1
|
Musselman ED, Raha I, Pelot NA, Grill WM. Scaling of vagus nerve stimulation parameters does not achieve equivalent nerve responses across species. Bioelectron Med 2025; 11:11. [PMID: 40375300 DOI: 10.1186/s42234-025-00174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Previous efforts to translate vagus nerve stimulation (VNS) therapies from preclinical studies to human clinical applications (e.g., for stroke, heart failure, and inflammatory diseases) did not account for individual- or species-specific differences in nerve responses when selecting stimulation parameters. Lack of explicit consideration for producing equivalent nerve responses could contribute to clinical outcomes not replicating promising results from preclinical animal studies. METHODS We used models of VNS built with ASCENT (Musselman, PLoS Comput Biol 17:e1009285, 2021) to quantify nerve responses across species and simulate translation of VNS therapies via either recycling or linear scaling of stimulation parameters. For humans (n = 9) and pigs (n = 12), we used previously validated computational models with the standard clinical helical cuff electrode on individual-specific nerve morphologies (Musselman, J Neural Eng 20:acda64, 2023b). We also modeled rat VNS (n = 9) with the Micro-Leads Neuro bipolar cuff. We calculated thresholds for fiber activation (A-, B-, and C-fibers) with biphasic rectangular pulses (0.13, 0.25, 0.5 ms). We defined "K" as the ratio of activation thresholds between a pair of individuals. We used a mixed model ANOVA on the natural logarithm of K to test for differences in inter-species Ks across fiber types and pulse widths. Lastly, using the same nerve morphologies and application-specific device design (cuff and waveform), we developed models to predict nerve responses in chronic human and rat VNS studies for treatment of stroke, inflammation, and heart failure. RESULTS Depending on the individual and species, the activation amplitude required to produce a given nerve response varied widely. Thus, applying the same VNS parameters across individuals within a species produced a large range of nerve responses. Further, applying the same or linearly scaled stimulation amplitudes across species also produced highly variable responses. Ks were greater for B fibers than A fibers (p < 0.0001) and decreased with longer pulse widths (p < 0.0001 between consecutive pairs). CONCLUSIONS The results highlight the need for systematic approaches to select stimulation parameters that account for individual- and species-specific differences in nerve responses to stimulation. Such parameter tuning may lead to higher response rates and greater therapeutic benefits from VNS therapies.
Collapse
Affiliation(s)
- Eric D Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ishani Raha
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Bachmann H, Raedt R, Laureys G, Vonck K. Use of laryngeal muscle evoked potential recording for experimental vagus nerve stimulation. Animal Model Exp Med 2025; 8:750-757. [PMID: 39921262 PMCID: PMC12008443 DOI: 10.1002/ame2.12555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/19/2024] [Indexed: 02/10/2025] Open
Abstract
The laryngeal muscle evoked potential (LMEP) is a neurophysiological outcome parameter that guarantees integrity of the nerve-electrode interface during experiments with vagus nerve stimulation (VNS). This paper discusses a large series of minimally invasive LMEP recordings in 46 female Lewis rats, implanted with a custom-made VNS electrode around the left cervical vagus nerve. After a 3-week recovery, LMEPs were recorded twice in each animal, with swapping the anode and cathode positions of the VNS electrode (polarity inversion). A VNS-induced LMEP was identified as the initial negative peak wave post-stimulation artifact, consistently recorded in all sweeps at a given stimulation output current. Latency was defined as the time from stimulation onset to this negative peak, and stimulation threshold as the lowest current showing a clear and reproducible LMEP. An LMEP response was shown by 37/46 animals (80.4%), with stimulation intensity threshold of 0.37 ± 0.27 mA and latency of 2.39 ± 0.45 ms. Administering the cathodic pulse phase first at the caudal electrode contact resulted in the shortest LMEP latencies (MWU: p = 0.049. 2.36 ± 0.43 ms vs. 2.41 ± 0.47 ms). Minimally invasive LMEP recording provides a feasible and reliable means for checking electrode functioning and correct implantation.
Collapse
Affiliation(s)
- Helen Bachmann
- 4Brain, Department of Neurology, Ghent University HospitalGhent UniversityGentBelgium
| | - Robrecht Raedt
- 4Brain, Department of Neurology, Ghent University HospitalGhent UniversityGentBelgium
| | - Guy Laureys
- 4Brain, Department of Neurology, Ghent University HospitalGhent UniversityGentBelgium
| | - Kristl Vonck
- 4Brain, Department of Neurology, Ghent University HospitalGhent UniversityGentBelgium
| |
Collapse
|
3
|
Xia R, Peng H, Zhu X, Suolang W, Pambayi STL, Yang X, Zeng Y, Shen B. Autonomic Nervous System in Bone Remodeling: From Mechanisms to Novel Therapies in Orthopedic Diseases. Orthop Surg 2025. [PMID: 40071773 DOI: 10.1111/os.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 03/17/2025] Open
Abstract
Recent literature has increasingly demonstrated the significant function of autonomic nerves in regulating physiological and pathological changes associated with the skeletal system. Extensive studies have been conducted to understand the contribution of the autonomic nervous system (ANS) to skeletal metabolic homeostasis and resistance to aseptic inflammation, specifically from the viewpoint of skeletal neurobiology. There have been plenty of studies on how the sympathetic nervous system (SNS) and parasympathetic nervous system (PNS), the two main branches of the ANS, regulate bone remodeling, which is the process of bone formation and resorption. The following studies have revealed critical neurological pathways that induce significant alterations in bone cell biology and uncover the intricate linkages between the ANS and the skeletal system. Furthermore, inspired by the connection between the ANS and bone remodeling, neuromodulation has been utilized as a therapeutic method for patients with orthopedic diseases: by directly influencing the ANS, it is possible to alter the excitability of nerve fibers and the release of neurotransmitters, which can lead to anti-inflammatory and analgesic effects, thereby directly or indirectly impacting bone formation and bone resorption. Our work aims to review the most recent findings on the impact of the ANS on bone remodeling, enhance the current understanding of the interaction between nerves and bones, and explore potential neuromodulation methods that could be used to treat orthopedic conditions, thereby drawing attention to the significant role of the ANS in the skeletal system.
Collapse
Affiliation(s)
- Ruihao Xia
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongjun Peng
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xishan Zhu
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wangdui Suolang
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Steve T L Pambayi
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Shen
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Chan E, Mani AR. Assessing the therapeutic potential of vagus nerve stimulation in autoimmune diseases: A systematic review. Physiol Rep 2025; 13:e70230. [PMID: 39903575 PMCID: PMC11793006 DOI: 10.14814/phy2.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/04/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Emerging evidence suggests that the vagus nerve can modulate the immune system in experimental settings. Vagus nerve stimulation (VNS), initially developed for managing epilepsy, is now being explored as a treatment for autoimmune diseases due to its potential immunomodulatory effects. This systematic review evaluates the therapeutic potential of VNS in autoimmune diseases by critically appraising findings from human clinical studies. This systematic review was conducted in accordance with the PRISMA guideline, with a comprehensive literature search performed in Ovid, Cochrane, and PubMed databases up to July 2024. Studies focusing on VNS in patients with autoimmune diseases were eligible, and the quality of study was assessed using the QualSyst tool. Of the 53 papers identified for full-text assessment, 19 studies met the eligibility criteria. Findings suggest that VNS is a promising adjunctive therapy for Crohn's disease and rheumatoid arthritis, showing potential to alleviate symptoms and modulate immune responses. The efficacy and safety of VNS vary widely across studies, highlighting the complex nature of autoimmune diseases and the diverse mechanisms of VNS action. Future research should prioritize large-scale, randomized controlled trials with standardized protocols to further elucidate the efficacy, long-term safety, and optimal parameters of VNS across various autoimmune conditions.
Collapse
Affiliation(s)
- Eubi Chan
- Network Physiology LaboratoryUCL Division of MedicineLondonUK
- School of MedicineBrighton and Sussex Medical SchoolBrightonUK
| | - Ali R. Mani
- Network Physiology LaboratoryUCL Division of MedicineLondonUK
| |
Collapse
|
5
|
Matarazzo JV, Williams-Wynn DT, Fallon JB, Payne SC. Magnetically Coupled Percutaneous Connector for Chronic Electrical Peripheral Nerve Stimulation and Recording in Awake Rats. IEEE Trans Biomed Eng 2025; 72:35-42. [PMID: 39093683 DOI: 10.1109/tbme.2024.3436649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
A fast-growing field of neuroscience and medicine is the treatment of disease via electrical stimulation of the peripheral nervous system. Peripheral nerve stimulation delivers stimulation to nerves of the periphery where the target nerve can and is often located deep within the abdomen. Long-term preclinical animal models that demonstrate the safety and/or efficacy of electrical stimulation have predominantly used a skull mount to connect to neural interfaces. When targeting nerves of the extremities and abdomen, this mount location is less favourable due to its distance to the implant causing complications in surgery and to the longevity of the device in vivo. OBJECTIVE Here we aimed to develop and validate a chronic magnetic percutaneous connector designed for placement on the dorsal-lumbar aspect of the spine of awake, freely moving rats. METHODS A pedestal and external connector was developed, bench tested to assess for continuity, durability and disconnection forces, and validated in awake rats chronically implanted with an abdominal vagus nerve electrode array. The implanted pedestal and external connector were designed with custom PCBs, spring-loaded pins, magnets and biocompatible 3D printed housing. RESULTS The magnetic coupling mechanism allowed disconnection with minimal force, was highly reliable in maintaining electrical connection in awake rats and allowed recording of electrically evoked compound action potentials after chronic implantation. CONCLUSION In conclusion, this percutaneous connector is a useful research tool for peripheral nerve stimulation studies. SIGNIFICANCE The connector described will allow investigation into the safety and efficacy of emerging neuromodulation therapies for the treatment of disease.
