug interactions of 18 herbal supplements that patients commonly use for treatment of persistent symptoms attributed to Lyme disease. Design The research team performed a narrative review by searching the PubMed, Embase, Scopus, Natural Medicines databases, and NCCIH website. The search used the keywords for 18 herbal compounds: (1) andrographis (Andrographis paniculate), (2) astragalus (Astragalus propinquus), (3) berberine, (4) cat's claw bark (Uncaria tomentosa), (5) cordyceps (Cordyceps sinensis), (6) cryptolepis (Cryptolepis sanguinolenta), (7) Chinese skullcap (Scutellaria baicalensis), (8) garlic (Allium sativum), (9) Japanese knotwood (Polygonum cuspidatum), (10) reishi mushrooms (Ganoderma lucidum), (11) sarsaparilla (Smilax medica), (12) Siberian ginseng (Eleutherococcus senticosus), (13) sweet wormwood (Artemisia annua), (14) teasle root (Dipsacus fullonum), (15) lemon balm (Melissa officinalis), (16) oil of oregano (Origanum vulgare), (17) peppermint (Mentha x piperita), and (18) thyme (Thymus vulgaris). The team also searched for terms related to protocols, including Dr. Rawls' protocol and the Buhner protocol. Setting University of Maryland Medical Center, Baltimore MD. Results Seven of the 18 herbs reviewed had evidence for in-vitro activity against B. burgdorferi. These compounds included: (1) cat's claw (2) cryptolepis, (3) Chinese skullcap, (4) Japanese knotweed, (5) sweet wormwood, (6) thyme, and (7) oil of oregano. With the exception of oil of oregano these compounds also have anti-inflammatory activity. In vivo data and clinical trials are lacking. Clinicians should be cautious as many of the identified compounds have drug interactions and additive effects that could lead to increased risks for bleeding, hypotension, and hypoglycemia. Conclusions Many of the herbs that alternative and integrative practitioners use to treat Lyme disease have anti-inflammatory effects that may contribute to patients' perceptions of symptomatic improvement. Some herbs have limited demonstrated anti-borrelial activity in vitro, but in-vivo data and clinical trial data is lacking. Further research is required to determine the efficacy, safety and appropriate use of these herbs for this patient population.
Collapse
Affiliation(s)
| | - Lauren M. Hynicka
- Associate professor of Pharmacotherapy Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Kalpana D. Shere-Wolfe
- Assistant Professor of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Bordean ME, Ungur RA, Toc DA, Borda IM, Marțiș GS, Pop CR, Filip M, Vlassa M, Nasui BA, Pop A, Cinteză D, Popa FL, Marian S, Szanto LG, Muste S. Antibacterial and Phytochemical Screening of Artemisia Species. Antioxidants (Basel) 2023; 12:antiox12030596. [PMID: 36978844 PMCID: PMC10045255 DOI: 10.3390/antiox12030596] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Taking into account the increasing number of antibiotic-resistant bacteria, actual research focused on plant extracts is vital. The aim of our study was to investigate leaf and stem ethanolic extracts of Artemisia absinthium L. and Artemisia annua L. in order to explore their antioxidant and antibacterial activities. Total phenolic content (TPC) was evaluated spectrophotometrically. Antioxidant activity was evaluated by DPPH and ABTS. The antibacterial activity of wormwood extracts was assessed by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Salmonella enteritidis cultures, and by zone of inhibition in Klebsiella carbapenem-resistant enterobacteriaceae (CRE) and Escherichia coli extended-spectrum β-lactamases cultures (ESBL). The Artemisia annua L. leaf extract (AnL) exhibited the highest TPC (518.09 mg/mL) and the highest expression of sinapic acid (285.69 ± 0.002 µg/mL). Nevertheless, the highest antioxidant capacity (1360.51 ± 0.04 µM Trolox/g DW by ABTS and 735.77 ± 0.02 µM Trolox/g DW by DPPH) was found in Artemisia absinthium L. leaf from the second year of vegetation (AbL2). AnL extract exhibited the lowest MIC and MBC for all tested bacteria and the maximal zone of inhibition for Klebsiella CRE and Escherichia coli ESBL. Our study revealed that AbL2 exhibited the best antioxidant potential, while AnL extract had the strongest antibacterial effect.
Collapse
Affiliation(s)
- Maria-Evelina Bordean
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| | - Dan Alexandru Toc
- Department of Microbiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- Correspondence: (I.M.B.); (G.S.M.)
| | - Georgiana Smaranda Marțiș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
- Correspondence: (I.M.B.); (G.S.M.)
| | - Carmen Rodica Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Miuța Filip
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Mihaela Vlassa
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Bogdana Adriana Nasui
- Department of Community Health, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Anamaria Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Delia Cinteză
- 9th Department-Physical Medicine and Rehabilitation, Carol Davila Univerity of Medicine and Pharmacy, 050474 București, Romania
| | - Florina Ligia Popa
- Physical Medicine and Rehabilitation Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, Victoriei Blvd., 550024 Sibiu, Romania
- Academic Emergency Hospital of Sibiu, Coposu Blvd., 550245 Sibiu, Romania
| | - Sabina Marian
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Lidia Gizella Szanto
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Sevastița Muste
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Kondža M, Mandić M, Ivančić I, Vladimir-Knežević S, Brizić I. Artemisia annua L. Extracts Irreversibly Inhibit the Activity of CYP2B6 and CYP3A4 Enzymes. Biomedicines 2023; 11:biomedicines11010232. [PMID: 36672740 PMCID: PMC9855681 DOI: 10.3390/biomedicines11010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Artemisia annua L. has long been known for its medicinal properties and isolation of ingredients whose derivatives are used for therapeutic purposes. The CYP2B6 and CYP3A4 enzymes belong to a large family of cytochrome P450 enzymes. These enzymes are involved in the metabolism of drugs and other xeonobiotics. It is known that various compounds can induce or inhibit the activity of these enzymes. The aim of this study was to investigate the nature of the inhibitory effect of Artemisia annua extract on CYP2B6 and CYP3A4 enzymes, as well as the type of inhibition, the presence of reversible or pseudo-irreversible inhibition, and the possible heme destruction. The methanolic extract of Artemisia annua showed an inhibitory effect on CYP2B6 (by almost 90%) and CYP3A4 enzymes (by almost 70%). A significant decrease in heme concentration by 46.8% and 38.2% was observed in different assays. These results clearly indicate that the studied plant extracts significantly inhibited the activity of CYP2B6 and CYP3A4 enzymes. Moreover, they showed irreversible inhibition, which is even more important for possible interactions with drugs and dietary supplements.
