1
|
Goodman LS, Chiriboga-Paredes Y, Cable JE, Hearn A. Characterizing juvenile blacktip shark (Carcharhinus limbatus) nursery areas in the Galapagos: new methods and understandings. JOURNAL OF FISH BIOLOGY 2025; 106:760-774. [PMID: 39548743 DOI: 10.1111/jfb.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/07/2024] [Accepted: 10/12/2024] [Indexed: 11/18/2024]
Abstract
New approaches to abundance surveying utilizing unoccupied aerial vehicles (UAVs) are proving to be effective tools in marine and terrestrial environments. We explored UAV efficacy for surveys in the Galapagos Marine Reserve (GMR), where relative abundance patterns of juvenile sharks and subsequent classifications of putative nursery areas based on environmental drivers are lacking. The UAV method allowed greater temporal and spatial coverage. We expanded classification of shark nursery habitat through monthly drone surveys and environmental data collection at 14 sites around San Cristobal Island (GMR) from November 2018 to July 2019. In the period of surveying, 56 flights identified 453 juvenile Carcharhinus limbatus (blacktip shark). Classification of nurseries followed three criteria, necessitating higher density, short-term residency, and annual site fidelity in target locations. We developed preliminary generalized linear models to elucidate potential environmental parameters influencing the perceived abundance and habitat preference of juveniles. Four sites were identified as either potential nurseries or nursery areas for the target species based on previous excursions. An averaged model was subsequently created from the models found to best explain deviance patterns (R2 = 0.10-0.44) in perceived shark abundance and habitat preference. Relative variable importance (RVI) values further clarified the parameters most associated with higher juvenile presence. This approach provides a systematic method of abundance surveying while simultaneously beginning the process of defining when and where we expect to find higher abundance through environmental modelling of most influential parameters to perceived abundance in this environment.
Collapse
Affiliation(s)
- Lauren S Goodman
- Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Galapagos Science Center, Universidad San Francisco de Quito, Quito, Ecuador
| | - Yasuní Chiriboga-Paredes
- Galapagos Science Center, Universidad San Francisco de Quito, Quito, Ecuador
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Baja California Sur, Mexico
| | - Jaye E Cable
- Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alex Hearn
- Galapagos Science Center, Universidad San Francisco de Quito, Quito, Ecuador
- MigraMar, Bodega Bay, California, USA
| |
Collapse
|
2
|
Leonetti FL, Bottaro M, Giglio G, Sperone E. Studying Chondrichthyans Using Baited Remote Underwater Video Systems: A Review. Animals (Basel) 2024; 14:1875. [PMID: 38997987 PMCID: PMC11240523 DOI: 10.3390/ani14131875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Cartilaginous fish face significant threats due to overfishing and slow reproductive rates, leading to rapid declines in their populations globally. Traditional capture-based surveys, while valuable for gathering ecological information, pose risks to the health and survival of these species. Baited Remote Underwater Video Systems (BRUVS) offer a non-invasive alternative, allowing for standardized surveys across various habitats with minimal disturbance to marine life. This study presents a comprehensive review of BRUVS applications in studying cartilaginous fish, examining 81 peer-reviewed papers spanning from 1990 to 2023. The analysis reveals a significant increase in BRUVS usage over the past three decades, particularly in Australia, South Africa, and Central America. The most common BRUVS configurations include benthic setups, mono-camera systems, and the use of fish from the Clupeidae and Scombridae families as bait. BRUVS have been instrumental in studying 195 chondrichthyan species, providing insights into up to thirteen different aspects of the life histories. Moreover, BRUVS facilitate the monitoring of endangered and data-deficient species, contributing crucial data for conservation efforts. Overall, this study underscores the value of BRUVS as a powerful tool for studying and conserving cartilaginous fish populations worldwide.
Collapse
Affiliation(s)
| | - Massimiliano Bottaro
- Genoa Marine Centre, Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Italian National Institute for Marine Biology, Ecology and Biotechnology, Villa del Principe, Piazza del Principe 4, 16126 Genoa, Italy
| | - Gianni Giglio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Emilio Sperone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
3
|
Lara-Lizardi F, Castro E, Leos Barajas V, Morales JM, Hoyos-Padilla EM, Ketchum J. Seasonal occurrence and individual variability of bull sharks, Carcharhinus leucas, in a marine reserve of the southwestern Gulf of California. PeerJ 2024; 12:e17192. [PMID: 38766482 PMCID: PMC11102736 DOI: 10.7717/peerj.17192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/13/2024] [Indexed: 05/22/2024] Open
Abstract
Background Studying how the bull sharks aggregate and how they can be driven by life history traits such as reproduction, prey availability, predator avoidance and social interaction in a National Park such as Cabo Pulmo, is key to understand and protect the species. Methods The occurrence variability of 32 bull sharks tracked with passive acoustic telemetry were investigated via a hierarchical logistic regression model, with inference conducted in a Bayesian framework, comparing sex, and their response to temperature and chlorophyll. Results Based on the fitted model, occurrence probability varied by sex and length. Juvenile females had the highest values, whereas adult males the lowest. A strong seasonality or day of the year was recorded, where sharks were generally absent during September-November. However, some sharks did not show the common pattern, being detected just for a short period. This is one of the first studies where the Bayesian framework is used to study passive acoustic telemetry proving the potential to be used in further studies.
Collapse
Affiliation(s)
- Frida Lara-Lizardi
- Pelagios Kakunjá, La Paz, Baja California Sur, Mexico
- Orgcas, La Paz, Baja California Sur, Mexico
- Migramar, Bodega Bay, CA, United States of America
| | - Eleazar Castro
- Centro Interdisciplinario en Ciencias Aplicadas de Baja California Sur A.C., La Paz, Baja California Sur, Mexico
| | - Vianey Leos Barajas
- Department of Statistical Sciences, University of Toronto, Toronto, Canada
- School of the Environment, University of Toronto, Toronto, Canada
- Department of Statistics, North Carolina State University, North Carolina, United States of America
- Department of Forestry and Environmental Resources, North Carolina State University, North Carolina, United States of America
| | - Juan Manuel Morales
- Grupo de Ecología Cuantitativa. INIBIOMA, Universidad Nacional del Comahue, Bariloche, Argentina
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Edgar Mauricio Hoyos-Padilla
- Pelagios Kakunjá, La Paz, Baja California Sur, Mexico
- Migramar, Bodega Bay, CA, United States of America
- Fins attached: Marine Research and Conservation, Colorado Springs, CO, United States of America
| | - James Ketchum
- Pelagios Kakunjá, La Paz, Baja California Sur, Mexico
- Migramar, Bodega Bay, CA, United States of America
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| |
Collapse
|
4
|
Merlo PJ, Venerus LA, Irigoyen AJ. Fine-scale variation in the proximity of baited remote underwater video stations (BRUVS) to rocky reefs reveals changes in the structure of temperate fish assemblages. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105902. [PMID: 36736235 DOI: 10.1016/j.marenvres.2023.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/05/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
We investigated changes in the structure of coastal fish assemblages in Northern Patagonia, Southwestern Atlantic, by using baited remote underwater video stations (BRUVS) deployed at increasing distances from rocky reefs: 0-5 m, 15-20 m and 50-60 m. We estimated species richness and abundance (total and by preferred habitat type) and searched for diagnostic species in each distance range. We recorded 14 taxa across 11 families in 19 areas surveyed. Species richness and abundance were higher on reef ledges and decreased with distance from them, at a finer spatial scale than previously reported. Acanthistius patachonicus and Sebastes oculatus were indicative of reef ledges; they were less abundant at 15-20 m and disappeared at 50-60 m. Callorinchus callorynchus and Odontesthes spp. occurred only at distances >15-20 m from the reefs, while Galeorhinus galeus was distributed homogeneously throughout the surveyed area. Our findings have practical implications for monitoring ecotone demersal habitats with BRUVS.
Collapse
Affiliation(s)
- Pablo J Merlo
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CCT CENPAT-CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina.
| | - Leonardo A Venerus
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CCT CENPAT-CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| | - Alejo J Irigoyen
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CCT CENPAT-CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
5
|
Chin A, Molloy FJ, Cameron D, Day JC, Cramp J, Gerhardt KL, Heupel MR, Read M, Simpfendorfer CA. Conceptual frameworks and key questions for assessing the contribution of marine protected areas to shark and ray conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e13917. [PMID: 35435294 PMCID: PMC10107163 DOI: 10.1111/cobi.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Marine protected areas (MPAs) are key tools in addressing the global decline of sharks and rays, and marine parks and shark sanctuaries of various configurations have been established to conserve shark populations. However, assessments of their efficacy are compromised by inconsistent terminology, lack of standardized approaches to assess how MPAs contribute to shark and ray conservation, and ambiguity about how to integrate movement data in assessment processes. We devised a conceptual framework to standardize key terms (e.g., protection, contribution, potential impact, risk, threat) and used the concept of portfolio risk to identify key attributes of sharks and rays (assets), the threats they face (portfolio risk), and the specific role of MPAs in risk mitigation (insurance). Movement data can be integrated into the process by informing risk exposure and mitigation through MPAs. The framework is operationalized by posing 8 key questions that prompt practitioners to consider the assessment scope, MPA type and purpose, range of existing and potential threats, species biology and ecology, and management and operational contexts. Ultimately, MPA contributions to shark and ray conservation differ according to a complex set of human and natural factors and interactions that should be carefully considered in MPA design, implementation, and evaluation.
Collapse
Affiliation(s)
- Andrew Chin
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
- IUCN Shark Specialist GroupGlandSwitzerland
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Fergus John Molloy
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
- Great Barrier Reef Marine Park AuthorityTownsvilleQueenslandAustralia
| | - Darren Cameron
- Great Barrier Reef Marine Park AuthorityTownsvilleQueenslandAustralia
| | - Jon C. Day
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Jessica Cramp
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Sharks PacificRarotongaCook Islands
| | - Karin Leeann Gerhardt
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
| | - Michelle R. Heupel
- Integrated Marine Observing System (IMOS)University of TasmaniaHobartTasmaniaAustralia
| | - Mark Read
- Great Barrier Reef Marine Park AuthorityTownsvilleQueenslandAustralia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
6
|
Half a century of rising extinction risk of coral reef sharks and rays. Nat Commun 2023; 14:15. [PMID: 36650137 PMCID: PMC9845228 DOI: 10.1038/s41467-022-35091-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2023] Open
Abstract
Sharks and rays are key functional components of coral reef ecosystems, yet many populations of a few species exhibit signs of depletion and local extinctions. The question is whether these declines forewarn of a global extinction crisis. We use IUCN Red List to quantify the status, trajectory, and threats to all coral reef sharks and rays worldwide. Here, we show that nearly two-thirds (59%) of the 134 coral-reef associated shark and ray species are threatened with extinction. Alongside marine mammals, sharks and rays are among the most threatened groups found on coral reefs. Overfishing is the main cause of elevated extinction risk, compounded by climate change and habitat degradation. Risk is greatest for species that are larger-bodied (less resilient and higher trophic level), widely distributed across several national jurisdictions (subject to a patchwork of management), and in nations with greater fishing pressure and weaker governance. Population declines have occurred over more than half a century, with greatest declines prior to 2005. Immediate action through local protections, combined with broad-scale fisheries management and Marine Protected Areas, is required to avoid extinctions and the loss of critical ecosystem function condemning reefs to a loss of shark and ray biodiversity and ecosystem services, limiting livelihoods and food security.
Collapse
|
7
|
Smith A, Songcuan A, Mitchell J, Haste M, Schmidt Z, Sands G, Lincoln Smith M. Quantifying Catch Rates, Shark Abundance and Depredation Rate at a Spearfishing Competition on the Great Barrier Reef, Australia. BIOLOGY 2022; 11:biology11101524. [PMID: 36290426 PMCID: PMC9598298 DOI: 10.3390/biology11101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022]
Abstract
We developed and applied a method to quantify spearfisher effort and catch, shark interactions and shark depredation in a boat-based recreational spearfishing competition in the Great Barrier Reef Marine Park in Queensland. Survey questions were designed to collect targeted quantitative data whilst minimising the survey burden of spearfishers. We provide the first known scientific study of shark depredation during a recreational spearfishing competition and the first scientific study of shark depredation in the Great Barrier Reef region. During the two-day spearfishing competition, nine vessels with a total of 33 spearfishers reported a catch of 144 fish for 115 h of effort (1.25 fish per hour). A subset of the catch comprised nine eligible species under competition rules, of which 47 pelagic fish were weighed. The largest fish captured was a 34.4 kg Sailfish (Istiophorus platypterus). The most common species captured and weighed was Spanish Mackerel (Scomberomorus commerson). The total weight of eligible fish was 332 kg and the average weight of each fish was 7.1 kg. During the two-day event, spearfishers functioned as citizen scientists and counted 358 sharks (115 h effort), averaging 3.11 sharks per hour. Grey Reef Sharks (Carcharhinus amblyrhynchos) comprised 64% of sightings. Nine speared fish were fully depredated by sharks as spearfishers attempted to retrieve their catch, which equates to a depredation rate of 5.9%. The depredated fish included four pelagic fish and five reef fish. The shark species responsible were Grey Reef Shark (C. amblyrhynchos) (66%), Bull Shark (Carcharhinus leucas) (11%), Whitetip Reef Shark (Triaenodon obesus) (11%) and Great Hammerhead (Sphyrna mokarran) (11%). There were spatial differences in fish catch, shark sightings and rates of depredation. We developed a report card that compared average catch of fish, sightings of sharks per hour and depredation rate by survey area, which assists recreational fishers and marine park managers to assess spatio-temporal changes. The participating spearfishers can be regarded as experienced (average 18 days a year for average 13.4 years). Sixty percent of interviewees perceived that shark numbers have increased in the past 10 years, 33% indicated no change and 7% indicated shark numbers had decreased. Total fuel use of all vessels was 2819 L and was equivalent to 6.48 tons of greenhouse gas emissions for the competition.