Collapse
|
6
|
Liu FJ, Wu J, Gong LJ, Yang HS, Chen H. Non-invasive vagus nerve stimulation in anti-inflammatory therapy: mechanistic insights and future perspectives. Front Neurosci 2024; 18:1490300. [PMID: 39605787 PMCID: PMC11599236 DOI: 10.3389/fnins.2024.1490300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Non-invasive vagus nerve stimulation (VNS) represents a transformative approach for managing a broad spectrum of inflammatory and autoimmune conditions, including rheumatoid arthritis and inflammatory bowel disease. This comprehensive review delineates the mechanisms underlying VNS, emphasizing the cholinergic anti-inflammatory pathway, and explores interactions within the neuro-immune and vagus-gut axes based on both clinical outcomes and pre-clinical models. Clinical applications have confirmed the efficacy of VNS in managing specific autoimmune diseases, such as rheumatoid arthritis, and chronic inflammatory conditions like inflammatory bowel disease, showcasing the variability in stimulation parameters and patient responses. Concurrently, pre-clinical studies have provided insights into the potential of VNS in modulating cardiovascular and broader inflammatory responses, paving the way for its translational application in clinical settings. Innovations in non-invasive VNS technology and precision neuromodulation are enhancing its therapeutic potential, making it a viable option for patients who are unresponsive to conventional treatments. Nonetheless, the widespread adoption of this promising therapy is impeded by regulatory challenges, patient compliance issues, and the need for extensive studies on long-term efficacy and safety. Future research directions will focus on refining VNS technology, optimizing treatment parameters, and exploring synergistic effects with other therapeutic modalities, which could revolutionize the management of chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Fu-Jun Liu
- Neurology Medical Center II, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Jing Wu
- Department of Medical Imaging, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Li-Jun Gong
- Center of Surgical Anesthesia, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Shuai Yang
- Central Operating Room, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Spinedi E, Docena GH. Physiopathological Roles of White Adiposity and Gut Functions in Neuroinflammation. Int J Mol Sci 2024; 25:11741. [PMID: 39519291 PMCID: PMC11546880 DOI: 10.3390/ijms252111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
White adipose tissue (WAT) and the gut are involved in the development of neuroinflammation when an organism detects any kind of injury, thereby triggering metainflammation. In fact, the autonomous nervous system innervates both tissues, although the complex role played by the integrated sympathetic, parasympathetic, and enteric nervous system functions have not been fully elucidated. Our aims were to investigate the participation of inflamed WAT and the gut in neuroinflammation. Firstly, we conducted an analysis into how inflamed peripheral WAT plays a key role in the triggering of metainflammation. Indeed, this included the impact of the development of local insulin resistance and its metabolic consequences, a serious hypothalamic dysfunction that promotes neurodegeneration. Then, we analyzed the gut-brain axis dysfunction involved in neuroinflammation by examining cell interactions, soluble factors, the sensing of microbes, and the role of dysbiosis-related mechanisms (intestinal microbiota and mucosal barriers) affecting brain functions. Finally, we targeted the physiological crosstalk between cells of the brain-WAT-gut axis that restores normal tissue homeostasis after injury. We concluded the following: because any injury can result not only in overall insulin resistance and dysbiosis, which in turn can impact upon the brain, but that a high-risk of the development of neuroinflammation-induced neurodegenerative disorder can also be triggered. Thus, it is imperative to avoid early metainflammation by applying appropriate preventive (e.g., lifestyle and diet) or pharmacological treatments to cope with allostasis and thus promote health homeostasis.
Collapse
Affiliation(s)
- Eduardo Spinedi
- Centro de Endocrinología Experimental y Aplicada (CENEXA-UNLP-CONICET-CICPBA), University of La Plata Medical School, La Plata 1900, Argentina
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-UNLP-CONICET-CICPBA), School of Sciences, University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
8
|
Straub RH, Cutolo M. A History of Psycho-Neuro-Endocrine Immune Interactions in Rheumatic Diseases. Neuroimmunomodulation 2024; 31:183-210. [PMID: 39168106 DOI: 10.1159/000540959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND All active scientists stand on the shoulders of giants and many other more anonymous scientists, and this is not different in our field of psycho-neuro-endocrine immunology in rheumatic diseases. Too often, the modern world of publishing forgets about the collective enterprise of scientists. Some journals advise the authors to present only literature from the last decade, and it has become a natural attitude of many scientists to present only the latest publications. In order to work against this general unempirical behavior, neuroimmunomodulation devotes the 30th anniversary issue to the history of medical science in psycho-neuro-endocrine immunology. SUMMARY Keywords were derived from the psycho-neuro-endocrine immunology research field very well known to the authors (R.H.S. has collected a list of keywords since 1994). We screened PubMed, the Cochran Library of Medicine, Embase, Scopus database, and the ORCID database to find relevant historical literature. The Snowballing procedure helped find related work. According to the historical appearance of discoveries in the field, the order of presentation follows the subsequent scheme: (1) the sensory nervous system, (2) the sympathetic nervous system, (3) the vagus nerve, (4) steroid hormones (glucocorticoids, androgens, progesterone, estrogens, and the vitamin D hormone), (5) afferent pathways involved in fatigue, anxiety, insomnia, and depression (includes pathophysiology), and (6) evolutionary medicine and energy regulation - an umbrella theory. KEY MESSAGES A brief history on psycho-neuro-endocrine immunology cannot address all relevant aspects of the field. The authors are aware of this shortcoming. The reader must see this review as a viewpoint through the biased eyes of the authors. Nevertheless, the text gives an overview of the history in psycho-neuro-endocrine immunology of rheumatic diseases.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Maurizio Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Department of Internal Medicine DIMI, Postgraduate School of Rheumatology, University of Genova, Genoa, Italy
| |
Collapse
|
9
|
Al-Mansori A, Al-Sbiei A, Bashir GH, Qureshi MM, Tariq S, Altahrawi A, al-Ramadi BK, Fernandez-Cabezudo MJ. Effect of acetylcholinesterase inhibition on immune cells in the murine intestinal mucosa. Heliyon 2024; 10:e33849. [PMID: 39071679 PMCID: PMC11283160 DOI: 10.1016/j.heliyon.2024.e33849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
The gastrointestinal tract (GI) is the largest immune organ whose function is controlled by a complex network of neurons from the enteric nervous system (ENS) as well as the sympathetic and parasympathetic system. Evolving evidence indicates that cross-communication between gut-innervating neurons and immune cells regulates many essential physiological functions including protection against mucosal infections. We previously demonstrated that following paraoxon treatment, 70 % of the mice were able to survive an oral infection with S. typhimurium, a virulent strain of Salmonella enterica serovar Typhimurium. The present study aims to investigate the effect that rivastigmine, a reversible AChE inhibitor used for the treatment of neurodegenerative diseases, has on the murine immune defenses of the intestinal mucosa. Our findings show that, similar to what is observed with paraoxon, administration of rivastigmine promoted the release of secretory granules from goblet and Paneth cells, resulting in increased mucin layer. Surprisingly, however, and unlike paraoxon, rivastigmine treatment did not affect overall mortality of infected mice. In order to investigate the mechanistic basis for the differential effects observed between paraoxon and rivastigmine, we used multi-color flowcytometric analysis to characterize the immune cell landscape in the intraepithelial (IE) and lamina propria (LP) compartments of intestinal mucosa. Our data indicate that treatment with paraoxon, but not rivastigmine, led to an increase of resident CD3+CD8+ T lymphocytes in the ileal mucosa (epithelium and lamina propria) and CD11b- CD11c+ dendritic cells in the LP. Our findings indicate the requirement for persistent cholinergic pathway engagement to effect a change in the cellular landscape of the mucosal tissue that is necessary for protection against lethal bacterial infections. Moreover, optimal protection requires a collaboration between innate and adaptive mucosal immune responses in the intestine.
Collapse
Affiliation(s)
- Alreem Al-Mansori
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ghada H. Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Mohammed M. Qureshi
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Abeer Altahrawi
- Department of Pathology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Natarajan C, Le LHD, Gunasekaran M, Tracey KJ, Chernoff D, Levine YA. Electrical stimulation of the vagus nerve ameliorates inflammation and disease activity in a rat EAE model of multiple sclerosis. Proc Natl Acad Sci U S A 2024; 121:e2322577121. [PMID: 38968104 PMCID: PMC11252997 DOI: 10.1073/pnas.2322577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating central nervous system (CNS) disorder that is associated with functional impairment and accruing disability. There are multiple U.S. Food and Drug Administration (FDA)-approved drugs that effectively dampen inflammation and slow disability progression. However, these agents do not work well for all patients and are associated with side effects that may limit their use. The vagus nerve (VN) provides a direct communication conduit between the CNS and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the VN (VNS) shows efficacy in ameliorating pathology in several CNS and autoimmune disorders. We therefore investigated the impact of VNS in a rat experimental autoimmune encephalomyelitis (EAE) model of MS. In this study, VNS-mediated neuroimmune modulation is demonstrated to effectively decrease EAE disease severity and duration, infiltration of neutrophils and pathogenic lymphocytes, myelin damage, blood-brain barrier disruption, fibrinogen deposition, and proinflammatory microglial activation. VNS modulates expression of genes that are implicated in MS pathogenesis, as well as those encoding myelin proteins and transcription factors regulating new myelin synthesis. Together, these data indicate that neuroimmune modulation via VNS may be a promising approach to treat MS, that not only ameliorates symptoms but potentially also promotes myelin repair (remyelination).
Collapse
Affiliation(s)
| | | | | | - Kevin J. Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| | | | - Yaakov A. Levine
- SetPoint Medical, Valencia, CA91355
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm171 76, Sweden
| |
Collapse
|
11
|
Bachmann H, Vandemoortele B, Vermeirssen V, Carrette E, Vonck K, Boon P, Raedt R, Laureys G. Vagus nerve stimulation enhances remyelination and decreases innate neuroinflammation in lysolecithin-induced demyelination. Brain Stimul 2024; 17:575-587. [PMID: 38648972 DOI: 10.1016/j.brs.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Current treatments for Multiple Sclerosis (MS) poorly address chronic innate neuroinflammation nor do they offer effective remyelination. The vagus nerve has a strong regulatory role in inflammation and Vagus Nerve Stimulation (VNS) has potential to affect both neuroinflammation and remyelination in MS. OBJECTIVE This study investigated the effects of VNS on demyelination and innate neuroinflammation in a validated MS rodent model. METHODS Lysolecithin (LPC) was injected in the corpus callosum (CC) of 46 Lewis rats, inducing a demyelinated lesion. 33/46 rats received continuously-cycled VNS (cVNS) or one-minute per day VNS (1minVNS) or sham VNS from 2 days before LPC-injection until perfusion at 3 days post-injection (dpi) (corresponding with a demyelinated lesion with peak inflammation). 13/46 rats received cVNS or sham from 2 days before LPC-injection until perfusion at 11 dpi (corresponding with a partial remyelinated lesion). Immunohistochemistry and proteomics analyses were performed to investigate the extend of demyelination and inflammation. RESULTS Immunohistochemistry showed that cVNS significantly reduced microglial and astrocytic activation in the lesion and lesion border, and significantly reduced the Olig2+ cell count at 3 dpi. Furthermore, cVNS significantly improved remyelination with 57.4 % versus sham at 11 dpi. Proteomic gene set enrichment analyses showed increased activation of (glutamatergic) synapse pathways in cVNS versus sham, most pronounced at 3 dpi. CONCLUSION cVNS improved remyelination of an LPC-induced lesion. Possible mechanisms might include modulation of microglia and astrocyte activity, increased (glutamatergic) synapses and enhanced oligodendrocyte clearance after initial injury.
Collapse
Affiliation(s)
- Helen Bachmann
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium.
| | - Boris Vandemoortele
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vanessa Vermeirssen
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evelien Carrette
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Kristl Vonck
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Paul Boon
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Robrecht Raedt
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Guy Laureys
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| |
Collapse
|
12
|
Conde SV, Sacramento JF, Zinno C, Mazzoni A, Micera S, Guarino MP. Bioelectronic modulation of carotid sinus nerve to treat type 2 diabetes: current knowledge and future perspectives. Front Neurosci 2024; 18:1378473. [PMID: 38646610 PMCID: PMC11026613 DOI: 10.3389/fnins.2024.1378473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectronic medicine are an emerging class of treatments aiming to modulate body nervous activity to correct pathological conditions and restore health. Recently, it was shown that the high frequency electrical neuromodulation of the carotid sinus nerve (CSN), a small branch of the glossopharyngeal nerve that connects the carotid body (CB) to the brain, restores metabolic function in type 2 diabetes (T2D) animal models highlighting its potential as a new therapeutic modality to treat metabolic diseases in humans. In this manuscript, we review the current knowledge supporting the use of neuromodulation of the CSN to treat T2D and discuss the future perspectives for its clinical application. Firstly, we review in a concise manner the role of CB chemoreceptors and of CSN in the pathogenesis of metabolic diseases. Secondly, we describe the findings supporting the potential therapeutic use of the neuromodulation of CSN to treat T2D, as well as the feasibility and reversibility of this approach. A third section is devoted to point up the advances in the neural decoding of CSN activity, in particular in metabolic disease states, that will allow the development of closed-loop approaches to deliver personalized and adjustable treatments with minimal side effects. And finally, we discuss the findings supporting the assessment of CB activity in metabolic disease patients to screen the individuals that will benefit therapeutically from this bioelectronic approach in the future.