Collapse
Affiliation(s)
- Martin Kondža
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
- Correspondence: ; Tel.: +387-36-312-791
| | - Marta Mandić
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Ivona Ivančić
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Trg Marka Marulića 20, 10000 Zagreb, Croatia
| | - Ivica Brizić
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
- University Clinical Hospital Mostar, Kralja Tvrtka bb, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
7
|
Khan SS, Zaidi KU. Protective Effect of Nigella sativa Seed Extract and its Bioactive Compound Thymoquinone on Streptozotocin-induced Diabetic Rats. Cardiovasc Hematol Agents Med Chem 2023; 22:51-59. [PMID: 36545735 DOI: 10.2174/1871525721666221221161742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/12/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The lack of a substantial breakthrough in the treatment of diabetes, a global issue, has led to an ongoing quest for herbs that contain bioactive elements with hypoglycemic properties. OBJECTIVE To investigate the potential protective effect of Nigella sativa seeds ethanol extract and its active ingredient, thymoquinone, on streptozotocin-induced diabetic rats. METHODS To induce diabetes, the male Wistar rats were administered an intraperitoneal injection of STZ at a dosage of 90 mg/kg body weight in 0.9 percent normal saline after being fasted for 16 hours and made diabetic Group 1; 7 rats non-diabetic control (saline-treated), Group 2; 7 untreated diabetic rats, Group 3; 7 diabetic rats treated orally with N. sativa extract at a dose of 100 mg/kg body weight, Group 4; 7 diabetic rats treated orally with thymoquinone at a dose of 10 mg/kg body weight and Group 5; 7 diabetic rats treated orally with Metformin at a dose of 5 mg/kg body weight. After the treatment of 28 days, all groups were examined for body weight and biochemical alterations. RESULTS The results showed a significant decrease in blood glucose, urea, creatinine, uric acid, total protein, total cholesterol, low-density lipoprotein, and very low-density lipoprotein, while high-density lipoprotein was increased. Hepatic enzymes, alanine transaminase, aspartate aminotransferase, and alkaline phosphate were also normalized and significantly increased body weight. CONCLUSION These preliminary findings demonstrate that the ethanol extract of N. sativa seeds and its active ingredient, thymoquinone have a protective effect against streptozotocin-induced diabetic rats. The present study opens new vistas for the use of N. sativa and its bioactive compound, thymoquinone, regarding its clinical application as a new nontoxic antidiabetic agent for managing diabetes mellitus.
Collapse
Affiliation(s)
- Samar Saeed Khan
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Kamal Uddin Zaidi
- Biotechnology and Pharmacology Laboratory, Centre for Scientific Research and Development, People's, Jazan University, Bhopal, India
| |
Collapse
|
8
|
El-kady AM, Abdel-Rahman IAM, Sayed E, Wakid MH, Alobaid HM, Mohamed K, Alshehri EA, Elshazly H, Al-Megrin WAI, Iqbal F, Elshabrawy HA, Timsah AG. A potential herbal therapeutic for trichinellosis. Front Vet Sci 2022; 9:970327. [PMID: 36082215 PMCID: PMC9445247 DOI: 10.3389/fvets.2022.970327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTrichinellosis is a helminthic disease caused by Trichinella spiralis via the ingestion of raw or undercooked meat of infected animals. Current estimates indicate that 11 million humans have trichinellosis, worldwide. The effective use of anti-trichinella medications is limited by side effects and resistance which highlight the critical need for safe and effective drugs, particularly those derived from medicinal plants. Therefore, in the present study, we aimed to evaluate the efficacy of the ethanolic extract of Artemisia annua (A. annua) in treatment of experimentally induced trichinellosis.Materials and methodsTrichinellosis was induced experimentally in male 6–8 weeks BALB/c mice. BALB/c mice were divided into four groups, 10 mice each. One group was left uninfected and untreated, whereas three groups were infected with T. spiralis. One infected group of mice was left untreated (negative control) while the remaining two infected groups received either 300 mg/kg of the ethanolic extract of A. annua or 50 mg/kg of albendazole (positive control). All treatments started from the third day post-infection (dpi) for 3 successive days. All animals were sacrificed on the 7th dpi for evaluation of treatment efficacy.ResultsOur findings showed that A. annua treatment reduced the T. spiralis adult-worm count in the intestine of infected animals. Moreover, treatment with A. annua restored the normal intestinal architecture, reduced edema, alleviated inflammation as demonstrated by reduced inflammatory infiltrate and expression of TGF-β in intestinal tissues of A. annua-treated animals compared to infected untreated animals.ConclusionsOur findings show that A. annua extract is effective in treating experimentally induced trichinellosis which highlight the therapeutic potential of A. annua for intestinal trichinellosis.
