1
|
Liang Q, Liu X, Xu X, Chen Z, Luo T, Su Y, Xie C. Molecular mechanisms and therapeutic perspectives of luteolin on diabetes and its complications. Eur J Pharmacol 2025; 1000:177691. [PMID: 40311831 DOI: 10.1016/j.ejphar.2025.177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Extensive preclinical studies have established luteolin, a flavonoid with potent antidiabetic activity, as a therapeutic candidate for preventing and managing various diabetic complications including cardiomyopathy, nephropathy, and osteopathy. This systematic review evaluates current evidence regarding luteolin's antidiabetic potential. AIM OF THE STUDY This study evaluates luteolin's efficacy in diabetes management through evidence synthesis, while critically assessing current research challenges and translational opportunities. METHODS A comprehensive literature search was conducted across Pubmed, Embase, Web of Science, and Google Scholar databases, encompassing articles published between 2000 and 2024. RESULTS Luteolin is a naturally occurring flavonoid that has strong antidiabetic properties. It regulates intestinal microenvironmental homeostasis, lipogenesis and catabolism, and the absorption of carbohydrates. It also modulates nine diabetic complications by reducing inflammation, oxidative stress, apoptosis, and autophagy. Luteolin's potential nutritional and physiological benefits notwithstanding, attention must be directed immediately to its bioavailability, innovative formulations, safety assessment, synergistic effects, and optimal dosage and time for supplementation. In particular, clinical studies are needed to validate efficacy and safety and provide a reliable scientific basis. CONCLUSION Luteolin may act as a pleiotropic molecule targeting multiple signaling cascades to exert antidiabetic bioactivity.
Collapse
Affiliation(s)
- Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Xin Xu
- Department of Emergency, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Ting Luo
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Yi Su
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 610072, China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
2
|
Delplanque M, Amiot X, Wendum D, Rodrigues F, Aknouche Z, Bourguiba R, Terris B, Duvoux C, Bedossa P, Lebrec D, Sogni P, Parlati L, Charlotte F, Ratziu V, Mouly S, Augustin J, Calderaro J, Scoazec G, Michel Vignaud J, Arnaud Seyrig J, Grateau G, Savey L, Georgin-Lavialle S. Liver Disease Complicating Familial Mediterranean Fever: A Study on 66 Patients Out of 533 Adult From the JIR Cohort. Liver Int 2025; 45:e16232. [PMID: 39790043 DOI: 10.1111/liv.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease, associated with MEFV mutations. FMF patients can experience liver involvement, potentially leading to cirrhosis. OBJECTIVES This study aimed to evaluate liver involvement in FMF patients at a French tertiary centre for adult FMF. METHODS We conducted an observational study with FMF patients displaying 2 pathogenic MEFV mutations at the National Reference Center for Autoinflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA) in Paris and included in the JIR cohort. MEFV heterozygous patients and those with other liver disease causes were excluded. RESULTS Among 533 FMF patients 12.4% had chronic liver abnormalities, with 30% who developed cirrhosis 54 years [36-57] in median after disease onset. Forty-seven per cent were colchicine resistant, and 41% received interleukin-1 inhibitors. Cirrhotic patients experienced delayed hepatopathy diagnosis, prolonged FMF diagnosis delay and late-onset treatment initiation compared to those with only liver function test abnormalities. Colchicine resistance and interleukin-1 inhibitor use were more common in cirrhotic patients. Body mass index and AA amyloidosis rates did not differ significantly between groups. Twenty-one patients had undergone liver biopsies including 14 cirrhotic patients revealing steatohepatitis in 12 cases and probable steatohepatitis in 4. Other lesions, like iron overload and sinusoidal dilatation, were sporadically observed. CONCLUSION FMF patients are at risk of chronic liver disease. Regular liver function monitoring is crucial, particularly in case of persistent inflammation, due to the risk of progression to cirrhosis and its associated morbidity and mortality.
Collapse
Affiliation(s)
- Marion Delplanque
- Sorbonne Université, Service Médecine Interne, Centre de référence des maladies autoinflammatoires et des amyloses (CEREMAIA), Assistance Publique des hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Xavier Amiot
- Sorbonne Université, Service de Gastroenterologie, Assistance Publique des hôpitaux de Paris Hôpital Tenon, Paris, France
| | - Dominique Wendum
- Sorbonne Université, Service d'anatomopathologie, Assistance Publique des hôpitaux de Paris Hôpital Saint Antoine, Paris, France
| | - François Rodrigues
- Sorbonne Université, Service Médecine Interne, Centre de référence des maladies autoinflammatoires et des amyloses (CEREMAIA), Assistance Publique des hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Zohra Aknouche
- Sorbonne Université, Service Médecine Interne, Centre de référence des maladies autoinflammatoires et des amyloses (CEREMAIA), Assistance Publique des hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Rim Bourguiba
- Sorbonne Université, Service Médecine Interne, Centre de référence des maladies autoinflammatoires et des amyloses (CEREMAIA), Assistance Publique des hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Benoit Terris
- Université de Paris, Service d'anatomopathologie, Assistance Publique des hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Christophe Duvoux
- Service d'hépatogastroenterologie, Assistance Publique des hôpitaux de Paris, Hôpital Mondor, Créteil, France
| | - Pierre Bedossa
- Université Paris Cité, Service d'anatomopathologie, Assistance Publique des hôpitaux de Paris, Hôpital Beaujon, Clichy, France
| | - Didier Lebrec
- Université Paris Cité, Service d'hépatogastroenterologie, Assistance Publique des hôpitaux de Paris, Hôpital Beaujon, Clichy, France
| | - Philippe Sogni
- Université Paris Cité, Service d'hépatogastroenterologie Assistance Publique des hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Lucia Parlati
- Université Paris Cité, Service d'hépatogastroenterologie Assistance Publique des hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Frederic Charlotte
- Sorbonne Université, Service d'anatomopathologie, Assistance Publique des hôpitaux de Paris, Hôpital Pitié Salpêtrière, Paris, France
| | - Vlad Ratziu
- Sorbonne Université, Service d'hépatogastroenterologie, Assistance Publique des hôpitaux de Paris, Hôpital Pitié Salpêtrière, Paris, France
| | - Stéphane Mouly
- Université Paris Cité, DMU INVICTUS, Département de Médecine Interne, Assistance Publique des hôpitaux de Paris, Hôpital Lariboisière, Paris, France
| | - Jeremy Augustin
- Service d'anatomopathologie, Assistance Publique des hôpitaux de Paris, Hôpital Mondor, Créteil, France
| | - Julien Calderaro
- Service d'anatomopathologie, Assistance Publique des hôpitaux de Paris, Hôpital Mondor, Créteil, France
| | - Giovanna Scoazec
- Service d'hépatogastroenterologie, Assistance Publique des hôpitaux de Paris, Hôpital Mondor, Créteil, France
| | | | | | - Gilles Grateau
- Sorbonne Université, Service Médecine Interne, Centre de référence des maladies autoinflammatoires et des amyloses (CEREMAIA), Assistance Publique des hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Léa Savey
- Sorbonne Université, Service Médecine Interne, Centre de référence des maladies autoinflammatoires et des amyloses (CEREMAIA), Assistance Publique des hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Sophie Georgin-Lavialle
- Sorbonne Université, Service Médecine Interne, Centre de référence des maladies autoinflammatoires et des amyloses (CEREMAIA), Assistance Publique des hôpitaux de Paris, Hôpital Tenon, Paris, France
| |
Collapse
|
3
|
Barbhuiya PA, Ahmed A, Dutta PP, Sen S, Pathak MP. Mitigating Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD): The Role of Bioactive Phytoconstituents in Indian Culinary Spices. Curr Nutr Rep 2025; 14:20. [PMID: 39841356 DOI: 10.1007/s13668-024-00598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 01/30/2025]
Abstract
PURPOSE OF REVIEW The term metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a group of progressive steatotic liver conditions that include metabolic dysfunction-associated steatohepatitis (MASH), which has varying degrees of liver fibrosis and may advance to cirrhosis, and independent hepatic steatosis. MASLD has a complex underlying mechanism, with patients exhibiting diverse causes and phases of the disease. India has a pool prevalence of MASLD of 38.6% in adults. In 2023, the term NAFLD has been redefined and changed to MASLD. Currently, there are no drugs approved by the FDA for the treatment of MASLD. This study investigates the potential of bioactive phytoconstituents present in spices as a therapeutic approach for MASLD. Moreover, it offers comprehensive data on several pre-clinical studies of bioactive phytoconstituents derived from spices that primarily focus on treating obesity-associated MASLD. RECENT FINDINGS Spices include a high amount of bioactive chemicals and several research have indicated their diverse pharmacological activities. Bioactive phytoconstituents from common Indian spices like cinnamic acid, eugenol, curcumin, allicin, 6-gingerols, capsaicin, piperine, eucalyptol, trigonelline, and linalool have been reported to exhibit anti-MASLD effects both in-vivo and in-vitro. Bioactive phytoconstituents from different culinary species of India have shown promising potential against MASLD in pre-clinical status. Further clinical studies on a large scale would be beneficial for paving the path to the development of a new drug which is the need of time.
Collapse
Affiliation(s)
- Pervej Alom Barbhuiya
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
| | - Ameena Ahmed
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Rahman Institute of Pharmaceutical Sciences and Research, Tepesia, Sonapur, Assam, India, PIN - 782402
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026.
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026.
| |
Collapse
|
4
|
Cespuglio R, Gorlova A, Zabegalov K, Chaprov K, Svirin E, Sitdikova K, Burova A, Shulgin B, Lebedeva K, Deikin AV, Morozov S, Strekalova T. SERT-Deficient Mice Fed Western Diet Reveal Altered Metabolic and Pro-Inflammatory Responses of the Liver: A Link to Abnormal Behaviors. FRONT BIOSCI-LANDMRK 2025; 30:26778. [PMID: 39862090 DOI: 10.31083/fbl26778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND The inheritance of the short SLC6A4 allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert-/-) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD). Growing evidence suggests the significance of hepatic regulatory mechanisms in the neurobiology of central nervous system disorders, supporting the 'liver-brain' concept. However, the relationship between aberrant behavior and hepatic alterations under conditions of SERT deficiency remains poorly investigated. METHODS One-year-old female Sert-/- mice and their wild-type (WT) littermates were subjected to a control diet (CD) or the WD for a duration of three weeks. The WD had a higher caloric content and was characterized by an elevated saturated fat content (21%) compared to the CD (4.5%) and contained 0.2% cholesterol. Mice were evaluated for anxiety-like behavior, exploration and locomotor activity in the open field test, as well as glucose tolerance and histological indicators of hepatic steatosis. Hepatic pro-inflammatory and metabolism-related gene expression and markers of nitrosative stress, were analyzed utilizing real-time polymerase chain reaction (RT-PCR) and correlated with behavioral and histological outcomes. RESULTS In comparison to unchallenged mice, Sert-/-/WD mutants, but not the WT/WD group, had increased locomotion and anxiety-like behavior, increased hepatic steatosis, and elevated expression of insulin receptor B and pro-inflammatory cytokines interleukin-1β (Il-1β) and Tnf, as well as decreased expression of leptin receptor B. The two genotypes displayed distinct gene expression patterns of nitric oxide (NO)-related molecules inducible NO synthase (iNos) and arginase (Arg2), insulin receptor-related signaling factors: cluster of differentiation 36 (Cd36), ecto-nucleotide pyrophosphatase/phosphodiesterase (Enpp), protein tyrosine phosphatase N1 (Ptpn1), cytochrome P450 omega-hydroxylase 4A14 (Cyp4a14), acyl-CoA synthetase 1 (Acsl1) and phosphatase and tensin homolog (Pten). Furthermore, there were profound differences in correlations between molecular, histological, and behavioral measurements across the two genotypes. CONCLUSIONS Our findings suggest that the genetic deficiency of SERT results in abnormal hepatic pro-inflammatory and metabolic adaptations in response to WD. The significant correlations observed between behavioral measures and pro-inflammatory and metabolic alterations in WD-fed mice suggest the importance of liver-brain interactions and their role in the aberrant behaviors exhibited by Sert-/- mutants. This study presents the first evidence that altered liver functions are associated with pathological behaviors arising from genetic SERT deficiency.