Collapse
Affiliation(s)
- Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana F. Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ciro Zinno
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Silvestro Micera
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Maria P. Guarino
- ciTechCare, School of Health Sciences Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
13
|
Bonaz B. A novel neuroimmune modulation system for the treatment of rheumatoid arthritis. Bioelectron Med 2024; 10:9. [PMID: 38566215 PMCID: PMC10988796 DOI: 10.1186/s42234-024-00142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 04/04/2024] Open
Abstract
The vagus nerve has an anti-inflammatory effect through the inflammatory reflex, which inhibits the release of proinflammatory cytokines by macrophages. Recent pilot clinical trials, using implantable bioelectronic devices, have demonstrated the efficacy of vagus nerve stimulation in adult patients with rheumatoid arthritis and inflammatory bowel diseases as an alternative to drugs, which are not devoid of side effects and are costly. In this issue of Bioelectronic Medicine, Peterson et al. report the safety of novel implantable neuroimmune modulation device for treating rheumatoid arthritis (The RESET RA study), which I will discuss in this commentary.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes-Faculté de Médicine, Grenoble Institut Neurosciences (GIN, Inserm U1216), site Santé, Bâtiment Edmond J. Safra, 31 Chem. Fortuné Ferrini, 38700, La Tronche, France.
| |
Collapse
|
14
|
Jung B, Yang C, Lee SH. Vagus Nerves Stimulation: Clinical Implication and Practical Issue as a Neuropsychiatric Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:13-22. [PMID: 38247408 PMCID: PMC10811398 DOI: 10.9758/cpn.23.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 01/23/2024]
Abstract
Vagus nerve stimulation (VNS) has been approved as an adjunctive treatment for epilepsy and depression. As the progress of VNS treatment for these neuropsychiatric disorders continues, its applications have expanded to a wide range of conditions, including inflammatory diseases to cognitive dysfunctions. The branches of the vagal nerves directly or indirectly innervate the anatomical structures implicated in these neuropsychiatric conditions, which has led to promising results regarding the effectiveness of VNS. Previous studies investigating the effectiveness of VNS have mostly utilized invasive forms of stimulation. However, current preclinical and clinical research indicates that non-invasive forms of VNS, such as transcutaneous vagus nerve stimulation, hold the promise for treating various neuropsychiatric conditions. This review aims to delve into relevant clinical studies of VNS in various illness states, different methods of VNS, and the potential mechanisms underlying the therapeutic effects in these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Bori Jung
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Psychology, Sogang University, Seoul, Korea
| | - Chaeyeon Yang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
15
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
16
|
Kim MH, Suh HR, Han HC. The effects of the cholinergic system on carrageenan-induced arthritis. Neurosci Lett 2024; 823:137651. [PMID: 38262509 DOI: 10.1016/j.neulet.2024.137651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
The cholinergic system has been found to make an anti-inflammatory effect through the cholinergic anti-inflammatory pathway (CAIP), which suppresses the production of pro-inflammatory cytokines by secreting acetylcholine, a major neurotransmitter. However, no studies have been conducted on the effects of CAIP on joint pain and inflammation. In this study, we investigated the effects of muscarinic acetylcholine receptors (mAChRs) in knee arthritis. To examine pain behavioral changes, atropine (or saline for sham control) was pretreated in the joint cavity of rats at 1 % carrageenan + 5, 10, and 30 μL and the dynamic weight-bearing evaluation was performed. Synovial membranes were collected and cyclooxygenase-2 (COX-2) and interleukin-1β (IL-1β) were measured using a western blot. Hematoxylin and eosin staining was performed. Compared to that of the sham group, the weight-bearing of the affected knee joint significantly increased in the 1 % carrageenan + 10 μL atropine group (p < 0.05). However, no significant changes were observed in the 1 % carrageenan + 5 and 30 μL atropine groups. COX-2 and IL-1β and the number of inflammatory cells in synovial membrane significantly increased with 1 % carrageenan + 10 μL of atropine (p < 0.05). These results suggest that cholinergic system is involved in knee joint pain and inflammation and that mAChRs are potential therapeutic targets for knee joint arthritis.
Collapse
Affiliation(s)
- Min Ha Kim
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, Republic of Korea
| | - Hye Rim Suh
- Department of Physical Therapy, Baekseok University, Cheonan, Republic of Korea.
| | - Hee Chul Han
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Fleischmann R. Is There a Role for Vagal Nerve Stimulation in the Treatment of Rheumatoid Arthritis? Arthritis Rheumatol 2023; 75:2103-2105. [PMID: 37463120 DOI: 10.1002/art.42643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Affiliation(s)
- Roy Fleischmann
- University of Texas Southwestern Medical Center and Metroplex Clinical Research Center, Dallas, Texas
| |
Collapse
|
18
|
Dutra AR, Salm DC, da Silva RH, Tanaka F, Lutdke DD, de Oliveira BH, Lampert R, Bittencourt EB, Bianco G, Gadotti VM, Reed WR, Mack JM, Bobinski F, Moré AOO, Martins DF. Electrical stimulation of the auricular branch of the vagus nerve potentiates analgesia induced by physical exercise in mice with peripheral inflammation. Front Integr Neurosci 2023; 17:1242278. [PMID: 37901799 PMCID: PMC10602751 DOI: 10.3389/fnint.2023.1242278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023] Open
Abstract
Objective This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) associated with physical exercise, i.e., swimming, in mice with peripheral inflammation. Methods The pain model was induced by intraplantar (i.pl.) injection of Freund's complete adjuvant (CFA). Sixty-four male Swiss mice (35-40 g) received an i.pl. of CFA and underwent behavioral tests, i.e., mechanical hyperalgesia, edema, and paw temperature tests. Additionally, cytokine levels, specifically interleukin-6 (IL-6) and interleukin-10 (IL-10), were determined by enzyme-linked immunosorbent assay. Mice were treated with swimming exercise for 30 min alone or associated with different time protocols (10, 20, or 30 min) of stimulation in the left ear with random frequency during four consecutive days. Results pVNS for 20 min prolonged the antihyperalgesic effect for up to 2 h, 24 h after CFA injection. pVNS for 30 min prolonged the antihyperalgesic effect for up to 7 h, 96 h after CFA injection. However, it did not alter the edema or temperature at both analyzed times (24 and 96 h). Furthermore, the combination of pVNS plus swimming exercise, but not swimming exercise alone, reduced IL-6 levels in the paw and spinal cord, as well as IL-10 levels in the spinal cord. Conclusion pVNS potentiates the analgesic effect induced by swimming, which may be, at least in part, mediated by the modulation of inflammatory cytokines in the periphery (paw) and central nervous system (spinal cord). Therefore, the combination of these therapies may serve as an important adjunctive treatment for persistent inflammatory pain.
Collapse
Affiliation(s)
- Aline Raulino Dutra
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Daiana Cristina Salm
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Rafaela Hardt da Silva
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Fernanda Tanaka
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Daniela Dero Lutdke
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Bruna Hoffmann de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Rose Lampert
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University and Istituto Di Formazione in Agopuntura E Neuromodulazione IFAN, Rome, Italy
| | - Vinícius M. Gadotti
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - William R. Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States
- Rehabilitation Science Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Josiel Mileno Mack
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Ari O. O. Moré
- Integrative Medicine and Acupuncture Division, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| |
Collapse
|
19
|
Zouali M. Pharmacological and Electroceutical Targeting of the Cholinergic Anti-Inflammatory Pathway in Autoimmune Diseases. Pharmaceuticals (Basel) 2023; 16:1089. [PMID: 37631004 PMCID: PMC10459025 DOI: 10.3390/ph16081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Continuous dialogue between the immune system and the brain plays a key homeostatic role in various immune responses to environmental cues. Several functions are under the control of the vagus nerve-based inflammatory reflex, a physiological mechanism through which nerve signals regulate immune functions. In the cholinergic anti-inflammatory pathway, the vagus nerve, its pivotal neurotransmitter acetylcholine, together with the corresponding receptors play a key role in modulating the immune response of mammals. Through communications of peripheral nerves with immune cells, it modulates proliferation and differentiation activities of various immune cell subsets. As a result, this pathway represents a potential target for treating autoimmune diseases characterized by overt inflammation and a decrease in vagal tone. Consistently, converging observations made in both animal models and clinical trials revealed that targeting the cholinergic anti-inflammatory pathway using pharmacologic approaches can provide beneficial effects. In parallel, bioelectronic medicine has recently emerged as an alternative approach to managing systemic inflammation. In several studies, nerve electrostimulation was reported to be clinically relevant in reducing chronic inflammation in autoimmune diseases, including rheumatoid arthritis and diabetes. In the future, these new approaches could represent a major therapeutic strategy for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
20
|
Xie Y, Tao S, Pan B, Yang W, Shao W, Fang X, Han D, Li J, Zhang Y, Chen R, Li W, Xu Y, Kan H. Cholinergic anti-inflammatory pathway mediates diesel exhaust PM 2.5-induced pulmonary and systemic inflammation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131951. [PMID: 37392642 DOI: 10.1016/j.jhazmat.2023.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Previous research has indicated that the cholinergic anti-inflammatory pathway (CAP) can regulate the duration and intensity of inflammatory responses. A wide range of research has demonstrated that PM2.5 exposure may induce various negative health effects via pulmonary and systemic inflammations. To study the potential role of the CAP in mediating PM2.5-induced effects, mice were treated with vagus nerve electrical stimulation (VNS) to activate the CAP before diesel exhaust PM2.5 (DEP) instillation. Analysis of pulmonary and systemic inflammations in mice demonstrated that VNS significantly reduced the inflammatory responses triggered by DEP. Meanwhile, inhibition of the CAP by vagotomy aggravated DEP-induced pulmonary inflammation. The flow cytometry results showed that DEP influenced the CAP by altering the Th cell balance and macrophage polarization in spleen, and in vitro cell co-culture experiments indicated that this DEP-induced change on macrophage polarization may act via the splenic CD4+ T cells. To further confirm the effect of alpha7 nicotinic acetylcholine receptor (α7nAChR) in this pathway, mice were then treated with α7nAChR inhibitor (α-BGT) or agonist (PNU282987). Our results demonstrated that specific activation of α7nAChR with PNU282987 effectively alleviated DEP-induced pulmonary inflammation, while specific inhibition of α7nAChR with α-BGT exacerbated the inflammatory markers. The present study suggests that PM2.5 have an impact on the CAP, and CAP may play a critical function in mediating PM2.5 exposure-induced inflammatory response. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Yuanting Xie
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Shimin Tao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Bin Pan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenhui Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenpu Shao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xinyi Fang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Dongyang Han
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jingyu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| |
Collapse
|
21
|
Nakamura Y, Matsumoto H, Wu CH, Fukaya D, Uni R, Hirakawa Y, Katagiri M, Yamada S, Ko T, Nomura S, Wada Y, Komuro I, Nangaku M, Inagi R, Inoue T. Alpha 7 nicotinic acetylcholine receptors signaling boosts cell-cell interactions in macrophages effecting anti-inflammatory and organ protection. Commun Biol 2023; 6:666. [PMID: 37353597 PMCID: PMC10290099 DOI: 10.1038/s42003-023-05051-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/16/2023] [Indexed: 06/25/2023] Open
Abstract
Activation of the cholinergic anti-inflammatory pathway (CAP) via vagus nerve stimulation has been shown to improve acute kidney injury in rodent models. While alpha 7 nicotinic acetylcholine receptor (α7nAChR) positive macrophages are thought to play a crucial role in this pathway, their in vivo significance has not been fully understood. In this study, we used macrophage-specific α7nAChR-deficient mice to confirm the direct activation of α7nAChRs in macrophages. Our findings indicate that the administration of GTS-21, an α7nAChR-specific agonist, protects injured kidneys in wild-type mice but not in macrophage-specific α7nAChR-deficient mice. To investigate the signal changes or cell reconstructions induced by α7nAChR activation in splenocytes, we conducted single-cell RNA-sequencing of the spleen. Ligand-receptor analysis revealed an increase in macrophage-macrophage interactions. Using macrophage-derived cell lines, we demonstrated that GTS-21 increases cell contact, and that the contact between macrophages receiving α7nAChR signals leads to a reduction in TNF-α. Our results suggest that α7nAChR signaling increases macrophage-macrophage interactions in the spleen and has a protective effect on the kidneys.