Collapse
Affiliation(s)
- Asmaa M. El-kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
- *Correspondence: Asmaa M. El-kady
| | | | - Eman Sayed
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Majed H. Wakid
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Hussah M. Alobaid
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalil Mohamed
- Department of Epidemiology, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | | | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, Buraidah, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Adbulrahman University, Riyadh, Saudi Arabia
| | - Furhan Iqbal
- Zoology Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, United States
- Hatem A. Elshabrawy
| | - Ashraf G. Timsah
- Department of Microbiology, Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Department of Parasitology, Faculty of Medicine, Al-Azhar University, New Damietta City, Egypt
| |
Collapse
|
9
|
Han X, Chen Z, Yuan J, Wang G, Han X, Wu H, Shi H, Chou G, Yang L, Wu X. Artemisia annua water extract attenuates DNCB-induced atopic dermatitis by restraining Th2 cell mediated inflammatory responses in BALB/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115160. [PMID: 35245629 DOI: 10.1016/j.jep.2022.115160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. (A. annua) is a traditional Chinese medicine that has been used since ancient times to treat malaria, eczema, dermatomycosis, jaundice, and boils. Modern pharmacological studies show that it has immunosuppressive and anti-inflammatory effects. However, the mechanism of A. annua in the treatment of atopic dermatitis (AD) remains unclear. AIM OF THE STUDY This study was aimed to investigate the effect of A. annua water extract (AWE) on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model and tried to explore its possible underlying mechanisms. MATERIALS AND METHODS AD was induced in BALB/c mice by the topical repeated application of DNCB. Oral drug intervention of AWE and dexamethasone (DEX, positive control) began from the 7th day and continued for 13 consecutive days. The clinical skin score, ear thickness and the weight of ear and spleen were assessed. The ear tissue were stained with toluidine blue and hematoxylin and eosin (H&E) to detect inflammatory cell infiltration. IgE, terleukin (IL)-4 and IL-13 levels in the serum and IgE level in splenocytes were quantified by enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of IL-4, IL-6, IL-13, IL-17, tumor necrosis factor (TNF)-α and thymic stromal lymphopoietin (TSLP) were measured by quantitative real time polymerase chain reaction. The phosphorylation levels of mitogen-activated protein kinases (MAPKs)-p38 and nuclear factor (NF)-κB in ear tissue were detected by Western blot. RESULTS Results demonstrated that AWE treatment significantly attenuated the AD-like symptoms in DNCB-induced BALB/c mice, including the skin dermatitis severity and ear edema. Further study disclosed that AWE treatment suppressed the expressions of IgE, IL-4, IL-6, IL-13, IL-17, TNF-α and TSLP at mRNA and protein levels. Moreover, AWE showed inhibitory effect on the phosphorylation of p38 MAPK and NFκB in ear tissues of AD mice. CONCLUSIONS Collectively, our results suggested that AWE suppressed DNCB-induced AD in mice probably by restraining Th2 type inflammatory response. These findings might pave the road for the potential clinical application of AWE for AD treatment.
Collapse
Affiliation(s)
- Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyu Chen
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gaorui Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guixin Chou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The Sate Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Extraction, Isolation and Characterization of Bioactive Compounds from Artemisia and Their Biological Significance: A Review. Molecules 2021; 26:molecules26226995. [PMID: 34834086 PMCID: PMC8618776 DOI: 10.3390/molecules26226995] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Diverse medicinal plants such as those from the genus Artemisia have been employed globally for centuries by individuals belonging to different cultures. Universally, Artemisia species have been used to remedy various maladies that range from simple fevers to malaria. A survey conducted by the World Health Organization (WHO) demonstrated that 80% of the global population is highly reliant on herbal medicine for their primary healthcare. WHO recommends artemisinin-based combination therapies (ACT) for the treatment of global diseases such as malaria. Artemisinin is a bioactive compound derived from Artemisia annua leaves. It is a sesquiterpene endoperoxide with potent antimalarial properties. This review strives to instill natural products to chemists and others in diverse fields with a heterogeneous set of knowledge compiled from multifaceted researchers and organizations in literature. In particular, the various Artemisia species and effective extraction, isolation, and characterization methodologies are discussed in detail. An in-depth investigation into the literature reveals that divergent species of Artemisia exhibit a vast array of biological activities such as antimalarial, antitumor, and anti-inflammatory activities. There is substantial potential for bioactive compounds from Artemisia to provide significant relief from differing human ailments, but more meticulous research in this field is needed.
Collapse
|
11
|
Albasher G, Alwahaibi M, Abdel-Daim MM, Alkahtani S, Almeer R. Protective effects of Artemisia judaica extract compared to metformin against hepatorenal injury in high-fat diet/streptozotocine-induced diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40525-40536. [PMID: 32666453 DOI: 10.1007/s11356-020-09997-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/02/2020] [Indexed: 05/06/2023]
Abstract
Diabetes mellitus (DM) is one of the most dangerous incurable diseases that affects a large number of people worldwide. Artemisia species have various protective activities and are widely used for the control of diabetes in folkloric medicine. Therefore, the current study was designed to illustrate the protective effect of oral administration of Artemisia judaica extract (AjE) against hepatorenal damage in a high-fat diet/streptozotocin (HFD/STZ) rat model of hyperlipidemia and hyperglycemia. Animals were divided into five groups-control, AjE, HFD/STZ, HFD/STZ-AjE (300 mg/kg), and HFD/STZ-MET (100 mg/kg)-and treated daily for 28 days. The results revealed that STZ-injected rats showed marked hyperglycemia and hypoinsulinemia in addition to high levels of cholesterol, triglycerides, and low- and high-density lipoproteins compared to control rats. Significant elevations in hepatic (AST and ALT) and renal (urea, uric acid, and creatinine) function markers were observed in the serum of diabetic rats. Additionally, STZ injection caused remarkable elevations in lipid peroxidation and nitric oxide levels as well as suppression of antioxidant markers (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione). Marked elevations in TNF-α and Bax levels with a decline in Bcl-2 levels were detected after STZ injection. Furthermore, TGF-β1 expression levels were significantly upregulated in the liver and kidney tissues. Rats that received AjE or MET showed significant improvement in most of the aforementioned parameters, and the protective efficacy was higher for AjE than for MET. Histopathological screening confirmed the biochemical findings. Conclusively, our results illustrated the antihyperglycemic, antihyperlipidemic, antioxidant, anti-inflammatory, and antiapoptotic activities of AjE against hepatorenal injury in HFD/STZ-induced diabetes.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mona Alwahaibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Han B, Kim SM, Nam GE, Kim SH, Park SJ, Park YK, Baik HW. A Randomized, Double-Blind, Placebo-Controlled, Multi-Centered Clinical Study to Evaluate the Efficacy and Safety of Artemisia annua L. Extract for Improvement of Liver Function. Clin Nutr Res 2020; 9:258-270. [PMID: 33204666 PMCID: PMC7644367 DOI: 10.7762/cnr.2020.9.4.258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has the potential to develop into hepatic steatosis and progress to terminal liver diseases such as cirrhosis and hepatocellular carcinoma. This human clinical study was aimed to demonstrate that SPB-201 (powdered-water extract of Artemisia annua) can improve liver function in subjects with non-alcoholic liver dysfunction at mild to moderate levels. A decrease of 271% in aspartate aminotransferase (AST) level and a significant decrease of 334% in alanine aminotransferase (ALT) level was observed in the test group as compared to the control group at the 4 weeks follow-up. In addition, after 8 weeks, decreases of 199% in AST level and 216% in ALT level were reported in the test group as compared to the control group. These results confirmed that SPB-201 intake significantly enhanced liver function and health. Moreover, the Multidimensional Fatigue Scale score of the test group decreased but that of the control group increased, implicating that SPB-201 also eliminated overall fatigue. No significant adverse events were observed among all subjects during the study. Taken together, our clinical study confirmed the excellent efficacy and safety of SPB-201 in liver function improvement, showing the possibility of SPB-201 as a functional food to restore liver dysfunction and treat liver diseases.