Collapse
Affiliation(s)
- Raymond Cespuglio
- Neuroscience Research Center of Lyon, Claude-Bernard Lyon-1 University, 69675 Bron, France
| | - Anna Gorlova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | | | - Kirill Chaprov
- National Laboratory of Astana, Nazarbaev University, 010000 Astana, Kazakhstan
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Evgeniy Svirin
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Kseniia Sitdikova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alisa Burova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Boris Shulgin
- Laboratory of Engineering Profile Physical and Chemical Methods of Analysis, Korkyt Ata Kyzylorda State University, 120014 Kyzylorda, Kazakhstan
- Department of Normal Physiology, Sechenov University, 117198 Moscow, Russia
| | - Ksenia Lebedeva
- Department of Normal Physiology, Sechenov University, 117198 Moscow, Russia
| | - Alexei V Deikin
- Laboratory of Genetic Technology and gene editing for Biomedicine and Veterinary, National Research Belgorod state University, 308015 Belgorod, Russia
| | - Sergey Morozov
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany
- Maastricht University, Department of Psychiatry and Neuropsychology, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Fang H, Rodrigues e-Lacerda R, Barra NG, Kukje Zada D, Robin N, Mehra A, Schertzer JD. Postbiotic Impact on Host Metabolism and Immunity Provides Therapeutic Potential in Metabolic Disease. Endocr Rev 2025; 46:60-79. [PMID: 39235984 PMCID: PMC11720174 DOI: 10.1210/endrev/bnae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/18/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
The gut microbiota influences aspects of metabolic disease, including tissue inflammation, adiposity, blood glucose, insulin, and endocrine control of metabolism. Prebiotics or probiotics are often sought to combat metabolic disease. However, prebiotics lack specificity and can have deleterious bacterial community effects. Probiotics require live bacteria to find a colonization niche sufficient to influence host immunity or metabolism. Postbiotics encompass bacterial-derived components and molecules, which are well-positioned to alter host immunometabolism without relying on colonization efficiency or causing widespread effects on the existing microbiota. Here, we summarize the potential for beneficial and detrimental effects of specific postbiotics related to metabolic disease and the underlying mechanisms of action. Bacterial cell wall components, such as lipopolysaccharides, muropeptides, lipoteichoic acids and flagellin, have context-dependent effects on host metabolism by engaging specific immune responses. Specific types of postbiotics within broad classes of compounds, such as lipopolysaccharides and muropeptides, can have opposing effects on endocrine control of host metabolism, where certain postbiotics are insulin sensitizers and others promote insulin resistance. Bacterial metabolites, such as short-chain fatty acids, bile acids, lactate, glycerol, succinate, ethanolamine, and ethanol, can be substrates for host metabolism. Postbiotics can fuel host metabolic pathways directly or influence endocrine control of metabolism through immunomodulation or mimicking host-derived hormones. The interaction of postbiotics in the host-microbe relationship should be considered during metabolic inflammation and metabolic disease.
Collapse
Affiliation(s)
- Han Fang
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Rodrigo Rodrigues e-Lacerda
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Dana Kukje Zada
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Nazli Robin
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Alina Mehra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
6
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
7
|
Yang H, Ran S, Zhou Y, Shi Q, Yu J, Wang W, Sun C, Li D, Hu Y, Pan C, Yuan Q, Zhen Y, Liu Q, Song L. Exposure to Succinate Leads to Steatosis in Non-Obese Non-Alcoholic Fatty Liver Disease by Inhibiting AMPK/PPARα/FGF21-Dependent Fatty Acid Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21052-21064. [PMID: 39268842 DOI: 10.1021/acs.jafc.4c05671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Succinate is an important metabolite and a critical chemical with diverse applications in the food, pharmaceutical, and agriculture industries. Recent studies have demonstrated several protective or detrimental functions of succinate in diseases; however, the effect of succinate on lipid metabolism is still unclear. Here, we identified a role of succinate in nonobese nonalcoholic fatty liver disease (NAFLD). Specifically, the level of succinate is increased in the livers and serum of mice with hepatic steatosis. The administration of succinate promotes triglyceride (TG) deposition and hepatic steatosis by suppressing fatty acid oxidation (FAO) in nonobese NAFLD mouse models. RNA-Seq revealed that succinate suppressed fibroblast growth factor 21 (FGF21) expression. Then, the restoration of FGF21 was sufficient to alleviate hepatic steatosis and FAO inhibition induced by succinate treatment in vitro and in vivo. Furthermore, the inhibition of FGF21 expression and FAO mediated by succinate was dependent on the AMPK/PPARα axis. This study provides evidence linking succinate exposure to abnormal hepatic lipid metabolism and the progression of nonobese NAFLD.
Collapse
Affiliation(s)
- Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Suye Ran
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qing Shi
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jiangnan Yu
- Department of Gastroenterology, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou 550000, China
| | - Wenjuan Wang
- Department of Gastroenterology, Xingyi People's Hospital, Xingyi, Guizhou 562400, China
| | - Chengqin Sun
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Dengke Li
- Luoyang Vocational and Technical College, Luoyang, Henan 471000, China
| | - Yue Hu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Chen Pan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Yuan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
8
|
Zhang JF, Cai FQ, Zhang XC, Ye Q. Monocyte to High-density Lipoprotein Cholesterol Ratio as a Predictor of Nonalcoholic Fatty Liver Disease in Childhood Obesity. Curr Med Sci 2024; 44:692-697. [PMID: 39096480 DOI: 10.1007/s11596-024-2919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/09/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE Inflammation is involved in the development and progression of nonalcoholic fatty liver disease (NAFLD). The monocyte to high-density lipoprotein cholesterol ratio (MHR) has emerged as a marker for various inflammation-related diseases. The aim of the present study was to investigate the association between the MHR and NAFLD in a population with childhood obesity. METHODS Based on hepatic ultrasound, a total of 504 children with obesity (357 with NAFLD and 147 without NAFLD) were included in the study. The correlation between the MHR and NAFLD risk factors was assessed by Pearson's and Spearman's analyses. Multivariate stepwise logistic regression analyses were conducted to explore the association between the MHR and the risk of NAFLD. RESULTS The MHR in patients with NAFLD was significantly greater than that in patients without NAFLD [0.52 (0.44-0.67) versus 0.44 (0.34-0.57), P<0.001]. Multivariate stepwise logistic regression analysis demonstrated that the MHR [odds ratio (OR): 1.033, 95% confidence interval (CI): 1.015-1.051; P<0.001] was an independent predictor of NAFLD in childhood obesity patients, as were age (OR: 1.205, 95% CI: 1.059-1.371; P=0.005], waist circumference [OR: 1.037, 95% CI: 1.008-1.067; P=0.012], and alanine transaminase [OR: 1.067, 95% CI: 1.045-1.089; P<0.001]. Additionally, MHR quartiles showed a significant positive association with the incidence of NAFLD after adjusting for potential confounding factors. CONCLUSION The present study showed that the MHR may serve as an available and useful indicator of NAFLD in individuals with childhood obesity.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Feng-Qing Cai
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Xiu-Cai Zhang
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Qing Ye
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
9
|
Ho PY, Chou YC, Koh YC, Lin WS, Chen WJ, Tseng AL, Gung CL, Wei YS, Pan MH. Lactobacillus rhamnosus 069 and Lactobacillus brevis 031: Unraveling Strain-Specific Pathways for Modulating Lipid Metabolism and Attenuating High-Fat-Diet-Induced Obesity in Mice. ACS OMEGA 2024; 9:28520-28533. [PMID: 38973907 PMCID: PMC11223209 DOI: 10.1021/acsomega.4c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024]
Abstract
Obesity is a global health crisis, marked by excessive fat in tissues that function as immune organs, linked to microbiota dysregulation and adipose inflammation. Investigating the effects of Lactobacillus rhamnosus SG069 (LR069) and Lactobacillus brevis SG031 (LB031) on obesity and lipid metabolism, this research highlights adipose tissue's critical immune-metabolic role and the probiotics' potential against diet-induced obesity. Mice fed a high-fat diet were treated with either LR069 or LB031 for 12 weeks. Administration of LB031 boosted lipid metabolism, indicated by higher AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and increased the M2/M1 macrophage ratio, indicating LB031's anti-inflammatory effect. Meanwhile, LR069 administration not only led to significant weight loss by enhancing lipolysis which evidenced by increased phosphorylation of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) but also elevated Akkermansia and fecal acetic acid levels, showing the gut microbiota's pivotal role in its antiobesity effects. LR069 and LB031 exhibit distinct effects on lipid metabolism and obesity, underscoring their potential for precise interventions. This research elucidates the unique impacts of these strains on metabolic health and highlights the intricate relationship between gut microbiota and obesity, advancing our knowledge of probiotics' therapeutic potential.
Collapse
Affiliation(s)
- Pin-Yu Ho
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Ya-Chun Chou
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Wei-Sheng Lin
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Food Science, National Quemoy University, Quemoy County 89250, Taiwan, ROC
| | - Wei-Jen Chen
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Ai-Lun Tseng
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Chiau-Ling Gung
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Yu-Shan Wei
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Public Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan, ROC
- Department
of Food Nutrition and Health Biotechnology, Asia University, 500,
Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC
| |
Collapse
|
10
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
11
|
Tallima H, Tadros MM, El Ridi R. Differential protective impact of peptide vaccine formulae targeting the lung- and liver-stage of challenge Schistosoma mansoni infection in mice. Acta Trop 2024; 254:107208. [PMID: 38621620 DOI: 10.1016/j.actatropica.2024.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/11/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
The study aimed to elicit protective immune responses against murine schistosomiasis mansoni at the parasite lung- and liver stage. Two peptides showing amino acid sequence similarity to gut cysteine peptidases, which induce strong memory immune effectors in the liver, were combined with a peptide based on S. mansoni thioredoxin peroxidase (TPX), a prominent lung-stage schistosomula excretory-secretory product, and alum as adjuvant. Only one of the 2 cysteine peptidases-based peptides in a multiple antigenic peptide construct (MAP-3 and MAP-4) appeared to adjuvant protective immune responses induced by the TPX peptide in a MAP form. Production of TPX MAP-specific IgG1 serum antibodies, and increase in lung interleukin-1 (IL-1), uric acid, and reactive oxygen species (ROS) content were associated with significant (P < 0.05) 50 % reduction in recovery of lung-stage larvae. Increase in lung triglycerides and cholesterol levels appeared to provide the surviving worms with nutrients necessary for a stout double lipid bilayer barrier at the parasite-host interface. Surviving worms-released products elicited memory responses to the MAP-3 immunogen, including production of specific IgG1 antibodies and increase in liver IL-33 and ROS. Reduction in challenge worm burden recorded 45 days post infection did not exceed 48 % associated with no differences in parasite egg counts in the host liver and small intestine compared to unimmunized adjuvant control mice. Alum adjuvant assisted the second peptide, MAP-4, in production of IgG1, IgG2a, IgG2b and IgA specific antibodies and increase in liver ROS, but with no protective potential, raising doubt about the necessity of adjuvant addition. Accordingly, different vaccine formulas containing TPX MAP and 1, 2 or 3 cysteine peptidases-derived peptides with or without alum were used to immunize parallel groups of mice. Compared to unimmunized control mice, significant (P < 0.05 to < 0.005) 22 to 54 % reduction in worm burden was recorded in the different groups associated with insignificant changes in parasite egg output. The results together indicated that a schistosomiasis vaccine able to entirely prevent disease and halt its transmission still remains elusive.
Collapse
Affiliation(s)
- Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo 11835, Cairo, Egypt.
| | - Menerva M Tadros
- Department of Parasitology, Theodore Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
12
|
Meyer M, Schwärzler J, Jukic A, Tilg H. Innate Immunity and MASLD. Biomolecules 2024; 14:476. [PMID: 38672492 PMCID: PMC11048298 DOI: 10.3390/biom14040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the most common liver disease worldwide in recent years. MASLD commonly presents as simple hepatic steatosis, but ~25% of patients develop liver inflammation, progressive fibrosis, liver cirrhosis and related hepatocellular carcinoma. Liver inflammation and the degree of fibrosis are key determinants of the prognosis. The pathophysiology of liver inflammation is incompletely understood and involves diverse factors and specifically innate and adaptive immune responses. More specifically, diverse mediators of innate immunity such as proinflammatory cytokines, adipokines, inflammasomes and various cell types like mononuclear cells, macrophages and natural killer cells are involved in directing the inflammatory process in MASLD. The activation of innate immunity is driven by various factors including excess lipids and lipotoxicity, insulin resistance and molecular patterns derived from gut commensals. Targeting pathways of innate immunity might therefore appear as an attractive therapeutic strategy in the future management of MASLD and possibly its complications.