Collapse
Affiliation(s)
- Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hirotaka Matsumoto
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daichi Fukaya
- Department of Nephrology, Saitama Medical University, Saitama, Japan
| | - Rie Uni
- Division of CKD pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yosuke Hirakawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
22
|
Salm DC, Horewicz VV, Tanaka F, Ferreira JK, de Oliveira BH, Maio JMB, Donatello NN, Ludtke DD, Mazzardo-Martins L, Dutra AR, Mack JM, de C H Kunzler D, Cargnin-Ferreira E, Salgado ASI, Bittencourt EB, Bianco G, Piovezan AP, Bobinski F, Moré AOO, Martins DF. Electrical Stimulation of the Auricular Branch Vagus Nerve Using Random and Alternating Frequencies Triggers a Rapid Onset and Pronounced Antihyperalgesia via Peripheral Annexin A1-Formyl Peptide Receptor 2/ALX Pathway in a Mouse Model of Persistent Inflammatory Pain. Mol Neurobiol 2023; 60:2889-2909. [PMID: 36745336 DOI: 10.1007/s12035-023-03237-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) by comparing the effects of alternating and random frequencies in an animal model of persistent inflammatory hyperalgesia. The model was induced by Freund's complete adjuvant (CFA) intraplantar (i.pl.) injection. Mice were treated with different protocols of time (10, 20, or 30 min), ear laterality (right, left or both), and frequency (alternating or random). Mechanical hyperalgesia was evaluated, and some groups received i.pl. WRW4 (FPR2/ALX antagonist) to determine the involvement. Edema, paw surface temperature, and spontaneous locomotor activity were evaluated. Interleukin-1β, IL-6, IL-10, and IL4 levels were verified by enzyme-linked immunosorbent assay. AnxA1, FPR2/ALX, neutrophil, M1 and M2 phenotype macrophage, and apoptotic cells markers were identified using western blotting. The antihyperalgesic effect pVNS with alternating and random frequency effect is depending on the type of frequency, time, and ear treated. The pVNS random frequency in the left ear for 10 min had a longer lasting antihyperalgesic effect, superior to classical stimulation using alternating frequency and the FPR2/ALX receptor was involved in this effect. There was a reduction in the levels of pro-inflammatory cytokines and an increase in the immunocontent of AnxA1 and CD86 in mice paw. pVNS with a random frequency in the left ear for 10 min showed to be optimal for inducing an antihyperalgesic effect. Thus, the random frequency was more effective than the alternating frequency. Therefore, pVNS may be an important adjunctive treatment for persistent inflammatory pain.
Collapse
Affiliation(s)
- Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Verônica V Horewicz
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Fernanda Tanaka
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Júlia K Ferreira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Julia Maria Batista Maio
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Nathalia N Donatello
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aline R Dutra
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Josiel M Mack
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Deborah de C H Kunzler
- Department of Physiotherapy, State University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Rome, Italy
- Istituto Di Formazione in Agopuntura E Neuromodulazione IFAN, Rome, Italy
| | - Anna Paula Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Ari O O Moré
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Integrative Medicine and Acupuncture Division, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
23
|
Zanos S, Ntiloudi D, Pellerito J, Ramdeo R, Graf J, Wallace K, Cotero V, Ashe J, Moon J, Addorisio M, Shoudy D, Coleman TR, Brines M, Puleo C, Tracey KJ, Chavan SS. Focused ultrasound neuromodulation of the spleen activates an anti-inflammatory response in humans. Brain Stimul 2023; 16:703-711. [PMID: 37055009 PMCID: PMC10330863 DOI: 10.1016/j.brs.2023.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
Focused ultrasound stimulation (FUS) activates mechanosensitive ion channels and is emerging as a method of noninvasive neuromodulation. In preclinical studies, FUS of the spleen (sFUS) activates an anti-inflammatory neural pathway which suppresses acute and chronic inflammation. However, the relevance of sFUS for regulating inflammatory responses in humans is unknown. Here, we used a modified diagnostic ultrasound imaging system to target the spleen of healthy human subjects with 3 min of continuously swept or stationary focused pulsed ultrasound, delivered at three different energy levels within allowable safety exposure limits. Potential anti-inflammatory effects of sFUS were assessed by measuring sFUS-elicited changes in endotoxin-induced tumor necrosis factor (TNF) production in whole blood samples from insonified subjects. We found that stimulation with either continuously swept or focused pulsed ultrasound has an anti-inflammatory effect: sFUS lowers TNF production for >2 h, with TNF returning to baseline by 24 h following sFUS. This response is independent of anatomical target (i.e., spleen hilum or parenchyma) or ultrasound energy level. No clinical, biochemical, or hematological parameters are adversely impacted. This is the first demonstration that sFUS suppresses the normal inflammatory response in humans, with potential implications for noninvasive bioelectronic therapy of inflammatory disorders.
Collapse
Affiliation(s)
- Stavros Zanos
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Despoina Ntiloudi
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - John Pellerito
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Radiology, Northwell Health, Manhasset, NY, 11030, USA
| | - Richard Ramdeo
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - John Graf
- General Electric (GE) Research, Niskayuna, NY, USA, 12309
| | - Kirk Wallace
- General Electric (GE) Research, Niskayuna, NY, USA, 12309
| | | | - Jeff Ashe
- General Electric (GE) Research, Niskayuna, NY, USA, 12309
| | - Jessica Moon
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Meghan Addorisio
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - David Shoudy
- General Electric (GE) Research, Niskayuna, NY, USA, 12309
| | - Thomas R Coleman
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Michael Brines
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Chris Puleo
- General Electric (GE) Research, Niskayuna, NY, USA, 12309
| | - Kevin J Tracey
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sangeeta S Chavan
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
24
|
Lv C, Sun M, Guo Y, Xia W, Qiao S, Tao Y, Fang Y, Zhang Q, Zhu Y, Yalikun Y, Xia Y, Wei Z, Dai Y. Cholinergic dysfunction-induced insufficient activation of alpha7 nicotinic acetylcholine receptor drives the development of rheumatoid arthritis through promoting protein citrullination via the SP3/PAD4 pathway. Acta Pharm Sin B 2023; 13:1600-1615. [PMID: 37139415 PMCID: PMC10150100 DOI: 10.1016/j.apsb.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 11/23/2022] [Indexed: 01/19/2023] Open
Abstract
Both cholinergic dysfunction and protein citrullination are the hallmarks of rheumatoid arthritis (RA), but the relationship between the two phenomena remains unclear. We explored whether and how cholinergic dysfunction accelerates protein citrullination and consequently drives the development of RA. Cholinergic function and protein citrullination levels in patients with RA and collagen-induced arthritis (CIA) mice were collected. In both neuron-macrophage coculture system and CIA mice, the effect of cholinergic dysfunction on protein citrullination and expression of peptidylarginine deiminases (PADs) was assessed by immunofluorescence. The key transcription factors for PAD4 expression were predicted and validated. Cholinergic dysfunction in the patients with RA and CIA mice negatively correlated with the degree of protein citrullination in synovial tissues. The cholinergic or alpha7 nicotinic acetylcholine receptor (α7nAChR) deactivation and activation resulted in the promotion and reduction of protein citrullination in vitro and in vivo, respectively. Especially, the activation deficiency of α7nAChR induced the earlier onset and aggravation of CIA. Furthermore, deactivation of α7nAChR increased the expression of PAD4 and specificity protein-3 (SP3) in vitro and in vivo. Our results suggest that cholinergic dysfunction-induced deficient α7nAChR activation, which induces the expression of SP3 and its downstream molecule PAD4, accelerating protein citrullination and the development of RA.
Collapse
Affiliation(s)
- Changjun Lv
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minghui Sun
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yilei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenxin Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Simiao Qiao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Tao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yulai Fang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qin Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yanrong Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yusufu Yalikun
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Corresponding authors.
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Corresponding authors.
| |
Collapse
|
25
|
Donahue MJ, Ejneby MS, Jakešová M, Caravaca AS, Andersson G, Sahalianov I, Đerek V, Hult H, Olofsson PS, Głowacki ED. Wireless optoelectronic devices for vagus nerve stimulation in mice. J Neural Eng 2022; 19. [PMID: 36356313 DOI: 10.1088/1741-2552/aca1e3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/10/2022] [Indexed: 11/12/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is a promising approach for the treatment of a wide variety of debilitating conditions, including autoimmune diseases and intractable epilepsy. Much remains to be learned about the molecular mechanisms involved in vagus nerve regulation of organ function. Despite an abundance of well-characterized rodent models of common chronic diseases, currently available technologies are rarely suitable for the required long-term experiments in freely moving animals, particularly experimental mice. Due to challenging anatomical limitations, many relevant experiments require miniaturized, less invasive, and wireless devices for precise stimulation of the vagus nerve and other peripheral nerves of interest. Our objective is to outline possible solutions to this problem by using nongenetic light-based stimulation.Approach.We describe how to design and benchmark new microstimulation devices that are based on transcutaneous photovoltaic stimulation. The approach is to use wired multielectrode cuffs to test different stimulation patterns, and then build photovoltaic stimulators to generate the most optimal patterns. We validate stimulation through heart rate analysis.Main results.A range of different stimulation geometries are explored with large differences in performance. Two types of photovoltaic devices are fabricated to deliver stimulation: photocapacitors and photovoltaic flags. The former is simple and more compact, but has limited efficiency. The photovoltaic flag approach is more elaborate, but highly efficient. Both can be used for wireless actuation of the vagus nerve using light impulses.Significance.These approaches can enable studies in small animals that were previously challenging, such as long-termin vivostudies for mapping functional vagus nerve innervation. This new knowledge may have potential to support clinical translation of VNS for treatment of select inflammatory and neurologic diseases.