Collapse
Affiliation(s)
- Adam Smith
- Reef Ecologic, Townsville, QLD 4810, Australia
- Correspondence: ; Tel.: +61-418726584
| | - Al Songcuan
- Reef Ecologic, Townsville, QLD 4810, Australia
| | - Jonathan Mitchell
- Department of Agriculture and Fisheries, Queensland Government, Dutton Park, QLD 4102, Australia
| | - Max Haste
- Townsville Skindiving Club, South Townsville, QLD 4810, Australia
| | - Zachary Schmidt
- Townsville Skindiving Club, South Townsville, QLD 4810, Australia
| | - Glenn Sands
- Townsville Skindiving Club, South Townsville, QLD 4810, Australia
| | - Marcus Lincoln Smith
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, NSW 2019, Australia
| |
Collapse
|
8
|
Ruiz‐Villar H, Urra F, Jubete F, Morales‐González A, Adrados B, Revilla E, Rivilla JC, Román J, Seijas J, López‐Bao JV, Palomares F. Presence of pastoral fields in mountain landscapes influences prey consumption by European wildcats. J Zool (1987) 2022. [DOI: 10.1111/jzo.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H. Ruiz‐Villar
- Biodiversity Research Institute (IMIB, CSIC‐UO‐PA) Oviedo University – Campus Mieres Mieres Spain
| | - F. Urra
- Asociación de Naturalistas Palentinos Fuentes de Nava Spain
| | - F. Jubete
- Asociación de Naturalistas Palentinos Fuentes de Nava Spain
| | - A. Morales‐González
- Department of Conservation Biology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - B. Adrados
- Department of Conservation Biology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - E. Revilla
- Department of Conservation Biology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - J. C. Rivilla
- Department of Conservation Biology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - J. Román
- Department of Conservation Biology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - J. Seijas
- C/Rio Sil 140, Golpéjar de la Sobarriba León Spain
| | - J. V. López‐Bao
- Biodiversity Research Institute (IMIB, CSIC‐UO‐PA) Oviedo University – Campus Mieres Mieres Spain
| | - F. Palomares
- Department of Conservation Biology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| |
Collapse
|
9
|
Cortelezzi P, Paulet TG, Olbers JM, Harris JM, Bernard ATF. Conservation benefits of a marine protected area on South African chondrichthyans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115691. [PMID: 35839646 DOI: 10.1016/j.jenvman.2022.115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Chondrichthyans are threatened worldwide due to their life-history traits combined with a plethora of anthropogenic impacts that are causing populations to collapse. Marine Protected Areas (MPAs) are a conservation option, but their efficacy for chondrichthyans is still unclear. Conservation efforts might be challenging especially in developing countries, due to a lack of resources and monitoring and limited data and stakeholder support. Here Baited Remote Underwater Stereo-Video systems (stereo-BRUVs) were deployed inside and outside a small partially protected MPA (Robberg MPA, Western Cape, South Africa) to assess the status of cartilaginous fishes' assemblages and to investigate the potential benefits derived from the presence of a marine reserve. Overall, 19 chondrichthyan species in 11 different families were observed. Chondrichthyans were observed in 78.5% of the sites and, of these, 89.7% of the MPA sites showed at least one chondrichthyan, while only in the 67.5% of surrounding exploited sites a cartilaginous fish was sighted. The presence of the MPA had a significant effect on the relative abundance of batoids, threatened species and local endemics, with more observations inside the MPA than outside, indicating the potential benefit of marine reserves on species that are more vulnerable to fishing pressure. Relative abundance was generally higher inside the bay than in the exposed area, and both relative abundance and species richness decreased significantly with depth. The analysis of the body length showed that the 35.5% of species had an average body length below maturity length, indicating that the area might be used as nursery ground for different species. This study provides evidence that MPAs, even though small and partially protected, can provide benefits for chondrichthyans, specifically to threatened species, endemic species and lesser-known species. Importantly, different environmental parameters must be considered to maximize the benefits an MPA can provide.
Collapse
Affiliation(s)
- Paolo Cortelezzi
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy; South African Shark Conservancy (SASC), Hermanus, 7200, Western Cape, South Africa.
| | - Timothy G Paulet
- South African Shark Conservancy (SASC), Hermanus, 7200, Western Cape, South Africa
| | - Jennifer M Olbers
- Wildlands Conservation Trust, 460 Townbush Road, Pietermaritzburg, 3201, South Africa
| | - Jean M Harris
- Wildlands Conservation Trust, 460 Townbush Road, Pietermaritzburg, 3201, South Africa; Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Gomeroy Avenue, Summerstrand, Port Elizabeth 6031, South Africa
| | - Anthony T F Bernard
- South African Institute for Aquatic Biodiversity, Somerset Street, Makhanda, 6139, South Africa; Rhodes University, Department of Zoology and Entomology, Makhanda, 6139, South Africa
| |
Collapse
|
10
|
Andrzejaczek S, Lucas TC, Goodman MC, Hussey NE, Armstrong AJ, Carlisle A, Coffey DM, Gleiss AC, Huveneers C, Jacoby DMP, Meekan MG, Mourier J, Peel LR, Abrantes K, Afonso AS, Ajemian MJ, Anderson BN, Anderson SD, Araujo G, Armstrong AO, Bach P, Barnett A, Bennett MB, Bezerra NA, Bonfil R, Boustany AM, Bowlby HD, Branco I, Braun CD, Brooks EJ, Brown J, Burke PJ, Butcher P, Castleton M, Chapple TK, Chateau O, Clarke M, Coelho R, Cortes E, Couturier LIE, Cowley PD, Croll DA, Cuevas JM, Curtis TH, Dagorn L, Dale JJ, Daly R, Dewar H, Doherty PD, Domingo A, Dove ADM, Drew M, Dudgeon CL, Duffy CAJ, Elliott RG, Ellis JR, Erdmann MV, Farrugia TJ, Ferreira LC, Ferretti F, Filmalter JD, Finucci B, Fischer C, Fitzpatrick R, Forget F, Forsberg K, Francis MP, Franks BR, Gallagher AJ, Galvan-Magana F, García ML, Gaston TF, Gillanders BM, Gollock MJ, Green JR, Green S, Griffiths CA, Hammerschlag N, Hasan A, Hawkes LA, Hazin F, Heard M, Hearn A, Hedges KJ, Henderson SM, Holdsworth J, Holland KN, Howey LA, Hueter RE, Humphries NE, Hutchinson M, Jaine FRA, Jorgensen SJ, Kanive PE, Labaja J, Lana FO, Lassauce H, Lipscombe RS, Llewellyn F, Macena BCL, et alAndrzejaczek S, Lucas TC, Goodman MC, Hussey NE, Armstrong AJ, Carlisle A, Coffey DM, Gleiss AC, Huveneers C, Jacoby DMP, Meekan MG, Mourier J, Peel LR, Abrantes K, Afonso AS, Ajemian MJ, Anderson BN, Anderson SD, Araujo G, Armstrong AO, Bach P, Barnett A, Bennett MB, Bezerra NA, Bonfil R, Boustany AM, Bowlby HD, Branco I, Braun CD, Brooks EJ, Brown J, Burke PJ, Butcher P, Castleton M, Chapple TK, Chateau O, Clarke M, Coelho R, Cortes E, Couturier LIE, Cowley PD, Croll DA, Cuevas JM, Curtis TH, Dagorn L, Dale JJ, Daly R, Dewar H, Doherty PD, Domingo A, Dove ADM, Drew M, Dudgeon CL, Duffy CAJ, Elliott RG, Ellis JR, Erdmann MV, Farrugia TJ, Ferreira LC, Ferretti F, Filmalter JD, Finucci B, Fischer C, Fitzpatrick R, Forget F, Forsberg K, Francis MP, Franks BR, Gallagher AJ, Galvan-Magana F, García ML, Gaston TF, Gillanders BM, Gollock MJ, Green JR, Green S, Griffiths CA, Hammerschlag N, Hasan A, Hawkes LA, Hazin F, Heard M, Hearn A, Hedges KJ, Henderson SM, Holdsworth J, Holland KN, Howey LA, Hueter RE, Humphries NE, Hutchinson M, Jaine FRA, Jorgensen SJ, Kanive PE, Labaja J, Lana FO, Lassauce H, Lipscombe RS, Llewellyn F, Macena BCL, Mambrasar R, McAllister JD, McCully Phillips SR, McGregor F, McMillan MN, McNaughton LM, Mendonça SA, Meyer CG, Meyers M, Mohan JA, Montgomery JC, Mucientes G, Musyl MK, Nasby-Lucas N, Natanson LJ, O’Sullivan JB, Oliveira P, Papastamtiou YP, Patterson TA, Pierce SJ, Queiroz N, Radford CA, Richardson AJ, Richardson AJ, Righton D, Rohner CA, Royer MA, Saunders RA, Schaber M, Schallert RJ, Scholl MC, Seitz AC, Semmens JM, Setyawan E, Shea BD, Shidqi RA, Shillinger GL, Shipley ON, Shivji MS, Sianipar AB, Silva JF, Sims DW, Skomal GB, Sousa LL, Southall EJ, Spaet JLY, Stehfest KM, Stevens G, Stewart JD, Sulikowski JA, Syakurachman I, Thorrold SR, Thums M, Tickler D, Tolloti MT, Townsend KA, Travassos P, Tyminski JP, Vaudo JJ, Veras D, Wantiez L, Weber SB, Wells RD, Weng KC, Wetherbee BM, Williamson JE, Witt MJ, Wright S, Zilliacus K, Block BA, Curnick DJ. Diving into the vertical dimension of elasmobranch movement ecology. SCIENCE ADVANCES 2022; 8:eabo1754. [PMID: 35984887 PMCID: PMC9390984 DOI: 10.1126/sciadv.abo1754] [Show More Authors] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.