Collapse
Affiliation(s)
- Byoungduck Han
- Department of Family Medicine, Sahmyook Medical Center, Seoul 02500, Korea.,Department of Family Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Seon-Mee Kim
- Department of Family Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Ga Eun Nam
- Department of Family Medicine, Korea University Anam Hospital, Seoul 02841, Korea
| | | | - Su-Jin Park
- G&P Bioscience Co. LTD., Goyang 10326, Korea
| | - Young-Kyu Park
- Department of Family Medicine, Bundang Jesaeng Hospital, Seongnam 13590, Korea
| | - Hyun Wook Baik
- Division of Gastroenterology & Clinical Nutrition, Department of Internal Medicine, DMC Bundang Jesaeng Hospital, Seongnam 13590, Korea
| |
Collapse
|
13
|
Septembre-Malaterre A, Lalarizo Rakoto M, Marodon C, Bedoui Y, Nakab J, Simon E, Hoarau L, Savriama S, Strasberg D, Guiraud P, Selambarom J, Gasque P. Artemisia annua, a Traditional Plant Brought to Light. Int J Mol Sci 2020; 21:E4986. [PMID: 32679734 PMCID: PMC7404215 DOI: 10.3390/ijms21144986] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Traditional remedies have been used for thousand years for the prevention and treatment of infectious diseases, particularly in developing countries. Of growing interest, the plant Artemisia annua, known for its malarial properties, has been studied for its numerous biological activities including metabolic, anti-tumor, anti-microbial and immunomodulatory properties. Artemisia annua is very rich in secondary metabolites such as monoterpenes, sesquiterpenes and phenolic compounds, of which the biological properties have been extensively studied. The purpose of this review is to gather and describe the data concerning the main chemical components produced by Artemisia annua and to describe the state of the art about the biological activities reported for this plant and its compounds beyond malaria.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Mahary Lalarizo Rakoto
- Faculté de Médecine, Université d’Antananarivo, Campus Universitaire Ambohitsaina, BP 375, Antananarivo 101, Madagascar;
| | - Claude Marodon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Yosra Bedoui
- INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint Denis de La Réunion, France;
| | - Jessica Nakab
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Elisabeth Simon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Ludovic Hoarau
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Stephane Savriama
- EA929 Archéologie Industrielle, Histoire, Patrimoine/Géographie-Développement Environnement de la Caraïbe (AIHP-GEODE), Université des Antilles, Campus Schoelcher, BP7207, 97275 Schoelcher Cedex Martinique, France;
| | - Dominique Strasberg
- Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (PVBMT), Pôle de Protection des Plantes, Université de La Réunion, 7 Chemin de l’IRAT, 97410 Saint-Pierre, La Réunion, France;
| | - Pascale Guiraud
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Jimmy Selambarom
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Philippe Gasque
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
- Laboratoire d’immunologie clinique et expérimentale de la zone de l’océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
14
|
Xia M, Liu D, Liu Y, Liu H. The Therapeutic Effect of Artemisinin and Its Derivatives in Kidney Disease. Front Pharmacol 2020; 11:380. [PMID: 32296335 PMCID: PMC7136752 DOI: 10.3389/fphar.2020.00380] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Artemisinin (ARS) and its derivatives (ARSs) are recommended as the first-line antimalarial drugs for the treatment of malaria. Besides antimalarial function, its potent anti-inflammatory and immunoregulatory properties, as well as the ability to regulate oxidative stress have brought them to a prominent position. As researchers around the world are continually exploring the unknown biological activities of ARS derivatives, experimental studies have shown much progress in renal therapy. This review aims to give a brief overview of the current research on ARSs applications for kidney treatment with the evaluation of therapeutic properties and potential molecular mechanisms.