Collapse
Affiliation(s)
- Mary J Donahue
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Malin Silverå Ejneby
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Marie Jakešová
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - April S Caravaca
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden
| | | | - Ihor Sahalianov
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Vedran Đerek
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia
| | - Henrik Hult
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden.,Department of Mathematics, KTH, 11428 Stockholm, Sweden
| | - Peder S Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
26
|
Cong S, Wang L, Meng Y, Cai X, Zhang C, Gu Y, Ma X, Luo L. Saussurea involucrata
oral liquid regulates gut microbiota and serum metabolism during alleviation of collagen‐induced arthritis in rats. Phytother Res 2022; 37:1242-1259. [PMID: 36451529 DOI: 10.1002/ptr.7681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
Saussurea involucrata oral liquid (SIOL) can clinically relieve symptoms, such as joint pain and swelling, and morning stiffness, in patients with rheumatoid arthritis (RA). However, the mechanism of action remains unclear. This study used a combination of gut microbiota and serum metabolomics analysis to investigate the effects and potential mechanisms of SIOL intervention on rats with RA induced by type II bovine collagen and Freund's complete adjuvant. Results showed that SIOL treatment consequently improved the degree of ankle joint swelling, joint histopathological changes, joint pathological score, and expression of serum-related inflammatory cytokines (interleukin (IL)-1β, IL-4, IL-6, IL-10, and tumor necrosis factor-α) in RA model rats. 16 S rRNA sequencing results showed that SIOL increased the relative richness of the Lactobacillus and Bacteroides genus and decreased the relative richness of Romboutsia, Alloprevotella, Blautia, and Helicobacter genus. Serum nontargeted metabolomic results indicated that SIOL could regulate metabolites related to metabolic pathways, such as glycine, serine, threonine, galactose, cysteine, and methionine metabolism. Spearman correlation analysis showed that the regulatory effects of SIOL on the tricarboxylic acid (TCA) cycle, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, and glyoxylate and dicarboxylate metabolism pathways were correlated with changes in the richness of the Lactobacillus, Romboutsia, Bacteroides, and Alloprevotella genus in the gut microbiome. In conclusion, this study revealed the ameliorative effects of SIOL on RA and suggested that the therapeutic effects of SIOL on RA may be related to the regulation of the community richness of the Lactobacillus, Romboutsia, Bacteroides, and Alloprevotella genus, thereby improving the TCA cycle; phenylalanine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and glyoxylate and dicarboxylate metabolism-related pathways.
Collapse
Affiliation(s)
- Shan Cong
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Lingrui Wang
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Yan Meng
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Xuanlin Cai
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Chenxi Zhang
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Yanqin Gu
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Xiumin Ma
- Tumor Hospital Affiliated to Xinjiang Medical University Xinjiang China
| | - Li Luo
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| |
Collapse
|
27
|
Payne SC, Romas E, Hyakumura T, Muntz F, Fallon JB. Abdominal vagus nerve stimulation alleviates collagen-induced arthritis in rats. Front Neurosci 2022; 16:1012133. [PMID: 36478876 PMCID: PMC9721112 DOI: 10.3389/fnins.2022.1012133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune inflammatory disease. Despite therapeutic advances, a significant proportion of RA patients are resistant to pharmacological treatment. Stimulation of the cervical vagus nerve is a promising alternative bioelectric neuromodulation therapeutic approach. However, recent clinical trials show cervical vagus nerve stimulation (VNS) was not effective in a significant proportion of drug resistant RA patients. Here we aim to assess if abdominal vagus nerve stimulation reduces disease severity in a collagen-induced arthritis (CIA) rat model. The abdominal vagus nerve of female Dark Agouti rats was implanted and CIA induced using collagen type II injection. VNS (1.6 mA, 200 μs pulse width, 50 μs interphase gap, 27 Hz frequency) was applied to awake freely moving rats for 3 h/day (days 11-17). At 17 days following the collagen injection, unstimulated CIA rats (n = 8) had significantly worse disease activity index, tumor necrosis factor-alpha (TNF-α) and receptor activator of NFκB ligand (RANKL) levels, synovitis and cartilage damage than normal rats (n = 8, Kruskal-Wallis: P < 0.05). However, stimulated CIA rats (n = 5-6) had significantly decreased inflammatory scores and ankle swelling (Kruskal-Wallis: P < 0.05) compared to unstimulated CIA rats (n = 8). Levels of tumor necrosis factor-alpha (TNF-α) remained at undetectable levels in stimulated CIA rats while levels of receptor activator of NFκB ligand (RANKL) were significantly less in stimulated CIA rats compared to unstimulated CIA rats (P < 0.05). Histopathological score of inflammation and cartilage loss in stimulated CIA rats were no different from that of normal (P > 0.05). In conclusion, abdominal VNS alleviates CIA and could be a promising therapy for patients with RA.
Collapse
Affiliation(s)
- Sophie C. Payne
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Evange Romas
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Rheumatology, St. Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Tomoko Hyakumura
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Fenella Muntz
- Experimental Sciences Medical Unit, St. Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - James B. Fallon
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
- Department of Otolaryngology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
28
|
Pavlov VA, Tracey KJ. Bioelectronic medicine: Preclinical insights and clinical advances. Neuron 2022; 110:3627-3644. [PMID: 36174571 PMCID: PMC10155266 DOI: 10.1016/j.neuron.2022.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/28/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The nervous system maintains homeostasis and health. Homeostatic disruptions underlying the pathobiology of many diseases can be controlled by bioelectronic devices targeting CNS and peripheral neural circuits. New insights into the regulatory functions of the nervous system and technological developments in bioelectronics drive progress in the emerging field of bioelectronic medicine. Here, we provide an overview of key aspects of preclinical research, translation, and clinical advances in bioelectronic medicine.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
29
|
Impact of Non-Pharmacological Interventions on the Mechanisms of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23169097. [PMID: 36012362 PMCID: PMC9409393 DOI: 10.3390/ijms23169097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis remains the leading cause of mortality and morbidity worldwide characterized by the deposition of lipids and fibrous elements in the form of atheroma plaques in vascular areas which are hemodynamically overloaded. The global burden of atherosclerotic cardiovascular disease is steadily increasing and is considered the largest known non-infectious pandemic. The management of atherosclerotic cardiovascular disease is increasing the cost of health care worldwide, which is a concern for researchers and physicians and has caused them to strive to find effective long-term strategies to improve the efficiency of treatments by managing conventional risk factors. Primary prevention of atherosclerotic cardiovascular disease is the preferred method to reduce cardiovascular risk. Fasting, a Mediterranean diet, and caloric restriction can be considered useful clinical tools. The protective impact of physical exercise over the cardiovascular system has been studied in recent years with the intention of explaining the mechanisms involved; the increase in heat shock proteins, antioxidant enzymes and regulators of cardiac myocyte proliferation concentration seem to be the molecular and biochemical shifts that are involved. Developing new therapeutic strategies such as vagus nerve stimulation, either to prevent or slow the disease’s onset and progression, will surely have a profound effect on the lives of millions of people.
Collapse
|
30
|
Meade E, Garvey M. The Role of Neuro-Immune Interaction in Chronic Pain Conditions; Functional Somatic Syndrome, Neurogenic Inflammation, and Peripheral Neuropathy. Int J Mol Sci 2022; 23:ijms23158574. [PMID: 35955708 PMCID: PMC9369187 DOI: 10.3390/ijms23158574] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Functional somatic syndromes are increasingly diagnosed in chronically ill patients presenting with an array of symptoms not attributed to physical ailments. Conditions such as chronic fatigue syndrome, fibromyalgia syndrome, or irritable bowel syndrome are common disorders that belong in this broad category. Such syndromes are characterised by the presence of one or multiple chronic symptoms including widespread musculoskeletal pain, fatigue, sleep disorders, and abdominal pain, amongst other issues. Symptoms are believed to relate to a complex interaction of biological and psychosocial factors, where a definite aetiology has not been established. Theories suggest causative pathways between the immune and nervous systems of affected individuals with several risk factors identified in patients presenting with one or more functional syndromes. Risk factors including stress and childhood trauma are now recognised as important contributors to chronic pain conditions. Emotional, physical, and sexual abuse during childhood is considered a severe stressor having a high prevalence in functional somatic syndrome suffers. Such trauma permanently alters the biological stress response of the suffers leading to neuroexcitatory and other nerve issues associated with chronic pain in adults. Traumatic and chronic stress results in epigenetic changes in stress response genes, which ultimately leads to dysregulation of the hypothalamic-pituitary axis, the autonomic nervous system, and the immune system manifesting in a broad array of symptoms. Importantly, these systems are known to be dysregulated in patients suffering from functional somatic syndrome. Functional somatic syndromes are also highly prevalent co-morbidities of psychiatric conditions, mood disorders, and anxiety. Consequently, this review aims to provide insight into the role of the nervous system and immune system in chronic pain disorders associated with the musculoskeletal system, and central and peripheral nervous systems.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
| | - Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
- Correspondence:
| |
Collapse
|
31
|
Gama JFG, Cardoso LMDF, Bisaggio RDC, Lagrota-Candido J, Henriques-Pons A, Alves LA. Immunological Tolerance in Liver Transplant Recipients: Putative Involvement of Neuroendocrine-Immune Interactions. Cells 2022; 11:cells11152327. [PMID: 35954171 PMCID: PMC9367574 DOI: 10.3390/cells11152327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
The transplantation world changed significantly following the introduction of immunosuppressants, with millions of people saved. Several physicians have noted that liver recipients that do not take their medication for different reasons became tolerant regarding kidney, heart, and lung transplantations at higher frequencies. Most studies have attempted to explain this phenomenon through unique immunological mechanisms and the fact that the hepatic environment is continuously exposed to high levels of pathogen-associated molecular patterns (PAMPs) or non-pathogenic microorganism-associated molecular patterns (MAMPs) from commensal flora. These components are highly inflammatory in the periphery but tolerated in the liver as part of the normal components that arrive via the hepatic portal vein. These immunological mechanisms are discussed herein based on current evidence, although we hypothesize the participation of neuroendocrine-immune pathways, which have played a relevant role in autoimmune diseases. Cells found in the liver present receptors for several cytokines, hormones, peptides, and neurotransmitters that would allow for system crosstalk. Furthermore, the liver is innervated by the autonomic system and may, thus, be influenced by the parasympathetic and sympathetic systems. This review therefore seeks to discuss classical immunological hepatic tolerance mechanisms and hypothesizes the possible participation of the neuroendocrine-immune system based on the current literature.
Collapse
Affiliation(s)
- Jaciara Fernanda Gomes Gama
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
- Laboratory of Immunopathology, Department of Immunobiology, Biology Institute, Federal Fluminense University (UFF), Gragoatá Bl-M Campus, Niterói 24210-200, Brazil;
| | - Liana Monteiro da Fonseca Cardoso
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
| | - Rodrigo da Cunha Bisaggio
- Department of Biotechnology, Federal Institute of Rio de Janeiro (IFRJ), Maracanã, Rio de Janeiro 20270-021, Brazil;
| | - Jussara Lagrota-Candido
- Laboratory of Immunopathology, Department of Immunobiology, Biology Institute, Federal Fluminense University (UFF), Gragoatá Bl-M Campus, Niterói 24210-200, Brazil;
| | - Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education, and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil;
| | - Luiz A. Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
- Correspondence: or ; Tel.: +55-(21)-2562-1816 (ext. 1841)
| |
Collapse
|
32
|
Kelly MJ, Breathnach C, Tracey KJ, Donnelly SC. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep Med 2022; 3:100696. [PMID: 35858588 PMCID: PMC9381415 DOI: 10.1016/j.xcrm.2022.100696] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 06/20/2021] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
The cholinergic anti-inflammatory pathway is the efferent arm of the inflammatory reflex, a neural circuit through which the CNS can modulate peripheral immune responses. Signals communicated via the vagus and splenic nerves use acetylcholine, produced by Choline acetyltransferase (ChAT)+ T cells, to downregulate the inflammatory actions of macrophages expressing α7 nicotinic receptors. Pre-clinical studies using transgenic animals, cholinergic agonists, vagotomy, and vagus nerve stimulation have demonstrated this pathway's role and therapeutic potential in numerous inflammatory diseases. In this review, we summarize what is understood about the inflammatory reflex. We also demonstrate how pre-clinical findings are being translated into promising clinical trials, and we draw particular attention to innovative bioelectronic methods of harnessing the cholinergic anti-inflammatory pathway for clinical use.