Collapse
Affiliation(s)
| | | | | | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.M.); (A.J.)
| |
Collapse
|
13
|
Zhou X, Wang J, Zhou S. Poria cocos polysaccharides improve alcoholic liver disease by interfering with ferroptosis through NRF2 regulation. Aging (Albany NY) 2024; 16:6147-6162. [PMID: 38507458 PMCID: PMC11042950 DOI: 10.18632/aging.205693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
The active ingredient in Poria cocos, a parasitic plant belonging to the family Polyporaceae, is Poria cocos polysaccharide (PCP). PCP exhibits liver protection and anti-inflammatory effects, although its effect on alcoholic liver disease (ALD) remains unstudied. This study investigated the mechanism of PCP in improving ALD by regulating the Nrf2 signaling pathway. After daily intragastric administration of high-grade liquor for 4 hours, each drug group received PCPs or the ferroptosis inhibitor ferrostatin-1. The Nrf2 inhibitor ML385 (100 mg/kg/day) group was intraperitoneally injected, after which PCP (100 mg/kg/day) was administered by gavage. Samples were collected after 6 weeks for liver function and blood lipid analysis using an automatic biochemical analyzer. In the alcoholic liver injury cell model established with 150 mM alcohol, the drug group was pretreated with PCP, Fer-1, and ML385, and subsequent results were analyzed. The results revealed that PCP intervention significantly reduced liver function and blood lipid levels in alcohol-fed rats, along with decreased lipid deposition. PCP notably enhanced Nrf2 signaling expression, regulated oxidative stress levels, inhibited NF-κβ, and its downstream inflammatory signaling pathways. Furthermore, PCP upregulated FTH1 protein expression and reduced intracellular Fe2+, suggesting an improvement in ferroptosis. In vitro studies yielded similar results, indicating that PCP can reduce intracellular ferroptosis by regulating oxidative stress and improve alcoholic liver injury by inhibiting the production of inflammatory factors.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Jincheng Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Sufang Zhou
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| |
Collapse
|
14
|
Otunla AA, Shanmugarajah K, Davies AH, Shalhoub J. Lipotoxicity and immunometabolism in ischemic acute kidney injury: current perspectives and future directions. Front Pharmacol 2024; 15:1355674. [PMID: 38464721 PMCID: PMC10924325 DOI: 10.3389/fphar.2024.1355674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Dysregulated lipid metabolism is implicated in the pathophysiology of a range of kidney diseases. The specific mechanisms through which lipotoxicity contributes to acute kidney injury (AKI) remain poorly understood. Herein we review the cardinal features of lipotoxic injury in ischemic kidney injury; lipid accumulation and mitochondrial lipotoxicity. We then explore a new mechanism of lipotoxicity, what we define as "immunometabolic" lipotoxicity, and discuss the potential therapeutic implications of targeting this lipotoxicity using lipid lowering medications.
Collapse
Affiliation(s)
- Afolarin A. Otunla
- Department of Surgical Biotechnology, University College London, London, United Kingdom
| | | | - Alun H. Davies
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Joseph Shalhoub
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
15
|
Kosovski IB, Bacârea V, Ghiga D, Ciurea CN, Cucoranu DC, Hutanu A, Bacârea A. Exploring the Link between Inflammatory Biomarkers and Adipometrics in Healthy Young Adults Aged 20-35 Years. Nutrients 2024; 16:257. [PMID: 38257150 PMCID: PMC10819707 DOI: 10.3390/nu16020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity and aging are associated with an inflammatory state, which represents the common background for a wide range of diseases. This study aims to explore the correlation between hsCRP, IL-1β, IL-6, TNF-α, IFN-γ, and white blood cell count (WBC) and adipometrics (arm, waist, and hip circumferences: AC, WC, HC; total body fat mass: TBFM, visceral fat level: VFL, body mass index: BMI; waist/hip ratio: WHR; waist/height ratio: WHtR) in young and healthy adults aged 20-35 years old. The subjects were divided by BMI into the overweight/obesity (OW/OB) group and normal weight (NW) group, and by hsCRP level into Group 1 (<1 mg/L), Group 2 (≥1-2.99 mg/L), and Group 3 (≥3 mg/L). The concentration of all inflammatory biomarkers was significantly higher in the OW/OB group compared to the NW group, with the exception of IL-1β. Significant positive correlations were found between hsCRP, TNF-α, WBC, and all adipometrics; between IL-6 and WHR, WHtR, BMI, TBFM, and VFL; and between IFN-γ and HC, BMI, and TBFM. IL-1β correlates positively with WHR and VFL. In Groups 1-3, all the differences between the adipometrics showed significant differences. Subclinical inflammation persists in association with being overweight and obese in healthy young adults aged 20-35 years old.
Collapse
Affiliation(s)
- Irina Bianca Kosovski
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (I.B.K.); (A.B.)
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Vladimir Bacârea
- Department of Research Methodology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Dana Ghiga
- Department of Research Methodology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Cristina Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | | | - Adina Hutanu
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Anca Bacârea
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (I.B.K.); (A.B.)
| |
Collapse
|
16
|
Chen HJ, Huang TX, Jiang YX, Chen X, Wang AF. Multifunctional roles of inflammation and its causative factors in primary liver cancer: A literature review. World J Hepatol 2023; 15:1258-1271. [PMID: 38223416 PMCID: PMC10784815 DOI: 10.4254/wjh.v15.i12.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023] Open
Abstract
Primary liver cancer is a severe and complex disease, leading to 800000 global deaths annually. Emerging evidence suggests that inflammation is one of the critical factors in the development of hepatocellular carcinoma (HCC). Patients with viral hepatitis, alcoholic hepatitis, and steatohepatitis symptoms are at higher risk of developing HCC. However, not all inflammatory factors have a pathogenic function in HCC development. The current study describes the process and mechanism of hepatitis development and its progression to HCC, particularly focusing on viral hepatitis, alcoholic hepatitis, and steatohepatitis. Furthermore, the roles of some essential inflammatory cytokines in HCC progression are described in addition to a summary of future research directions.
Collapse
Affiliation(s)
- Hong-Jin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ting-Xiong Huang
- School of Clinical Medical, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yu-Xi Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China
| | - Ai-Fang Wang
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China.
| |
Collapse
|
17
|
Chen X, Peng R, Peng D, Xiao J, Liu D, Li R. An update: is there a relationship between H. pylori infection and nonalcoholic fatty liver disease? why is this subject of interest? Front Cell Infect Microbiol 2023; 13:1282956. [PMID: 38145041 PMCID: PMC10739327 DOI: 10.3389/fcimb.2023.1282956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is thought to impact various extragastric diseases, including nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease. Meanwhile, the pathogenesis of NAFLD needs further research, and effective treatment for this disease remains elusive. In this mini-review, we enumerate and ponder on the evidence demonstrating an association between H. pylori infection and NAFLD. Primarily, we delve into high-quality meta-analyses and clinical randomized controlled trials focusing on the association studies between the two. We also discuss clinical studies that present opposite conclusions. In addition, we propose a mechanism through which H. pylori infection aggravates NAFLD: inflammatory cytokines and adipocytokines, insulin resistance, lipid metabolism, intestinal barrier and microbiota, H. pylori outer membrane vesicles and H. pylori-infected cell-extracellular vesicles. This mini-review aims to further explore NAFLD pathogenesis and extragastric disease mechanisms caused by H. pylori infection.
Collapse
Affiliation(s)
- Xingcen Chen
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Ruyi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Dongzi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Jia Xiao
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Deliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Rong Li
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
18
|
Fang X, Cao J, Tao Z, Yang Z, Dai Y, Zhao L. Hydroxytyrosol attenuates ethanol-induced liver injury by ameliorating steatosis, oxidative stress and hepatic inflammation by interfering STAT3/iNOS pathway. Redox Rep 2023; 28:2187564. [PMID: 36932927 PMCID: PMC10026757 DOI: 10.1080/13510002.2023.2187564] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Objective: Hydroxytyrosol (HT) is a polyphenol with a wide range of biological activities. Excessive drinking can lead to oxidative stress and inflammation in the liver, which usually develop into alcohol liver disease (ALD). At present, there is no specific drug to treat ALD. In this paper, the protection effect of HT on ALD and the underline mechanism were studied.Methods: HepG2 cells were exposed to ethanol in vitro and C57BL/6J mice were fed with a Lieber-DeCarli ethanol liquid diet in vivo.Results: triglyceride (TG) level in serum and the expression of fatty acid synthase (FASN) were reduced significantly by the treatment with HT The acetaldehyde dehydrogenase (ALDH) activity was increased, the serum level of malondialdehyde (MDA) was decreased, catalase (CAT) and glutathione (GSH) were increased, suggesting that HT may reduce its oxidative damage to the body by promoting alcohol metabolism. Furthermore, according to the mRNA levels of tnf-α, il-6 and il-1β, HT inhibited ethanol-induced inflammation significantly. The anti-inflammatory mechanism of HT may be related to suppress the STAT3/iNOS pathway.Dissussion: Our study showed that HT could ameliorate ethanol-induced hepatic steatosis, oxidative stress and inflammation and provide a new candidate for the prevention and treatment of ALD.
Collapse
Key Words
- ADH, alcohol dehydrogenase
- ALD, alcohol liver disease
- ALDH, acetaldehyde dehydrogenase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CAT, catalase
- COX2, cyclo-oxygen-ase2
- CYP2E1, cytochrome P450 2E1
- DMSO, Dimethyl sulfoxide
- DPPH, 2,2-Diphenyl-1-picrylhydrazyl
- FASN, fatty acid synthase
- GSH, glutathione
- HT, hydroxytyrosol
- HepG2
- Hepatic steatosis
- Hydroxytyrosol
- LDL, low density lipoprotein
- LPS, lipopolysaccharides
- Liver injury
- MDA, malondialdehyde
- NO, nitric oxide
- PPAR-γ, peroxisome proliferators-activated receptor
- ROS, reactive oxygen species
- SREBP-1c, sterol regulatory element-binding protein-1c
- STAT3, signal transducer and activator of transcription 3
- STAT3/iNOS pathway
- TC, total cholesterol
- TG, triglyceride
- alcoholic liver disease
- anti-inflammation
- anti-oxidation
- iNOS, inducible nitric oxide Synthas
Collapse
Affiliation(s)
- Xianying Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jiamin Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhi Tao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhiqing Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuan Dai
- Yanghe Distillery Co. Ltd, Suqian, People's Republic of China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Qi J, Yan X, Li L, Qiu K, Huang W, Zhou Z. CXCL5 promotes lipotoxicity of hepatocytes through upregulating NLRP3/Caspase-1/IL-1β signaling in Kupffer cells and exacerbates nonalcoholic steatohepatitis in mice. Int Immunopharmacol 2023; 123:110752. [PMID: 37573690 DOI: 10.1016/j.intimp.2023.110752] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Immune-inflammatory responses play a key role in the development of nonalcoholic steatohepatitis (NASH). Previous studies have demonstrated that CXC motif chemokine ligand 5 (CXCL5) correlates positively with obesity and type 2 diabetes. This study is to explore the functional role of CXCL5 in the pathogenesis of NASH. To establish a NASH model, mice were fed with methionine-and choline-deficient high-fat diet for 6 weeks and anti-CXCL5 mAb was injected during the same period. An in vitro NASH model was established by treating palmitic acid (PA), using a trans-well co-culture system of mouse primary hepatocytes and Kupffer cells (KCs), and recombinant mouse (rm) CXCL5 was treated after PA administration. Our data showed that hepatic CXCL5 levels were highly expressed in the NASH mouse model. CXCL5 neutralization significantly alleviated the severity of NASH livers, demonstrated by pathological analysis, decreased biochemicals, and inflammation. Besides, neutralizing CXCL5 reduced lipid accumulation, cell death, and fibrosis in injured livers. In vitro, rmCXCL5 could not affect the activation of hepatic stellate cells. Also, rmCXCL5 exacerbated PA-induced hepatotoxicity and lipid deposition in hepatocytes co-cultured with KCs rather than in single-cultured hepatocytes. Mechanistically, rmCXCL5 not only promoted NOD-like receptor pyrin domain-containing protein 3 (NLRP3) expression, Cleaved caspase-1 expression, and interleukin 1 beta (IL-1β) secretion in single-cultured and co-cultured KCs but also increased lipid deposition in co-cultured hepatocytes. In addition, MCC950, an inhibitor of NLRP3, almost abolished the effects of rmCXCL5 on PA-treated co-culture system. Therefore, CXCL5 could exacerbate NASH by promoting lipotoxicity of hepatocytes via upregulating NLRP3/Caspase-1/IL-1β signaling in KCs.