Collapse
Affiliation(s)
| | - Tim C.D. Lucas
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Nigel E. Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Amelia J. Armstrong
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Aaron Carlisle
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Daniel M. Coffey
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA
| | - Adrian C. Gleiss
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, Australia
| | - Charlie Huveneers
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - David M. P. Jacoby
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Zoological Society of London, London, UK
| | - Mark G. Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Johann Mourier
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- UMS 3514 Plateforme Marine Stella Mare, Université de Corse Pasquale Paoli, Biguglia, France
| | - Lauren R. Peel
- The Manta Trust, Catemwood House, Corscombe, Dorset, UK
- Save Our Seas Foundation–D’Arros Research Centre, Geneva, Switzerland
| | - Kátya Abrantes
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Biopixel Oceans Foundation, Cairns, QLD, Australia
| | - André S. Afonso
- Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Matthew J. Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Brooke N. Anderson
- New College of Interdisciplinary Arts and Sciences, Arizona State University, Phoenix, AZ, USA
| | | | - Gonzalo Araujo
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Marine Research and Conservation Foundation, Lydeard St Lawrence, Somerset, UK
| | - Asia O. Armstrong
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Pascal Bach
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Adam Barnett
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Biopixel Oceans Foundation, Cairns, QLD, Australia
| | - Mike B. Bennett
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalia A. Bezerra
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
- Departamento de Oceanografia e Ecologia, Universidade Federal do Espirito Santo, Vitória, ES, Brazil
| | - Ramon Bonfil
- El Colegio de la Frontera Sur (ECOSUR)–Unidad Chetumal, Chetumal, Quintana Roo, Mexico
- Océanos Vivientes A.C., Mexico City, Mexico
| | - Andre M. Boustany
- Monterey Bay Aquarium, Monterey, CA, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Heather D. Bowlby
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Ilka Branco
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Camrin D. Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - Judith Brown
- Ascension Island Government Conservation and Fisheries Department, Georgetown, Ascension Island, UK
| | - Patrick J. Burke
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Paul Butcher
- NSW Department of Primary Industries–Fisheries Research, National Marine Science Centre, Coffs Harbour, NSW, Australia
| | | | - Taylor K. Chapple
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR, USA
| | - Olivier Chateau
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Nouméa, New Caledonia
| | | | - Rui Coelho
- Portuguese Institute for the Ocean and Atmosphere, I.P. (IPMA), Olhão, Algarve, Portugal
- Centre of Marine Sciences of the Algarve, Universidade do Algarve, Faro, Algarve, Portugal
| | - Enric Cortes
- Southeast Fisheries Science Center, NOAA Fisheries, Panama City, FL, USA
| | | | - Paul D. Cowley
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - Donald A. Croll
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Juan M. Cuevas
- Wildlife Conservation Society Argentina, Ciudad Autónoma de Buenos Aires, Argentina
- División Zoología de Vertebrados, Museo de La Plata, Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| | - Tobey H. Curtis
- Atlantic Highly Migratory Species Management Division, NOAA Fisheries, Gloucester, MA, USA
| | - Laurent Dagorn
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Jonathan J. Dale
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Ryan Daly
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Oceanographic Research Institute, Durban, South Africa
| | - Heidi Dewar
- Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA, USA
| | - Philip D. Doherty
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Andrés Domingo
- Laboratorio de Recursos Pelágicos, Dirección Nacional de Recursos Acuáticos (DINARA), Montevideo, Uruguay
| | | | - Michael Drew
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- SARDI Aquatic Sciences, Adelaide, SA, Australia
| | - Christine L. Dudgeon
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
- School of Science, Technology and Engineering, The University of the Sunshine Coast, Maroochydore, QLD, Australia
| | | | - Riley G. Elliott
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Jim R. Ellis
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
| | | | - Thomas J. Farrugia
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
- Alaska Ocean Observing System, Anchorage, AK, USA
| | - Luciana C. Ferreira
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Francesco Ferretti
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - John D. Filmalter
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - Brittany Finucci
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | | | - Richard Fitzpatrick
- Biopixel Oceans Foundation, Cairns, QLD, Australia
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | - Fabien Forget
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sète, France
| | | | - Malcolm P. Francis
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Bryan R. Franks
- Marine Science Research Institute, Jacksonville University, Jacksonville, FL, USA
| | | | - Felipe Galvan-Magana
- Instituto Politecnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | - Mirta L. García
- Museo de La Plata, Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Troy F. Gaston
- College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW, Australia
| | - Bronwyn M. Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | - Jonathan R. Green
- Galapagos Whale Shark Project, Puerto Ayora, Santa Cruz Island, Galapagos, Ecuador
| | - Sofia Green
- Galapagos Whale Shark Project, Puerto Ayora, Santa Cruz Island, Galapagos, Ecuador
| | - Christopher A. Griffiths
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Lysekil, Sweden
| | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Abdi Hasan
- Yayasan Konservasi Indonesia, Sorong, West Papua, Indonesia
| | - Lucy A. Hawkes
- College of Life and Environmental Science, Hatherly Laboratories, University of Exeter, Exeter, Devon, UK
| | - Fabio Hazin
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Matthew Heard
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- SARDI Aquatic Sciences, Adelaide, SA, Australia
- Conservation and Wildlife Branch, Department for Environment and Water, Adelaide, SA, Australia
| | - Alex Hearn
- Migramar, Forest Knolls, CA, USA
- Galapagos Whale Shark Project, Puerto Ayora, Santa Cruz Island, Galapagos, Ecuador
- Galapagos Science Center, Department of Biological Sciences, Universidad San Francisco de Quito, Quito, Ecuador
| | | | | | | | - Kim N. Holland
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Lucy A. Howey
- Johns Hopkins University, Baltimore, MD, USA
- Haiti Ocean Project, Petite Riviere de Nippes, Haiti
| | - Robert E. Hueter
- OCEARCH, Park City, UT, USA
- Mote Marine Laboratory, Sarasota, FL, USA
| | | | - Melanie Hutchinson
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
- Joint Institute for Marine and Atmospheric Research, Honolulu, HI, USA
| | - Fabrice R. A. Jaine
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Salvador J. Jorgensen
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Paul E. Kanive
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Jessica Labaja
- Large Marine Vertebrates Research Institute Philippines, Jagna, Bohol, Philippines
| | - Fernanda O. Lana
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Hugo Lassauce
- The Manta Trust, Catemwood House, Corscombe, Dorset, UK
- ISEA, University of New Caledonia, Nouméa, New Caledonia
- Conservation International New Caledonia, Nouméa, New Caledonia
| | - Rebecca S. Lipscombe
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Bruno C. L. Macena
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
- Okeanos Centre, University of the Azores, Horta, Faial, Portugal
| | | | - Jaime D. McAllister
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | | | | | - Matthew N. McMillan
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Queensland Department of Agriculture and Fisheries, Brisbane, QLD, Australia
| | | | - Sibele A. Mendonça
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Carl G. Meyer
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Megan Meyers
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - John A. Mohan
- School of Marine and Environmental Programs, University of New England, Biddeford, ME, USA
| | - John C. Montgomery
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Gonzalo Mucientes
- Instituto de Investigacions Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Galicia, Spain
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairao, Portugal
| | | | - Nicole Nasby-Lucas
- Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Paulo Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Yannis P. Papastamtiou
- Institute of the Environment, Department of Biological Science, Florida International University, North Miami, FL, USA
| | | | | | - Nuno Queiroz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairao, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Vairao, Portugal
| | - Craig A. Radford
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Andy J. Richardson
- Ascension Island Government Conservation and Fisheries Department, Georgetown, Ascension Island, UK
| | - Anthony J. Richardson
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, Australia
- CSIRO Oceans and Atmosphere, St Lucia, QLD, Australia
| | - David Righton
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | | | - Mark A. Royer
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | | | | | | | - Michael C. Scholl
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- IUCN SSC Shark Specialist Group, Gland, Vaud, Switzerland
- Aquarium-Muséum Universitaire de Liège, University of Liège, Liège, Wallonia, Belgium
| | - Andrew C. Seitz
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Jayson M. Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Edy Setyawan
- The Manta Trust, Catemwood House, Corscombe, Dorset, UK
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Brendan D. Shea
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
- Beneath the Waves, Herndon, VA, USA
| | - Rafid A. Shidqi
- Coastal Science and Policy Program, University of California, Santa Cruz, Santa Cruz, CA, USA
- Thresher Shark Project Indonesia, Alor Island, East Nusa Tenggara, Indonesia
| | - George L. Shillinger
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Migramar, Forest Knolls, CA, USA
- Upwell, Monterey, CA, USA
| | | | - Mahmood S. Shivji
- Guy Harvey Research Institute, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Abraham B. Sianipar
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Joana F. Silva
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
| | - David W. Sims
- The Marine Biological Association, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | | | - Lara L. Sousa
- Wildlife Conservation Research Unit, Recanati-Kaplan Centre, Department of Zoology, Oxford University, Oxford, UK
| | | | - Julia L. Y. Spaet
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire, UK
| | | | - Guy Stevens
- The Manta Trust, Catemwood House, Corscombe, Dorset, UK
| | - Joshua D. Stewart
- The Manta Trust, Catemwood House, Corscombe, Dorset, UK
- Marine Mammal Institute, Department of Fisheries, Wildlife, and Conservation Sciences, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | - James A. Sulikowski
- New College of Interdisciplinary Arts and Sciences, Arizona State University, Phoenix, AZ, USA
| | | | - Simon R. Thorrold
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Michele Thums
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - David Tickler
- Marine Futures Lab, School of Biological Science, The University of Western Australia, Crawley, WA, Australia
| | | | - Kathy A. Townsend
- School of Science, Technology and Engineering, The University of the Sunshine Coast, Hervey Bay, QLD, Australia
| | - Paulo Travassos
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - John P. Tyminski
- OCEARCH, Park City, UT, USA
- Mote Marine Laboratory, Sarasota, FL, USA
| | - Jeremy J. Vaudo
- Guy Harvey Research Institute, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Drausio Veras
- Unidade Acadêmica de Serra Talhada, Universidade Federal Rural de Pernambuco, Serra Talhada, PE, Brazil
| | | | - Sam B. Weber
- Ascension Island Government Conservation and Fisheries Department, Georgetown, Ascension Island, UK
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - R.J. David Wells
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Kevin C. Weng
- Fisheries Science, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, USA
| | - Bradley M. Wetherbee
- Guy Harvey Research Institute, Nova Southeastern University, Fort Lauderdale, FL, USA
- University of Rhode Island, Kingston, RI, USA
| | - Jane E. Williamson
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Matthew J. Witt
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
- College of Life and Environmental Science, Hatherly Laboratories, University of Exeter, Exeter, Devon, UK
| | - Serena Wright
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
| | - Kelly Zilliacus
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Barbara A. Block
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | | |
Collapse
|
11
|
Di Lorenzo M, Calò A, Di Franco A, Milisenda G, Aglieri G, Cattano C, Milazzo M, Guidetti P. Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Nat Commun 2022; 13:4381. [PMID: 35945205 PMCID: PMC9363485 DOI: 10.1038/s41467-022-32035-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Elasmobranchs are heavily impacted by fishing. Catch statistics are grossly underestimated due to missing data from various fishery sectors such as small-scale fisheries. Marine Protected Areas are proposed as a tool to protect elasmobranchs and counter their ongoing depletion. We assess elasmobranchs caught in 1,256 fishing operations with fixed nets carried out in partially protected areas within Marine Protected Areas and unprotected areas beyond Marine Protected Areas borders at 11 locations in 6 Mediterranean countries. Twenty-four elasmobranch species were recorded, more than one-third belonging to the IUCN threatened categories (Vulnerable, Endangered, or Critically Endangered). Catches per unit of effort of threatened and data deficient species were higher (with more immature individuals being caught) in partially protected areas than in unprotected areas. Our study suggests that despite partially protected areas having the potential to deliver ecological benefits for threatened elasmobranchs, poor small-scale fisheries management inside Marine Protected Areas could hinder them from achieving this important conservation objective.
Collapse
Affiliation(s)
- Manfredi Di Lorenzo
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Sicily Marine Center, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy.
| | - Antonio Calò
- Department of Earth and Marine sciences (DiSTeM), University of Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
| | - Antonio Di Franco
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Sicily Marine Center, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy.
| | - Giacomo Milisenda
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Sicily Marine Center, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy
| | - Giorgio Aglieri
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Sicily Marine Center, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy
- Department of Earth and Marine sciences (DiSTeM), University of Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
- CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Carlo Cattano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Sicily Marine Center, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy
- Department of Earth and Marine sciences (DiSTeM), University of Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
- CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Marco Milazzo
- Department of Earth and Marine sciences (DiSTeM), University of Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
- CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Paolo Guidetti
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre, 16126, Genoa, Italy
- National Research Council, Institute for the Study of Anthropic Impact and sustainability in the Marine Environment (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| |
Collapse
|
12
|
Schmid K, Reis-Filho JA, Loiola M, Harvey ES, de Kikuchi RKP, Giarrizzo T. Habitat-specific fish fauna responses to different management regimes in the largest coral reef complex in the South Atlantic. MARINE ENVIRONMENTAL RESEARCH 2022; 178:105661. [PMID: 35661942 DOI: 10.1016/j.marenvres.2022.105661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
While marine protected areas (MPAs) are increasing worldwide, it is still needed to assess the effectiveness of those already consolidated. Methods and ecological assessments to understanding integrated and habitat-specific management regimes are still scarce and insufficient for policy implications and biodiversity conservation. Through Baited Remote Underwater Video (BRUV), we used fish assemblages as proxy of ecological and managerial status in two reef habitat types along three protection levels at Abrolhos Bank - the largest and most biodiverse coral reef complex of the South Atlantic. We found completely distinct responses in the fish fauna between the top (shallow) and bottom (deep) habitats of the unique "chapeirões" pinnacle reef formations. In the most protected zone (no-take), higher richness and abundance of commercial fish and more diverse trophic structure was observed. Particularly, large (sharks and groupers) and small carnivores (snappers) were more abundant and distributed more homogeneously over both reef habitats in the strictly enforced no-take zone. Abundance of these top-predators decreased from the low enforcement no-take zone to the multiple use area, where they were often absent while their typical preys (primary and secondary consumers) were thriving, notably in the top habitats. These outcomes highlight the importance to focus investigations not selectively on a single habitat type or depth zone in order to properly assess MPA effectiveness. Consequently, the monitoring and protection of fish species supported by marine spatial planning may benefit from an improved understanding of ecological functioning provided by MPA performance.
