1
|
Amirbekyan M, Adhikarla V, Cheng JP, Moschonas EH, Bondi CO, Rockne RC, Kline AE, Gutova M. Neuroprotective potential of intranasally delivered L-myc immortalized human neural stem cells in female rats after a controlled cortical impact injury. Sci Rep 2023; 13:17874. [PMID: 37857701 PMCID: PMC10587115 DOI: 10.1038/s41598-023-44426-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023] Open
Abstract
Efficacious stem cell-based therapies for traumatic brain injury (TBI) depend on successful delivery, migration, and engraftment of stem cells to induce neuroprotection. L-myc expressing human neural stem cells (LMNSC008) demonstrate an inherent tropism to injury sites after intranasal (IN) administration. We hypothesize that IN delivered LMNSC008 cells migrate to primary and secondary injury sites and modulate biomarkers associated with neuroprotection and tissue regeneration. To test this hypothesis, immunocompetent adult female rats received either controlled cortical impact injury or sham surgery. LMNSC008 cells or a vehicle were administered IN on postoperative days 7, 9, 11, 13, 15, and 17. The distribution and migration of eGFP-expressing LMNSC008 cells were quantified over 1 mm-thick optically cleared (CLARITY) coronal brain sections from TBI and SHAM controls. NSC migration was observed along white matter tracts projecting toward the hippocampus and regions of TBI. ELISA and Nanostring assays revealed a shift in tissue gene expression in LMNSC008 treated rats relative to controls. LMNSC008 treatment reduced expression of genes and pathways involved in inflammatory response, microglial function, and various cytokines and receptors. Our proof-of-concept studies, although preliminary, support the rationale of using intranasal delivery of LMNSC008 cells for functional studies in preclinical models of TBI and provide support for potential translatability in TBI patients.
Collapse
Affiliation(s)
- Mari Amirbekyan
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Vikram Adhikarla
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jeffrey P Cheng
- Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleni H Moschonas
- Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corina O Bondi
- Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Russell C Rockne
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Anthony E Kline
- Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA.
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
- Critical Care Medicine, and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
- Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
2
|
Lee J, Thomas Broome S, Jansen MI, Mandwie M, Logan GJ, Marzagalli R, Musumeci G, Castorina A. Altered Hippocampal and Striatal Expression of Endothelial Markers and VIP/PACAP Neuropeptides in a Mouse Model of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:11118. [PMID: 37446298 DOI: 10.3390/ijms241311118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is one of the most common and severe manifestations of lupus; however, its pathogenesis is still poorly understood. While there is sparse evidence suggesting that the ongoing autoimmunity may trigger pathogenic changes to the central nervous system (CNS) microvasculature, culminating in inflammatory/ischemic damage, further evidence is still needed. In this study, we used the spontaneous mouse model of SLE (NZBWF1 mice) to investigate the expression of genes and proteins associated with endothelial (dys)function: tissue and urokinase plasminogen activators (tPA and uPA), intercellular and vascular adhesion molecules 1 (ICAM-1 and VCAM-1), brain derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS) and Krüppel-like factor 4 (KLF4) and neuroprotection/immune modulation: pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), PACAP receptor (PAC1), VIP receptors 1 and 2 (VPAC1 and VPAC2). Analyses were carried out both in the hippocampus and striatum of SLE mice of two different age groups (2 and 7 months old), since age correlates with disease severity. In the hippocampus, we identified a gene/protein expression profile indicative of mild endothelial dysfunction, which increased in severity in aged SLE mice. These alterations were paralleled by moderate alterations in the expression of VIP, PACAP and related receptors. In contrast, we report a robust upregulation of endothelial activation markers in the striatum of both young and aged mice, concurrent with significant induction of the VIP/PACAP system. These data identify molecular signatures of endothelial alterations in the hippocampus and striatum of NZBWF1 mice, which are accompanied by a heightened expression of endogenous protective/immune-modulatory neuropeptides. Collectively, our results support the idea that NPSLE may cause alterations of the CNS micro-vascular compartment that cannot be effectively counteracted by the endogenous activity of the neuropeptides PACAP and VIP.
Collapse
Affiliation(s)
- Jayden Lee
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Margo Iris Jansen
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mawj Mandwie
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95124 Catania, Italy
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Daglas M, Truong PH, Miles LQ, Juan SMA, Rao SS, Adlard PA. Deferiprone attenuates neuropathology and improves outcome following traumatic brain injury. Br J Pharmacol 2023; 180:214-234. [PMID: 36102035 DOI: 10.1111/bph.15950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity in young adults. The role of iron in potentiating neurodegeneration following TBI has gained recent interest as iron deposition has been detected in the injured brain in the weeks to months post-TBI, in both the preclinical and clinical setting. A failure in iron homeostasis can lead to oxidative stress, inflammation and excitotoxicity; and whether this is a cause or consequence of the long-term effects of TBI remains unknown. EXPERIMENTAL APPROACH We investigated the role of iron and the effect of therapeutic intervention using a brain-permeable iron chelator, deferiprone, in a controlled cortical impact mouse model of TBI. An extensive assessment of cognitive, motor and anxiety/depressive outcome measures were examined, and neuropathological and biochemical changes, over a 3-month period post-TBI. KEY RESULTS Lesion volume was significantly reduced at 3 months, which was preceded by a reduction in astrogliosis, microglia/macrophages and preservation of neurons in the injured brain at 2 weeks and/or 1 month post-TBI in mice receiving oral deferiprone. Deferiprone treatment showed significant improvements in neurological severity scores, locomotor/gait performance and cognitive function, and attenuated anxiety-like symptoms post-TBI. Deferiprone reduced iron levels, lipid peroxidation/oxidative stress and altered expression of neurotrophins in the injured brain over this period. CONCLUSION AND IMPLICATIONS Our findings support a detrimental role of iron in the injured brain and suggest that deferiprone (or similar iron chelators) may be promising therapeutic approaches to improve survival, functional outcomes and quality of life following TBI.