Collapse
Affiliation(s)
- Ming Xia
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
15
|
Yazdi HB, Hojati V, Shiravi A, Hosseinian S, Vaezi G, Hadjzadeh MAR. Liver Dysfunction and Oxidative Stress in Streptozotocin-Induced Diabetic Rats: Protective Role of Artemisia Turanica. J Pharmacopuncture 2019; 22:109-114. [PMID: 31338251 PMCID: PMC6645339 DOI: 10.3831/kpi.2019.22.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives Oxidative stress plays a central role in diabetes-induced complications. In the present study, the protevtive effect of Artemisia turanica (A. turanica) was evaluated against diabetes-induced liver oxidative stress and dysfunction. Methods Fifty male Wistar rats were randomly divided into five groups: control, diabetic, diabetic + metformin, diabetic + A. turanica extract, and diabetic + A. turanica extract + metformin. Experimental diabetes was induced by a single-dose (55 mg/kg, intraperitoneally (ip)) injection of streptozotocin (STZ). Metformin (300 mg/kg) and A. turanica extract (70 mg/kg) were orally administrated three days after STZ injection for four weeks. The levels of malondialdehyde (MDA), total thiol content and superoxide dismutase (SOD) and catalase activities were measured in the liver tissue. Serum glucose concentration, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were also determined. Results In the diabetic group, serum glucose concentration, serum AST and ALT activities and liver MDA level were significantly higher while tissue total thiol content as well as catalase and SOD activities were lower, compared to the control group. Serum glucose in diabetic rats treated with metformin + A. turanica extract showed a significant decrease compared with the diabetic group. In all the A. turanica extract and metformin treated groups, serum ALT, tissue MDA level, total thiol content and SOD activity significantly improved compared with the diabetic rats. However, treatment of the diabetic rats only with metformin could not significantly change the activities of catalase and AST compared with the diabetic group. Conclusion These findings suggested that A. turanica extract had a therapeutic effect on liver dysfuncyion and oxidative stress induced by diabetes, that may be probably due to its antioxidant and antiinflammatory effects.
Collapse
Affiliation(s)
- Hassan Bgheri Yazdi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Yan L, Xiong C, Xu P, Zhu J, Yang Z, Ren H, Luo Q. Structural characterization and in vitro antitumor activity of A polysaccharide from Artemisia annua L. (Huang Huahao). Carbohydr Polym 2019; 213:361-369. [PMID: 30879680 DOI: 10.1016/j.carbpol.2019.02.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/29/2019] [Accepted: 02/24/2019] [Indexed: 01/08/2023]
Abstract
One water-soluble polysaccharide (AAP), with a molecular weight of 6.3 × 104 Da, was isolated from Artemisia annua L. Structrual analysis indicated that AAP was found to be a 1, 3-α-linked and 1, 3, 6-α-linked Glcp backbone, with a branch of 1, 6-α-linked Glcp and terminal 1-linked-L-Rhap along the main chain in a ratio of 1: 1: 1: 1. MTT assay showed that AAP reduced the cell viability of HepG2 cells in a concentration-dependent manner. DAPI staining and Flow cytometric analysis revealed that AAP suppressed cells proliferation, not most at least via inducing p65-dependent mitochondrial signaling pathway, as evidenced by more activation of caspase-3 and -9, down-regulation of Bcl-2 protein, up-regulation of Bax protein and release of cytochrome c from mitochondria into cytosol, as well as suppression of the nuclear factor-κB (NF-κB) p65. These data confirmed AAP inhibits HepG2 cell growth via inducing caspase-dependent mitochondrial apoptosis and inhibition of NF-κB p65.
Collapse
Affiliation(s)
- Liang Yan
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China; Chongqing key laboratory of pediatrics, Chongqing, 400014, China
| | - Chuan Xiong
- Chongqing key laboratory of pediatrics, Chongqing, 400014, China
| | - Pan Xu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jing Zhu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China; Chongqing key laboratory of pediatrics, Chongqing, 400014, China
| | - Zhirong Yang
- Sichuan Province Key Laboratory of Nature Resources Microbiology and Technique, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hong Ren
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qiang Luo
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
17
|
ABDELHAMED EF, FAWZY EM, AHMED SM, ZALAT RS, RASHED HE. Effect of Nitazoxanide, Artesunate Loaded Polymeric Nano Fiber and Their Combination on Experimental Cryptosporidiosis. IRANIAN JOURNAL OF PARASITOLOGY 2019; 14:240-249. [PMID: 31543912 PMCID: PMC6737357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cryptosporidium parvum is a dangerous intestinal pathogen due to its devastating effect on immunocompromised individuals. Considering low efficacy, high toxicity in addition to the development of resistance for the drugs used, this study aimed to find a new alternative treatment having the advantage of lower doses and minimal toxicity. We used a novel combination between artesunate loaded polymeric nanofiber (ALPN) and nanazoxide that had not been tried yet. METHODS Sixty Swiss Albino mice aged 6-7 wk, weighting 20-24 gm were used in Theodor Bilharz Research Institute (TBRI) Cairo, Egypt in 2017. C. parvum oocysts collected from patients were identified by polymerase chain reaction to be used for infecting animals. The effect of combination between ALPN and nana-zoxide were assessed by oocyst count in stool of experimental animals using modified Ziehl-Neelsen stain and histopathological changes in intestinal tissue. Antioxidant activity of nanofiber-loaded artesunate was estimated in serum, renal, hepatic and intestinal tissues by demonstrating the reactive oxygen species and the total antioxidant capacity. It was confirmed by detection of inducible nitric oxide synthase (iNOS) antibody. RESULTS The novel combination between ALPN and nanazoxidehas a harmonizing effect in reducing oocyst shedding (94.4%), the mean value of the antioxidant levels in liver, intestine, kidney, and serum were the highest level (10.15, 22.4, 6.22, 14.08 respectively) resulting in the decrease of oxidative stress in tissues. Marked improvement of histopathological features was obtained. CONCLUSION This combination has a promising therapeutic effect against cryptosporidiosis particularly in immunocompromised individuals considering minor toxicity.