Collapse
Affiliation(s)
- Kurt Schmid
- Universidade Federal do Pará (UFPA), Grupo de Ecologia Aquática, Belém, Pará State, Brazil
| | - José Amorim Reis-Filho
- Universidade Federal da Bahia (UFBA), Programa de Pós Graduação em Ecologia aplicada a Gestão Ambiental, Bahia State, Brazil; ICHTUS Ambiente & Sociedade, 41830-600, Bahia State, Brazil.
| | - Miguel Loiola
- Universidade Federal da Bahia (UFBA), Bioinformatics and Microbial Ecology Laboratory (BIOME), Salvador, Bahia State, Brazil
| | - Euan Sinclair Harvey
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Ruy Kenji Papa de Kikuchi
- Universidade Federal da Bahia (UFBA), Department of Oceanography, Coral Reef and Global Climate Change Research Group, Salvador, Bahia State, Brazil
| | - Tommaso Giarrizzo
- Universidade Federal do Pará (UFPA), Grupo de Ecologia Aquática, Belém, Pará State, Brazil; Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Ceará State, Brazil
| |
Collapse
|
13
|
Genomic insights into the historical and contemporary demographics of the grey reef shark. Heredity (Edinb) 2022; 128:225-235. [PMID: 35296830 PMCID: PMC8987070 DOI: 10.1038/s41437-022-00514-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/08/2022] Open
Abstract
Analyses of genetic diversity can shed light on both the origins of biodiversity hotspots, as well as the conservation status of species that are impacted by human activities. With these objectives, we assembled a genomic dataset of 14,935 single nucleotide polymorphisms from 513 grey reef sharks (Carcharhinus amblyrhynchos) sampled across 17 locations in the tropical Indo-Pacific. We analysed geographic variation in genetic diversity, estimated ancient and contemporary effective population size (Ne) across sampling locations (using coalescent and linkage disequilibrium methods) and modelled the history of gene flow between the Coral Triangle and the Coral Sea. Genetic diversity decreased with distance away from the Coral Triangle and north-western Australia, implying that C. amblyrhynchos may have originated in this region. Increases in Ne were detected across almost all sampling locations 40,000-90,000 generations ago (approximately 0.6-1.5 mya, given an estimated generation time of 16.4 years), suggesting a range expansion around this time. More recent, secondary increases in Ne were inferred for the Misool and North Great Barrier Reef sampling locations, but joint modelling did not clarify whether these were due to population growth, migration, or both. Despite the greater genetic diversity and ancient Ne observed at sites around Australia and the Coral Triangle, remote reefs around north-western New Caledonia had the highest contemporary Ne, demonstrating the importance of using multiple population size assessment methods. This study provides insight into both the past and present demographics of C. amblyrhynchos and contributes to our understanding of evolution in marine biodiversity hotspots.
Collapse
|
14
|
Osuka KE, Stewart BD, Samoilys M, McClean CJ, Musembi P, Yahya S, Hamad AR, Mbugua J. Depth and habitat are important drivers of abundance for predatory reef fish off Pemba Island, Tanzania. MARINE ENVIRONMENTAL RESEARCH 2022; 175:105587. [PMID: 35196583 DOI: 10.1016/j.marenvres.2022.105587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Coral reefs across the world face significant threats from fishing and climate change, which tends to be most acute in shallower waters. This is the case off Pemba Island, Tanzania, yet the effects of these anthropogenic stressors on the distribution and abundance of economically and ecologically important predatory reef fish, including how they vary with depth and habitat type, is poorly understood. Thus, we deployed 79 baited remote underwater videos (BRUVs) in variable water depths and habitats off Pemba Island, and modeled the effects of depth and habitat on abundance of predatory reef fish. Predatory reef fish types/taxa were significantly predicted by depth and habitat types. Habitats in relatively deeper waters and dominated by hard and soft corals hosted high species richness and abundance of predatory reef fish types/taxa compared to mixed sandy and rubble habitats. The findings add to the growing evidence that deep waters around coral reefs are important habitats for predatory reef fish. Thus, careful management, through effective area and species protection measures, is needed to prevent further depletion of predatory reef-associated fish populations and to conserve this biologically important area.
Collapse
Affiliation(s)
- Kennedy E Osuka
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, United Kingdom; Coastal Oceans Research and Development - Indian Ocean (CORDIO East Africa), 9 Kibaki Flats P.O. Box 10135-80101, Mombasa, Kenya.
| | - Bryce D Stewart
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, United Kingdom
| | - Melita Samoilys
- Coastal Oceans Research and Development - Indian Ocean (CORDIO East Africa), 9 Kibaki Flats P.O. Box 10135-80101, Mombasa, Kenya
| | - Colin J McClean
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, United Kingdom
| | - Peter Musembi
- Coastal Oceans Research and Development - Indian Ocean (CORDIO East Africa), 9 Kibaki Flats P.O. Box 10135-80101, Mombasa, Kenya
| | - Saleh Yahya
- Institute of Marine Sciences, University of Dar es Salaam, Zanzibar, Tanzania
| | - Ali R Hamad
- Department of Fisheries Development, Zanzibar, Tanzania
| | - James Mbugua
- Coastal Oceans Research and Development - Indian Ocean (CORDIO East Africa), 9 Kibaki Flats P.O. Box 10135-80101, Mombasa, Kenya
| |
Collapse
|
15
|
Drivers of variation in occurrence, abundance, and behaviour of sharks on coral reefs. Sci Rep 2022; 12:728. [PMID: 35031666 PMCID: PMC8760336 DOI: 10.1038/s41598-021-04024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/29/2021] [Indexed: 11/08/2022] Open
Abstract
Quantifying the drivers of population size in reef sharks is critical for the development of appropriate conservation strategies. In north-west Australia, shark populations inhabit coral reefs that border growing centres of human population, industry, and tourism. However, we lack baseline data on reef sharks at large spatial scales (hundreds of km) that might enable managers to assess the status of shark populations in the face of future development in this region. Here, we examined the occurrence, abundance and behaviour of apex (Galeocerdo cuvier, Carcharhinus plumbeus) and reef (C. amblyrhynchos, C. melanopterus, Triaenodon obesus) sharks using > 1200 deployments of baited remote underwater stereo-video systems (stereo-BRUVs) across > 500 km of coastline. We found evidence for species-specific influences of habitat and fishing activities on the occurrence (probability of observation), abundance (MaxN) and behaviour of sharks (time of arrival to the stereo-BRUVs and likelihood of feeding). Although the presence of management zoning (No-take areas) made little difference to most species, C. amblyrhynchos were more common further from boat ramps (a proxy of recreational fishing pressure). Time of arrival for all species was also influenced by distance to boat ramp, although patterns varied among species. Our results demonstrate the capacity for behavioural metrics to complement existing measures of occurrence and abundance in assessing the potential impact of human activities on shark populations.
Collapse
|
16
|
Hall AE, Kingsford MJ. Habitat type and complexity drive fish assemblages in a tropical seascape. JOURNAL OF FISH BIOLOGY 2021; 99:1364-1379. [PMID: 34240745 DOI: 10.1111/jfb.14843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Inshore marine seascapes support a diversity of interconnected habitats and are an important focus for biodiversity conservation. This study examines the importance of habitat attributes to fish assemblages across a mosaic of inshore habitats: coral reefs, rocky reefs, macroalgae beds and sand/rubble beds. Fishes and benthic habitats were surveyed at 34 sites around continental islands of the central Great Barrier Reef using baited remote underwater video stations (BRUVS). Species richness was influenced foremost by habitat type and also by structural complexity within habitat types. The most speciose assemblages occurred in coral and rocky reef habitats with high structural complexity, provided by the presence of coral bommies/overhangs, boulders and rock crevices. Nonetheless, macroalgae and sand/rubble beds also supported unique species, and therefore contributed to the overall richness of fish assemblages in the seascape. Most trophic groups had positive associations with complexity, which was the most important predictor for abundance of piscivorous fishes and mobile planktivores. There was significant differentiation of fish assemblages among habitats, with the notable exception of coral and rocky reefs. Species assemblages overlapped substantially between coral and rocky reefs, which had 60% common species, despite coral cover being lower on rocky reefs. This suggests that, for many species, rocky and coral substrates can provide equivalent habitat structure, emphasizing the importance of complexity in providing habitat refuges, and highlighting the contribution of rocky reefs to habitat provision within tropical seascapes. The results of this study support an emerging recognition of the collective value of habitat mosaics in inshore marine ecosystems.
Collapse
Affiliation(s)
- April E Hall
- College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Michael J Kingsford
- College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
17
|
Eisele MH, Madrigal-Mora S, Espinoza M. Drivers of reef fish assemblages in an upwelling region from the Eastern Tropical Pacific Ocean. JOURNAL OF FISH BIOLOGY 2021; 98:1074-1090. [PMID: 33274754 DOI: 10.1111/jfb.14639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Reef fish assemblages are exposed to a wide range of anthropogenic threats as well as chronic natural disturbances. In upwelling regions, for example, there is a seasonal influx of cool nutrient-rich waters that may shape the structure and composition of reef fish assemblages. Given that climate change may disrupt the natural oceanographic processes by altering the frequency and strength of natural disturbances, understanding how fish assemblages respond to upwelling events is essential to effectively manage reef ecosystems under changing ocean conditions. This study used the baited remote underwater video stations (BRUVS) and the traditional underwater visual census (UVC) to investigate the spatiotemporal patterns of reef fish assemblages in an upwelling region in the North Pacific of Costa Rica. A total of 183 reef fish species from 60 families were recorded, of which 166 species were detected using BRUVS and 122 using UVC. Only 66% of all species were detected using both methods. This study showed that the upwelling had an important role in shaping reef fish assemblages in this region, but there was also a significant interaction between upwelling and location. In addition, other drivers such as habitat complexity and habitat composition had an effect on reef fish abundances and species. To authors' knowledge, this is the first study in the Eastern Tropical Pacific that combines BRUVS and UVC to monitor reef fish assemblages in an upwelling region, which provides more detailed information to assess the state of reef ecosystems in response to multiple threats and changing ocean conditions.
Collapse
Affiliation(s)
- Marius H Eisele
- Evolutionary Ecology and Conservation Genomics, Faculty of Natural Sciences, Ulm University, Ulm, Germany
- Computer Science, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Sergio Madrigal-Mora
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
18
|
West K, Travers MJ, Stat M, Harvey ES, Richards ZT, DiBattista JD, Newman SJ, Harry A, Skepper CL, Heydenrych M, Bunce M. Large‐scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north‐western Australia. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13228] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Katrina West
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
| | - Michael J. Travers
- Western Australian Fisheries and Marine Research Laboratories Department of Primary Industries and Regional Development Government of Western AustraliaNorth Beach WA Australia
| | - Michael Stat
- School of Environmental and Life Sciences The University of Newcastle Callaghan NSW Australia
| | - Euan S. Harvey
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
| | - Zoe T. Richards
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
| | - Joseph D. DiBattista
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Australian Museum Australian Museum Research Institute Sydney NSW Australia
| | - Stephen J. Newman
- Western Australian Fisheries and Marine Research Laboratories Department of Primary Industries and Regional Development Government of Western AustraliaNorth Beach WA Australia
| | - Alastair Harry
- Western Australian Fisheries and Marine Research Laboratories Department of Primary Industries and Regional Development Government of Western AustraliaNorth Beach WA Australia
| | - Craig L. Skepper
- Western Australian Fisheries and Marine Research Laboratories Department of Primary Industries and Regional Development Government of Western AustraliaNorth Beach WA Australia
| | - Matthew Heydenrych
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Environmental Protection Authority Wellington New Zealand
| |
Collapse
|
19
|
Espinoza M, Araya-Arce T, Chaves-Zamora I, Chinchilla I, Cambra M. Monitoring elasmobranch assemblages in a data-poor country from the Eastern Tropical Pacific using baited remote underwater video stations. Sci Rep 2020; 10:17175. [PMID: 33057085 PMCID: PMC7560706 DOI: 10.1038/s41598-020-74282-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022] Open
Abstract
Understanding how threatened species are distributed in space and time can have direct applications to conservation planning. However, implementing standardized methods to monitor populations of wide-ranging species is often expensive and challenging. In this study, we used baited remote underwater video stations (BRUVS) to quantify elasmobranch abundance and distribution patterns across a gradient of protection in the Pacific waters of Costa Rica. Our BRUVS survey detected 29 species, which represents 54% of the entire elasmobranch diversity reported to date in shallow waters (< 60 m) of the Pacific of Costa Rica. Our data demonstrated that elasmobranchs benefit from no-take MPAs, yet large predators are relatively uncommon or absent from open-fishing sites. We showed that BRUVS are capable of providing fast and reliable estimates of the distribution and abundance of data-poor elasmobranch species over large spatial and temporal scales, and in doing so, they can provide critical information for detecting population-level changes in response to multiple threats such as overfishing, habitat degradation and climate change. Moreover, given that 66% of the species detected are threatened, a well-designed BRUVS survey may provide crucial population data for assessing the conservation status of elasmobranchs. These efforts led to the establishment of a national monitoring program focused on elasmobranchs and key marine megafauna that could guide monitoring efforts at a regional scale.
Collapse
Affiliation(s)
- Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, 2060-11501, San José, Costa Rica.
- Escuela de Biologia, Universidad de Costa Rica, 2060-11501, San José, Costa Rica.