Collapse
Affiliation(s)
- Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Phan H Truong
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Linh Q Miles
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Shalini S Rao
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Wireless charging-mediated angiogenesis and nerve repair by adaptable microporous hydrogels from conductive building blocks. Nat Commun 2022; 13:5172. [PMID: 36056007 PMCID: PMC9440098 DOI: 10.1038/s41467-022-32912-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/22/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury causes inflammation and glial scarring that impede brain tissue repair, so stimulating angiogenesis and recovery of brain function remain challenging. Here we present an adaptable conductive microporous hydrogel consisting of gold nanoyarn balls-coated injectable building blocks possessing interconnected pores to improve angiogenesis and recovery of brain function in traumatic brain injury. We show that following minimally invasive implantation, the adaptable hydrogel is able to fill defects with complex shapes and regulate the traumatic brain injury environment in a mouse model. We find that placement of this injectable hydrogel at peri-trauma regions enhances mature brain-derived neurotrophic factor by 180% and improves angiogenesis by 250% in vivo within 2 weeks after electromagnetized stimulation, and that these effects facilitate neuron survival and motor function recovery by 50%. We use blood oxygenation level-dependent functional neuroimaging to reveal the successful restoration of functional brain connectivity in the corticostriatal and corticolimbic circuits.
Collapse
|
5
|
Korneva EA, Dmitrienko EV, Miyamura S, Noda M, Akimoto N. Protective effects of Derinat, a nucleotide-based drug, on experimental traumatic brain injury, and its cellular mechanisms. MEDICAL IMMUNOLOGY (RUSSIA) 2021; 23:1367-1382. [DOI: 10.15789/1563-0625-peo-2392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Traumatic brain injury is the most common cause of death and disability in young people including sport athletes and soldiers, people under 45 years of age in the industrialized countries, representing a growing health problem in developing countries, as well as in aging communities. Treatment of the latter is a serious challenge for modern medicine. This type of injury leads to many kinds of disorders and, quite often, to disability. These issue require development of new methods for brain trauma treatment. The new approach to brain trauma treatment was studied in murine experiments. In particular, sodium salt of deoxyribonucleic acid (DNA) was used. This preparation is a drug known as a mixture of peptides with immunomodulatory effect which is widely used for different kinds of therapy. Derinat, a sodium salt of DNA, isolated from the caviar of Russian sturgeon, is a proven immunomodulator for treatment of diseases associatd with reactive oxygen species (ROS), including brain ischemia-reperfusion (IR) injury. Here we show that treatment with Derinat exert neuroprotective, anti-oxidative, and anti-inflammatory effects in experimental model of traumatic brain injury (TBI) in rats. Intraperitoneal injection of Derinat several times over 3 days after TBI showed less pronounced damage of the injured brain area. Immunohistochemical study showed that the Derinat-induced morphological changes of microglia in cerebral cortex and hippocampus 7 days after TBI. TBI-induced accumulation of 8-oxoguanine (8-oxoG), the marker of oxidative damage, was significantly attenuated by Derinat administration, both on 7th and 14th day after TBI. To investigate cellular mechanism of anti-inflammatory effects, the primary cultures of murine microglia supplied with ATP (50 M and 1 mM), as a substance released at injured site, were used to mimic the in vitro inflammatory response. Derinate treatment caused an increase of glial levels of mRNAs encoding neurotrophic factor (GDNF) and nerve growth factor (NGF) in the presence of ATP, whereas tissue plasminogen activator (tPA) mRNA was inhibited by ATP with or without Derinat. Interleukin-6 (IL-6) mRNA expression was not affected by ATP but was increased by Derinat. Both mRNA and protein levels of ATP-induced TNFα production were significantly inhibited by Derinat. These results partially contribute to understanding mechanisms of immunomodulatory effects of DNA preparations in traumatic brain injury.
Collapse
Affiliation(s)
| | | | | | - M. Noda
- Graduate School of Pharmaceutical Sciences
| | - N. Akimoto
- Graduate School of Pharmaceutical Sciences
| |
Collapse
|
6
|
Fang J, Chopp M, Xin H, Zhang L, Wang F, Golembieski W, Zhang ZG, He L, Liu Z. Plasminogen deficiency causes reduced angiogenesis and behavioral recovery after stroke in mice. J Cereb Blood Flow Metab 2021; 41:2583-2592. [PMID: 33853408 PMCID: PMC8504962 DOI: 10.1177/0271678x211007958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plasminogen is involved in the process of angiogenesis; however, the underlying mechanism is unclear. Here, we investigated the potential contribution of plasmin/plasminogen in mediating angiogenesis and thereby contributing to functional recovery post-stroke. Wild-type plasminogen naive (Plg+/+) mice and plasminogen knockout (Plg-/-) mice were subjected to unilateral permanent middle cerebral artery occlusion (MCAo). Blood vessels were labeled with FITC-dextran. Functional outcomes, and cerebral vessel density were compared between Plg+/+ and Plg-/- mice at different time points after stroke. We found that Plg-/- mice exhibited significantly reduced functional recovery, associated with significantly decreased vessel density in the peri-infarct area in the ipsilesional cortex compared with Plg+/+ mice. In vitro, cerebral endothelial cells harvested from Plg-/- mice exhibited significantly reduced angiogenesis assessed using tube formation assay, and migration, as evaluated using Scratch assays, compared to endothelial cells harvested from Plg+/+ mice. In addition, using Western blots, expression of thrombospondin (TSP)-1 and TSP-2 were increased after MCAo in the Plg-/- group compared to Plg+/+ mice, especially in the ipsilesional side of brain. Taken together, our data suggest that plasmin/plasminogen down-regulates the expression level of TSP-1 and TSP-2, and thereby promotes angiogenesis in the peri-ischemic brain tissue, which contributes to functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jinghuan Fang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Department of Neurology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Department of Physics, Oakland University, Rochester, MI, USA
| | - Hongqi Xin
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Fengjie Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | | | - Li He
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
7
|
Soliman R, Mamdouh H, Rashed L, Hussein M. The use of recombinant tissue plasminogen activator in in acute ischemic stroke is associated with increased level of BDNF. J Thromb Thrombolysis 2021; 52:1165-1172. [PMID: 33830432 DOI: 10.1007/s11239-021-02443-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 01/19/2023]
Abstract
Much concern was directed towards the crucial role of recombinant tissue plasminogen activator (rt-PA) in improving neuroplasticity in patients with acute ischemic stroke. The aim of the work to investigate the effect of treating patients with acute ischemic stroke with rt-PA, on the level of brain derived neurotrophic factor (BDNF) as a marker of neuroplasticity. This study was conducted on 47 patients presenting with acute ischemic stroke (during the first 4.5 h from stroke onset); 26 patients of them eligible for receiving rt-PA (patient group) and 21 patients having contraindications for treatment with rt-PA (control group). Neurological, radiological and laboratory assessment (including BDNF serum level) were done for both groups at stroke onset (before receiving rt-PA) and at day 7. There was a statistically significant increase in BDNF serum level from day 1 to day 7 in rt-PA treated patients in comparison to control group (P-value˂ 0.001). Serum level of BDNF is significantly higher at the onset of stroke in female patients and non-smokers than males or smokers (P-value = 0.011, 0.01 respectively). There was no effect of either age, body mass index, hypertension, diabetes, drug abuse, past or family history of stroke, valvular heart diseases, atrial fibrillation, cardiomyopathy, ejection fraction, carotid atherosclerotic changes, lipid profile or uric acid, on BDNF serum level measured at the onset of stroke. Treatment of patients with acute ischemic stroke with rt-PA causes significant improvement in neuroplasticity through increasing BDNF serum level.