Collapse
Affiliation(s)
- Jing Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou 350122, Fujian, China
| | - Xueqing Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou 350122, Fujian, China
| | - Lanqian Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Kexin Qiu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Weizhi Huang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Zixiong Zhou
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
20
|
Cheng Y, Lin S, Ren T, Zhang J, Shi Y, Chen Y, Chen Y. New murine model of alcoholic hepatitis in obesity-induced metabolic-associated fatty liver disease. Exp Anim 2023; 72:389-401. [PMID: 37019681 PMCID: PMC10435355 DOI: 10.1538/expanim.22-0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) and alcoholic hepatitis (AH) are among the most prevalent liver diseases worldwide, and their coexistence is common in clinical practice. However, currently established models of MAFLD-AH coexistence do not fully replicate their pathological characteristics and require sophisticated experimental techniques. Therefore, we aimed to develop an easily replicable model that mimics obesity-induced MAFLD-AH in patients. Our goal was to establish a murine model that replicates MAFLD and AH coexistence, resulting in significant liver injury and inflammation. To this end, we administered a single ethanol gavage dose to ob/ob mice on a chow diet. The administration of a single dose of ethanol led to elevated serum transaminase levels, increased liver steatosis, and apoptosis in ob/ob mice. Furthermore, ethanol binge caused a significant increase in oxidative stress in ob/ob mice, as measured via 4-hydroxynonenal. Importantly, the single dose of ethanol also markedly exacerbated liver neutrophil infiltration and upregulated the hepatic mRNA expression of several chemokines and neutrophil-related proteins, including Cxcl1, Cxcl2, and Lcn2. Whole-liver transcriptomic analysis revealed that ethanol-induced changes in gene expression profile shared similar features with AH and MAFLD. In ob/ob mice, a single dose of ethanol binge caused significant liver injury and neutrophil infiltration. This easy-to-replicate murine model successfully mimics the pathological and clinical features of patients with coexisting MAFLD and AH and closely resembles the transcriptional regulation seen in human disease.
Collapse
Affiliation(s)
- Yuqing Cheng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Shuangzhe Lin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
| | - Tianyi Ren
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Jianbin Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
| | - Yingying Shi
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Yuanwen Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, 221 West Yan’an Road, Shanghai, 200040, P.R. China
- Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, 221 West Yan’an Road, Shanghai, 200040, P.R. China
| |
Collapse
|
21
|
das Neves RX, Yamashita AS, Riccardi DMR, Köhn-Gaone J, Camargo RG, Neto NI, Caetano D, Gomes SP, Santos FH, Lima JDCC, Batista ML, Rosa-Neto JC, Martins De Alcântara PS, Maximiano LF, Otoch JP, Trinchieri G, Tirnitz-Parker JEE, Seelaender M. Cachexia causes time-dependent activation of the inflammasome in the liver. J Cachexia Sarcopenia Muscle 2023. [PMID: 37177862 PMCID: PMC10401524 DOI: 10.1002/jcsm.13236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Cachexia is a wasting syndrome associated with systemic inflammation and metabolic disruption. Detection of the early signs of the disease may contribute to the effective attenuation of associated symptoms. Despite playing a central role in the control of metabolism and inflammation, the liver has received little attention in cachexia. We previously described relevant disruption of metabolic pathways in the organ in an animal model of cachexia, and herein, we adopt the same model to investigate temporal onset of inflammation in the liver. The aim was thus to study inflammation in rodent liver in the well-characterized cachexia model of Walker 256 carcinosarcoma and, in addition, to describe inflammatory alterations in the liver of one cachectic colon cancer patient, as compared to one control and one weight-stable cancer patient. METHODS Colon cancer patients (one weight stable [WSC] and one cachectic [CC]) and one patient undergoing surgery for cholelithiasis (control, n = 1) were enrolled in the study, after obtainment of fully informed consent. Eight-week-old male rats were subcutaneously inoculated with a Walker 256 carcinosarcoma cell suspension (2 × 107 cells in 1.0 mL; tumour-bearing [T]; or phosphate-buffered saline-controls [C]). The liver was excised on Days 0 (n = 5), 7 (n = 5) and 14 (n = 5) after tumour cell injection. RESULTS In rodent cachexia, we found progressively higher numbers of CD68+ myeloid cells in the liver along cancer-cachexia development. Similar findings are described for CC, whose liver showed infiltration of the same cell type, compared with both WSC and control patient organs. In advanced rodent cachexia, hepatic phosphorylated c-Jun N-terminal kinase protein content and the inflammasome pathway protein expression were increased in relation to baseline (P < 0.05). These changes were accompanied by augmented expression of the active interleukin-1β (IL-1β) form (P < 0.05 for both circulating and hepatic content). CONCLUSIONS The results show that cancer cachexia is associated with an increase in the number of myeloid cells in rodent and human liver and with modulation of hepatic inflammasome pathway. The latter contributes to the aggravation of systemic inflammation, through increased release of IL-1β.
Collapse
Affiliation(s)
- Rodrigo Xavier das Neves
- Cancer Metabolism Research Group, Department of Surgery and LIM26-HCFMUSP Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- LICI, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alex S Yamashita
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela M R Riccardi
- Cancer Metabolism Research Group, Department of Surgery and LIM26-HCFMUSP Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Julia Köhn-Gaone
- Department of Surgery, School of Veterinary Medicine and Animal Science of University of São Paulo-FMVZ/USP, São Paulo, Brazil
| | - Rodolfo G Camargo
- Cancer Metabolism Research Group, Department of Surgery and LIM26-HCFMUSP Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Nelson I Neto
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Caetano
- Cancer Metabolism Research Group, Department of Surgery and LIM26-HCFMUSP Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Silvio P Gomes
- Cancer Metabolism Research Group, Department of Surgery and LIM26-HCFMUSP Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- Department of Surgery, School of Veterinary Medicine and Animal Science of University of São Paulo-FMVZ/USP, São Paulo, Brazil
| | - Felipe H Santos
- Laboratory of Adipose Tissue Biology, Center for Integrated Biotechnology, University of Mogi das Cruzes, São Paulo, Brazil
| | - Joanna D C C Lima
- Cancer Metabolism Research Group, Department of Surgery and LIM26-HCFMUSP Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Miguel L Batista
- Laboratory of Adipose Tissue Biology, Center for Integrated Biotechnology, University of Mogi das Cruzes, São Paulo, Brazil
| | - José Cesar Rosa-Neto
- Immunometabolism Research Group, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo Sérgio Martins De Alcântara
- Cancer Metabolism Research Group, Department of Surgery and LIM26-HCFMUSP Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Linda F Maximiano
- Cancer Metabolism Research Group, Department of Surgery and LIM26-HCFMUSP Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - José P Otoch
- LICI, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Giorgio Trinchieri
- LICI, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Janina E E Tirnitz-Parker
- Liver Disease and Regeneration Laboratory, School of Pharmacy and Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Marília Seelaender
- Cancer Metabolism Research Group, Department of Surgery and LIM26-HCFMUSP Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Luo L, Chang Y, Sheng L. Gut-liver axis in the progression of nonalcoholic fatty liver disease: From the microbial derivatives-centered perspective. Life Sci 2023; 321:121614. [PMID: 36965522 DOI: 10.1016/j.lfs.2023.121614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the world's most common chronic liver diseases. However, its pathogenesis remains unclear. With the deepening of research, NAFLD is considered a metabolic syndrome associated with the environment, heredity, and metabolic disorders. Recently, the close relationship between the intestinal microbiome and NAFLD has been discovered, and the theory of the "gut-liver axis" has been proposed. In short, the gut bacteria directly reach the liver via the portal vein through the damaged intestinal wall or indirectly participate in the development of NAFLD through signaling pathways mediated by their components and metabolites. This review focuses on the roles of microbiota-derived lipopolysaccharide, DNA, peptidoglycan, bile acids, short-chain fatty acids, endogenous ethanol, choline and its metabolites, indole and its derivatives, and bilirubin and its metabolites in the progression of NAFLD, which may provide significative insights into the pathogenesis, diagnosis, and treatment for this highly prevalent liver disease.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Yongchun Chang
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Li Sheng
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
23
|
Tallima H, El Ridi R. Increased hepatic interleukin-1, arachidonic acid, and reactive oxygen species mediate the protective potential of peptides shared by gut cysteine peptidases against Schistosoma mansoni infection in mice. PLoS Negl Trop Dis 2023; 17:e0011164. [PMID: 36920999 PMCID: PMC10042345 DOI: 10.1371/journal.pntd.0011164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/27/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Multiple antigen peptide (MAP) construct of peptide with high homology to Schistosoma mansoni cathepsin B1, MAP-1, and to cathepsins of the L family, MAP-2, consistently induced significant (P < 0.05) reduction in challenge S. mansoni worm burden. It was, however, necessary to modify the vaccine formula to counteract the MAP impact on the parasite egg counts and vitality, and discover the mechanisms underlying the vaccine protective potential. METHODOLOGY Outbred mice were immunized with MAP-2 in combination with alum and/or MAP-1. Challenge infection was performed three weeks (wks) after the second injection. Blood and liver pieces were obtained on an individual mouse basis, 23 days post-infection (PI), a time of S. mansoni development and feeding in the liver before mating. Serum samples were examined for the levels of circulating antibodies and cytokines. Liver homogenates were used for assessment of liver cytokines, uric acid, arachidonic acid (ARA), and reactive oxygen species (ROS) content. Parasitological parameters were evaluated 7 wks PI. PRINCIPAL FINDINGS Immunization of outbred mice with MAP-2 in combination with alum and/or MAP-1 elicited highly significant (P < 0.005) reduction of around 60% in challenge S. mansoni worm burden and no increase in worm eggs' loads or vitality, compared to unimmunized or alum pre-treated control mice. Host memory responses to the immunogens are expected to be expressed in the liver stage when worm feeding and cysteine peptidases release start to be active. Serum antibody and cytokine levels were not significantly different between control and vaccinated mouse groups. Highly significant (P < 0.05 - <0.0001) increase in liver interleukin-1, ARA, and ROS content was recorded in MAP-immunized compared to control mice. CONCLUSION/SIGNIFICANCE The findings provided an explanation for the gut cysteine peptidases vaccine-mediated reduction in challenge worm burden and increase in egg counts.
Collapse
Affiliation(s)
- Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Cairo, Egypt
- * E-mail: (HT); (RER)
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- * E-mail: (HT); (RER)
| |
Collapse
|
24
|
Yang JH, Byeon EH, Kang D, Hong SG, Yang J, Kim DR, Yun SP, Park SW, Kim HJ, Huh JW, Kim SY, Kim YW, Lee DK. Fermented Soybean Paste Attenuates Biogenic Amine-Induced Liver Damage in Obese Mice. Cells 2023; 12:cells12050822. [PMID: 36899958 PMCID: PMC10000487 DOI: 10.3390/cells12050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Biogenic amines are cellular components produced by the decarboxylation of amino acids; however, excessive biogenic amine production causes adverse health problems. The relationship between hepatic damage and biogenic amine levels in nonalcoholic fatty liver disease (NAFLD) remains unclear. In this study, mice were fed a high-fat diet (HFD) for 10 weeks to induce obesity, presenting early-stage of NAFLD. We administered histamine (20 mg/kg) + tyramine (100 mg/kg) via oral gavage for 6 days to mice with HFD-induced early-stage NAFLD. The results showed that combined histamine and tyramine administration increased cleaved PARP-1 and IL-1β in the liver, as well as MAO-A, total MAO, CRP, and AST/ALT levels. In contrast, the survival rate decreased in HFD-induced NAFLD mice. Treatment with manufactured or traditional fermented soybean paste decreased biogenically elevated hepatic cleaved PARP-1 and IL-1β expression and blood plasma MAO-A, CRP, and AST/ALT levels in HFD-induced NAFLD mice. Additionally, the biogenic amine-induced reduction in survival rate was alleviated by fermented soybean paste in HFD-induced NAFLD mice. These results show that biogenic amine-induced liver damage can be exacerbated by obesity and may adversely affect life conservation. However, fermented soybean paste can reduce biogenic amine-induced liver damage in NAFLD mice. These results suggest a beneficial effect of fermented soybean paste on biogenic amine-induced liver damage and provide a new research perspective on the relationship between biogenic amines and obesity.