Collapse
Affiliation(s)
- Enas Fakhry ABDELHAMED
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia Governorate, Egypt,Correspondence
| | - Eman Magdy FAWZY
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia Governorate, Egypt
| | - Said Mahmoud AHMED
- Department of Zoology, Faculty of Science, Zagazig University, Sharkia Governorate, Egypt
| | - Rabab Sayed ZALAT
- Department of Medical Parasitology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hayam Elsaid RASHED
- Department of Pathology, Faculty of Medicine, Zagazig University, Sharkia Governorate, Egypt
| |
Collapse
|
18
|
Penna-Coutinho J, Aguiar AC, Krettli/ AU. Commercial drugs containing flavonoids are active in mice with malaria and in vitro against chloroquine-resistant Plasmodium falciparum. Mem Inst Oswaldo Cruz 2018; 113:e180279. [PMID: 30540020 PMCID: PMC6282106 DOI: 10.1590/0074-02760180279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/05/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The main strategy to control human malaria still relies on specific
drug treatment, limited now by Plasmodium falciparum-resistant
parasites, including that against artemisinin derivatives. Despite the large
number of active compounds described in the literature, few of them reached full
development against human malaria. Drug repositioning is a fast and less
expensive strategy for antimalarial drug discovery, because these compounds are
already approved for human use. OBJECTIVES To identify new antimalarial drugs
from compounds commercially available and used for other indications. METHODS
Accuvit®, Ginkgo® and Soyfit®, rich in
flavonoids, and also the standard flavonoids, hesperidin, quercetin, and
genistein were tested against blood cultures of chloroquine-resistant P.
falciparum, as well as chloroquine, a reference antimalarial.
Inhibition of parasite growth was measured in immunoenzymatic assay with
monoclonal anti-P. falciparum antibodies, specific to the
histidine-rich protein II. Tests in mice with P. berghei
malaria were based on percent of parasitaemia reduction. These compounds were
also evaluated for in vitro cytotoxicity. FINDINGS The
inhibition of parasite growth in vitro showed that
Accuvit® was the most active drug (IC50 5 ± 3.9
μg/mL). Soyfit® was partially active (IC50 13.6 ± 7.7
μg/mL), and Ginkgo® (IC50 38.4 ± 14 μg/mL) was inactive.
All such compounds were active in vivo at a dose of 50 mg/kg
body weight. Accuvit® and quercetin induced the highest reduction of
P. berghei parasitaemia (63% and 53%, respectively) on day
5 after parasite inoculation. As expected, the compounds tested were not toxic.
MAIN CONCLUSIONS The antimalarial activity of Accuvit® was not
related to flavonoids only, and it possibly results from synergisms with other
compounds present in this drug product, such as multivitamins. Multivitamins in
Accuvit® may explain its effect against the malaria parasites.
This work demonstrated for the first time the activity of these drugs, which are
already marketed.
Collapse
Affiliation(s)
- Julia Penna-Coutinho
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Laboratório de Malária Experimental e Humana, Belo Horizonte, MG, Brasil
| | - Anna Cc Aguiar
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Laboratório de Malária Experimental e Humana, Belo Horizonte, MG, Brasil
| | - Antoniana Ursine Krettli/
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Laboratório de Malária Experimental e Humana, Belo Horizonte, MG, Brasil
| |
Collapse
|
19
|
Antidiabetic and Antiobesity Effects of Artemether in db/db Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8639523. [PMID: 29862294 PMCID: PMC5971258 DOI: 10.1155/2018/8639523] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/18/2018] [Indexed: 11/28/2022]
Abstract
This study is designed to investigate the effect of artemether on type 2 diabetic db/db mice. The experiments consisted of three groups: normal control (NC, db/+, 1% methylcellulose, intragastric administration), diabetic control (DM, db/db, 1% methylcellulose, intragastric administration), and artemether treated (artemether, db/db, 200 mg/kg of artemether, intragastric administration). The treatment lasted for two weeks. The food intake, body weight, and fasting blood glucose of mice were measured every three days. At the start and end of the experiment, the intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (IPITT) were performed. We determined the serum insulin and glucagon levels by ELISA kits and calculated insulin resistance index (HOME-IR). HE staining was used to observe the morphologies of pancreas and liver in mice. The damage of pancreatic beta cells was evaluated by TUNEL staining and immunofluorescence. We found the following: (1) compared with the DM group, the food intake and weight increase rate of artemether group significantly reduced (P < 0.05); (2) compared with pretreatment, artemether significantly reduced the fasting blood glucose levels, and the areas under the curves (AUCs) of IPGTT were decreased significantly, increasing the tolerance to glucose of db/db mice. (P < 0.05); (3) artemether improved hyperinsulinemia and decreased the AUCs of IPITT and HOME-IR, increasing the insulin sensitivity of db/db mice. (4) Artemether significantly ameliorated islet vacuolar degeneration and hepatic steatosis in db/db mice. (5) Artemether reduced the apoptosis of pancreatic beta cells and increased insulin secretion in db/db mice compared with DM group (P < 0.05). Our results indicated that artemether significantly improved glucose homeostasis and insulin resistance and had the potential activity to prevent obesity, reduced the severity of fatty liver, and protected pancreatic beta cells, promising to treat type 2 diabetes.
Collapse
|
20
|
Liu S, Liu L, Tang Y, Xiong S, Long J, Liu Z, Tian N. Comparative transcriptomic analysis of key genes involved in flavonoid biosynthetic pathway and identification of a flavonol synthase from Artemisia annua L. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:618-629. [PMID: 28267260 DOI: 10.1111/plb.12562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
The regulatory mechanism of flavonoids, which synergise anti-malarial and anti-cancer compounds in Artemisia annua, is still unclear. In this study, an anthocyanidin-accumulating mutant callus was induced from A. annua and comparative transcriptomic analysis of wild-type and mutant calli performed, based on the next-generation Illumina/Solexa sequencing platform and de novo assembly. A total of 82,393 unigenes were obtained and 34,764 unigenes were annotated in the public database. Among these, 87 unigenes were assigned to 14 structural genes involved in the flavonoid biosynthetic pathway and 37 unigenes were assigned to 17 structural genes related to metabolism of flavonoids. More than 30 unigenes were assigned to regulatory genes, including R2R3-MYB, bHLH and WD40, which might regulate flavonoid biosynthesis. A further 29 unigenes encoding flavonoid biosynthetic enzymes or transcription factors were up-regulated in the mutant, while 19 unigenes were down-regulated, compared with the wild type. Expression levels of nine genes involved in the flavonoid pathway were compared using semi-quantitative RT-PCR, and results were consistent with comparative transcriptomic analysis. Finally, a putative flavonol synthase gene (AaFLS1) was identified from enzyme assay in vitro and in vivo through heterogeneous expression, and confirmed comparative transcriptomic analysis of wild-type and mutant callus. The present work has provided important target genes for the regulation of flavonoid biosynthesis in A. annua.