Collapse
Affiliation(s)
- Rasha Soliman
- Department of Neurology, Beni-Suef University, Beni Suef, Egypt
| | - Hend Mamdouh
- Department of Neurology, Beni-Suef University, Beni Suef, Egypt
| | - Laila Rashed
- Department of Biochemistry, Cairo University, Giza, Egypt
| | - Mona Hussein
- Department of Neurology, Beni-Suef University, Beni Suef, 62511, Egypt.
| |
Collapse
|
8
|
The Role of BDNF in Experimental and Clinical Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22073582. [PMID: 33808272 PMCID: PMC8037220 DOI: 10.3390/ijms22073582] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury is one of the leading causes of mortality and morbidity in the world with no current pharmacological treatment. The role of BDNF in neural repair and regeneration is well established and has also been the focus of TBI research. Here, we review experimental animal models assessing BDNF expression following injury as well as clinical studies in humans including the role of BDNF polymorphism in TBI. There is a large heterogeneity in experimental setups and hence the results with different regional and temporal changes in BDNF expression. Several studies have also assessed different interventions to affect the BDNF expression following injury. Clinical studies highlight the importance of BDNF polymorphism in the outcome and indicate a protective role of BDNF polymorphism following injury. Considering the possibility of affecting the BDNF pathway with available substances, we discuss future studies using transgenic mice as well as iPSC in order to understand the underlying mechanism of BDNF polymorphism in TBI and develop a possible pharmacological treatment.
Collapse
|
9
|
Protective Effect of Processed Polygoni multiflori Radix and Its Major Substance during Scopolamine-Induced Cognitive Dysfunction. Processes (Basel) 2021. [DOI: 10.3390/pr9020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cognitive disorder in the elderly population. However, effective pharmacological agents targeting AD have not been developed. The processed Polygoni multiflori Radix (PPM) and its main active substance, 2,3,5,4′-tetrahydroxystilbene-2-O-β-glucoside (TSG), has received considerable attention, majorly due to its neuroprotective activities against multiple biological activities within the human body. In this study, we provide new evidence on the therapeutic effect of PPM and TSG during cognitive impairment by evaluating the ameliorative potential of PPM and TSG in scopolamine-induced amnesia in ICR mice. PPM (100 or 200 mg/kg) was orally administered during the experimental period (days 1–15), and scopolamine was intraperitoneally injected to induce cognitive deficits during the behavioural test periods (days 8–15). The administration of PPM and TSG significantly improved memory loss and cognitive dysfunction in behavioural tests and regulated the cholinergic function, brain-derived neurotrophic factor, and neural apoptosis. The present study suggests that PPM and TSG improved scopolamine-induced cognitive dysfunction, but further study has to be supported for the clinical application of PPM and TSG for AD prevention and treatment.
Collapse
|
10
|
Delaney SL, Gendreau JL, D'Souza M, Feng AY, Ho AL. Optogenetic Modulation for the Treatment of Traumatic Brain Injury. Stem Cells Dev 2020; 29:187-197. [DOI: 10.1089/scd.2019.0187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
| | | | | | - Austin Y. Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Georgia
| | - Allen L. Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Georgia
| |
Collapse
|
11
|
Zhao JJ, Liu ZW, Wang B, Huang TQ, Guo D, Zhao YL, Song JN. Inhibiting endogenous tissue plasminogen activator enhanced neuronal apoptosis and axonal injury after traumatic brain injury. Neural Regen Res 2020; 15:667-675. [PMID: 31638090 PMCID: PMC6975145 DOI: 10.4103/1673-5374.266914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tissue plasminogen activator is usually used for the treatment of acute ischemic stroke, but the role of endogenous tissue plasminogen activator in traumatic brain injury has been rarely reported. A rat model of traumatic brain injury was established by weight-drop method. The tissue plasminogen activator inhibitor neuroserpin (5 μL, 0.25 mg/mL) was injected into the lateral ventricle. Neurological function was assessed by neurological severity score. Neuronal and axonal injuries were assessed by hematoxylin-eosin staining and Bielschowsky silver staining. Protein level of endogenous tissue plasminogen activator was analyzed by western blot assay. Apoptotic marker cleaved caspase-3, neuronal marker neurofilament light chain, astrocyte marker glial fibrillary acidic protein and microglial marker Iba-1 were analyzed by immunohistochemical staining. Apoptotic cell types were detected by immunofluorescence double labeling. Apoptotic cells in the damaged cortex were detected by terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling staining. Degenerating neurons in the damaged cortex were detected by Fluoro-Jade B staining. Expression of tissue plasminogen activator was increased at 6 hours, and peaked at 3 days after traumatic brain injury. Neuronal apoptosis and axonal injury were detected after traumatic brain injury. Moreover, neuroserpin enhanced neuronal apoptosis, neuronal injury and axonal injury, and activated microglia and astrocytes. Neuroserpin further deteriorated neurobehavioral function in rats with traumatic brain injury. Our findings confirm that inhibition of endogenous tissue plasminogen activator aggravates neuronal apoptosis and axonal injury after traumatic brain injury, and activates microglia and astrocytes. This study was approved by the Biomedical Ethics Committee of Animal Experiments of Shaanxi Province of China in June 2015.