Collapse
Affiliation(s)
- Mark J Kelly
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Tallaght University Hospital, Dublin, Ireland
| | | | - Kevin J Tracey
- Center for Biomedical Science and Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Seamas C Donnelly
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Tallaght University Hospital, Dublin, Ireland.
| |
Collapse
|
33
|
Brinkman DJ, Simon T, Ten Hove AS, Zafeiropoulou K, Welting O, van Hamersveld PHP, Willemze RA, Yim AYFL, Verseijden C, Hakvoort TBM, Luyer MD, Vervoordeldonk MJ, Blancou P, de Jonge WJ. Electrical stimulation of the splenic nerve bundle ameliorates dextran sulfate sodium-induced colitis in mice. J Neuroinflammation 2022; 19:155. [PMID: 35715845 PMCID: PMC9204975 DOI: 10.1186/s12974-022-02504-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/01/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation has been suggested to affect immune responses, partly through a neuronal circuit requiring sympathetic innervation of the splenic nerve bundle and norepinephrine (NE) release. Molecular and cellular mechanisms of action remain elusive. Here, we investigated the therapeutic value of this neuromodulation in inflammatory bowel disease (IBD) by applying electrical splenic nerve bundle stimulation (SpNS) in mice with dextran sulfate sodium (DSS)-induced colitis. METHODS Cuff electrodes were implanted around the splenic nerve bundle in mice, whereupon mice received SpNS or sham stimulation. Stimulation was applied 6 times daily for 12 days during DSS-induced colitis. Colonic and splenic tissues were collected for transcriptional analyses by qPCR and RNA-sequencing (RNA-seq). In addition, murine and human splenocytes were stimulated with lipopolysaccharide (LPS) in the absence or presence of NE. Single-cell RNA-seq data from publicly available data sets were analyzed for expression of β-adrenergic receptors (β-ARs). RESULTS Colitic mice undergoing SpNS displayed reduced colon weight/length ratios and showed improved Disease Activity Index scores with reduced Tumor Necrosis Factor α mRNA expression in the colon compared with sham stimulated mice. Analyses of splenocytes from SpNS mice using RNA-seq demonstrated specific immune metabolism transcriptome profile changes in myeloid cells. Splenocytes showed expression of β-ARs in myeloid and T cells. Cytokine production was reduced by NE in mouse and human LPS-stimulated splenocytes. CONCLUSIONS Together, our results demonstrate that SpNS reduces clinical features of colonic inflammation in mice with DSS-induced colitis possibly by inhibiting splenic myeloid cell activation. Our data further support exploration of the clinical use of SpNS for patients with IBD.
Collapse
Affiliation(s)
- David J Brinkman
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands.
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands.
| | - Thomas Simon
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS, Nice, France
| | - Anne S Ten Hove
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Konstantina Zafeiropoulou
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
- Department of Pediatric Surgery, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Patricia H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Rose A Willemze
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Andrew Y F Li Yim
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline Verseijden
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
| | - Misha D Luyer
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Margriet J Vervoordeldonk
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
- Galvani Bioelectronics, Stevenage, UK
| | - Philippe Blancou
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS, Nice, France
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Room S2-162, Meibergdreef 69, 1105 BK, Amsterdam, The Netherlands
- Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
Ahmed U, Graf JF, Daytz A, Yaipen O, Mughrabi I, Jayaprakash N, Cotero V, Morton C, Deutschman CS, Zanos S, Puleo C. Ultrasound Neuromodulation of the Spleen Has Time-Dependent Anti-Inflammatory Effect in a Pneumonia Model. Front Immunol 2022; 13:892086. [PMID: 35784337 PMCID: PMC9244783 DOI: 10.3389/fimmu.2022.892086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
Interfaces between the nervous and immune systems have been shown essential for the coordination and regulation of immune responses. Non-invasive ultrasound stimulation targeted to the spleen has recently been shown capable of activating one such interface, the splenic cholinergic anti-inflammatory pathway (CAP). Over the past decade, CAP and other neuroimmune pathways have been activated using implanted nerve stimulators and tested to prevent cytokine release and inflammation. However, CAP studies have typically been performed in models of severe, systemic (e.g., endotoxemia) or chronic inflammation (e.g., collagen-induced arthritis or DSS-induced colitis). Herein, we examined the effects of activation of the splenic CAP with ultrasound in a model of local bacterial infection by lung instillation of 105 CFU of Streptococcus pneumoniae. We demonstrate a time-dependent effect of CAP activation on the cytokine response assay during infection progression. CAP activation-induced cytokine suppression is absent at intermediate times post-infection (16 hours following inoculation), but present during the early (4 hours) and later phases (48 hours). These results indicate that cytokine inhibition associated with splenic CAP activation is not observed at all timepoints following bacterial infection and highlights the importance of further studying neuroimmune interfaces within the context of different immune system and inflammatory states.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - John F. Graf
- General Electric Research, Niskayuna, NY, United States
| | - Anna Daytz
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Omar Yaipen
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ibrahim Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | | | | | - Clifford Scott Deutschman
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Chris Puleo
- General Electric Research, Niskayuna, NY, United States
- *Correspondence: Chris Puleo,
| |
Collapse
|
35
|
Yeater TD, Cruz CJ, Cruz-Almeida Y, Allen KD. Autonomic Nervous System Dysregulation and Osteoarthritis Pain: Mechanisms, Measurement, and Future Outlook. Curr Rheumatol Rep 2022; 24:175-183. [PMID: 35420372 PMCID: PMC9189055 DOI: 10.1007/s11926-022-01071-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW The autonomic nervous system is an important regulator of stress responses and exhibits functional changes in chronic pain states. This review discusses potential overlap among autonomic dysregulation, osteoarthritis (OA) progression, and chronic pain. From this foundation, we then discuss preclinical to clinical research opportunities to close gaps in our knowledge of autonomic dysregulation and OA. Finally, we consider the potential to generate new therapies for OA pain via modulation of the autonomic nervous system. RECENT FINDINGS Recent reviews provide a framework for the autonomic nervous system in OA progression; however, research is still limited on the topic. In other chronic pain states, functional overlaps between the central autonomic network and pain processing centers in the brain suggest relationships between concomitant dysregulation of the two systems. Non-pharmacological therapeutics, such as vagus nerve stimulation, mindfulness-based meditation, and exercise, have shown promise in alleviating painful symptoms of joint diseases, and these interventions may be partially mediated through the autonomic nervous system. The autonomic nervous system appears to be dysregulated in OA progression, and further research on rebalancing autonomic function may lead to novel therapeutic strategies for treating OA pain.
Collapse
Affiliation(s)
- Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Carlos J. Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Orthopedic Surgery and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Pan S, Wu YJ, Zhang SS, Cheng XP, Olatunji OJ, Yin Q, Zuo J. The Effect of α7nAChR Signaling on T Cells and Macrophages and Their Clinical Implication in the Treatment of Rheumatic Diseases. Neurochem Res 2022; 47:531-544. [PMID: 34783974 DOI: 10.1007/s11064-021-03480-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune disease and until now, the etiology and pathogenesis of RA is not fully understood, although dysregulation of immune cells is one of the leading cause of RA-related pathological changes. Based on current understanding, the priority of anti-rheumatic treatments is to restore immune homeostasis. There are several anti-rheumatic drugs with immunomodulatory effects available nowadays, but most of them have obvious safety or efficacy shortcomings. Therefore, the development of novel anti-rheumatic drugs is still in urgently needed. Cholinergic anti-inflammatory pathway (CAP) has been identified as an important aspect of the so-called neuro-immune regulation feedback, and the interaction between acetylcholine and alpha 7 nicotinic acetylcholine receptor (α7nAChR) serves as the foundation for this signaling. Consistent to its immunomodulatory functions, α7nAChR is extensively expressed by immune cells. Accordingly, CAP activation greatly affects the differentiation and function of α7nAChR-expressing immune cells. As a result, targeting α7nAChR will bring profound therapeutic impacts on the treatment of inflammatory diseases like RA. RA is widely recognized as a CD4+ T cells-driven disease. As a major component of innate immunity, macrophages also significantly contribute to RA-related immune abnormalities. Theoretically, manipulation of CAP in immune cells is a feasible way to treat RA. In this review, we summarized the roles of different T cells and macrophages subsets in the occurrence and progression of RA, and highlighted the immune consequences of CAP activation in these cells under RA circumstances. The in-depth discussion is supposed to inspire the development of novel cell-specific CAP-targeting anti-rheumatic regimens.
Collapse
Affiliation(s)
- Shu Pan
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Xiu-Ping Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Opeyemi Joshua Olatunji
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
37
|
Merchant K, Zanos S, Datta-Chaudhuri T, Deutschman CS, Sethna CB. Transcutaneous auricular vagus nerve stimulation (taVNS) for the treatment of pediatric nephrotic syndrome: a pilot study. Bioelectron Med 2022; 8:1. [PMID: 35078538 PMCID: PMC8790887 DOI: 10.1186/s42234-021-00084-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Children with frequently relapsing nephrotic syndrome (FRNS) and steroid resistant nephrotic syndrome (SRNS) are exposed to immunosuppressant medications with adverse side effects and variable efficacy. Transcutaneous auricular vagus nerve stimulation (taVNS) modulates the immune system via the inflammatory reflex and has become a therapy of interest for treating immune-mediated illnesses. METHODS An open-label, pilot study of tavNS for five minutes daily for 26 weeks via a TENS 7000 unit was conducted. RESULTS Three FRNS participants and 4 SRNS participants had a mean age of 9.5±4.2 years (range 4 to 17). Those with FRNS remained relapse-free during the study period; two participants continued treatment and remained in remission for 15 and 21 months, respectively. Three SRNS participants experienced a reduction in first morning UPC (mean of 42%, range 25-76%). Although UPC decreased (13.7%) in one SRNS participant with congenital nephrotic syndrome, UPC remained in nephrotic range. All but one participant (non-compliant with treatment) experienced a reduction in TNF (7.33pg/mL vs. 5.46pg/mL, p=0.03). No adverse events or side effects were reported. CONCLUSIONS taVNS was associated with clinical remission in FRNS and moderately reduced proteinuria in non-congenital SRNS. Further study of taVNS as a treatment for nephrotic syndrome in children is warranted. ClinicalTrials.gov Identifier: NCT04169776, Registered November 20, 2019, https://clinicaltrials.gov/ct2/show/NCT04169776 .
Collapse
Affiliation(s)
- Kumail Merchant
- Cohen Children's Medical Center of New York, New Hyde Park, United States, NY
| | - Stavros Zanos
- The Feinstein Institutes for Medical Research, Manhasset, United States, NY
| | | | - Clifford S Deutschman
- Cohen Children's Medical Center of New York, New Hyde Park, United States, NY
- The Feinstein Institutes for Medical Research, Manhasset, United States, NY
| | - Christine B Sethna
- Cohen Children's Medical Center of New York, New Hyde Park, United States, NY.