Collapse
Affiliation(s)
- Ju-Hwan Yang
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Eun-Hye Byeon
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Dawon Kang
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Seong-Geun Hong
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Deok-Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Seung-Pil Yun
- Department of Pharmacology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Sang-Won Park
- Department of Pharmacology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Hyun-Joon Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - So-Yong Kim
- Fermented and Processed Food Science Division, National Institute of Agricultural Sciences, Wanju-Gun 55365, Republic of Korea
| | - Young-Wan Kim
- Department of Food Science and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
- Correspondence:
| |
Collapse
|
25
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
26
|
Wang J, Wang L, Zhang XJ, Zhang P, Cai J, She ZG, Li H. Recent updates on targeting the molecular mediators of NAFLD. J Mol Med (Berl) 2023; 101:101-124. [PMID: 36792729 DOI: 10.1007/s00109-022-02282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common disease worldwide in an era of rapid economic growth. NAFLD is a multifactorial disease, involving multiple genetic, metabolic, and environmental factors, and is closely associated with metabolic syndrome, obesity, and cardiovascular disease. NAFLD can be classified into nonalcoholic fatty liver disease (NAFL) and nonalcoholic steatohepatitis (NASH), which can both progress to cirrhosis and even hepatocellular carcinoma (HCC). Due to the enormous burden of NAFLD and its complications, no FDA-approved drugs for the treatment of NAFLD are on the market, and therapeutic targets and drug therapies are being actively investigated. In view of the various pathological mechanisms of NAFLD, numbers of preclinical studies and clinical trials have made rapid progress. This review mainly summarizes the most recently characterized mechanisms and therapeutic targets in each mechanism of NAFLD, focusing on the mechanism and application potential.
Collapse
Affiliation(s)
- Jia Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Translation Medicine Research Center, Yangtze University, Huanggang, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China.
- Institute of Model Animal, Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China.
- Institute of Model Animal, Wuhan University, Wuhan, China.
- Translation Medicine Research Center, Yangtze University, Huanggang, China.
| |
Collapse
|
27
|
IL-1β neutralization prevents diastolic dysfunction development, but lacks hepatoprotective effect in an aged mouse model of NASH. Sci Rep 2023; 13:356. [PMID: 36611037 PMCID: PMC9825403 DOI: 10.1038/s41598-022-26896-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Interleukin-1β (IL-1β) is a key mediator of non-alcoholic steatohepatitis (NASH), a chronic liver disease, and of systemic inflammation-driven aging. IL-1β contributes to cardio-metabolic decline, and may promote hepatic oncogenic transformation. Therefore, IL-1β is a potential therapeutic target in these pathologies. We aimed to investigate the hepatic and cardiac effects of an IL-1β targeting monoclonal antibody in an aged mouse model of NASH. 24 months old male C57Bl/6J mice were fed with control or choline deficient (CDAA) diet and were treated with isotype control or anti-IL-1β Mab for 8 weeks. Cardiac functions were assessed by conventional-and 2D speckle tracking echocardiography. Liver samples were analyzed by immunohistochemistry and qRT-PCR. Echocardiography revealed improved cardiac diastolic function in anti-IL-1β treated mice with NASH. Marked hepatic fibrosis developed in CDAA-fed group, but IL-1β inhibition affected fibrosis only at transcriptomic level. Hepatic inflammation was not affected by the IL-1β inhibitor. PCNA staining revealed intensive hepatocyte proliferation in CDAA-fed animals, which was not influenced by neutralization of IL-1β. IL-1β inhibition increased hepatic expression of Pd-1 and Ctla4, while Pd-l1 expression increased in NASH. In conclusion, IL-1β inhibition improved cardiac diastolic function, but did not ameliorate features of NASH; moreover, even promoted hepatic immune checkpoint expression, with concomitant NASH-related hepatocellular proliferation.
Collapse
|
28
|
Aggan HE, Mahmoud S, Deeb NE, Eleishi I, El-Shendidi A. Significance of elevated serum and hepatic NOD-like receptor pyrin domain containing 3 (NLRP3) in hepatitis C virus-related liver disease. Sci Rep 2022; 12:19528. [PMID: 36376416 PMCID: PMC9663582 DOI: 10.1038/s41598-022-22022-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
NOD-like receptor pyrin domain containing 3 (NLRP3) is a microbial and danger signal sensor that acts as a regulator of inflammation via activation of Caspase-1 (CASP1) and has been identified as a major contributor to human liver diseases. The present study was conducted to investigate the association between NLRP3 and the progression of hepatitis C virus (HCV)-related liver disease. Serum NLRP3 levels were analyzed in 49 patients with chronic HCV infection and 18 healthy controls and liver tissues from 34 patients were examined to assess the protein expression of NLRP3 and its activation marker CASP1 using immunohistochemical staining. The results showed that the median serum NLRP3 levels was significantly higher in HCV-infected patients compared with healthy controls (1040 pg/ml vs 695 pg/ml respectively, P < 0.001) and were positively correlated with hepatic NLRP3 and CASP1 expression (r = 0.749, P < 0.001 and r = 0.557, P = 0.001 respectively). The NLRP3 levels in serum and the liver significantly increased with worsening liver pathology and showed positive correlations with serum aminotransferases levels, HCV viremia, and albumin-bilirubin score (P < 0.05). The receiver operating characteristic curve analysis revealed a high diagnostic performance of serum NLRP3 in determining the extent of liver necroinflammation, fibrosis, and steatosis (area under the curve = 0.951, 0.971, and 0.917 respectively, P < 0.001). In conclusion, NLRP3 plays an important role in liver disease progression during HCV infection via CASP1 activation and might be a promising therapeutic target. Serum NLRP3 could be an additional biomarker for liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Hoda El Aggan
- grid.7155.60000 0001 2260 6941Department of Internal Medicine (Hepatobiliary Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sabah Mahmoud
- grid.7155.60000 0001 2260 6941Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nevine El Deeb
- grid.7155.60000 0001 2260 6941Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Islam Eleishi
- grid.7155.60000 0001 2260 6941Department of Internal Medicine (Hepatobiliary Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Assem El-Shendidi
- grid.7155.60000 0001 2260 6941Department of Internal Medicine (Hepatobiliary Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
Lactobacillus sakei MJM60958 as a Potential Probiotic Alleviated Non-Alcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet by Modulating Lipid Metabolism, Inflammation, and Gut Microbiota. Int J Mol Sci 2022; 23:ijms232113436. [PMID: 36362221 PMCID: PMC9658623 DOI: 10.3390/ijms232113436] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly increasing number of cases worldwide. This study aimed to evaluate the effects of Lactobacillus sakei MJM60958 (MJM60958) on NAFLD in vitro and in vivo. In in vitro tests, MJM60958 significantly inhibited lipid accumulation by 46.79% in HepG2 cells stimulated with oleic acid and cholesterol (OA-C). Moreover, MJM60958 showed safe and probiotic characteristics in vitro. In the animal study, MJM60958 administration in a high-fat diet-induced NAFLD mouse model significantly reduced body weight and liver weight, and controlled aspartate aminotransferase (ALT), aspartate transaminase (AST), triglyceride (TG), urea nitrogen (BUN), and uric acid (UA) levels in the blood, which are features of NAFLD. Further, treatment with MJM60958 also reduced steatosis scores in liver tissues, serum leptin and interleukin, and increased serum adiponectin content. Moreover, administration of MJM60958 resulted in a significantly decreased expression of some genes and proteins which are related to lipid accumulation, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1 (SREBP-1), and also upregulated genes and protein expression of lipid oxidation such as peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1a (CPT1A). Administration of MJM60958 increased the relative abundance of specific microbial taxa such as Verrucomicrobia, which are abundant in non-NAFLD mice, and reduced Firmicutes, which are a major group in NAFLD mice. MJM60958 affected the modulation of gut microbiota and altered the strain profile of short-chain fatty acids (SCFAs) production in the cecum by reduced lactic acid and enhanced acetic acid production. Overall, MJM60958 showed potential as a probiotic that can prevent and treat NAFLD.
Collapse
|
30
|
Feng T, Zhang W, Li Z. Potential Mechanisms of Gut-Derived Extracellular Vesicle Participation in Glucose and Lipid Homeostasis. Genes (Basel) 2022; 13:1964. [PMID: 36360201 PMCID: PMC9689624 DOI: 10.3390/genes13111964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2023] Open
Abstract
The intestine participates in the regulation of glucose and lipid metabolism in multiple facets. It is the major site of nutrient digestion and absorption, provides the interface as well as docking locus for gut microbiota, and harbors hormone-producing cells scattered throughout the gut epithelium. Intestinal extracellular vesicles are known to influence the local immune response, whereas their roles in glucose and lipid homeostasis have barely been explored. Hence, this current review summarizes the latest knowledge of cargo substances detected in intestinal extracellular vesicles, and connects these molecules with the fine-tuning regulation of glucose and lipid metabolism in liver, muscle, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Tiange Feng
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ziru Li
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME 04074, USA
| |
Collapse
|
31
|
Clare K, Dillon JF, Brennan PN. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis of MAFLD. J Clin Transl Hepatol 2022; 10:939-946. [PMID: 36304513 PMCID: PMC9547261 DOI: 10.14218/jcth.2022.00067] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
The pathogenesis of metabolic-associated fatty liver disease (MAFLD) is complex and thought to be dependent on multiple parallel hits on a background of genetic susceptibility. The evidence suggests that MAFLD progression is a dynamic two-way process relating to repetitive bouts of metabolic stress and inflammation interspersed with endogenous anti-inflammatory reparative responses. In MAFLD, excessive hepatic lipid accumulation causes the production of lipotoxins that induce mitochondrial dysfunction, endoplasmic reticular stress, and over production of reactive oxygen species (ROS). Models of MAFLD show marked disruption of mitochondrial function and reduced oxidative capacitance with impact on cellular processes including mitophagy, oxidative phosphorylation, and mitochondrial biogenesis. In excess, ROS modify insulin and innate immune signaling and alter the expression and activity of essential enzymes involved in lipid homeostasis. ROS can also cause direct damage to intracellular structures causing hepatocyte injury and death. In select cases, the use of anti-oxidants and ROS scavengers have been shown to diminish the pro-apoptopic effects of fatty acids. Given this link, endogenous anti-oxidant pathways have been a target of interest, with Nrf2 activation showing a reduction in oxidative stress and inflammation in models of MAFLD. Thyroid hormone receptor β (THRβ) agonists and nuclear peroxisome proliferation-activated receptor (PPAR) family have also gained interest in reducing hepatic lipotoxicity and restoring hepatic function in models of MAFLD. Unfortunately, the true interplay between the clinical and molecular components of MAFLD progression remain only partly understood. Most recently, multiomics-based strategies are being adopted for hypothesis-free analysis of the molecular changes in MAFLD. Transcriptome profiling maps the unique genotype-phenotype associations in MAFLD and with various single-cell transcriptome-based projects underway, there is hope of novel physiological insights to MAFLD progression and uncover therapeutic targets.
Collapse
Affiliation(s)
- Kathleen Clare
- Royal Alexandra Hospital, Paisley, NHS Greater Glasgow and Clyde, PA2 9PN, UK
| | - John F. Dillon
- University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Paul N. Brennan
- University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
- University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, EH16 4UU, UK
- Correspondence to: Paul N. Brennan, University of Dundee, Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK. ORCID: https://orcid.org/0000-0001-8368-1478. Tel: +44-7445308786, E-mail:
| |
Collapse
|
32
|
Chen SY, Olzomer EM, Beretta M, Cantley J, Nunemaker CS, Hoehn KL, Byrne FL. Investigating the Expression and Function of the Glucose Transporter GLUT6 in Obesity. Int J Mol Sci 2022; 23:9798. [PMID: 36077188 PMCID: PMC9456207 DOI: 10.3390/ijms23179798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity-related insulin resistance is a highly prevalent and growing health concern, which places stress on the pancreatic islets of Langerhans by increasing insulin secretion to lower blood glucose levels. The glucose transporters GLUT1 and GLUT3 play a key role in glucose-stimulated insulin secretion in human islets, while GLUT2 is the key isoform in rodent islets. However, it is unclear whether other glucose transporters also contribute to insulin secretion by pancreatic islets. Herein, we show that SLC2A6 (GLUT6) is markedly upregulated in pancreatic islets from genetically obese leptin-mutant (ob/ob) and leptin receptor-mutant (db/db) mice, compared to lean controls. Furthermore, we observe that islet SLC2A6 expression positively correlates with body mass index in human patients with type 2 diabetes. To investigate whether GLUT6 plays a functional role in islets, we crossed GLUT6 knockout mice with C57BL/6 ob/ob mice. Pancreatic islets isolated from ob/ob mice lacking GLUT6 secreted more insulin in response to high-dose glucose, compared to ob/ob mice that were wild type for GLUT6. The loss of GLUT6 in ob/ob mice had no adverse impact on body mass, body composition, or glucose tolerance at a whole-body level. This study demonstrates that GLUT6 plays a role in pancreatic islet insulin secretion in vitro but is not a dominant glucose transporter that alters whole-body metabolic physiology in ob/ob mice.