Collapse
Affiliation(s)
- Jun-Jie Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zun-Wei Liu
- Institute of Organ Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University; Department of Renal Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bo Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ting-Qin Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Dan Guo
- Department of Science and Technology, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Yong-Lin Zhao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin-Ning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
12
|
Montroull LE, Rothbard DE, Kanal HD, D’Mello V, Dodson V, Troy CM, Zanin JP, Levison SW, Friedman WJ. Proneurotrophins Induce Apoptotic Neuronal Death After Controlled Cortical Impact Injury in Adult Mice. ASN Neuro 2020; 12:1759091420930865. [PMID: 32493127 PMCID: PMC7273561 DOI: 10.1177/1759091420930865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 11/29/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR) can regulate multiple cellular functions including proliferation, survival, and apoptotic cell death. The p75NTR is widely expressed in the developing brain and is downregulated as the nervous system matures, with only a few neuronal subpopulations retaining expression into adulthood. However, p75NTR expression is induced following damage to the adult brain, including after traumatic brain injury, which is a leading cause of mortality and disability worldwide. A major consequence of traumatic brain injury is the progressive neuronal loss that continues secondary to the initial trauma, which ultimately contributes to cognitive decline. Understanding mechanisms governing this progressive neuronal death is key to developing targeted therapeutic strategies to provide neuroprotection and salvage cognitive function. In this study, we demonstrate that a cortical impact injury to the sensorimotor cortex elicits p75NTR expression in apoptotic neurons in the injury penumbra, confirming previous studies. To establish whether preventing p75NTR induction or blocking the ligands would reduce the extent of secondary neuronal cell death, we used a noninvasive intranasal strategy to deliver either siRNA to block the induction of p75NTR, or function-blocking antibodies to the ligands pro-nerve growth factor and pro-brain-derived neurotrophic factor. We demonstrate that either preventing the induction of p75NTR or blocking the proneurotrophin ligands provides neuroprotection and preserves sensorimotor function.
Collapse
Affiliation(s)
- Laura E. Montroull
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| | - Deborah E. Rothbard
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Hur D. Kanal
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Veera D’Mello
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Vincent Dodson
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Carol M. Troy
- Department of Pathology and
Cell Biology, Columbia University Medical Center, New York, NY, United
States
| | - Juan P. Zanin
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| | - Steven W. Levison
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Wilma J. Friedman
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| |
Collapse
|
13
|
Tissue plasminogen activator promotes white matter integrity and functional recovery in a murine model of traumatic brain injury. Proc Natl Acad Sci U S A 2018; 115:E9230-E9238. [PMID: 30201709 DOI: 10.1073/pnas.1810693115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recombinant tissue plasminogen activator (tPA) is a Food and Drug Administration-approved thrombolytic treatment for ischemic stroke. tPA is also naturally expressed in glial and neuronal cells of the brain, where it promotes axon outgrowth and synaptic plasticity. However, there are conflicting reports of harmful versus neuroprotective effects of tPA in acute brain injury models. Furthermore, its impact on white matter integrity in preclinical traumatic brain injury (TBI) has not been thoroughly explored, although white matter disruption is a better predictor of long-term clinical outcomes than focal lesion volumes. Here we show that the absence of endogenous tPA in knockout mice impedes long-term recovery of white matter and neurological function after TBI. tPA-knockout mice exhibited greater asymmetries in forepaw use, poorer sensorimotor balance and coordination, and inferior spatial learning and memory up to 35 d after TBI. White matter damage was also more prominent in tPA knockouts, as shown by diffusion tensor imaging, histological criteria, and electrophysiological assessments of axon conduction properties. Replenishment of tPA through intranasal application of the recombinant protein in tPA-knockout mice enhanced neurological function, the structural and functional integrity of white matter, and postinjury compensatory sprouting in corticofugal projections. tPA also promoted neurite outgrowth in vitro, partly through the epidermal growth factor receptor. Both endogenous and exogenous tPA protected against white matter injury after TBI without increasing intracerebral hemorrhage volumes. These results unveil a previously unappreciated role for tPA in the protection and/or repair of white matter and long-term functional recovery after TBI.