Collapse
Affiliation(s)
- S Liu
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - L Liu
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - Y Tang
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - S Xiong
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - J Long
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - Z Liu
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | - N Tian
- Department of Tea Science, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| |
Collapse
|
21
|
Fan Y, Xia J, Jia D, Zhang M, Zhang Y, Huang G, Wang Y. Mechanism of ginsenoside Rg1 renal protection in a mouse model of d-galactose-induced subacute damage. PHARMACEUTICAL BIOLOGY 2016; 54:1815-1821. [PMID: 26730750 DOI: 10.3109/13880209.2015.1129543] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/14/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Context Ginseng is a widely used herbal medicine in China but its mechanism of action remains unclear. Objective The objectives of this work were to study the protective effect of ginsenoside Rg1 on subacute murine renal damage induced by d-galactose and its mechanism. Materials and methods C57BL/6J mice were injected with 120 mg/kg/d (sc) d-galactose for 1 week, followed by a combined treatment of Rg1 20 mg/kg/d (ip) and 120 mg/kg/d d-galactose (sc) for 5 weeks. Mice were injected with the 0.9% saline 0.2 mL/d (sc) and 120 mg/kg/d d-galactose (sc) for 6 weeks in the control group and the d-galactose group, respectively. After 6 weeks, urea, creatinine, uric acid, cystatin (Cys-C), senescence-associated β-galactosidase (SA-β-gal) staining positive kidney cells, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), malondialdehyde (MDA), glycation end products (AGEs) and 8-hydroxy-2 deoxyguanosine (8-OH-dG) were measured. Results Treatment with Rg1 ameliorated kidney function and aging state (urea from 17.19 ± 1.09 to 15.77 ± 1.22 mmol·L (-) (1), creatinine from 29.40 ± 5.72 to 22.60 ± 3.97 μmol·L (-) (1), uric acid from 86.80 ± 5.97 to 72.80 ± 10.61 μmol·L (-) (1), Cys-C from 0.23 ± 0.03 to 0.18 ± 0.05 mg·L (-) (1), ROD of SA-β-gal from 56.32 ± 10.48 to 26.78 ± 7.34, SOD from 150.22 ± 19.07 to 190.56 ± 15.83 U·(mg·prot) (-1), MDA from 9.28 ± 1.59 to 3.17 ± 0.82 nmol·(mg·prot) (-1), GSH-PX from 15.68 ± 2.11 to 20.32 ± 2.96 U·(mg·prot) (-1) as well as regulated glomerulus morphology (glomerulus diameter from 775.77 ± 18.41 to 695.04 ± 14.61 μm, renal capsule width from 39.56 ± 3.51 to 31.42 ± 2.70 μm, glomerulus basement membrane from 206.03 ± 16.22 to 157.27 ± 15.70 nm, podocyte slit from 55.21 ± 8.55 to 37.63 ± 6.65 nm). Conclusions Ginsenoside Rg1 can antagonise d-galactose subacute renal damage in mice and this may occur due to alleviating oxidative stress injury.
Collapse
Affiliation(s)
- Yanling Fan
- a Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering , Chongqing Medical University , Chongqing , China
| | - Jieyu Xia
- a Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering , Chongqing Medical University , Chongqing , China
| | - Daoyong Jia
- a Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering , Chongqing Medical University , Chongqing , China
| | - Mengsi Zhang
- a Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering , Chongqing Medical University , Chongqing , China
| | - Yanyan Zhang
- a Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering , Chongqing Medical University , Chongqing , China
| | - Guoning Huang
- b Chongqing Reproductive and Genetic Institute , Chongqing , China
| | - Yaping Wang
- a Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering , Chongqing Medical University , Chongqing , China
| |
Collapse
|
22
|
Xiong S, Tian N, Long J, Chen Y, Qin Y, Feng J, Xiao W, Liu S. Molecular cloning and characterization of a flavanone 3-Hydroxylase gene from Artemisia annua L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:29-36. [PMID: 27070290 DOI: 10.1016/j.plaphy.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 05/05/2023]
Abstract
Flavonoids were found to synergize anti-malaria and anti-cancer compounds in Artemisia annua, a very important economic crop in China. In order to discover the regulation mechanism of flavonoids in Artemisia annua, the full length cDNA of flavanone 3-hydroxylase (F3H) were isolated from Artemisia annua for the first time by using RACE (rapid amplification of cDNA ends). The completed open read frame of AaF3H was 1095 bp and it encoded a 364-amino acid protein with a predicted molecular mass of 41.18 kDa and a pI of 5.67. The recombinant protein of AaF3H was expressed in E. coli BL21(DE3) as His-tagged protein, purified by Ni-NTA agrose affinity chromatography, and functionally characterized in vitro. The results showed that the His-tagged protein (AaF3H) catalyzed naringenin to dihydrokaempferol in the present of Fe(2+). The Km for naringenin was 218.03 μM. The optimum pH for AaF3H reaction was determined to be pH 8.5, and the optimum temperature was determined to be 35 °C. The AaF3H transcripts were found to be accumulated in the cultivar with higher level of flavonoids than that with lower level of flavonoids, which implied that AaF3H was a potential target for regulation of flavonoids biosynthesis in Artemisia annua through metabolic engineering.