- The Feinstein Institutes for Medical Research, Manhasset, United States, NY.
| |
Collapse
|
38
|
Falvey A, Metz CN, Tracey KJ, Pavlov VA. Peripheral nerve stimulation and immunity: the expanding opportunities for providing mechanistic insight and therapeutic intervention. Int Immunol 2022; 34:107-118. [PMID: 34498051 PMCID: PMC8783605 DOI: 10.1093/intimm/dxab068] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Pre-clinical research advances our understanding of the vagus nerve-mediated regulation of immunity and clinical trials successfully utilize electrical vagus nerve stimulation in the treatment of patients with inflammatory disorders. This symbiotic relationship between pre-clinical and clinical research exploring the vagus nerve-based 'inflammatory reflex' has substantially contributed to establishing the field of bioelectronic medicine. Recent studies identify a crosstalk between the vagus nerve and other neural circuitries in controlling inflammation and delineate new neural immunoregulatory pathways. Here we outline current mechanistic insights into the role of vagal and non-vagal neural pathways in neuro-immune communication and inflammatory regulation. We also provide a timely overview of expanding opportunities for bioelectronic neuromodulation in the treatment of various inflammatory disorders.
Collapse
Affiliation(s)
- Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
39
|
Tynan A, Brines M, Chavan SS. Control of inflammation using non-invasive neuromodulation: past, present and promise. Int Immunol 2022; 34:119-128. [PMID: 34558623 PMCID: PMC8783606 DOI: 10.1093/intimm/dxab073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
The nervous system has been increasingly recognized as a novel and accessible target in the regulation of inflammation. The use of implantable and invasive devices targeting neural circuits has yielded successful results in clinical settings but does have some risk or adverse effects. Recent advances in technology and understanding of mechanistic pathways have opened new avenues of non-invasive neuromodulation. Through this review we discuss the novel research and outcomes of major modalities of non-invasive neuromodulation in the context of inflammation including transcutaneous electrical, magnetic and ultrasound neuromodulation. In addition to highlighting the scientific observations and breakthroughs, we discuss the underlying mechanisms and pathways for neural regulation of inflammation.
Collapse
Affiliation(s)
- Aisling Tynan
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
| | - Michael Brines
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra University, Hempstead, NY, USA
| |
Collapse
|
40
|
Veiz E, Kieslich SK, Czesnik D, Herrmann-Lingen C, Meyer T, Staab J. Increased Concentrations of Circulating Interleukins following Non-Invasive Vagus Nerve Stimulation: Results from a Randomized, Sham-Controlled, Crossover Study in Healthy Subjects. Neuroimmunomodulation 2022; 29:450-459. [PMID: 35576915 DOI: 10.1159/000524646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The vagus nerve constitutes the main component of the parasympathetic nervous system and plays an important role in the regulation of neuro-immune responses. Invasive stimulation of the vagus nerve produces anti-inflammatory effects; however, data on humoral immune responses of transcutaneous vagus nerve stimulation (tVNS) are rare. Therefore, the present study investigated changes in serum cytokine concentrations of interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor α (TNFα) following a short-term, non-invasive stimulation of the vagus nerve. METHODS Whole blood samples were collected before and after a short-lived application of active tVNS at the inner tragus as well as sham stimulation of the earlobe. Cytokine serum concentrations were determined in two healthy cohorts of younger (n = 20) and older participants (n = 19). Differences between active and sham conditions were analyzed using linear mixed models and post hoc F tests after applying Yeo-Johnson power transformations. This trial was part of a larger study registered on ClinicalTrials.gov (NCT05007743). RESULTS In the young cohort, IL-6 and IL-1β concentrations were significantly increased after active stimulation, whereas they were slightly decreased after sham stimulation (IL-6: p = 0.012; IL-1β: p = 0.012). Likewise, in the older cohort, IL-1β and IL-8 concentrations were significantly elevated after active stimulation and reduced after sham application (IL-8: p = 0.007; IL-1β: p = 0.001). In contrast, circulating TNFα concentrations did not change significantly in either group. CONCLUSION Our results show that active tVNS led to an immediate increase in the serum concentrations of certain pro-inflammatory cytokines such as IL-1β, IL-6, and/or IL-8 in two independent cohorts of healthy study participants.
Collapse
Affiliation(s)
- Elisabeth Veiz
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- Department of Neurology, University Medical Centre, Göttingen, Germany
| | - Susann-Kristin Kieslich
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
| | - Dirk Czesnik
- Department of Neurology, University Medical Centre, Göttingen, Germany
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany,
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany,
| | - Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
41
|
Tarnawski L, Olofsson PS. Inflammation neuroscience: neuro-immune crosstalk and interfaces. Clin Transl Immunology 2021; 10:e1352. [PMID: 34754449 PMCID: PMC8558388 DOI: 10.1002/cti2.1352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a key process in antimicrobial defence and tissue repair, and failure to properly regulate inflammation can result in tissue damage and death. Neural circuits play important roles throughout the course of an inflammatory response, and the neurophysiological and molecular mechanisms are only partly understood. Here, we review key evidence for the neural regulation of inflammation and discuss emerging technologies to further map and harness this neurophysiology, a cornerstone in the rapidly evolving field of inflammation neuroscience.
Collapse
Affiliation(s)
- Laura Tarnawski
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
| | - Peder S Olofsson
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
- Institute of Bioelectronic MedicineFeinstein Institutes for Medical ResearchManhassetNYUSA
| |
Collapse
|
42
|
Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc Natl Acad Sci U S A 2021; 118:2021758118. [PMID: 33737395 DOI: 10.1073/pnas.2021758118] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury is highly prevalent and associated with high morbidity and mortality, and there are no approved drugs for its prevention and treatment. Vagus nerve stimulation (VNS) alleviates inflammatory diseases including kidney disease; however, neural circuits involved in VNS-induced tissue protection remain poorly understood. The vagus nerve, a heterogeneous group of neural fibers, innervates numerous organs. VNS broadly stimulates these fibers without specificity. We used optogenetics to selectively stimulate vagus efferent or afferent fibers. Anterograde efferent fiber stimulation or anterograde (centripetal) sensory afferent fiber stimulation both conferred kidney protection from ischemia-reperfusion injury. We identified the C1 neurons-sympathetic nervous system-splenic nerve-spleen-kidney axis as the downstream pathway of vagus afferent fiber stimulation. Our study provides a map of the neural circuits important for kidney protection induced by VNS, which is critical for the safe and effective clinical application of VNS for protection from acute kidney injury.
Collapse
|
43
|
Wedn AM, El-Bassossy HM, Eid AH, El-Mas MM. Modulation of preeclampsia by the cholinergic anti-inflammatory pathway: Therapeutic perspectives. Biochem Pharmacol 2021; 192:114703. [PMID: 34324867 DOI: 10.1016/j.bcp.2021.114703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is vital for the orchestration of the immune and inflammatory responses under normal and challenged conditions. Over the past two decades, peripheral and central circuits of CAP have been shown to be critically involved in dampening the inflammatory reaction in a wide array of inflammatory disorders. Additionally, emerging evidence supports a key role for CAP in the regulation of the female reproductive system during gestation as well as in the advent of serious pregnancy-related inflammatory insults such as preeclampsia (PE). Within this framework, the modulatory action of CAP encompasses the perinatal maternal and fetal adverse consequences that surface due to antenatal PE programming. Albeit, a considerable gap still exists in our knowledge of the precise cellular and molecular underpinnings of PE/CAP interaction, which hampered global efforts in safeguarding effective preventive or therapeutic measures against PE complications. Here, we summarize reports in the literature regarding the roles of peripheral and reflex cholinergic neuroinflammatory pathways of nicotinic acetylcholine receptors (nAChRs) in reprogramming PE complications in mothers and their progenies. The possible contributions of α7-nAChRs, cholinesterases, immune cells, adhesion molecules, angiogenesis, and endothelial dysfunction to the interaction have also been reviewed.
Collapse
Affiliation(s)
- Abdalla M Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
44
|
Azabou E, Bao G, Costantino F, Jacota M, Lazizi C, Nkam L, Rottman M, Roux AL, Chevallier S, Grimaldi L, Breban M. Randomized Cross Over Study Assessing the Efficacy of Non-invasive Stimulation of the Vagus Nerve in Patients With Axial Spondyloarthritis Resistant to Biotherapies: The ESNV-SPA Study Protocol. Front Hum Neurosci 2021; 15:679775. [PMID: 34276328 PMCID: PMC8278783 DOI: 10.3389/fnhum.2021.679775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
Axial spondyloarthritis (SpA), is a major cause of chronic pain and disability that profoundly alters the quality of life of patients. Nearly half of patients with SpA usually develop drug resistance. Non-pharmacological treatments targeting inflammation are an attractive alternative to drug administration. Vagus nerve stimulation (VNS), by promoting a cholinergic anti-inflammatory reflex holds promise for treating inflammatory disease. Inflammatory reflex signaling, which is enhanced by electrically stimulating the vagus nerve, significantly reduces cytokine production and attenuates disease severity in animal models of endotoxemia, sepsis, colitis, and other preclinical models of inflammatory diseases. It has been proposed that vagal efferent fibers release acetylcholine (Ach), which can interact with α7-subunit-containing nicotinic receptors expressed by tissue macrophages and other immune cells to rapidly inhibit the synthesis/release of pro-inflammatory cytokines such as TNFα, IL-1β, IL-6, and IL-18. External vagal nerve stimulation devices are now available that do not require surgery nor implantation to non-invasively stimulate the vagal nerve. This double-blind randomized cross-over clinical trial aims to study the change in SpA disease activity, according to Assessment in Ankylosing Spondylitis 20 (ASAS20) definition, after 12 weeks of non-invasive VNS treatment vs. non-specific dummy stimulation (control group). One hundred and twenty adult patients with drug resistant SpA, meeting the ASAS classification criteria, will be included in the study. Patients will be randomized into two parallel groups according to a cross over design: either active VNS for 12 weeks, then dummy stimulation for 12 weeks, or dummy stimulation for 12 weeks, then active VNS for 12 weeks. The two stimulation periods will be separated by a 4 weeks wash-out period. A transcutaneous auricular vagus nerve stimulator Tens Eco Plus SCHWA MEDICOTM France will be used in this study. The active VNS stimulation will be applied in the cymba conchae of the left ear upon the auricular branch of the vagus nerve, using low intensity (2–5 mA), once à week, during 1 h. Dummy stimulation will be performed under the same conditions and parameters as active VNS stimulation, but at an irrelevant anatomical site: the left ear lobule. This multicenter study was registered on ClinicalTrials.gov: NCT04286373.