Collapse
|
14
|
Guennoun R, Fréchou M, Gaignard P, Liere P, Slama A, Schumacher M, Denier C, Mattern C. Intranasal administration of progesterone: A potential efficient route of delivery for cerebroprotection after acute brain injuries. Neuropharmacology 2018; 145:283-291. [PMID: 29885423 DOI: 10.1016/j.neuropharm.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/17/2023]
Abstract
Progesterone has been shown to be cerebroprotective in different experimental models of brain injuries and neurodegenerative diseases. The preclinical data provided great hope for its use in humans. The failure of Phase 3 clinical trials to demonstrate the cerebroprotective efficiency of progesterone in traumatic brain injury (TBI) patients emphasizes that different aspects of the design of both experimental and clinical studies should be reviewed and refined. One important aspect to consider is to test different routes of delivery of therapeutic agents. Several studies have shown that the intranasal delivery of drugs could be used in different experimental models of central nervous system diseases. In this review, we will summarize the pharmacokinetic characteristics and practical advantages of intranasal delivery of progesterone. A special emphasis will be placed on describing and discussing our recent findings showing that intranasal delivery of progesterone after transient focal cerebral ischemia: 1) improved motor functions; 2) reduced infarct volume, neuronal loss, blood brain barrier disruption; and 3) reduced brain mitochondrial dysfunctions. Our data suggest that intranasal delivery of progesterone is a potential efficient, safe and non-stressful mode of administration that warrants evaluation for cerebroprotection in patients with brain injuries. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Rachida Guennoun
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| | - Magalie Fréchou
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Pauline Gaignard
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France; Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Christian Denier
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France; Department of Neurology and Stroke Center, Bicêtre Hospital, 94276, Kremlin-Bicêtre, France
| | - Claudia Mattern
- M et P Pharma AG, Schynweg 7, P.O. Box 138, 6376, Emmetten, Switzerland; Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| |
Collapse
|
15
|
Stradecki-Cohan HM, Cohan CH, Raval AP, Dave KR, Reginensi D, Gittens RA, Youbi M, Perez-Pinzon MA. Cognitive Deficits after Cerebral Ischemia and Underlying Dysfunctional Plasticity: Potential Targets for Recovery of Cognition. J Alzheimers Dis 2018; 60:S87-S105. [PMID: 28453486 DOI: 10.3233/jad-170057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia affects millions of people worldwide and survivors suffer from long-term functional and cognitive deficits. While stroke and cardiac arrest are typically considered when discussing ischemic brain injuries, there is much evidence that smaller ischemic insults underlie neurodegenerative diseases, including Alzheimer's disease. The "regenerative" capacity of the brain relies on several aspects of plasticity that are crucial for normal functioning; less affected brain areas may take over function previously performed by irreversibly damaged tissue. To harness the endogenous plasticity mechanisms of the brain to provide recovery of cognitive function, we must first understand how these mechanisms are altered after damage, such as cerebral ischemia. In this review, we discuss the long-term cognitive changes that result after cerebral ischemia and how ischemia alters several plasticity processes. We conclude with a discussion of how current and prospective therapies may restore brain plasticity and allow for recovery of cognitive function, which may be applicable to several disorders that have a disruption of cognitive processing, including traumatic brain injury and Alzheimer's disease.
Collapse
Affiliation(s)
- Holly M Stradecki-Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charles H Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Ami P Raval
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Kunjan R Dave
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diego Reginensi
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Rolando A Gittens
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Mehdi Youbi
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. RECENT FINDINGS Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.
Collapse
Affiliation(s)
- Nicole M Weston
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, P.O.Box 980709, Richmond, VA, 23298, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, P.O.Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
17
|
Yang L, Liu Z, Ren H, Zhang L, Gao S, Ren L, Chai Z, Meza-Romero R, Benedek G, Vandenbark AA, Offner H, Li M. DRα1-MOG-35-55 treatment reduces lesion volumes and improves neurological deficits after traumatic brain injury. Metab Brain Dis 2017; 32:1395-1402. [PMID: 28303450 PMCID: PMC5600636 DOI: 10.1007/s11011-017-9991-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/08/2017] [Indexed: 10/20/2022]
Abstract
Traumatic brain injury (TBI) results in severe neurological impairments without effective treatments. Inflammation appears to be an important contributor to key pathogenic events such as secondary brain injury following TBI and therefore serves as a promising target for novel therapies. We have recently demonstrated the ability of a molecular construct comprised of the human leukocyte antigen (HLA)-DRα1 domain linked covalently to mouse (m)MOG-35-55 peptide (DRα1-MOG-35-55 construct) to reduce CNS inflammation and tissue injury in animal models of multiple sclerosis and ischemic stroke. The aim of the current study was to determine if DRα1-MOG-35-55 treatment of a fluid percussion injury (FPI) mouse model of TBI could reduce the lesion size and improve disease outcome measures. Neurodeficits, lesion size, and immune responses were determined to evaluate the therapeutic potential and mechanisms of neuroprotection induced by DRα1-MOG-35-55 treatment. The results demonstrated that daily injections of DRα1-MOG-35-55 given after FPI significantly reduced numbers of infiltrating CD74+ and CD86+ macrophages and increased numbers of CD206+ microglia in the brain concomitant with smaller lesion sizes and improvement in neurodeficits. Conversely, DRα1-MOG-35-55 treatment of TBI increased numbers of circulating CD11b+ monocytes and their expression of CD74 but had no detectable effect on cell numbers or marker expression in the spleen. These results demonstrate that DRα1-MOG-35-55 therapy can reduce CNS inflammation and significantly improve histological and clinical outcomes after TBI. Future studies will further examine the potential of DRα1-MOG-35-55 for treatment of TBI.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Zhijia Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lei Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Siman Gao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Li Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhi Chai
- "2011"Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, 030619, China
| | - Roberto Meza-Romero
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA
- Tykeson MS Research Laboratory, Department of Neurology UHS-46, Oregon Health & Science University, Portland, OR, USA
| | - Gil Benedek
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA
- Tykeson MS Research Laboratory, Department of Neurology UHS-46, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA
- Tykeson MS Research Laboratory, Department of Neurology UHS-46, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.
- Tykeson MS Research Laboratory, Department of Neurology UHS-46, Oregon Health & Science University, Portland, OR, USA.
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
| |
Collapse
|
18
|
Shepherd DJ, Tsai SY, O'Brien TE, Farrer RG, Kartje GL. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats. Front Neurosci 2016; 10:467. [PMID: 27803646 PMCID: PMC5067305 DOI: 10.3389/fnins.2016.00467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/28/2016] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke is a leading cause of adult disability, including cognitive impairment. Our laboratory has previously shown that treatment with function-blocking antibodies against the neurite growth inhibitory protein Nogo-A promotes functional recovery after stroke in adult and aged rats, including enhancing spatial memory performance, for which the hippocampus is critically important. Since spatial memory has been linked to hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases hippocampal neurogenesis after stroke. Adult rats were subject to permanent middle cerebral artery occlusion followed 1 week later by 2 weeks of antibody treatment. Cellular proliferation in the dentate gyrus was quantified at the end of treatment, and the number of newborn neurons was determined at 8 weeks post-stroke. Treatment with both anti-Nogo-A and control antibodies stimulated the accumulation of new microglia/macrophages in the dentate granule cell layer, but neither treatment increased cellular proliferation or the number of newborn neurons above stroke-only levels. These results suggest that anti-Nogo-A immunotherapy does not increase post-stroke hippocampal neurogenesis.