Collapse
Affiliation(s)
- Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ellen M. Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - James Cantley
- School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Craig S. Nunemaker
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Kyle L. Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Frances L. Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
33
|
Aljabban J, Rohr M, Syed S, Khorfan K, Borkowski V, Aljabban H, Segal M, Mukhtar M, Mohammed M, Panahiazar M, Hadley D, Spengler R, Spengler E. Transcriptome changes in stages of non-alcoholic fatty liver disease. World J Hepatol 2022; 14:1382-1397. [PMID: 36158924 PMCID: PMC9376779 DOI: 10.4254/wjh.v14.i7.1382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the United States and globally. The currently understood model of pathogenesis consists of a ‘multiple hit’ hypothesis in which environmental and genetic factors contribute to hepatic inflammation and injury.
AIM To examine the genetic expression of NAFLD and non-alcoholic steatohepatitis (NASH) tissue samples to identify common pathways that contribute to NAFLD and NASH pathogenesis.
METHODS We employed the Search Tag Analyze Resource for Gene Expression Omnibus platform to search the The National Center for Biotechnology Information Gene Expression Omnibus to elucidate NAFLD and NASH pathology. For NAFLD, we conducted meta-analysis of data from 58 NAFLD liver biopsies and 60 healthy liver biopsies; for NASH, we analyzed 187 NASH liver biopsies and 154 healthy liver biopsies.
RESULTS Our results from the NAFLD analysis reinforce the role of altered metabolism, inflammation, and cell survival in pathogenesis and support recently described contributors to disease activity, such as altered androgen and long non-coding RNA activity. The top upstream regulator was found to be sterol regulatory element binding transcription factor 1 (SREBF1), a transcription factor involved in lipid homeostasis. Downstream of SREBF1, we observed upregulation in CXCL10, HMGCR, HMGCS1, fatty acid binding protein 5, paternally expressed imprinted gene 10, and downregulation of sex hormone-binding globulin and insulin-like growth factor 1. These molecular changes reflect low-grade inflammation secondary to accumulation of fatty acids in the liver. Our results from the NASH analysis emphasized the role of cholesterol in pathogenesis. Top canonical pathways, disease networks, and disease functions were related to cholesterol synthesis, lipid metabolism, adipogenesis, and metabolic disease. Top upstream regulators included pro-inflammatory cytokines tumor necrosis factor and IL1B, PDGF BB, and beta-estradiol. Inhibition of beta-estradiol was shown to be related to derangement of several cellular downstream processes including metabolism, extracellular matrix deposition, and tumor suppression. Lastly, we found riciribine (an AKT inhibitor) and ZSTK-474 (a PI3K inhibitor) as potential drugs that targeted the differential gene expression in our dataset.
CONCLUSION In this study we describe several molecular processes that may correlate with NAFLD disease and progression. We also identified ricirbine and ZSTK-474 as potential therapy.
Collapse
Affiliation(s)
- Jihad Aljabban
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Michael Rohr
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, United States
| | - Saad Syed
- Department of Medicine, Northwestern Memorial Hospital, Chicago, IL 60611, United States
| | - Kamal Khorfan
- Department of Gastroenterology and Hepatology, University of California San Francisco-Fresno , Fresno, CA 93701, United States
| | - Vincent Borkowski
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Hisham Aljabban
- Department of Medicine, Barry University, Miami, FL 33161, United States
| | - Michael Segal
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Mohamed Mukhtar
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI 49503, United States
| | - Mohammed Mohammed
- Department of Medicine, Windsor University School of Medicine, Saint Kitts 1621, Cayon, Saint Kitts and Nevis
| | - Maryam Panahiazar
- Department of Surgery, University of California San Francisco, San Francisco, CA 94305, United States
| | - Dexter Hadley
- Department of Artificial Intelligence, Pathology, University of Central Florida College of Medicine , Orlando, FL 32827, United States
| | - Ryan Spengler
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Erin Spengler
- Department of Gastroenterology and Hepatology, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| |
Collapse
|
34
|
Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases. J Clin Med 2022; 11:jcm11154358. [PMID: 35955975 PMCID: PMC9369133 DOI: 10.3390/jcm11154358] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.
Collapse
|
35
|
Biao Y, Chen J, Liu C, Wang R, Han X, Li L, Zhang Y. Protective Effect of Danshen Zexie Decoction Against Non-Alcoholic Fatty Liver Disease Through Inhibition of ROS/NLRP3/IL-1β Pathway by Nrf2 Signaling Activation. Front Pharmacol 2022; 13:877924. [PMID: 35800450 PMCID: PMC9253674 DOI: 10.3389/fphar.2022.877924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Lipid metabolism disorders are a prominent characteristic in the pathological development of non-alcoholic fatty liver disease (NAFLD). Danshen zexie decoction (DZD) is a Chinese herbal medicine that is based on zexie decoction and has an effect of regulating lipid mechanism. However, the anti-NAFLD effect and mechanism of DZD remain unclear. In this study, we observed the therapeutic effect of DZD on NAFLD rats and investigated its possible mechanisms. Sixty Sprague Dawley rats were randomly assigned to six groups: control group, model group, Yishanfu (polyene phosphatidylcholine) group, and low, medium and high-dose DZD groups. High-fat diet (HFD) was fed to the rats to establish an NAFLD model, and each treatment group was given corresponding drugs at the same time for eight consecutive weeks. The results revealed that the obvious lipid metabolism disorder and liver injury induced by HFD were alleviated by treatment with DZD, which was verified by decreased serum TC, TG, ALT, AST, liver TC, TG, and FFA, as well as the alleviation of hepatic steatosis. The production of ROS in rats was reduced after treatment with DZD. The SOD activity and GSH content were increased with DZD treatment, while the MDA level was decreased. The administration of DZD could decrease serum IL-1β and IL-18 contents. Moreover, DZD upregulated the expressions of Nrf2, HO-1, GCLC, and GCLM, while it suppressed the expressions of NLRP3, caspase-1, GSDMD, and GSDMD-N. In conclusion, the data showed that DZD can reduce lipid accumulation, alleviate oxidative stress and inflammation, and inhibit pyroptosis in NAFLD rats, which might be ascribed to suppression of the ROS/NLRP3/IL-1β signaling pathway by activation of Nrf2. Overall, these results indicated that DZD is expected to be a therapeutic drug for NAFLD.
Collapse
Affiliation(s)
- Yaning Biao
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Jian Chen
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chenxu Liu
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ruilong Wang
- Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Xue Han
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Li Li, ; Yixin Zhang,
| | - Yixin Zhang
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Li Li, ; Yixin Zhang,
| |
Collapse
|
36
|
Bendotti G, Montefusco L, Lunati ME, Usuelli V, Pastore I, Lazzaroni E, Assi E, Seelam AJ, El Essawy B, Jang Y, Loretelli C, D'Addio F, Berra C, Ben Nasr M, Zuccotti G, Fiorina P. The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists. Pharmacol Res 2022; 182:106320. [PMID: 35738455 DOI: 10.1016/j.phrs.2022.106320] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/29/2022]
Abstract
In the last few years, a great interest has emerged in investigating the pleiotropic effects of Glucagon Like Peptide-1 Receptor Agonists (GLP-1RAs). While GLP-1RAs ability to lower plasma glucose and to induce weight loss has allowed them to be approved for the treatment of diabetes and obesity, consistent evidences from in vitro studies and preclinical models suggested that GLP-1RAs have anti-inflammatory properties and that may modulate the immune-system. Notably, such anti-inflammatory effects target different pathways in different tissues, underling the broad spectrum of GLP-1RAs actions. This review examines some of the currently proposed molecular mechanisms of GLP-1RAs actions and explores their potential benefits in reducing inflammatory responses, which may well suggest a future therapeutic use of GLP-1RAs in new indications.
Collapse
Affiliation(s)
- Giulia Bendotti
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Elisa Lazzaroni
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Basset El Essawy
- Transplantation Research Center, Nephrology Division, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Medicine, Al-Azhar University, Cairo, Egypt
| | - Yun Jang
- Institute of Organ Transplantation, Tongji Hospital and Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Cesare Berra
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS Multimedica, Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - GianVincenzo Zuccotti
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano and Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy; International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Wang L, Dong J, Xu M, Li L, Yang N, Qian G. Association Between Monocyte to High-Density Lipoprotein Cholesterol Ratio and Risk of Non-alcoholic Fatty Liver Disease: A Cross-Sectional Study. Front Med (Lausanne) 2022; 9:898931. [PMID: 35665350 PMCID: PMC9161020 DOI: 10.3389/fmed.2022.898931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a global health problem affecting more than a quarter of the entire adult population. Both monocytes and high-density lipoprotein cholesterol (HDL-C) were found to participate in the progression of hepatic inflammation and oxidative stress. We speculated that the monocyte-to-HDL-C ratio (MHR) may be associated with the risk of NAFLD. Methods We conducted a cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. NAFLD was identified using a controlled attenuation parameter (CAP) of ≥274 dB/m. Degree of liver fibrosis were assessed by liver stiffness measurement (LSM) and LSM values≥8.0, ≥ 9.7, and ≥13.7 kPa were defined as significant fibrosis (≥F2), advanced fibrosis (≥F3) and cirrhosis (F4), respectively. The association between MHR and the risk of NAFLD and liver fibrosis was estimated using weighted multivariable logistic regression. The non-linear relationship between MHR and the risk of NAFLD was further described using smooth curve fittings and threshold effect analysis. Results Of 4,319 participants, a total of 1,703 (39.4%) participants were diagnosed with NAFLD. After complete adjustment for potential confounders, MHR was positively associated with the risk of NAFLD (OR = 2.87, 95% CI: 1.95-4.22). The risk of NAFLD increased progressively as the MHR quarter increased (P for trend < 0.001). In subgroup analysis stratified by sex, a positive association existed in both sexes; Women displayed higher risk (men: OR = 2.12, 95% CI: 1.33-3.39; women: OR = 2.64, 95%CI: 1.40-4.97). MHR was positively associated with the risk of significant liver fibrosis (OR = 1.60, 95% CI: 1.08-2.37) and cirrhosis (OR = 1.83, 95% CI: 1.08-3.13), but not with advanced liver fibrosis (OR = 1.53, 95% CI: 0.98-2.39) after full adjustment for potential confounders. In the subgroup analysis by sex, the association between MHR and different degrees of liver fibrosis was significantly positive in women. When analyzing the relationship between MHR and NAFLD risk, a reverse U-shaped curve with an inflection point of 0.36 for MHR was found in women. Conclusion Higher MHR was associated with increased odds of NAFLD among Americans of both sexes. However, an association between MHR and liver fibrosis was found mainly among women.