- Museo de Zoología, Universidad de Costa Rica, 2060-11501, San José, Costa Rica.
| | - Tatiana Araya-Arce
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, 2060-11501, San José, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, 2060-11501, San José, Costa Rica
| | - Isaac Chaves-Zamora
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, 2060-11501, San José, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, 2060-11501, San José, Costa Rica
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, 2060-11501, San José, Costa Rica
| | - Isaac Chinchilla
- Área de Conservación Marina Cocos (ACMCO), Sistema Nacional de Áreas de Conservación, Costa Rica, 2060-11501, San José, Costa Rica
| | - Marta Cambra
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, 2060-11501, San José, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, 2060-11501, San José, Costa Rica
| |
Collapse
|
20
|
Martín G, Espinoza M, Heupel M, Simpfendorfer CA. Estimating marine protected area network benefits for reef sharks. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerardo Martín
- MRC Centre for Global Infectious Disease Analysis Department of Infectious Disease Epidemiology Faculty of Medicine Imperial College London at St. Mary's London UK
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) Universidad de Costa Rica San José Costa Rica
| | - Michelle Heupel
- Australian Institute of Marine Science Townsville Qld Australia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering James Cook University Townsville Qld Australia
| |
Collapse
|
21
|
Madin EMP, Madin JS, Harmer AMT, Barrett NS, Booth DJ, Caley MJ, Cheal AJ, Edgar GJ, Emslie MJ, Gaines SD, Sweatman HPA. Latitude and protection affect decadal trends in reef trophic structure over a continental scale. Ecol Evol 2020; 10:6954-6966. [PMID: 32760504 PMCID: PMC7391320 DOI: 10.1002/ece3.6347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
The relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in exploited marine ecosystems have been much debated. Examples from a variety of marine systems of exploitation-induced, top-down trophic forcing have led to a general view that human-induced predator perturbations can disrupt entire marine food webs, yet other studies that have found no such evidence provide a counterpoint. Though evidence continues to emerge, an unresolved debate exists regarding both the relative roles of top-down versus bottom-up forcing and the capacity of human exploitation to instigate top-down, community-level effects. Using time-series data for 104 reef communities spanning tropical to temperate Australia from 1992 to 2013, we aimed to quantify relationships among long-term trophic group population density trends, latitude, and exploitation status over a continental-scale biogeographic range. Specifically, we amalgamated two long-term monitoring databases of marine community dynamics to test for significant positive or negative trends in density of each of three key trophic levels (predators, herbivores, and algae) across the entire time series at each of the 104 locations. We found that trophic control tended toward bottom-up driven in tropical systems and top-down driven in temperate systems. Further, alternating long-term population trends across multiple trophic levels (a method of identifying trophic cascades), presumably due to top-down trophic forcing, occurred in roughly fifteen percent of locations where the prerequisite significant predator trends occurred. Such alternating trophic trends were significantly more likely to occur at locations with increasing predator densities over time. Within these locations, we found a marked latitudinal gradient in the prevalence of long-term, alternating trophic group trends, from rare in the tropics (<5% of cases) to relatively common in temperate areas (~45%). Lastly, the strongest trends in predator and algal density occurred in older no-take marine reserves; however, exploitation status did not affect the likelihood of alternating long-term trophic group trends occurring. Our data suggest that the type and degree of trophic forcing in this system are likely related to one or more covariates of latitude, and that ecosystem resiliency to top-down control does not universally vary in this system based on exploitation level.
Collapse
Affiliation(s)
- Elizabeth M. P. Madin
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
- School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
- Hawai'i Institute of Marine BiologyUniversity of Hawai'iKane'oheHIUSA
| | - Joshua S. Madin
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
- Hawai'i Institute of Marine BiologyUniversity of Hawai'iKane'oheHIUSA
| | - Aaron M. T. Harmer
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
| | - Neville S. Barrett
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | - David J. Booth
- School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
| | - M. Julian Caley
- School of Mathematical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
- Australian Research Council Centre of Excellence for Mathematical and Statistical FrontiersThe University of MelbourneParkvilleVICAustralia
| | | | - Graham J. Edgar
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | | | - Steven D. Gaines
- Bren School of Environmental Science and ManagementUniversity of CaliforniaSanta BarbaraCAUSA
| | | |
Collapse
|
22
|
Currey-Randall LM, Cappo M, Simpfendorfer CA, Farabaugh NF, Heupel MR. Optimal soak times for Baited Remote Underwater Video Station surveys of reef-associated elasmobranchs. PLoS One 2020; 15:e0231688. [PMID: 32384087 PMCID: PMC7209308 DOI: 10.1371/journal.pone.0231688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/31/2020] [Indexed: 11/20/2022] Open
Abstract
Effective sampling of marine communities is essential to provide robust estimates of species richness and abundance. Baited Remote Underwater Video Stations (BRUVS) are a useful tool in assessment of fish assemblages, but research on the optimal sampling period required to record common and rare elasmobranch species is limited. An appropriate ‘soak time’ (time elapsed between settlement of the BRUVS on the seabed and when it is hauled off the seabed) requires consideration, since longer soak times may be required to record species rare in occurrence, or sightings in areas of generally low elasmobranch abundance. We analysed 5352 BRUVS deployments with a range of soak times across 21 countries in the Coral Triangle and Pacific Ocean, to determine the optimal soak time required for sampling reef-associated elasmobranchs, considering species rarity, and community abundance at each site. Species were categorised into 4 ‘rarity’ groups (very rare to common), by their relative occurrence in the dataset, defined simply by the proportion of BRUVS on which they occurred. Individual BRUVS were categorised into 3 ‘abundance’ groups (low to high) by overall relative elasmobranch abundance, defined as total number of all elasmobranchs sighted per unit of sampling effort. The effects of BRUVS soak times, and levels of rarity and abundance groupings, on the time to first sighting (TFS) and time to maximum number of elasmobranchs observed (tMaxN) were examined. We found that TFS occurred earlier for species groups with high occurrence, and on BRUVS with high elasmobranch abundance, yet longer soak times were not essential to observe rarer species. Our models indicated an optimum of 95% of both sighting event types (TFS, tMaxN) was recorded within 63–77 minutes, and a soak time of 60 minutes recorded 78–94% of the elasmobranch sighting events recorded (78–94% of TFS events and 82–90% of tMaxN events), when species rarity and abundance on BRUVS was accounted for. Our study shows that deployments of ~ 77 minutes are optimal for recording all species we observed, although 60 minutes soak time effectively samples the majority of elasmobranch species in shallow coral reef habitats using BRUVS.
Collapse
Affiliation(s)
| | - Mike Cappo
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Naomi F. Farabaugh
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Michelle R. Heupel
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Integrated Marine Observing System (IMOS), University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
23
|
Schlaff AM, Heupel MR, Udyawer V, Simpfendorfer CA. Sex-based differences in movement and space use of the blacktip reef shark, Carcharhinus melanopterus. PLoS One 2020; 15:e0231142. [PMID: 32271802 PMCID: PMC7145100 DOI: 10.1371/journal.pone.0231142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/17/2020] [Indexed: 11/18/2022] Open
Abstract
Information on the spatial ecology of reef sharks is critical to understanding life-history patterns, yet gaps remain in our knowledge of how these species move and occupy space. Previous studies have focused on offshore reefs and atolls with little information available on the movement and space use of sharks utilising reef habitats closer to shore. Cross-shelf differences in physical and biological properties of reefs can alter regional ecosystem processes resulting in different movement patterns for resident sharks. Passive acoustic telemetry was used to examine residency, space use and depth use of 40 blacktip reef sharks, Carcharhinus melanopterus, on an inshore reef in Queensland, Australia, and assess temporal or biological influences. All sharks showed strong site-attachment to inshore reefs with residency highest among adult females. Sharks exhibited a sex-based, seasonal pattern in space use where males moved more, occupied more space and explored new areas during the reproductive season, while females utilised the same amount of space throughout the year, but shifted the location of the space used. A positive relationship was also observed between space use and size. There was evidence of seasonal site fidelity and long-distance movement with the coordinated, annual migration of two adult males to the study site during the mating season. Depth use was segregated with some small sharks occupying shallower depths than adults throughout the day and year, most likely as refuge from predation. Results highlight the importance of inshore reef habitats to blacktip reef sharks and provide evidence of connectivity with offshore reefs, at least for adult males.
Collapse
Affiliation(s)
- Audrey M. Schlaff
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| | - Michelle R. Heupel
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Integrated Marine Observing System, University of Tasmania, Hobart, Tasmania, Australia
| | - Vinay Udyawer
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
24
|
Somaweera R, Nifong J, Rosenblatt A, Brien ML, Combrink X, Elsey RM, Grigg G, Magnusson WE, Mazzotti FJ, Pearcy A, Platt SG, Shirley MH, Tellez M, Ploeg J, Webb G, Whitaker R, Webber BL. The ecological importance of crocodylians: towards evidence‐based justification for their conservation. Biol Rev Camb Philos Soc 2020; 95:936-959. [DOI: 10.1111/brv.12594] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Ruchira Somaweera
- CSIRO Health and Biosecurity Floreat WA 6014 Australia
- School of Biological Sciences, University of Western Australia Crawley WA 6009 Australia
| | - James Nifong
- IFAS‐Fort Lauderdale Research & Education Center, University of Florida Fort Lauderdale FL 33314 USA
| | - Adam Rosenblatt
- University of North Florida 1 UNF Drive, Jacksonville FL 32224 USA
| | - Mathew L. Brien
- Queensland Parks and WildlifeDepartment of Environment and Science Cairns QLD 4870 Australia
| | - Xander Combrink
- Department of Nature ConservationTshwane University of Technology Pretoria South Africa
| | - Ruth M. Elsey
- Louisiana Department of Wildlife and Fisheries Rockefeller Wildlife Refuge Grand Chenier LA 70643 USA
| | - Gordon Grigg
- School of Biological SciencesUniversity of Queensland St Lucia QLD 4072 Australia
| | - William E. Magnusson
- Coordenação da Biodiversidade, Instituto Nacional da Pesquisas da Amazônia Manaus 69067 Brazil
| | - Frank J. Mazzotti
- Department of Wildlife Ecology and ConservationEverglades Research and Education Center, University of Florida Gainesville FL 32603 USA
| | - Ashley Pearcy
- Section for Ecoinformatics and Biodiversity, Department of BioScienceAarhus University Aarhus Denmark
| | - Steven G. Platt
- Wildlife Conservation Society ‐ Myanmar Program Yangon Myanmar
| | - Matthew H. Shirley
- Tropical Conservation InstituteFlorida International University Miami FL 33181 USA
| | | | - Jan Ploeg
- Australian National Centre for Ocean Resources and Security, Innovation Campus, University of Wollongong Wollongong NSW 2522 Australia
| | - Grahame Webb
- Wildlife Management International Karama NT 0812 Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University Casuarina NT 0810 Australia
| | - Rom Whitaker
- The Madras Crocodile Bank Trust & Centre for Herpetology Mahabalipuram 603104 India
| | - Bruce L. Webber
- CSIRO Health and Biosecurity Floreat WA 6014 Australia
- School of Biological Sciences, University of Western Australia Crawley WA 6009 Australia
- Western Australian Biodiversity Science Institute Perth WA 6000 Australia
| |
Collapse
|
25
|
Dwyer RG, Krueck NC, Udyawer V, Heupel MR, Chapman D, Pratt HL, Garla R, Simpfendorfer CA. Individual and Population Benefits of Marine Reserves for Reef Sharks. Curr Biol 2020; 30:480-489.e5. [PMID: 31983638 DOI: 10.1016/j.cub.2019.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/03/2019] [Accepted: 12/02/2019] [Indexed: 02/09/2023]
Abstract
No-take marine protected areas (MPAs) are a commonly applied tool to reduce human fishing impacts on marine and coastal ecosystems. However, conservation outcomes of MPAs for mobile and long-lived predators such as sharks are highly variable. Here, we use empirical animal tracking data from 459 individual sharks and baited remote underwater video surveys undertaken in 36 countries to construct an empirically supported individual-based model that estimates the conservation effectiveness of MPAs for five species of coral reef-associated sharks (Triaenodon obesus, Carcharhinus melanopterus, Carcharhinus amblyrhynchos, Carcharhinus perezi, and Ginglymostoma cirratum). We demonstrate how species-specific individual movement traits can contribute to fishing mortality of sharks found within MPAs as they move outside to adjacent fishing grounds. We discovered that the world's officially recorded coral reef-based managed areas (with a median width of 9.4 km) would need to be enforced as strict no-take MPAs and up to 5 times larger to expect protection of the majority of individuals of the five investigated reef shark species. The magnitude of this effect depended on local abundances and fishing pressure, with MPAs required to be 1.6-2.6 times larger to protect the same number of Atlantic and Caribbean species, which occur at lower abundances than similar species in the western Pacific. Furthermore, our model was used to quantify partially substantial reductions (>50%) in fishing mortality resulting from small increases in MPA size, allowing us to bridge a critical gap between traditional conservation planning and fisheries management. Overall, our results highlight the challenge of relying on abundance data alone to ensure that estimates of shark conservation impacts of MPAs follow the precautionary approach.