Collapse
Affiliation(s)
- Daniel J Shepherd
- Neuroscience Institute, Loyola University Chicago Health Sciences DivisionMaywood, IL, USA; Research Service, Edward Hines Jr. VA HospitalHines, IL, USA
| | - Shih-Yen Tsai
- Research Service, Edward Hines Jr. VA Hospital Hines, IL, USA
| | - Timothy E O'Brien
- Department of Mathematics and Statistics, Loyola University Chicago Chicago, IL, USA
| | - Robert G Farrer
- Research Service, Edward Hines Jr. VA Hospital Hines, IL, USA
| | - Gwendolyn L Kartje
- Neuroscience Institute, Loyola University Chicago Health Sciences DivisionMaywood, IL, USA; Research Service, Edward Hines Jr. VA HospitalHines, IL, USA; Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Health Sciences DivisionMaywood, IL, USA
| |
Collapse
|
19
|
Moore TL, Pessina MA, Finklestein SP, Killiany RJ, Bowley B, Benowitz L, Rosene DL. Inosine enhances recovery of grasp following cortical injury to the primary motor cortex of the rhesus monkey. Restor Neurol Neurosci 2016; 34:827-48. [PMID: 27497459 PMCID: PMC6503840 DOI: 10.3233/rnn-160661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inosine, a naturally occurring purine nucleoside, has been shown to stimulate axonal growth in cell culture and promote corticospinal tract axons to sprout collateral branches after stroke, spinal cord injury and TBI in rodent models. OBJECTIVE To explore the effects of inosine on the recovery of motor function following cortical injury in the rhesus monkey. METHODS After being trained on a test of fine motor function of the hand, monkeys received a lesion limited to the area of the hand representation in primary motor cortex. Beginning 24 hours after this injury and continuing daily thereafter, monkeys received orally administered inosine (500 mg) or placebo. Retesting of motor function began on the 14th day after injury and continued for 12 weeks. RESULTS During the first 14 days after surgery, there was evidence of significant recovery within the inosine-treated group on measures of fine motor function of the hand, measures of hand strength and digit flexion. While there was no effect of treatment on the time to retrieve a reward, the treated monkeys returned to asymptotic levels of grasp performance significantly faster than the untreated monkeys. Additionally, the treated monkeys evidenced a greater degree of recovery in terms of maturity of grasp pattern. CONCLUSION These findings demonstrate that inosine can enhance recovery of function following cortical injury in monkeys.
Collapse
Affiliation(s)
- Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Monica A. Pessina
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Ronald J. Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Bethany Bowley
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Larry Benowitz
- Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
20
|
Kumral A, Iscan B, Engur D, Tuzun F, Ozbal S, Ergur BU, Kaynak Turkmen M, Duman N, Ozkan H. Intranasal surfactant protein D as neuroprotective rescue in a neonatal rat model of periventricular leukomalacia. J Matern Fetal Neonatal Med 2016; 30:446-451. [PMID: 27109442 DOI: 10.1080/14767058.2016.1174996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Periventricular leukomalacia (PVL) is the leading cause of neurocognitive deficits in children with prematurity. We previously hypothesized that surfactant protein D (SPD) with its ability to bind toll-like receptors may have a possible ameliorating effect in PVL. METHODS Three groups were defined as: LPS-administered and postnatal intranasal saline administered group, LPS-administered and postnatal intranasal SPD-treated group, and control group. Twenty-eight offspring rats were reared with their dams until their sacrifice for histological evaluation on day 7. RESULTS A significant loss of brain weight occurred in the LPS group compared with controls. The postnatal intranasal SPD treatment significantly reduced the number of TUNEL-positive cells in the periventricular white matter as compared with the LPS-treated group. Compared with the control group, LPS injection in the rat brain significantly reduced the MBP-positive staining. Postnatal SPD treatment greatly prevented LPS-stimulated loss of MBP staining. CONCLUSIONS Present study demonstrated a neuroprotective effect of SPD in a rat model of PVL. Our results offer future implications towards increasing our understanding about multifactorial mechanisms underlying periventricular leukomalacia and developing plausible therapeutic strategies in order to prevent neurocognitive deficits in preterm infants.