Collapse
Affiliation(s)
- Liping Wang
- Department of Infectious Diseases, Ningbo First Hospital, Ningbo University, Ningbo, China
- Department of Hepatology, Non-alcoholic Fatty Liver Disease (NAFLD) Research Center, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Jinzhong Dong
- Department of Intensive Care Medicine, Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo University, Zhejiang, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo University, Zhejiang, China
| | - Naibin Yang
- Department of Infectious Diseases, Ningbo First Hospital, Ningbo University, Ningbo, China
- Department of Hepatology, Non-alcoholic Fatty Liver Disease (NAFLD) Research Center, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Guoqing Qian
- Department of Infectious Diseases, Ningbo First Hospital, Ningbo University, Ningbo, China
- Department of Hepatology, Non-alcoholic Fatty Liver Disease (NAFLD) Research Center, Ningbo Hospital of Zhejiang University, Ningbo, China
| |
Collapse
|
38
|
Shaker ME. The contribution of sterile inflammation to the fatty liver disease and the potential therapies. Biomed Pharmacother 2022; 148:112789. [PMID: 35272137 DOI: 10.1016/j.biopha.2022.112789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022] Open
Abstract
Hepatic inflammation is prevalent in several metabolic liver diseases. Recent scientific advances about the pathogenesis of metabolic liver diseases showed an emerging role of several damage-associated molecular patterns (DAMPs), including DNA, high-mobility group box 1 (HMGB1), ATP and uric acid. For these DAMPs to induce inflammation, they should stimulate pattern recognition receptors (PRRs), which are located in the hepatic immune cells like resident Kupffer cells, infiltrated neutrophils, monocytes or dendritic cells. As a consequence, proinflammatory cytokines like interleukins (ILs)-1β and 18 alongside tumor necrosis factor (TNF)-α are overproduced and released, leading to pronounced hepatic inflammation and cellular death. This review highlights the contribution of these DAMPs and PRRs in the settings of alcoholic and nonalcoholic steatohepatitis. The review also summarizes the therapeutic usefulness of targeting NLR family pyrin domain containing 3 (NLRP3)-inflammasome, Toll-like receptors (TLRs) 4 and 9, IL-1 receptor (IL-1R), caspase 1, uric acid and GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) in these hepatic inflammatory disorders.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| |
Collapse
|
39
|
Li CW, Yu K, Shyh-Chang N, Jiang Z, Liu T, Ma S, Luo L, Guang L, Liang K, Ma W, Miao H, Cao W, Liu R, Jiang LJ, Yu SL, Li C, Liu HJ, Xu LY, Liu RJ, Zhang XY, Liu GS. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle 2022; 13:781-794. [PMID: 35106971 PMCID: PMC8977978 DOI: 10.1002/jcsm.12901] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/26/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Age-associated obesity and muscle atrophy (sarcopenia) are intimately connected and are reciprocally regulated by adipose tissue and skeletal muscle dysfunction. During ageing, adipose inflammation leads to the redistribution of fat to the intra-abdominal area (visceral fat) and fatty infiltrations in skeletal muscles, resulting in decreased overall strength and functionality. Lipids and their derivatives accumulate both within and between muscle cells, inducing mitochondrial dysfunction, disturbing β-oxidation of fatty acids, and enhancing reactive oxygen species (ROS) production, leading to lipotoxicity and insulin resistance, as well as enhanced secretion of some pro-inflammatory cytokines. In turn, these muscle-secreted cytokines may exacerbate adipose tissue atrophy, support chronic low-grade inflammation, and establish a vicious cycle of local hyperlipidaemia, insulin resistance, and inflammation that spreads systemically, thus promoting the development of sarcopenic obesity (SO). We call this the metabaging cycle. Patients with SO show an increased risk of systemic insulin resistance, systemic inflammation, associated chronic diseases, and the subsequent progression to full-blown sarcopenia and even cachexia. Meanwhile in many cardiometabolic diseases, the ostensibly protective effect of obesity in extremely elderly subjects, also known as the 'obesity paradox', could possibly be explained by our theory that many elderly subjects with normal body mass index might actually harbour SO to various degrees, before it progresses to full-blown severe sarcopenia. Our review outlines current knowledge concerning the possible chain of causation between sarcopenia and obesity, proposes a solution to the obesity paradox, and the role of fat mass in ageing.
Collapse
Affiliation(s)
- Chun-Wei Li
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kang Yu
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Taoyan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shilin Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lanfang Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Guang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kun Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenwu Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hefan Miao
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruirui Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Juan Jiang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song-Lin Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Li
- Department of General Surgery, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, China (Tianjin Union Medical Center, Tianjin, China
| | - Hui-Jun Liu
- Department of nursing & Clinical Nutrition, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Long-Yu Xu
- Department of Sport Physiatry, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong-Ji Liu
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yuan Zhang
- Department of stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gao-Shan Liu
- Department of Health Education, Shijingshan Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
40
|
Salas-Venegas V, Flores-Torres RP, Rodríguez-Cortés YM, Rodríguez-Retana D, Ramírez-Carreto RJ, Concepción-Carrillo LE, Pérez-Flores LJ, Alarcón-Aguilar A, López-Díazguerrero NE, Gómez-González B, Chavarría A, Konigsberg M. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front Integr Neurosci 2022; 16:798995. [PMID: 35422689 PMCID: PMC9002268 DOI: 10.3389/fnint.2022.798995] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Overweight and obesity are now considered a worldwide pandemic and a growing public health problem with severe economic and social consequences. Adipose tissue is an organ with neuroimmune-endocrine functions, which participates in homeostasis. So, adipocyte hypertrophy and hyperplasia induce a state of chronic inflammation that causes changes in the brain and induce neuroinflammation. Studies with obese animal models and obese patients have shown a relationship between diet and cognitive decline, especially working memory and learning deficiencies. Here we analyze how obesity-related peripheral inflammation can affect central nervous system physiology, generating neuroinflammation. Given that the blood-brain barrier is an interface between the periphery and the central nervous system, its altered physiology in obesity may mediate the consequences on various cognitive processes. Finally, several interventions, and the use of natural compounds and exercise to prevent the adverse effects of obesity in the brain are also discussed.
Collapse
Affiliation(s)
- Verónica Salas-Venegas
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana - Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Rosa Pamela Flores-Torres
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana - Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México (CDMX), Mexico City, Mexico
| | - Yesica María Rodríguez-Cortés
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Diego Rodríguez-Retana
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Luis Edgar Concepción-Carrillo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Laura Josefina Pérez-Flores
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Adriana Alarcón-Aguilar
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Norma Edith López-Díazguerrero
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Beatriz Gómez-González
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México (CDMX), Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Mina Konigsberg
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
- *Correspondence: Mina Konigsberg,
| |
Collapse
|
41
|
Frühbeck G, Catalán V, Ramírez B, Valentí V, Becerril S, Rodríguez A, Moncada R, Baixauli J, Silva C, Escalada J, Gómez-Ambrosi J. Serum Levels of IL-1 RA Increase with Obesity and Type 2 Diabetes in Relation to Adipose Tissue Dysfunction and are Reduced After Bariatric Surgery in Parallel to Adiposity. J Inflamm Res 2022; 15:1331-1345. [PMID: 35237063 PMCID: PMC8884708 DOI: 10.2147/jir.s354095] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/15/2022] [Indexed: 12/22/2022] Open
Abstract
Background Excess adiposity leads to a dysfunctional adipose tissue that contributes to the development of obesity-associated comorbidities such as type 2 diabetes (T2D). Interleukin-1 receptor antagonist (IL-1RA) is a naturally occurring antagonist of the IL-1 receptor with anti-inflammatory properties. The aim of the present study was to compare the circulating concentrations of IL-1RA and its mRNA expression in visceral adipose tissue (VAT) in subjects with normal weight (NW), obesity with normoglycemia (OB-NG), or obesity with impaired glucose tolerance or T2D (OB-IGT&T2D) and to analyze the effect of changes in body fat percentage (BF%) on IL-1RA levels. Methods Serum concentrations of IL-1RA were measured in 156 volunteers. Expression of IL1RN mRNA in VAT obtained from 36 individuals was determined. In addition, the concentrations of IL-1RA were measured before and after weight gain as well as weight loss following a dietetic program or Roux-en-Y gastric bypass (RYGB). Results Serum levels of IL-1RA were significantly increased in individuals with obesity, being further increased in the OB-IGT&T2D group (NW 440 ± 316, OB-NG 899 ± 562, OB-IGT&T2D 1265 ± 739 pg/mL; P<0.001) and associated with markers of inflammation and fatty liver. IL1RN mRNA expression in VAT was significantly increased in the OB-IGT&T2D group and correlated in the global cohort with the mRNA expression of SPP1, CCL2, CD68, and MMP9. Levels of IL-1RA were not modified after modest changes in BF%, but RYGB-induced weight loss significantly decreased IL-1RA concentrations from 1233 ± 1009 to 660 ± 538 pg/mL (P<0.001). Conclusion Serum IL-1RA concentrations are increased in patients with obesity being further elevated in obesity-associated IGT and T2D in association with markers of adipose tissue dysfunction. The mRNA expression of IL1RN is markedly increased in VAT of subjects with obesity and T2D in relation with genes involved in macrophage recruitment, inflammation and matrix remodeling. Serum IL-1RA concentrations are reduced when a notable amount of BF% is loss. Measurement of IL-1RA is an excellent biomarker of adipose tissue dysfunction in obesity-associated metabolic alterations.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Víctor Valentí
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Rafael Moncada
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Escalada
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Correspondence: Javier Gómez-Ambrosi, Metabolic Research Laboratory, Clínica Universidad de Navarra, Irunlarrea 1, Pamplona, 31008, Spain, Tel +34 948 425600 (ext. 806567), Email
| |
Collapse
|
42
|
Robinson G, Pineda-Torra I, Ciurtin C, Jury EC. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. J Clin Invest 2022; 132:e148552. [PMID: 35040437 PMCID: PMC8759788 DOI: 10.1172/jci148552] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Suppressing inflammation has been the primary focus of therapies in autoimmune rheumatic diseases (AIRDs), including rheumatoid arthritis and systemic lupus erythematosus. However, conventional therapies with low target specificity can have effects on cell metabolism that are less predictable. A key example is lipid metabolism; current therapies can improve or exacerbate dyslipidemia. Many conventional drugs also require in vivo metabolism for their conversion into therapeutically beneficial products; however, drug metabolism often involves the additional formation of toxic by-products, and rates of drug metabolism can be heterogeneous between patients. New therapeutic technologies and research have highlighted alternative metabolic pathways that can be more specifically targeted to reduce inflammation but also to prevent undesirable off-target metabolic consequences of conventional antiinflammatory therapies. This Review highlights the role of lipid metabolism in inflammation and in the mechanisms of action of AIRD therapeutics. Opportunities for cotherapies targeting lipid metabolism that could reduce immunometabolic complications and potential increased cardiovascular disease risk in patients with AIRDs are discussed.
Collapse
Affiliation(s)
- George Robinson
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | | |
Collapse
|
43
|
Sohrabi M, Ajdarkosh H, Gholami A, Amirkalali B, Mansorian MR, Aten S, Sohrabi M, Nasiri-Toosi M, Zamani F, Keyvani H. Association between Melatonin Value and Interleukins1B, -18, and -33 Levels in Patients with Different Stages of Non-Alcoholic Fatty Liver Disease. Middle East J Dig Dis 2022; 14:110-117. [PMID: 36619722 PMCID: PMC9489333 DOI: 10.34172/mejdd.2022.263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/20/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND: Interaction between immune modulators and inflammatory factors is considered as one of the main underlying pathologies of non-alcoholic fatty liver disease (NAFLD). Hence we aimed to assess the association between these cytokines and melatonin. METHODS: We enrolled adult patients diagnosed with fatty liver by ultrasonography in a crosssectional study. All of them underwent Fibroscan evaluation. The subjects who met the inclusion and exclusion criteria for NAFLD were involved. A normal group who did not have NAFLD, viral or non-viral hepatitis, and without a history of pancreatobiliary surgery, bariatric surgery, and intake of any medication that influence the liver was also selected. The participants were categorized into the three following groups: 1) fibrosis>9.1 kPa and steatosis>290 dbm, 2) fibrosis: 6-9.0 kPa and steatosis 240-290 dbm, and 3) normal group with fibrosis<6.0 kPa and steatosis<240 dbm. Laboratory assessment and a questionnaire including demographic, anthropometric, laboratories, and clinical data were completed for each of them. RESULTS: Totally 97 subjects were enrolled in the present study. The mean age of the subjects was 42.2±11.3 years. 60% of them (59 patients) were female. Serum levels of melatonin, interleukin (IL)-1B, IL-18, and IL-33 increased according to the advancing of NAFLD state. Based on multiple linear regression model, melatonin was significantly associated with IL-1B (β=2.8, P<0.001,95% CI=1.41-4.19), IL-18 (β=0.018, P=0.0005, 95% CI=0.006-0.03), and IL-33 (β=0.31, P=0.045, 95% CI=0.008-0.62) after adjustment for other variables. CONCLUSION: Melatonin level has a strong association with these cytokines. This linkage probably influences on the development and progression of NAFLD. Therefore it can be hypothesized that the therapeutic approach that affects this process may have a significant impact.