Collapse
Affiliation(s)
- Ross G Dwyer
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Nils C Krueck
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia.
| | - Vinay Udyawer
- Australian Institute of Marine Science, Arafura Timor Research Facility, Darwin, NT 0810, Australia; Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Michelle R Heupel
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Demian Chapman
- Department of Biological Science, College of Arts and Science, Florida International University, 151st Street, North Miami, FL, USA
| | - Harold L Pratt
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, USA; Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA 02110, USA
| | - Ricardo Garla
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, 59064-741 Natal, RN, Brazil
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
26
|
Osgood GJ, McCord ME, Baum JK. Using baited remote underwater videos (BRUVs) to characterize chondrichthyan communities in a global biodiversity hotspot. PLoS One 2019; 14:e0225859. [PMID: 31800602 PMCID: PMC6892530 DOI: 10.1371/journal.pone.0225859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/13/2019] [Indexed: 12/02/2022] Open
Abstract
Threatened chondrichthyan diversity is high in developing countries where scarce resources, limited data, and minimal stakeholder support often render conservation efforts challenging. As such, data on many species, including many evolutionarily distinct endemics, is poor in these countries and their conservation status and habitat needs remain uncertain. Here, we used baited remote underwater videos (BRUVs; n = 419) conducted at 167 sites over two years to assess the frequency of occurrence (FO), relative abundance, diversity, and structure of chondrichthyan assemblages in one of the world’s chondrichthyan biodiversity and endemism hotspots, South Africa. We compared chondrichthyan assemblages across three habitat types, and between unprotected and protected areas (a small marine protected area [MPA] and a larger, seasonal whale sanctuary). Although in total we observed 18 chondrichthyan species (11 families), over half of all observations were of just two species from the same family of mesopredatory endemic catsharks; only 8.8% were larger shark species. These mesopredatory species do not appear to be threatened, but some skates and larger shark species, including some endemics, were much rarer. Overall chondrichthyan FO was high (81% of all BRUVs); FO was higher in kelp (100% of BRUVS) and reef (93%) sites than at sites in sandy habitat (63%), which had a distinct chondrichthyan community. Independent of habitat, the chondrichthyan community did not relate strongly to protection. Because sites with kelp and reef habitat were rare in the whale sanctuary, this protected area had a lower chondrichthyan FO (67% of BRUVs) than either unprotected sites (81%) or those in the small MPA (98%), as well as having lower chondrichthyan relative abundance and species richness. Our study provides evidence of the importance of distinct habitat types to different chondrichthyan species, and suggests that even small MPAs can protect critical habitats, such that they may provide safe refuge for endemic species as anthropogenic pressures increase.
Collapse
Affiliation(s)
- Geoffrey J. Osgood
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| | - Meaghen E. McCord
- South African Shark Conservancy (SASC), Hermanus, Western Cape, South Africa
| | - Julia K. Baum
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
27
|
Speed CW, Rees MJ, Cure K, Vaughan B, Meekan MG. Protection from illegal fishing and shark recovery restructures mesopredatory fish communities on a coral reef. Ecol Evol 2019; 9:10553-10566. [PMID: 31624567 PMCID: PMC6787830 DOI: 10.1002/ece3.5575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
The recovery of communities of predatory fishes within a no-take marine reserve after the eradication of illegal fishing provides an opportunity to examine the role of sharks and other large-bodied mesopredatory fishes in structuring reef fish communities. We used baited remote underwater video stations to investigate whether an increase in sharks was associated with a change in structure of the mesopredatory fish community at Ashmore Reef, Western Australia. We found an almost fourfold increase in shark abundance in reef habitat from 0.64 hr-1 ± 0.15 SE in 2004, when Ashmore Reef was being fished illegally, to 2.45 hr-1 ± 0.37 in 2016, after eight years of full-time enforcement of the reserve. Shark recovery in reef habitat was accompanied by a two and a half-fold decline in the abundance of small mesopredatory fishes (≤50 cm TL) (14.00 hr-1 ± 3.79 to 5.6 hr-1 ± 1.20) and a concomitant increase in large mesopredatory fishes (≥100 cm TL) from 1.82 hr-1 ± 0.48 to 4.27 hr-1 ± 0.93. In contrast, near-reef habitats showed an increase in abundance of large mesopredatory fishes between years (2.00 hr-1 ± 0.65 to 4.56 hr-1 ± 1.11), although only smaller increases in sharks (0.67 hr-1 ± 0.25 to 1.22 hr-1 ± 0.34) and smaller mesopredatory fishes. Although the abundance of most mesopredatory groups increased with recovery from fishing, we suggest that the large decline of small mesopredatory fish in reef habitat was mostly due to higher predation pressure following the increase in sharks and large mesopredatory fishes. At the regional scale, the structure of fished communities at Ashmore Reef in 2004 resembled those of present day Scott Reefs, where fishing still continues today. In 2016, Ashmore fish communities resembled those of the Rowley Shoals, which have been protected from fishing for decades.
Collapse
Affiliation(s)
- Conrad W. Speed
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
- Global FinPrint ProjectIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
| | - Matthew J. Rees
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
- Global FinPrint ProjectIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
| | - Katherine Cure
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
| | - Brigit Vaughan
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
| | - Mark G. Meekan
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
- Global FinPrint ProjectIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
| |
Collapse
|
28
|
Rhodes KL, Baremore I, Graham RT. Grouper (Epinephelidae) spawning aggregations affect activity space of grey reef sharks, Carcharhinus amblyrhynchos, in Pohnpei, Micronesia. PLoS One 2019; 14:e0221589. [PMID: 31461474 PMCID: PMC6713441 DOI: 10.1371/journal.pone.0221589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/09/2019] [Indexed: 11/29/2022] Open
Abstract
Fish spawning aggregations (FSA) act as biological hotspots that concentrate food and nutrients across a broad trophic spectrum. In Pohnpei (Federated States of Micronesia), 20 female grey reef sharks (Carcharhinus amblyrhynchos) were acoustically tagged at two multi-species grouper (Epinephelidae) FSA to examine the likelihood that these mesopredators utilize FSA as a seasonal food source. Both FSA sites are within small-scale MPAs, thus providing a secondary opportunity to examine their conservation potential during these ephemeral events. Shark movement and residency was gauged against known spatial and temporal grouper reproductive patterns using an array of 15 and 50 acoustic receivers at Ant Atoll and Pohnpei (Island), respectively. Activity space was investigated using Kernel Density estimates of individual sharks, and residency indices (RI) were analyzed based on daily and monthly occurrence at the array. Three distinct residency patterns were identified: transient, semi-transient, or resident (Daily RI <0.40, >0.40 to 0.80, or >0.80, respectively). Generalized linear mixed models (GLMMs) were used to identify biological and environmental factors influencing shark activity space, including month, temperature, shark size, spawning month, and residency pattern. Findings revealed significant changes in average monthly residency indices and kernel densities during spawning months in support of an opportunistic foraging strategy around FSA. Monthly residency was higher during spawning months among semi-resident and transient sharks, while average monthly activity space was concentrated around FSA. Best-fit models for the GLMM indicated that activity spaces were most influenced by month and grouper spawning month. Seven of 20 sharks demonstrated inter-island movement and wide variations in individual movement and spatial requirements were shown. The concentration of sharks and groupers at unprotected FSA sites increases their vulnerability to fishing and supports the need for combined area and non-area management measures to effectively protect these species.
Collapse
Affiliation(s)
- Kevin L. Rhodes
- MarAlliance, San Francisco, CA, United States of America
- Pacific Marine Science and Conservation, Grass Valley, CA, United States of America
- * E-mail:
| | - Ivy Baremore
- MarAlliance, San Francisco, CA, United States of America
| | | |
Collapse
|
29
|
Madin EMP, Harborne AR, Harmer AMT, Luiz OJ, Atwood TB, Sullivan BJ, Madin JS. Marine reserves shape seascapes on scales visible from space. Proc Biol Sci 2019; 286:20190053. [PMID: 31014221 PMCID: PMC6501923 DOI: 10.1098/rspb.2019.0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/22/2019] [Indexed: 11/15/2022] Open
Abstract
Marine reserves can effectively restore harvested populations, and 'mega-reserves' increasingly protect large tracts of ocean. However, no method exists of monitoring ecological responses at this large scale. Herbivory is a key mechanism structuring ecosystems, and this consumer-resource interaction's strength on coral reefs can indicate ecosystem health. We screened 1372, and measured features of 214, reefs throughout Australia's Great Barrier Reef using high-resolution satellite imagery, combined with remote underwater videography and assays on a subset, to quantify the prevalence, size and potential causes of 'grazing halos'. Halos are known to be seascape-scale footprints of herbivory and other ecological interactions. Here we show that these halo-like footprints are more prevalent in reserves, particularly older ones (approx. 40 years old), resulting in predictable changes to reef habitat at scales visible from space. While the direct mechanisms for this pattern are relatively clear, the indirect mechanisms remain untested. By combining remote sensing and behavioural ecology, our findings demonstrate that reserves can shape large-scale habitat structure by altering herbivores' functional importance, suggesting that reserves may have greater value in restoring ecosystems than previously appreciated. Additionally, our results show that we can now detect macro-patterns in reef species interactions using freely available satellite imagery. Low-cost, ecosystem-level observation tools will be critical as reserves increase in number and scope; further investigation into whether halos may help seems warranted. Significance statement: Marine reserves are a widely used tool to mitigate fishing impacts on marine ecosystems. Predicting reserves' large-scale effects on habitat structure and ecosystem functioning is a major challenge, however, because these effects unfold over longer and larger scales than most ecological studies. We use a unique approach merging remote sensing and behavioural ecology to detect ecosystem change within reserves in Australia's vast Great Barrier Reef. We find evidence of changes in reefs' algal habitat structure occurring over large spatial (thousands of kilometres) and temporal (40+ years) scales, demonstrating that reserves can alter herbivory and habitat structure in predictable ways. This approach demonstrates that we can now detect aspects of reefs' ecological responses to protection even in remote and inaccessible reefs globally.
Collapse
Affiliation(s)
- Elizabeth M. P. Madin
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Hawaii Institute of Marine Biology, University of Hawaii, Manoa, HI 96744, USA
| | - Alastair R. Harborne
- Marine Spatial Ecology Laboratory and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Biological Sciences, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Aaron M. T. Harmer
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745, New Zealand
| | - Osmar J. Luiz
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Trisha B. Atwood
- Global Change Institute, University of Queensland, St Lucia, Queensland, Australia
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, UT, USA
| | | | - Joshua S. Madin
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Hawaii Institute of Marine Biology, University of Hawaii, Manoa, HI 96744, USA
| |
Collapse
|
30
|
Affiliation(s)
- Kimberly F. Sellers
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, USA
- Center for Statistical Research and Methodology, U. S. Census Bureau, Washington, DC, USA
| | - Derek S. Young
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
31
|
Fourriére M, Alvarado JJ, Cortés J, Taylor MH, Ayala-Bocos A, Azofeifa-Solano JC, Arauz R, Heidemeyer M, López-Garro A, Zanella I, Wolff M. Energy flow structure and role of keystone groups in shallow water environments in Isla del Coco, Costa Rica, Eastern Tropical Pacific. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Deep-Reef Fish Communities of the Great Barrier Reef Shelf-Break: Trophic Structure and Habitat Associations. DIVERSITY 2019. [DOI: 10.3390/d11020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ecology of habitats along the Great Barrier Reef (GBR) shelf-break has rarely been investigated. Thus, there is little understanding of how associated fishes interact with deeper environments. We examined relationships between deep-reef fish communities and benthic habitat structure. We sampled 48 sites over a large depth gradient (54–260 m) in the central GBR using Baited Remote Underwater Video Stations and multibeam sonar. Fish community composition differed both among multiple shelf-break reefs and habitats within reefs. Epibenthic cover decreased with depth. Deep epibenthic cover included sponges, corals, and macro-algae, with macro-algae present to 194 m. Structural complexity decreased with depth, with more calcified reef, boulders, and bedrock in shallower depths. Deeper sites were flatter and more homogeneous with softer substratum. Habitats were variable within depth strata and were reflected in different fish assemblages among sites and among locations. Overall, fish trophic groups changed with depth and included generalist and benthic carnivores, piscivores, and planktivores while herbivores were rare below 50 m. While depth influenced where trophic groups occurred, site orientation and habitat morphology determined the composition of trophic groups within depths. Future conservation strategies will need to consider the vulnerability of taxa with narrow distributions and habitat requirements in unique shelf-break environments.