Collapse
Affiliation(s)
- Abdullah Kumral
- a Department of Pediatrics , Division of Neonatology, School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Burcin Iscan
- a Department of Pediatrics , Division of Neonatology, School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Defne Engur
- b Department of Pediatrics , Division of Neonatology, School of Medicine, Adnan Menderes University , Aydin , Turkey , and
| | - Funda Tuzun
- a Department of Pediatrics , Division of Neonatology, School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Seda Ozbal
- c Department of Histology , School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Bekir Ugur Ergur
- c Department of Histology , School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Munevver Kaynak Turkmen
- b Department of Pediatrics , Division of Neonatology, School of Medicine, Adnan Menderes University , Aydin , Turkey , and
| | - Nuray Duman
- a Department of Pediatrics , Division of Neonatology, School of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Hasan Ozkan
- a Department of Pediatrics , Division of Neonatology, School of Medicine, Dokuz Eylul University , Izmir , Turkey
| |
Collapse
|
21
|
Patel K, Sun D. Strategies targeting endogenous neurogenic cell response to improve recovery following traumatic brain injury. Brain Res 2016; 1640:104-113. [PMID: 26855258 DOI: 10.1016/j.brainres.2016.01.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury (TBI) affects over 1.7 million people in the United States alone and poses many clinical challenges due to the variability of the injuries and complexity of biochemical mechanisms involved. Thus far, there is still no effective therapy for TBI. Failure of preventative therapeutic strategies has led studies focusing on regenerative approaches. Recent studies have shown evidence that mature brains harbors multipotent neural stem cells capable of becoming mature neurons in the neurogenic regions. Following brain insults including TBI, the injured brain has increased level of neurogenic response in the subventricular zone and dentate gyrus of the hippocampus and this endogenous response is associated with cognitive function following injury. In this review, we highlight recent development and strategies aimed at targeting this endogenous cell response to enhance post-TBI functional recovery. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Kaushal Patel
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Dong Sun
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
22
|
Hoirisch-Clapauch S, Amaral OB, Mezzasalma MAU, Panizzutti R, Nardi AE. Dysfunction in the coagulation system and schizophrenia. Transl Psychiatry 2016; 6:e704. [PMID: 26731441 PMCID: PMC5068878 DOI: 10.1038/tp.2015.204] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 01/24/2023] Open
Abstract
Although different hypotheses have been formulated to explain schizophrenia pathogenesis, the links between them are weak. The observation that five psychotic patients on chronic warfarin therapy for deep-vein thrombosis showed long-term remission of psychotic symptoms made us suspect that abnormalities in the coagulation pathway, specifically low tissue plasminogen activator (tPA) activity, could be one of the missing links. Our hypothesis is supported by a high prevalence of conditions affecting tPA activity in drug-naive schizophrenia, such as antiphospholipid antibodies, elevated cytokine levels, hyperinsulinemia and hyperhomocysteinemia. We recently screened a group of schizophrenia patients and controls for conditions affecting tPA activity. Free-protein S deficiency was highly prevalent among patients, but not found in controls. Free-protein S and functional protein C are natural anticoagulants that form complexes that inhibit tPA inhibitors. All participants had normal protein C levels, suggesting that protein S could have a role in schizophrenia, independent of protein C. Chronic patients and those studied during acute episodes had between three and six conditions affecting tPA and/or protein S activity, while patients in remission had up to two, which led us to postulate that multiple conditions affecting tPA and/or protein S activity could contribute to the full expression of schizophrenia phenotype. This paper describes the physiological roles of tPA and protein S, reviewing how their activity influences pathogenesis and comorbidity of schizophrenia. Next, it analyzes how activity of tPA and protein S is influenced by biochemical abnormalities found in schizophrenia. Last, it suggests future directions for research, such as studies on animal models and on therapeutic approaches for schizophrenia aiming at increasing tPA and protein S activity.
Collapse
Affiliation(s)
- S Hoirisch-Clapauch
- Department of Hematology, Hospital Federal dos Servidores do Estado, Ministry of Health, Rio de Janeiro, Brazil
| | - O B Amaral
- Department of Medical Biochemistry, Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A U Mezzasalma
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Translational Medicine, Instituto Nacional de Ciência e Tecnologia - Translacional em Medicina, Rio de Janeiro, Brazil
| | - R Panizzutti
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Basic-Clinical Neuroscience Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A E Nardi
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Translational Medicine, Instituto Nacional de Ciência e Tecnologia - Translacional em Medicina, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Hoirisch-Clapauch S, Nardi AE. Improvement of Psychotic Symptoms and the Role of Tissue Plasminogen Activator. Int J Mol Sci 2015; 16:27550-60. [PMID: 26593907 PMCID: PMC4661911 DOI: 10.3390/ijms161126053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 01/17/2023] Open
Abstract
Tissue plasminogen activator (tPA) mediates a number of processes that are pivotal for synaptogenesis and remodeling of synapses, including proteolysis of the brain extracellular matrix, degradation of adhesion molecules, activation of neurotrophins, and activation of the N-methyl-d-aspartate receptor. Abnormalities in these processes have been consistently described in psychotic disorders. In this paper, we review the physiological roles of tPA, focusing on conditions characterized by low tPA activity, which are prevalent in schizophrenia. We then describe how tPA activity is influenced by lifestyle interventions and nutritional supplements that may ameliorate psychotic symptoms. Next, we analyze the role of tPA in the mechanism of action of hormones and medications effective in mitigating psychotic symptoms, such as pregnenolone, estrogen, oxytocin, dopamine D3 receptor antagonists, retinoic acid, valproic acid, cannabidiol, sodium nitroprusside, N-acetyl cysteine, and warfarin. We also review evidence that tPA participates in the mechanism by which electroconvulsive therapy and cigarette smoking may reduce psychotic symptoms.
Collapse
Affiliation(s)
- Silvia Hoirisch-Clapauch
- Department of Hematology, Hospital Federal dos Servidores do Estado, Ministry of Health, Rio de Janeiro CEP 20221-903, Brazil.
| | - Antonio E Nardi
- Institute of Psychiatry, Federal University of Rio de Janeiro, and National Institute for Translational Medicine, INCT-TM CEP 22290-140, Brazil.