Collapse
Affiliation(s)
- Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Guillaume Bao
- Clinical Neurophysiology and Neuromodulation Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Félicie Costantino
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Rheumatology Department, AP-HP, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France.,Laboratory of Excellence Inflamex, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Madalina Jacota
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Chanez Lazizi
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Lionelle Nkam
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Martin Rottman
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Microbiology Laboratory, Raymond Poincaré Hospital, AP-HP Paris Saclay University, Paris, France
| | - Anne-Laure Roux
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Microbiology Laboratory, Raymond Poincaré Hospital, AP-HP Paris Saclay University, Paris, France
| | - Sylvain Chevallier
- Versailles Engineering Systems Laboratory (LISV), University of Versailles Saint Quentin en Yvelines (UVSQ), Vélizy, France
| | - Lamiae Grimaldi
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Maxime Breban
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Rheumatology Department, AP-HP, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France.,Laboratory of Excellence Inflamex, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
45
|
Hajiasgharzadeh K, Khabbazi A, Mokhtarzadeh A, Baghbanzadeh A, Asadzadeh Z, Adlravan E, Baradaran B. Cholinergic anti-inflammatory pathway and connective tissue diseases. Inflammopharmacology 2021; 29:975-986. [PMID: 34125373 DOI: 10.1007/s10787-021-00812-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
Connective tissue diseases (CTDs) consist of an extensive range of heterogeneous medical conditions, which are caused by immune-mediated chronic inflammation and influences the various connective tissues of the body. They include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis, Sjögren's syndrome, Behcet's disease, and many other autoimmune CTDs. To date, several anti-inflammatory approaches have been developed to reduce the severity of inflammation or its subsequent organ manifestations. As a logical mechanism to harnesses the undesired inflammation, some studies investigated the role of the intrinsic cholinergic anti-inflammatory pathway (CAP) in the modulation of chronic inflammation. Many different experimental and clinical models have been developed to evaluate the therapeutic significance of the CAP in CTDs. On the other hand, an issue that is less emphasized in this regard is the presence of autonomic neuropathy in CTDs, which influences the efficiency of CAP in such clinical settings. This condition occurs during CTDs and is a well-known complication of patients suffering from them. The advantages and limitations of CAP in the control of inflammatory responses and its possible therapeutic benefits in the treatment of CTDs are the main subjects of the current study. Therefore, this narrative review article is provided based on the recent findings of the complicated role of CAP in CTDs which were retrieved by searching Science Direct, PubMed, Google Scholar, and Web of Science. It seems that delineating the complex influences of CAP would be of great interest in designing novel surgical or pharmacological therapeutic strategies for CTDs therapy.
Collapse
Affiliation(s)
- Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Elham Adlravan
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran. .,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
46
|
Stakenborg N, Boeckxstaens GE. Bioelectronics in the brain-gut axis: focus on inflammatory bowel disease (IBD). Int Immunol 2021; 33:337-348. [PMID: 33788920 PMCID: PMC8183669 DOI: 10.1093/intimm/dxab014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence shows that intestinal homeostasis is mediated by cross-talk between the nervous system, enteric neurons and immune cells, together forming specialized neuroimmune units at distinct anatomical locations within the gut. In this review, we will particularly discuss how the intrinsic and extrinsic neuronal circuitry regulates macrophage function and phenotype in the gut during homeostasis and aberrant inflammation, such as observed in inflammatory bowel disease (IBD). Furthermore, we will provide an overview of basic and translational IBD research using these neuronal circuits as a novel therapeutic tool. Finally, we will highlight the different challenges ahead to make bioelectronic neuromodulation a standard treatment for intestinal immune-mediated diseases.
Collapse
Affiliation(s)
- Nathalie Stakenborg
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Herestraat 49, O&N1 bus 701, Leuven 3000, Belgium
| | - Guy E Boeckxstaens
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Herestraat 49, O&N1 bus 701, Leuven 3000, Belgium
| |
Collapse
|
47
|
Pavlov VA. The evolving obesity challenge: targeting the vagus nerve and the inflammatory reflex in the response. Pharmacol Ther 2021; 222:107794. [PMID: 33310156 PMCID: PMC8027699 DOI: 10.1016/j.pharmthera.2020.107794] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Obesity and the metabolic syndrome (MetS), which have reached pandemic proportions significantly increase the risk for type 2 diabetes, cardiovascular disease, and other serious conditions. Recent data with COVID-19 patients indicate that obesity also is a significant risk factor for this novel viral disease and poor outcome of associated critical illness. These findings considerably change the view of obesity as a driver of serious, but slowly-progressing chronic diseases, and emphasize the urgency to explore new therapeutic approaches. Inflammation is a recognized driver of metabolic derangements in obesity and MetS, and a core feature of COVID-19 pathobiology. Recent advances in our understanding of inflammatory regulation have highlighted the role of the nervous system and the vagus nerve-based inflammatory reflex. Current bioelectronic and pharmacological therapeutic explorations centered on the inflammatory reflex offer new approaches for conditions characterized by immune and metabolic dysregulation and for ameliorating the escalating burden of obesity, MetS, and COVID-19.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| |
Collapse
|
48
|
Donegà M, Fjordbakk CT, Kirk J, Sokal DM, Gupta I, Hunsberger GE, Crawford A, Cook S, Viscasillas J, Stathopoulou TR, Miranda JA, Dopson WJ, Goodwin D, Rowles A, McGill P, McSloy A, Werling D, Witherington J, Chew DJ, Perkins JD. Human-relevant near-organ neuromodulation of the immune system via the splenic nerve. Proc Natl Acad Sci U S A 2021; 118:e2025428118. [PMID: 33972441 PMCID: PMC8157920 DOI: 10.1073/pnas.2025428118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuromodulation of immune function by stimulating the autonomic connections to the spleen has been demonstrated in rodent models. Consequently, neuroimmune modulation has been proposed as a new therapeutic strategy for the treatment of inflammatory conditions. However, demonstration of the translation of these immunomodulatory mechanisms in anatomically and physiologically relevant models is still lacking. Additionally, translational models are required to identify stimulation parameters that can be transferred to clinical applications of bioelectronic medicines. Here, we performed neuroanatomical and functional comparison of the mouse, rat, pig, and human splenic nerve using in vivo and ex vivo preparations. The pig was identified as a more suitable model of the human splenic innervation. Using functional electrophysiology, we developed a clinically relevant marker of splenic nerve engagement through stimulation-dependent reversible reduction in local blood flow. Translation of immunomodulatory mechanisms were then assessed using pig splenocytes and two models of acute inflammation in anesthetized pigs. The pig splenic nerve was shown to locally release noradrenaline upon stimulation, which was able to modulate cytokine production by pig splenocytes. Splenic nerve stimulation was found to promote cardiovascular protection as well as cytokine modulation in a high- and a low-dose lipopolysaccharide model, respectively. Importantly, splenic nerve-induced cytokine modulation was reproduced by stimulating the efferent trunk of the cervical vagus nerve. This work demonstrates that immune responses can be modulated by stimulation of spleen-targeted autonomic nerves in translational species and identifies splenic nerve stimulation parameters and biomarkers that are directly applicable to humans due to anatomical and electrophysiological similarities.
Collapse
Affiliation(s)
- Matteo Donegà
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom;
| | - Cathrine T Fjordbakk
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Joseph Kirk
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - David M Sokal
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Isha Gupta
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Gerald E Hunsberger
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Abbe Crawford
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Simon Cook
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Jaime Viscasillas
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | | | - Jason A Miranda
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Wesley J Dopson
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - David Goodwin
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Alison Rowles
- Non-Clinical Safety, GlaxoSmithKline, Ware SG12 0DP, United Kingdom
| | - Paul McGill
- Bioimaging, GlaxoSmithKline, Ware SG12 0DP, United Kingdom
| | - Alex McSloy
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Jason Witherington
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Daniel J Chew
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Justin D Perkins
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom;
| |
Collapse
|
49
|
Lauwers M, Courties A, Sellam J, Wen C. The cholinergic system in joint health and osteoarthritis: a narrative-review. Osteoarthritis Cartilage 2021; 29:643-653. [PMID: 33609692 DOI: 10.1016/j.joca.2021.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/14/2021] [Accepted: 02/02/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) poses a major health and economic burden worldwide due to an increasing number of patients and the unavailability of disease-modifying drugs. In this review, the latest understanding of the involvement of the cholinergic system in joint homeostasis and OA will be outlined. First of all, the current evidence on the presence of the cholinergic system in the normal and OA joint will be described. Cholinergic innervation as well as the non-neuronal cholinergic system are detected. In a variety of inflammatory diseases, the classic cholinergic anti-inflammatory pathway lately received a lot of attention as via this pathway cholinergic agonists can reduce inflammation. The role of this cholinergic anti-inflammatory pathway in the context of OA will be discussed. Activation of this pathway improved the progression of the disease. Secondly, chondrocyte hypertrophy plays a pivotal role in osteophyte formation and OA development; the impact of the cholinergic system on hypertrophic chondroblasts and endochondral ossification will be evaluated. Cholinergic stimulation increased chondrocyte proliferation, delayed chondrocyte differentiation and caused early mineralisation. Moreover, acetylcholinesterase and butyrylcholinesterase affect the endochondral ossification via an acetylcholine-independent pathway. Thirdly, subchondral bone is critical for cartilage homeostasis and metabolism; the cholinergic system in subchondral bone homeostasis and disorders will be explored. An increase in osteoblast proliferation and osteoclast apoptosis is observed. Lastly, current therapeutic strategies for OA are limited to symptom relief; here the impact of smoking on disease progression and the potential of acetylcholinesterase inhibitors as candidate disease-modifying drug for OA will be discussed.
Collapse
Affiliation(s)
- M Lauwers
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - A Courties
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMRS_938, Sorbonne Université, Saint-Antoine Hospital, Paris, France.
| | - J Sellam
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMRS_938, Sorbonne Université, Saint-Antoine Hospital, Paris, France.
| | - C Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
50
|
Morales JY, Young-Stubbs CM, Shimoura CG, Kem WR, Uteshev VV, Mathis KW. Systemic Administration of α7-Nicotinic Acetylcholine Receptor Ligands Does Not Improve Renal Injury or Behavior in Mice With Advanced Systemic Lupus Erythematosus. Front Med (Lausanne) 2021; 8:642960. [PMID: 33928103 PMCID: PMC8076522 DOI: 10.3389/fmed.2021.642960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023] Open
Abstract
There is a critical need for safe treatment options to control inflammation in patients with systemic lupus erythematosus (SLE) since the inflammation contributes to morbidity and mortality in advanced disease. Endogenous neuroimmune mechanisms like the cholinergic anti-inflammatory pathway can be targeted to modulate inflammation, but the ability to manipulate such pathways and reduce inflammation and end organ damage has not been fully explored in SLE. Positive allosteric modulators (PAM) are pharmacological agents that inhibit desensitization of the nicotinic acetylcholine receptor (α7-nAChR), the main anti-inflammatory feature within the cholinergic anti-inflammatory pathway, and may augment α7-dependent cholinergic tone to generate therapeutic benefits in SLE. In the current study, we hypothesize that activating the cholinergic anti-inflammatory pathway at the level of the α7-nAChR with systemic administration of a partial agonist, GTS-21, and a PAM, PNU-120596, would reduce inflammation, eliminating the associated end organ damage in a mouse model of SLE with advanced disease. Further, we hypothesize that systemic α7 ligands will have central effects and improve behavioral deficits in SLE mice. Female control (NZW) and SLE mice (NZBWF1) were administered GTS-21 or PNU-120596 subcutaneously via minipumps for 2 weeks. We found that the increased plasma dsDNA autoantibodies, splenic and renal inflammation, renal injury and hypertension usually observed in SLE mice with advanced disease at 35 weeks of age were not altered by GTS-21 or PNU-120596. The anxiety-like behavior presented in SLE mice was also not improved by GTS-21 or PNU-120596. Although no significant beneficial effects of α7 ligands were observed in SLE mice at this advanced stage, we predict that targeting this receptor earlier in the pathogenesis of the disease may prove to be efficacious and should be addressed in future studies.
Collapse
Affiliation(s)
- Jessica Y Morales
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Cassandra M Young-Stubbs
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Caroline G Shimoura
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| |
Collapse
|