Collapse
|
33
|
Low abundance of sharks and rays in baited remote underwater video surveys in the Arabian Gulf. Sci Rep 2018; 8:15597. [PMID: 30349072 PMCID: PMC6197251 DOI: 10.1038/s41598-018-33611-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/28/2018] [Indexed: 11/08/2022] Open
Abstract
Data on the diversity and relative abundance of elasmobranchs (sharks and rays) in the Arabian Gulf have been limited to fishery-dependent monitoring of landing sites. Understanding the diversity and abundance of sharks and rays is, however, crucial to inform policy and management plans. Baited Remote Underwater Video Surveys (BRUVS) were conducted in 2015–2016 across the United Arab Emirates Arabian Gulf waters encompassing a range of depths and habitat types. Data from 278 BRUVS (757 hours soak time) were analysed to gather information on diversity, relative abundance, species distribution, and habitat associations. Surveys recorded 213 individuals from 20 species of sharks and rays at 129 stations. The frequency of occurrence of species usually discarded by fishers such as the Arabian carpetshark (Chiloscyllium arabicum) and stingrays (Himantura spp.) was high, accounting for 60.5% of observed elasmobranchs. Despite the large survey area covered and extensive sampling effort, the relative abundance of sharks and rays was low at 0.28 elasmobranchs per hour, 0.13 sharks per hour, and 0.15 rays per hour. This CPUE was reduced to one of lowest recorded abundance on BRUVS from around the world when removing the two discarded species from the analysis (0.11 elasmobranchs per hour). These results likely reflect the intense fishing pressure and habitat loss contributing to population declines of many elasmobranchs in the Arabian Gulf. Findings provide a baseline for future work and can support the design of conservation strategies for sharks and rays in the UAE.
Collapse
|
34
|
Smart JJ, Punt AE, Espinoza M, White WT, Simpfendorfer CA. Refining mortality estimates in shark demographic analyses: a Bayesian inverse matrix approach. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1520-1533. [PMID: 29345743 DOI: 10.1002/eap.1687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Leslie matrix models are an important analysis tool in conservation biology that are applied to a diversity of taxa. The standard approach estimates the finite rate of population growth (λ) from a set of vital rates. In some instances, an estimate of λ is available, but the vital rates are poorly understood and can be solved for using an inverse matrix approach. However, these approaches are rarely attempted due to prerequisites of information on the structure of age or stage classes. This study addressed this issue by using a combination of Monte Carlo simulations and the sample-importance-resampling (SIR) algorithm to solve the inverse matrix problem without data on population structure. This approach was applied to the grey reef shark (Carcharhinus amblyrhynchos) from the Great Barrier Reef (GBR) in Australia to determine the demography of this population. Additionally, these outputs were applied to another heavily fished population from Papua New Guinea (PNG) that requires estimates of λ for fisheries management. The SIR analysis determined that natural mortality (M) and total mortality (Z) based on indirect methods have previously been overestimated for C. amblyrhynchos, leading to an underestimated λ. Updated distributions of Z and λ were produced for the GBR population and corrected obvious error in the demographic parameters for the PNG population. This approach provides opportunity for the inverse matrix approach to be applied more broadly to situations where information on population structure is lacking.
Collapse
Affiliation(s)
- Jonathan J Smart
- SARDI Aquatic Sciences, 2 Hamra Avenue, West Beach, South Australia, 5024, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, 4108, Australia
| | - André E Punt
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, Washington, 98195-5020, USA
- CSIRO Oceans & Atmosphere, Hobart, Tasmania, Australia
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - William T White
- CSIRO Oceans & Atmosphere, Hobart, Tasmania, Australia
- Australian National Fish Collection, CSIRO National Research Collections Australia, Hobart, Tasmania, Australia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, 4108, Australia
| |
Collapse
|
35
|
Goetze JS, Langlois TJ, McCarter J, Simpfendorfer CA, Hughes A, Leve JT, Jupiter SD. Drivers of reef shark abundance and biomass in the Solomon Islands. PLoS One 2018; 13:e0200960. [PMID: 30059525 PMCID: PMC6066198 DOI: 10.1371/journal.pone.0200960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022] Open
Abstract
Remote island nations face a number of challenges in addressing concerns about shark population status, including access to rigorously collected data and resources to manage fisheries. At present, very little data are available on shark populations in the Solomon Islands and scientific surveys to document shark and ray diversity and distribution have not been completed. We aimed to provide a baseline of the relative abundance and diversity of reef sharks and rays and assess the major drivers of reef shark abundance/biomass in the Western Province of the Solomon Islands using stereo baited remote underwater video. On average reef sharks were more abundant than in surrounding countries such as Fiji and Indonesia, yet below that of remote islands without historical fishing pressure, suggesting populations are relatively healthy but not pristine. We also assessed the influence of location, habitat type/complexity, depth and prey biomass on reef shark abundance and biomass. Location was the most important factor driving reef shark abundance and biomass with two times the abundance and a 43% greater biomass of reef sharks in the more remote locations, suggesting fishing may be impacting sharks in some areas. Our results give a much needed baseline and suggest that reef shark populations are still relatively unexploited, providing an opportunity for improved management of sharks and rays in the Solomon Islands.
Collapse
Affiliation(s)
- Jordan S. Goetze
- Department of Environment and Agriculture, Curtin University, Bentley Campus, Western Australia, Australia
- Marine Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - Tim J. Langlois
- The UWA Oceans Institute and School of Biological Sciences (M470), Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Joe McCarter
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, United States of America
- Wildlife Conservation Society, Melanesia Regional Program, Suva, Fiji
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries & Aquaculture, and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Alec Hughes
- Wildlife Conservation Society, Melanesia Regional Program, Suva, Fiji
- Coastal and Marine Management, Munda, Solomon Islands
| | - Jacob Tingo Leve
- Wildlife Conservation Society, Melanesia Regional Program, Suva, Fiji
| | - Stacy D. Jupiter
- Wildlife Conservation Society, Melanesia Regional Program, Suva, Fiji
| |
Collapse
|
36
|
Housiaux JA, Hepburn CD, Rayment WJ. Seasonal variation in occurrence of the sevengill shark, Notorynchus cepedianus, in two inshore habitats of southern New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 2018. [DOI: 10.1080/03014223.2018.1482930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Juhel JB, Vigliola L, Mouillot D, Kulbicki M, Letessier TB, Meeuwig JJ, Wantiez L. Reef accessibility impairs the protection of sharks. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.13007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jean-Baptiste Juhel
- Université de la Nouvelle-Calédonie; Noumea New Caledonia France
- Institut de recherche pour le développement (IRD); UMR ENTROPIE; Laboratoire Excellence LABEX Corail; Noumea New Caledonia France
- UMR 9190 MARBEC; Université de Montpellier; Montpellier Cedex 5 France
| | - Laurent Vigliola
- Institut de recherche pour le développement (IRD); UMR ENTROPIE; Laboratoire Excellence LABEX Corail; Noumea New Caledonia France
| | - David Mouillot
- UMR 9190 MARBEC; Université de Montpellier; Montpellier Cedex 5 France
- Australian Research Council Centre of Excellence for Coral Reef Studies; James Cook University; Townsville QLD Australia
| | - Michel Kulbicki
- Institut de recherche pour le développement (IRD); UMR ENTROPIE; Laboratoire d'excellence LABEX Corail; Université de Perpignan; Perpignan France
| | - Tom B. Letessier
- Institute of Zoology; Zoological Society of London; Regent's Park; London UK
- School of Biological Sciences and Oceans Institute; The University of Western Australia; Crawley WA Australia
| | - Jessica J. Meeuwig
- School of Biological Sciences and Oceans Institute; The University of Western Australia; Crawley WA Australia
| | - Laurent Wantiez
- Université de la Nouvelle-Calédonie; Noumea New Caledonia France
| |
Collapse
|
38
|
An Assessment of Mobile Predator Populations along Shallow and Mesophotic Depth Gradients in the Hawaiian Archipelago. Sci Rep 2017. [PMID: 28634373 PMCID: PMC5478628 DOI: 10.1038/s41598-017-03568-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Large-bodied coral reef roving predators (sharks, jacks, snappers) are largely considered to be depleted around human population centers. In the Hawaiian Archipelago, supporting evidence is primarily derived from underwater visual censuses in shallow waters (≤30 m). However, while many roving predators are present or potentially more abundant in deeper strata (30–100 m+), distributional information remains sparse. To partially fill that knowledge gap, we conducted surveys in the remote Northwestern Hawaiian Islands (NWHI) and populated Main Hawaiian Islands (MHI) from 2012–2014 using baited remote underwater stereo-video. Surveys between 0–100 m found considerable roving predator community dissimilarities between regions, marked conspicuous changes in species abundances with increasing depth, and largely corroborated patterns documented during shallow water underwater visual censuses, with up to an order of magnitude more jacks and five times more sharks sampled in the NWHI compared to the MHI. Additionally, several species were significantly more abundant and larger in mesophotic versus shallow depths, which remains particularly suggestive of deep-water refugia effects in the MHI. Stereo-video extends the depth range of current roving predator surveys in a more robust manner than was previously available, and appears to be well-suited for large-scale roving predator work in the Hawaiian Archipelago.
Collapse
|
39
|
Tickler DM, Letessier TB, Koldewey HJ, Meeuwig JJ. Drivers of abundance and spatial distribution of reef-associated sharks in an isolated atoll reef system. PLoS One 2017; 12:e0177374. [PMID: 28562602 PMCID: PMC5451018 DOI: 10.1371/journal.pone.0177374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
We investigated drivers of reef shark demography across a large and isolated marine protected area, the British Indian Ocean Territory Marine Reserve, using stereo baited remote underwater video systems. We modelled shark abundance against biotic and abiotic variables at 35 sites across the reserve and found that the biomass of low trophic order fish (specifically planktivores) had the greatest effect on shark abundance, although models also included habitat variables (depth, coral cover and site type). There was significant variation in the composition of the shark assemblage at different atolls within the reserve. In particular, the deepest habitat sampled (a seamount at 70-80m visited for the first time in this study) recorded large numbers of scalloped hammerhead sharks (Sphyrna lewini) not observed elsewhere. Size structure of the most abundant and common species, grey reef sharks (Carcharhinus amblyrhynchos), varied with location. Individuals at an isolated bank were 30% smaller than those at the main atolls, with size structure significantly biased towards the size range for young of year (YOY). The 18 individuals judged to be YOY represented the offspring of between four and six females, so, whilst inconclusive, these data suggest the possible use of a common pupping site by grey reef sharks. The importance of low trophic order fish biomass (i.e. potential prey) in predicting spatial variation in shark abundance is consistent with other studies both in marine and terrestrial systems which suggest that prey availability may be a more important predictor of predator distribution than habitat suitability. This result supports the need for ecosystem level rather than species-specific conservation measures to support shark recovery. The observed spatial partitioning amongst sites for species and life-stages also implies the need to include a diversity of habitats and reef types within a protected area for adequate protection of reef-associated shark assemblages.
Collapse
Affiliation(s)
- David M. Tickler
- Oceans Institute: Centre for Marine Futures, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, Australia
- * E-mail:
| | - Tom B. Letessier
- Oceans Institute: Centre for Marine Futures, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, Australia
- Zoological Society of London, Regents Park, London, United Kingdom
| | - Heather J. Koldewey
- Zoological Society of London, Regents Park, London, United Kingdom
- Centre for Ecology & Conservation, University of Exeter, Cornwall Campus, United Kingdom
| | - Jessica J. Meeuwig
- Oceans Institute: Centre for Marine Futures, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, Australia
| |
Collapse
|
40
|
Momigliano P, Harcourt R, Robbins WD, Jaiteh V, Mahardika GN, Sembiring A, Stow A. Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Heredity (Edinb) 2017; 119:142-153. [PMID: 28422134 DOI: 10.1038/hdy.2017.21] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 01/01/2023] Open
Abstract
With overfishing reducing the abundance of marine predators in multiple marine ecosystems, knowledge of genetic structure and local adaptation may provide valuable information to assist sustainable management. Despite recent technological advances, most studies on sharks have used small sets of neutral markers to describe their genetic structure. We used 5517 nuclear single-nucleotide polymorphisms (SNPs) and a mitochondrial DNA (mtDNA) gene to characterize patterns of genetic structure and detect signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Using samples from Australia, Indonesia and oceanic reefs in the Indian Ocean, we established that large oceanic distances represent barriers to gene flow, whereas genetic differentiation on continental shelves follows an isolation by distance model. In Australia and Indonesia differentiation at nuclear SNPs was weak, with coral reefs acting as stepping stones maintaining connectivity across large distances. Differentiation of mtDNA was stronger, and more pronounced in females, suggesting sex-biased dispersal. Four independent tests identified a set of loci putatively under selection, indicating that grey reef sharks in eastern Australia are likely under different selective pressures to those in western Australia and Indonesia. Genetic distances averaged across all loci were uncorrelated with genetic distances calculated from outlier loci, supporting the conclusion that different processes underpin genetic divergence in these two data sets. This pattern of heterogeneous genomic differentiation, suggestive of local adaptation, has implications for the conservation of grey reef sharks; furthermore, it highlights that marine species showing little genetic differentiation at neutral loci may exhibit patterns of cryptic genetic structure driven by local selection.