Collapse
Affiliation(s)
- Shuo Xiong
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, 410128, China
| | - Na Tian
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, China
| | - Jinhua Long
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, China
| | - Yuhong Chen
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, 410128, China
| | - Yu Qin
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, 410128, China
| | - Jinyu Feng
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, 410128, China
| | - Wenjun Xiao
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, China.
| | - Shuoqian Liu
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, China; Key Lab of Tea Science, Ministry of Education, Changsha, 410128, China.
| |
Collapse
|
23
|
Soy products fermented with sprouted garlic have increased neuroprotective activities and restore cognitive functions. Food Sci Biotechnol 2016; 25:301-309. [PMID: 30263271 DOI: 10.1007/s10068-016-0043-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 01/22/2023] Open
Abstract
Enhanced antioxidant activities of sprouted garlic over garlic were considered. The popular Korean traditional fermented soybean product cheonggukjang (CGJ) was prepared as normal CGJ and prepared with fermentation of a mixture of cooked soybeans and sprouted garlic. Different varieties were investigated for anti-oxidative and protective activities against oxidative stress in neuronal cells. Normal CGJ was compared with CGJ prepared with garlic and sprouted garlic for anti-oxidative and neuroprotective activities and protection of cognitive function. CGJ prepared with sprouted garlic during fermentation exhibited higher anti-oxidative and neuroprotective activities in a mouse hippocampal model than the normal fermented soy product with enhanced cognitive function in the mouse model. Sprouted garlic can be used to improve the health benefits of fermented soy products.
Collapse
|
24
|
Kim KE, Ko KH, Heo RW, Yi CO, Shin HJ, Kim JY, Park JH, Nam S, Kim H, Roh GS. Artemisia annua Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice. J Med Food 2016; 19:290-9. [PMID: 26741655 PMCID: PMC4799707 DOI: 10.1089/jmf.2015.3527] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Artemisia annua L. (AA) is a well-known source of the antimalarial drug artemisinin. AA also has an antibacterial and antioxidant activity. However, the effect of AA extract on hepatic steatosis induced by obesity is unclear. We investigated whether AA extract prevents obesity-induced insulin resistance and hepatic steatosis in high-fat diet (HFD)-fed mice. Mice were randomly divided into groups that received a normal chow diet or HFD with or without AA for 12 weeks. We found that AA extract reduced insulin resistance and hepatic steatosis in HFD-fed mice. Western blot analysis showed that HFD-induced expression of nuclear sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein in the livers was decreased by AA extract. In particular, dietary administration of AA extract decreased hepatic high-mobility group box 1 and cyclooxygenase-2 expression in HFD-fed mice. AA extract also attenuated HFD-induced collagen deposition and fibrosis-related transforming growth factor-β1 and connective tissue growth factor. These data indicate that dietary AA extract has beneficial effects on hepatic steatosis and inflammation in HFD-fed mice.
Collapse
Affiliation(s)
- Kyung Eun Kim
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| | - Keon-Hee Ko
- 2 Gyeongnam Oriental Medicinal Herb Institute , Gyeongnam, Republic of Korea.,3 Division of Food Science, Gyeongnam National University of Science and Technology , Gyeongnam, Republic of Korea
| | - Rok Won Heo
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| | - Chin-ok Yi
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| | - Hyun Joo Shin
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| | - Jun Young Kim
- 4 Busan Regional Korea Food and Drug Administration , Ministry of Food and Drug Safety, Busan, Republic of Korea
| | - Jae-Ho Park
- 5 Shinseon F&V Co., Ltd. , Gyeongnam, Republic of Korea
| | - Sanghae Nam
- 3 Division of Food Science, Gyeongnam National University of Science and Technology , Gyeongnam, Republic of Korea
| | - Hwajin Kim
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| | - Gu Seob Roh
- 1 Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine , Gyeongnam, Republic of Korea
| |
Collapse
|
25
|
Kim MH, Seo JY, Kim JS. Artemisia annua L. extract ameliorates galactose-induced cognitive impairment in mice. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0250-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Hunt S, Yoshida M, Davis CE, Greenhill NS, Davis PF. An extract of the medicinal plant Artemisia annua modulates production of inflammatory markers in activated neutrophils. J Inflamm Res 2015; 8:9-14. [PMID: 25609991 PMCID: PMC4298291 DOI: 10.2147/jir.s75484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To investigate the ability of a commercial extract from the medicinal plant Artemisia annua to modulate production of the cytokine, tumor necrosis factor-alpha (TNF-α), and the cyclooxygenase (COX) inflammatory marker, prostaglandin E2 (PGE2) in activated neutrophils. METHODS Neutrophils were harvested from rat whole blood and cultured in the presence of plant extract or control samples. Neutrophils, except unactivated control cells, were activated with 10 μg/mL lipopolysaccharide (LPS). The cells were cultured with a range of different concentrations of the A. annua extracts (400-1 μg/mL) and artemisinin (200 and 100 μg/mL) and the supernatants were then tested by enzyme-linked immunosorbent assay (ELISA) for the concentrations of TNF-α and PGE2. Each sample was assayed in triplicate. Positive controls with an inhibitor were assayed in triplicate: chloroquine 2.58 and 5.16 μg/mL for TNF-α, and ibuprofen 400 μg/mL for PGE2. An unsupplemented group was also assessed in triplicate as a baseline control. RESULTS Neutrophils were stimulated to an inflammatory state by the addition of LPS. A. annua extract significantly inhibited TNF-α production by activated neutrophils in a dose-dependent manner. There was complete inhibition by the A. annua extract at 200, 100, and 50 μg/mL (all P≤0.0003). At A. annua extract concentrations of 25, 10, and 5 μg/mL, TNF-α production was inhibited by 89% (P<0.0001), 54% (P=0.0002), and 38% (P=0.0014), respectively. A. annua 1 μg/mL did not significantly inhibit TNF-α production (8.8%; P>0.05). Concentrations of 400, 200, and 100 μg/mL A. annua extract significantly inhibited PGE2 production by 87% (P=0.0128), 91% (P=0.0017), and 93% (P=0.0114), respectively. CONCLUSION An extract of A. annua was shown to be a potent inhibitor of TNF-α and a strong inhibitor of PGE2 production in activated neutrophils at the concentrations tested. Further studies are warranted with this promising plant extract.
Collapse
Affiliation(s)
- Sheena Hunt
- Promisia Integrative Ltd, Wellington, New Zealand
| | | | | | | | | |
Collapse
|