| |
Collapse
|
24
|
Alder J, Fujioka W, Giarratana A, Wissocki J, Thakkar K, Vuong P, Patel B, Chakraborty T, Elsabeh R, Parikh A, Girn HS, Crockett D, Thakker-Varia S. Genetic and pharmacological intervention of the p75NTR pathway alters morphological and behavioural recovery following traumatic brain injury in mice. Brain Inj 2015; 30:48-65. [PMID: 26579945 DOI: 10.3109/02699052.2015.1088963] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PRIMARY OBJECTIVE Neurotrophin levels are elevated after TBI, yet there is minimal regeneration. It was hypothesized that the pro-neurotrophin/p75NTR pathway is induced more than the mature neurotrophin/Trk pathway and that interfering with p75 signalling improves recovery following TBI. RESEARCH DESIGN Lateral Fluid Percussion (LFP) injury was performed on wildtype and p75 mutant mice. In addition, TrkB agonist 7,8 Dihydroxyflavone or p75 antagonist TAT-Pep5 were tested. Western blot and immunohistochemistry revealed biochemical and cellular changes. Morris Water Maze and Rotarod tests demonstrated cognitive and vestibulomotor function. MAIN OUTCOMES AND RESULTS p75 was up-regulated and TrkB was down-regulated 1 day post-LFP. p75 mutant mice as well as mice treated with the p75 antagonist or the TrkB agonist exhibited reduced neuronal death and degeneration and less astrocytosis. The cells undergoing apoptosis appear to be neurons rather than glia. There was improved motor function and spatial learning in p75 mutant mice and mice treated with the p75 antagonist. CONCLUSIONS Many of the pathological and behavioural consequences of TBI might be due to activation of the pro-neurotrophin/p75 toxic pathway overriding the protective mechanisms of the mature neurotrophin/Trk pathway. Targeting p75 can be a novel strategy to counteract the damaging effects of TBI.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Astrocytes/metabolism
- Astrocytes/pathology
- Brain Injuries, Traumatic/drug therapy
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/metabolism
- Brain-Derived Neurotrophic Factor/metabolism
- Cognition/physiology
- Flavones/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Nerve Growth Factors/metabolism
- Receptor, trkB/agonists
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptors, Nerve Growth Factor/antagonists & inhibitors
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Sensory Receptor Cells/metabolism
- Sensory Receptor Cells/pathology
Collapse
Affiliation(s)
- Janet Alder
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Wendy Fujioka
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Anna Giarratana
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Jenna Wissocki
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Keya Thakkar
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Phung Vuong
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Bijal Patel
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | | | - Rami Elsabeh
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Ankit Parikh
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Hartaj S Girn
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - David Crockett
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | | |
Collapse
|
25
|
Xiong Y, Zhang Y, Mahmood A, Chopp M. Investigational agents for treatment of traumatic brain injury. Expert Opin Investig Drugs 2015; 24:743-60. [PMID: 25727893 PMCID: PMC4433440 DOI: 10.1517/13543784.2015.1021919] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major cause of death and disability worldwide. To date, there are no pharmacologic agents proven to improve outcomes from TBI because all the Phase III clinical trials in TBI have failed. Thus, there is a compelling need to develop treatments for TBI. AREAS COVERED The following article provides an overview of select cell-based and pharmacological therapies under early development for the treatment of TBI. These therapies seek to enhance cognitive and neurological functional recovery through neuroprotective and neurorestorative strategies. EXPERT OPINION TBI elicits both complex degenerative and regenerative tissue responses in the brain. TBI can lead to cognitive, behavioral, and motor deficits. Although numerous promising neuroprotective treatment options have emerged from preclinical studies that mainly target the lesion, translation of preclinical effective neuroprotective drugs to clinical trials has proven challenging. Accumulating evidence indicates that the mammalian brain has a significant, albeit limited, capacity for both structural and functional plasticity, as well as regeneration essential for spontaneous functional recovery after injury. A new therapeutic approach is to stimulate neurovascular remodeling by enhancing angiogenesis, neurogenesis, oligodendrogenesis, and axonal sprouting, which in concert, may improve neurological functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Henry Ford Hospital, Department of Neurosurgery , Education and Research Building, Room 3096, 2799 West Grand Boulevard, Detroit, MI 48202 , USA +1 313 916 4743 ; +1 313 916 9855 ;
| | | | | | | |
Collapse
|
26
|
Thakker-Varia S, Behnke J, Doobin D, Dalal V, Thakkar K, Khadim F, Wilson E, Palmieri A, Antila H, Rantamaki T, Alder J. VGF (TLQP-62)-induced neurogenesis targets early phase neural progenitor cells in the adult hippocampus and requires glutamate and BDNF signaling. Stem Cell Res 2014; 12:762-77. [PMID: 24747217 PMCID: PMC4991619 DOI: 10.1016/j.scr.2014.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/24/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023] Open
Abstract
The neuropeptide VGF (non-acronymic), which has antidepressant-like effects, enhances adult hippocampal neurogenesis as well as synaptic activity and plasticity in the hippocampus, however the interaction between these processes and the mechanism underlying this regulation remain unclear. In this study, we demonstrate that VGF-derived peptide TLQP-62 specifically enhances the generation of early progenitor cells in nestin-GFP mice. Specifically, TLQP-62 significantly increases the number of Type 2a neural progenitor cells (NPCs) while reducing the number of more differentiated Type 3 cells. The effect of TLQP-62 on proliferation rather than differentiation was confirmed using NPCs in vitro; TLQP-62 but not scrambled peptide PEHN-62 increases proliferation in a cell line as well as in primary progenitors from adult hippocampus. Moreover, TLQP-62 but not scrambled peptide increases Cyclin D mRNA expression. The proliferation of NPCs induced by TLQP-62 requires synaptic activity, in particular through NMDA and metabotropic glutamate receptors. The activation of glutamate receptors by TLQP-62 activation induces phosphorylation of CaMKII through NMDA receptors and protein kinase D through metabotropic glutamate receptor 5 (mGluR5). Furthermore, pharmacological antagonists to CaMKII and PKD inhibit TLQP-62-induced proliferation of NPCs indicating that these signaling molecules downstream of glutamate receptors are essential for the actions of TLQP-62 on neurogenesis. We also show that TLQP-62 gradually activates Brain-Derived Neurotrophic Factor (BDNF)-receptor TrkB in vitro and that Trk signaling is required for TLQP-62-induced proliferation of NPCs. Understanding the precise molecular mechanism of how TLQP-62 influences neurogenesis may reveal mechanisms by which VGF-derived peptides act as antidepressant-like agents.
Collapse
Affiliation(s)
- Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Joseph Behnke
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - David Doobin
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Vidhi Dalal
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Keya Thakkar
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Farah Khadim
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Elizabeth Wilson
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Alicia Palmieri
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Hanna Antila
- Neuroscience Center, University of Helsinki, P.O. Box 56, Viikinkaari 4, 00014 Helsinki, Finland.
| | - Tomi Rantamaki
- Neuroscience Center, University of Helsinki, P.O. Box 56, Viikinkaari 4, 00014 Helsinki, Finland.
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|