Collapse
Affiliation(s)
- P Momigliano
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Sydney Institute of Marine Science, Mosman, New South Wales, Australia.,Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - R Harcourt
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - W D Robbins
- College of Marine and Environmental Science, James Cook University, Townsville, Queensland, Australia.,Wildlife Marine, Perth, Western Australia, Australia
| | - V Jaiteh
- Centre for Fish and Fisheries Research, Murdoch University, Murdoch, Western Australia, Australia
| | - G N Mahardika
- The Indonesian Biodiversity Research Centre, Udayana University, Denpasar, Bali, Indonesia
| | - A Sembiring
- The Indonesian Biodiversity Research Centre, Udayana University, Denpasar, Bali, Indonesia
| | - A Stow
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
41
|
Pickard AE, Vaudo JJ, Wetherbee BM, Nemeth RS, Blondeau JB, Kadison EA, Shivji MS. Comparative Use of a Caribbean Mesophotic Coral Ecosystem and Association with Fish Spawning Aggregations by Three Species of Shark. PLoS One 2016; 11:e0151221. [PMID: 27144275 PMCID: PMC4856273 DOI: 10.1371/journal.pone.0151221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Understanding of species interactions within mesophotic coral ecosystems (MCEs; ~ 30-150 m) lags well behind that for shallow coral reefs. MCEs are often sites of fish spawning aggregations (FSAs) for a variety of species, including many groupers. Such reproductive fish aggregations represent temporal concentrations of potential prey that may be drivers of habitat use by predatory species, including sharks. We investigated movements of three species of sharks within a MCE and in relation to FSAs located on the shelf edge south of St. Thomas, United States Virgin Islands. Movements of 17 tiger (Galeocerdo cuvier), seven lemon (Negaprion brevirostris), and six Caribbean reef (Carcharhinus perezi) sharks tagged with acoustic transmitters were monitored within the MCE using an array of acoustic receivers spanning an area of 1,060 km2 over a five year period. Receivers were concentrated around prominent grouper FSAs to monitor movements of sharks in relation to these temporally transient aggregations. Over 130,000 detections of telemetered sharks were recorded, with four sharks tracked in excess of 3 years. All three shark species were present within the MCE over long periods of time and detected frequently at FSAs, but patterns of MCE use and orientation towards FSAs varied both spatially and temporally among species. Lemon sharks moved over a large expanse of the MCE, but concentrated their activities around FSAs during grouper spawning and were present within the MCE significantly more during grouper spawning season. Caribbean reef sharks were present within a restricted portion of the MCE for prolonged periods of time, but were also absent for long periods. Tiger sharks were detected throughout the extent of the acoustic array, with the MCE representing only portion of their habitat use, although a high degree of individual variation was observed. Our findings indicate that although patterns of use varied, all three species of sharks repeatedly utilized the MCE and as upper trophic level predators they are likely involved in a range of interactions with other members of MCEs.
Collapse
Affiliation(s)
- Alexandria E. Pickard
- Guy Harvey Research Institute, Guy Harvey Oceanographic Center, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, FL, 33004, United States of America
| | - Jeremy J. Vaudo
- Guy Harvey Research Institute, Guy Harvey Oceanographic Center, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, FL, 33004, United States of America
| | - Bradley M. Wetherbee
- Guy Harvey Research Institute, Guy Harvey Oceanographic Center, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, FL, 33004, United States of America
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, United States of America
- * E-mail:
| | - Richard S. Nemeth
- Center for Marine and Environmental Studies, University of the Virgin Islands, #2 John Brewers Bay, St. Thomas, USVI, 00802, United States of America
| | - Jeremiah B. Blondeau
- Center for Marine and Environmental Studies, University of the Virgin Islands, #2 John Brewers Bay, St. Thomas, USVI, 00802, United States of America
| | - Elizabeth A. Kadison
- Center for Marine and Environmental Studies, University of the Virgin Islands, #2 John Brewers Bay, St. Thomas, USVI, 00802, United States of America
| | - Mahmood S. Shivji
- Guy Harvey Research Institute, Guy Harvey Oceanographic Center, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, FL, 33004, United States of America
| |
Collapse
|
42
|
Roff G, Doropoulos C, Rogers A, Bozec YM, Krueck NC, Aurellado E, Priest M, Birrell C, Mumby PJ. The Ecological Role of Sharks on Coral Reefs. Trends Ecol Evol 2016; 31:395-407. [DOI: 10.1016/j.tree.2016.02.014] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
|
43
|
Espinoza M, Heupel MR, Tobin AJ, Simpfendorfer CA. Evidence of Partial Migration in a Large Coastal Predator: Opportunistic Foraging and Reproduction as Key Drivers? PLoS One 2016; 11:e0147608. [PMID: 26841110 PMCID: PMC4740466 DOI: 10.1371/journal.pone.0147608] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 01/06/2016] [Indexed: 11/18/2022] Open
Abstract
Understanding animal movement decisions that involve migration is critical for evaluating population connectivity, and thus persistence. Recent work on sharks has shown that often only a portion of the adult population will undertake migrations, while the rest may be resident in an area for long periods. Defining the extent to which adult sharks use specific habitats and their migratory behaviour is essential for assessing their risk of exposure to threats such as fishing and habitat degradation. The present study used acoustic telemetry to examine residency patterns and migratory behaviour of adult bull sharks (Carcharhinus leucas) along the East coast of Australia. Fifty-six VR2W acoustic receivers were used to monitor the movements of 33 bull sharks in the central Great Barrier Reef (GBR). Both males and females were detected year-round, but their abundance and residency peaked between September and December across years (2012–2014). High individual variability in reef use patterns was apparent, with some individuals leaving the array for long periods, whereas others (36%) exhibited medium (0.20–0.40) or high residency (> 0.50). A large portion of the population (51%) undertook migrations of up to 1,400 km to other coral reefs and/or inshore coastal habitats in Queensland and New South Wales. Most of these individuals (76%) were mature females, and the timing of migrations coincided with the austral summer (Dec-Feb). All migrating individuals (except one) returned to the central GBR, highlighting its importance as a potential foraging ground. Our findings suggest that adult bull sharks appear to be highly dependent on coral reef resources and provide evidence of partial migration, where only a portion of the female population undertook seasonal migrations potentially to give birth. Given that estuarine habitats face constant anthropogenic pressures, understanding partial migration and habitat connectivity of large coastal predators should be a priority for their management.
Collapse
Affiliation(s)
- Mario Espinoza
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- AIMS@JCU, Australian Institute of Marine Science, College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- * E-mail:
| | - Michelle R. Heupel
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, Queensland, 4810, Australia
| | - Andrew J. Tobin
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
44
|
Osgood GJ, Baum JK. Reef sharks: recent advances in ecological understanding to inform conservation. JOURNAL OF FISH BIOLOGY 2015; 87:1489-1523. [PMID: 26709218 DOI: 10.1111/jfb.12839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
Sharks are increasingly being recognized as important members of coral-reef communities, but their overall conservation status remains uncertain. Nine of the 29 reef-shark species are designated as data deficient in the IUCN Red List, and three-fourths of reef sharks had unknown population trends at the time of their assessment. Fortunately, reef-shark research is on the rise. This new body of research demonstrates reef sharks' high site restriction, fidelity and residency on coral reefs, their broad trophic roles connecting reef communities and their high population genetic structure, all information that should be useful for their management and conservation. Importantly, recent studies on the abundance and population trends of the three classic carcharhinid reef sharks (grey reef shark Carcharhinus amblyrhynchos, blacktip reef shark Carcharhinus melanopterus and whitetip reef shark Triaenodon obesus) may contribute to reassessments identifying them as more vulnerable than currently realized. Because over half of the research effort has focused on only these three reef sharks and the nurse shark Ginglymostoma cirratum in only a few locales, there remain large taxonomic and geographic gaps in reef-shark knowledge. As such, a large portion of reef-shark biodiversity remains uncharacterized despite needs for targeted research identified in their red list assessments. A research agenda for the future should integrate abundance, life history, trophic ecology, genetics, habitat use and movement studies, and expand the breadth of such research to understudied species and localities, in order to better understand the conservation requirements of these species and to motivate effective conservation solutions.
Collapse
Affiliation(s)
- G J Osgood
- Department of Biology, University of Victoria, P. O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - J K Baum
- Department of Biology, University of Victoria, P. O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
45
|
Espinoza M, Lédée EJI, Simpfendorfer CA, Tobin AJ, Heupel MR. Contrasting movements and connectivity of reef-associated sharks using acoustic telemetry: implications for management. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:2101-2118. [PMID: 26910942 DOI: 10.1890/14-2293.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Understanding the efficacy of marine protected areas (MPAs) for wide-ranging predators is essential to designing effective management and conservation approaches. The use of acoustic monitoring and network analysis can improve our understanding of the spatial ecology and functional connectivity of reef-associated species, providing a useful approach for reef-based conservation planning. This study compared and contrasted the movement and connectivity of sharks with different degrees of reef association. We examined the residency, dispersal, degree of reef connectivity, and MPA use of grey reef (Carcharhinus amblyrhynchos), silvertip (C. albimarginatus), and bull (C. leucas) sharks monitored in the central Great Barrier Reef (GBR). An array of 56 acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Carcharhinus amblyrhynchos and C. albimarginatus were detected most days at or near their tagging reef. However, while C. amblyrhynchos spent 80% of monitoring days in the array, C. albimarginatus was only detected 50% of the time. Despite both species moving similar distances (< 50 km), a large portion of the population of C. albimarginatus (71%) was detected on multiple reefs and moved more frequently between reefs and management zones than C. amblyrhynchos. Carcharhinus leucas was detected less than 20% of the time within the tagging array, and 42% of the population undertook long-range migrations to other arrays in the GBR. Networks derived for C. leucas were larger and more complex than those for C. amblyrhynchos and C. albimarginatus. Our findings suggest that protecting specific reefs based on prior knowledge (e.g., healthier reefs with high fish biomass) and increasing the level of protection to include nearby, closely spaced reef habitats (< 20 km) may perform better for species like C. albimarginatus than having either a single or a network of isolated MPAs. This design would also provide protection for larger male C. amblyrhynchos, which tend to disperse more and use larger areas than females. For wide-ranging sharks like C. leucas, a combination of spatial planning and other alternative measures is critical. Our findings demonstrate that acoustic monitoring can serve as a useful platform for designing more effective MPA networks for reef predators displaying a range of movement patterns.
Collapse
|
46
|
Momigliano P, Harcourt R, Robbins WD, Stow A. Connectivity in grey reef sharks (Carcharhinus amblyrhynchos) determined using empirical and simulated genetic data. Sci Rep 2015; 5:13229. [PMID: 26314287 PMCID: PMC4551972 DOI: 10.1038/srep13229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/21/2015] [Indexed: 11/13/2022] Open
Abstract
Grey reef sharks (Carcharhinus amblyrhynchos) can be one of the numerically dominant high order predators on pristine coral reefs, yet their numbers have declined even in the highly regulated Australian Great Barrier Reef (GBR) Marine Park. Knowledge of both large scale and fine scale genetic connectivity of grey reef sharks is essential for their effective management, but no genetic data are yet available. We investigated grey reef shark genetic structure in the GBR across a 1200 km latitudinal gradient, comparing empirical data with models simulating different levels of migration. The empirical data did not reveal any genetic structuring along the entire latitudinal gradient sampled, suggesting regular widespread dispersal and gene flow of the species throughout most of the GBR. Our simulated datasets indicate that even with substantial migrations (up to 25% of individuals migrating between neighboring reefs) both large scale genetic structure and genotypic spatial autocorrelation at the reef scale were maintained. We suggest that present migration rates therefore exceed this level. These findings have important implications regarding the effectiveness of networks of spatially discontinuous Marine Protected Areas to protect reef sharks.
Collapse
Affiliation(s)
- Paolo Momigliano
- Department of Biological Sciences, Macquarie University, Sydney, 2109 New South Wales, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, 2088 New South Wales, Australia
| | - Robert Harcourt
- Department of Biological Sciences, Macquarie University, Sydney, 2109 New South Wales, Australia
| | - William D. Robbins
- College of Marine and Environmental Science, James Cook University, Townsville, 4810 Queensland, Australia
- Wildlife Marine, Perth, 6020 Western Australia, Australia
| | - Adam Stow
- Department of Biological Sciences, Macquarie University, Sydney, 2109 New South Wales, Australia
| |
Collapse
|
47
|
Bouchet PJ, Meeuwig JJ. Drifting baited stereo-videography: a novel sampling tool for surveying pelagic wildlife in offshore marine reserves. Ecosphere 2015. [DOI: 10.1890/es14-00380.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|