Collapse
Affiliation(s)
- Masoudreza Sohrabi
- Gastrointestinal and Liver Diseases Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gholami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran,Department of Epidemiology & Biostatistics, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Bahreh Amirkalali
- Gastrointestinal and Liver Diseases Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Reza Mansorian
- Gastrointestinal and Liver Diseases Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran
| | - Sima Aten
- Gastrointestinal and Liver Diseases Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran
| | - Melika Sohrabi
- Gastrointestinal and Liver Diseases Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nasiri-Toosi
- Liver transplantation Research Center. Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran,Corresponding Author: Hossein Keyvani, MD Gastrointestinal and Liver Disease Research Center, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran Telefax:+98 21 82141633
| |
Collapse
|
44
|
Suriagandhi V, Nachiappan V. Therapeutic Target Analysis and Molecular Mechanism of Melatonin - Treated Leptin Resistance Induced Obesity: A Systematic Study of Network Pharmacology. Front Endocrinol (Lausanne) 2022; 13:927576. [PMID: 35937803 PMCID: PMC9352999 DOI: 10.3389/fendo.2022.927576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity is a medical problem with an increased risk for other metabolic disorders like diabetes, heart problem, arthritis, etc. Leptin is an adipose tissue-derived hormone responsible for food intake, energy expenditure, etc., and leptin resistance is one of the significant causes of obesity. Excess leptin secretion by poor diet habits and impaired hypothalamic leptin signaling leads to LR. Melatonin a sleep hormone; also possess antioxidant and anti-inflammatory properties. The melatonin can attenuate the complications of obesity by regulating its targets towards LR induced obesity. AIM The aim of this study includes molecular pathway and network analysis by using a systems pharmacology approach to identify a potential therapeutic mechanism of melatonin on leptin resistance-induced obesity. METHODS The bioinformatic methods are used to find therapeutic targets of melatonin in the treatment of leptin resistance-induced obesity. It includes target gene identification using public databases, Gene ontology, and KEGG pathway enrichment by 'ClusterProfiler' using the R language, network analysis by Cytoscape, and molecular Docking by Autodock. RESULTS We obtained the common top 33 potential therapeutic targets of melatonin and LR-induced obesity from the total melatonin targets 254 and common LR obesity targets 212 using the data screening method. They are involved in biological processes related to sleep and obesity, including the cellular response to external stimulus, chemical stress, and autophagy. From a total of 180 enriched pathways, we took the top ten pathways for further analysis, including lipid and atherosclerosis, endocrine, and AGE-RAGE signaling pathway in diabetic complications. The top 10 pathways interacted with the common 33 genes and created two functional modules. Using Cytoscape network analysis, the top ten hub genes (TP53, AKT1, MAPK3, PTGS2, TNF, IL6, MAPK1, ERBB2, IL1B, MTOR) were identified by the MCC algorithm of the CytoHubba plugin. From a wide range of pathway classes, melatonin can reduce LR-induced obesity risks by regulating the major six classes. It includes signal transduction, endocrine system, endocrine and metabolic disease, environmental adaptation, drug resistance antineoplastic, and cardiovascular disease. CONCLUSION The pharmacological mechanism of action in this study shows the ten therapeutic targets of melatonin in LR-induced obesity.
Collapse
|
45
|
Bal SS, Leishangthem GD, Sethi RS, Singh A. P-coumaric acid ameliorates fipronil induced liver injury in mice through attenuation of structural changes, oxidative stress and inflammation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104997. [PMID: 34955181 DOI: 10.1016/j.pestbp.2021.104997] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Fipronil is a broad-spectrum phenylpyrazole insecticide and has been used effectively in the agriculture. Due to its widespread use and bioaccumulation in the environment, it possesses significant threat to human and animals. P-coumaric acid is a natural dietary polyphenolic compound that has anti-oxidant and anti-inflammatory property. The present study was aim to investigate the ameliorative effect of p-coumaric acid on fipronil induced liver injury. The mice were divided into five groups (SHAM, FPN, FPN/PCA/50, FPN/PCA/100 and PCA/100) and challenged with fipronil @ 25 mg/kg bw (half of LD50). Haematological, liver function biomarkers (ALT, AST, ALP, GGT), biochemical parameters (MPO, oxidative, nitrosative stress and anti-oxidant enzyme activity), levels of serum and liver inflammatory cytokines (TNF-α, IL-1β and IL-10), histopathology were monitored. Fipronil administration caused a significant increase in liver enzymes with concomitant significant increase in inflammatory cytokines (TNF-α, IL-1β, IL-10) and myeloperoxidase activity. A significant increase in oxidative stress (lipid peroxidation, nitric oxide) as well as down regulation of anti-oxidant enzymes like superoxide dismutase (SOD) and catalase (CAT) along with histopathological changes such as microsteatosis, hypertrophy of the hepatocytes and necrosis were observed on fipronil administration. Administration of p-coumaric acid against fipronil caused decreased serum liver enzymes, inflammatory cytokines, myeloperoxidase activity and oxidative stress along with improvement in anti-oxidant enzyme levels and structural changes induced by fipronil. Thus p-coumaric acid ameliorates the FPN induced liver injury in mice through attenuation of structural changes, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Sonam Sarita Bal
- Department of Veterinary Pathology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Geeta Devi Leishangthem
- Department of Veterinary Pathology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Ram Saran Sethi
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Amarjit Singh
- Department of Veterinary Pathology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
46
|
Xu L, Liu W, Bai F, Xu Y, Liang X, Ma C, Gao L. Hepatic Macrophage as a Key Player in Fatty Liver Disease. Front Immunol 2021; 12:708978. [PMID: 34956171 PMCID: PMC8696173 DOI: 10.3389/fimmu.2021.708978] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Fatty liver disease, characterized by excessive inflammation and lipid deposition, is becoming one of the most prevalent liver metabolic diseases worldwide owing to the increasing global incidence of obesity. However, the underlying mechanisms of fatty liver disease are poorly understood. Accumulating evidence suggests that hepatic macrophages, specifically Kupffer cells (KCs), act as key players in the progression of fatty liver disease. Thus, it is essential to examine the current evidence of the roles of hepatic macrophages (both KCs and monocyte-derived macrophages). In this review, we primarily address the heterogeneities and multiple patterns of hepatic macrophages participating in the pathogenesis of fatty liver disease, including Toll-like receptors (TLRs), NLRP3 inflammasome, lipotoxicity, glucotoxicity, metabolic reprogramming, interaction with surrounding cells in the liver, and iron poisoning. A better understanding of the diverse roles of hepatic macrophages in the development of fatty liver disease may provide a more specific and promising macrophage-targeting therapeutic strategy for inflammatory liver diseases.
Collapse
Affiliation(s)
- Liyun Xu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Wen Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Basic Medicine Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fuxiang Bai
- Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Yong Xu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Laboratory, Yueyang Hospital, Hunan Normal University, Yueyang, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
47
|
Huang H, Wang Q, Shi X, Chen Y, Shen C, Zhang J, Xu C. Association between Monocyte to High-Density Lipoprotein Cholesterol Ratio and Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study. Mediators Inflamm 2021; 2021:6642246. [PMID: 34916874 PMCID: PMC8670965 DOI: 10.1155/2021/6642246] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The aim of the present study was to investigate the association between monocyte to high-density lipoprotein cholesterol ratio (MHR) and nonalcoholic fatty liver disease (NAFLD) in Chinese population. METHODS We enrolled 14189 individuals who attended their annual health examinations in the study. We performed the anthropometric and laboratory measurements and diagnosed NAFLD by hepatic ultrasonography without evidence of other etiologies of chronic liver disease. Student's t-test, Mann-Whitney U test, and chi-squared (χ 2) test was used to compare the differences of clinical characteristics between participants with or without NAFLD. Pearson's and Spearman's analyses were performed to assess the correlation of MHR and NAFLD risk factors. Univariate and multivariate logistic regression analyses were conducted to explore whether MHR associated with NAFLD. RESULTS Thirty-five percent of the participants enrolled were diagnosed with NAFLD. Compared with healthy controls, NAFLD patients were male predominant, older, and had higher body mass index, waist circumference, and systolic and diastolic blood pressure, as well as higher levels of alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transferase, triglyceride, total cholesterol, low-density lipoprotein cholesterol, fasting plasma glucose, glycated hemoglobin A1c, and serum uric acid, but lower levels of serum high-density lipoprotein cholesterol. Besides, MHR was significantly higher in NAFLD patients than healthy controls [5.35 (4.18-6.84) versus 4.53 (3.48-5.93), P < 0.001]. MHR quartiles were positively related to the prevalence of NAFLD (P < 0.001 for trend). In multivariate logistic regression analysis, MHR was positively associated with the risk of NAFLD after adjusting age, gender, body mass index, waist circumference, diastolic blood pressure, alanine aminotransferase, triglyceride, total cholesterol, fasting plasma glucose, and serum uric acid (OR: 1.026, 95% CI: 1.002-1.052; P = 0.037). CONCLUSIONS MHR is significantly and positively associated with the risk of NAFLD.
Collapse
Affiliation(s)
- Hangkai Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qinqiu Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoying Shi
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yishu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chao Shen
- Health Management Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Juanwen Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
48
|
Leptin Induces Apoptotic and Pyroptotic Cell Death via NLRP3 Inflammasome Activation in Rat Hepatocytes. Int J Mol Sci 2021; 22:ijms222212589. [PMID: 34830465 PMCID: PMC8622994 DOI: 10.3390/ijms222212589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Leptin, a hormone that is predominantly produced by adipose tissue, is closely associated with various liver diseases. However, there is a lack of understanding as to whether leptin directly induces cytotoxic effects in hepatocytes as well as the mechanisms that are involved. Inflammasomes, which are critical components in the innate immune system, have been recently shown to modulate cell death. In this study, we examined the effect of leptin on the viability of rat hepatocytes and the underlying mechanisms, with a particular focus on the role of inflammasomes activation. Leptin treatment induced cytotoxicity in rat hepatocytes, as determined by decreased cell viability, increased caspase-3 activity, and the enhanced release of lactate dehydrogenase. NLRP3 inflammasomes were activated by leptin both in vitro and in vivo, as determined by the maturation of interleukin-1β and caspase-1, and the increased expression of inflammasome components, including NLRP3 and ASC. Mechanistically, leptin-induced inflammasome activation is mediated via the axis of ROS production, ER stress, and autophagy. Notably, the inhibition of inflammasomes by treatment with the NLRP3 inhibitor or the IL-1 receptor antagonist protected the hepatocytes from leptin-induced cell death. Together, these results indicate that leptin exerts cytotoxic effects in hepatocytes, at least in part, via the activation of NLRP3 inflammasomes.
Collapse
|
49
|
Vulf M, Shunkina D, Komar A, Bograya M, Zatolokin P, Kirienkova E, Gazatova N, Kozlov I, Litvinova L. Analysis of miRNAs Profiles in Serum of Patients With Steatosis and Steatohepatitis. Front Cell Dev Biol 2021; 9:736677. [PMID: 34568346 PMCID: PMC8458751 DOI: 10.3389/fcell.2021.736677] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as one of the most common chronic liver diseases worldwide, affecting 25% of the world population. In recent years, there has been increasing evidence for the involvement of microRNAs in the epigenetic regulation of genes taking part in the development of steatosis and steatohepatitis—two main stages of NAFLD pathogenesis. In the present study, miRNA profiles were studied in groups of patients with steatosis and steatohepatitis to compare the characteristics of RNA-dependent epigenetic regulation of the stages of NAFLD development. According to the results of miRNA screening, 23 miRNAs were differentially expressed serum in a group of patients with steatohepatitis and 2 in a group of patients with steatosis. MiR-195-5p and miR-16-5p are common differentially expressed miRNAs for both steatosis and steatohepatitis. We analyzed the obtained results: the search for target genes for the differentially expressed miRNAs in our study and the subsequent gene set enrichment analysis performed on KEGG and REACTOME databases revealed which metabolic pathways undergo changes in RNA-dependent epigenetic regulation in steatosis and steatohepatitis. New findings within the framework of this study are the dysregulation of neurohumoral pathways in the pathogenesis of NAFLD as an object of changes in RNA-dependent epigenetic regulation. The miRNAs differentially expressed in our study were found to target 7% of genes in the classic pathogenesis of NAFLD in the group of patients with steatosis and 50% in the group of patients with steatohepatitis. The effects of these microRNAs on genes for the pathogenesis of NAFLD were analyzed in detail. MiR-374a-5p, miR-1-3p and miR-23a-3p do not target genes directly involved in the pathogenesis of NAFLD. The differentially expressed miRNAs found in this study target genes largely responsible for mitochondrial function. The role of miR-423-5p, miR-143-5p and miR-200c-3 in regulating apoptotic processes in the liver and hepatocarcinogenesis is of interest for future experimental studies. These miR-374a, miR-143, miR-1, miR-23a, and miR-423 have potential for steatohepatitis diagnosis and are poorly studied in the context of NAFLD. Thus, this work opens up prospects for further studies of microRNAs as diagnostic and therapeutic biomarkers for NAFLD.
Collapse
Affiliation(s)
- Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Daria Shunkina
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Aleksandra Komar
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Pavel Zatolokin
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Elena Kirienkova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Ivan Kozlov
- Department of Organization and Management in the Sphere of Circulation of Medicines, Institute of Postgraduate Education, I.M. Sechenov Federal State Autonomous Educational University of Higher Education-First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
50
|
Li Z, Wang H, Wu K, Zhang L. Omarigliptin protects against nonalcoholic fatty liver disease by ameliorating oxidative stress and inflammation. J Biochem Mol Toxicol 2021; 35:e22914. [PMID: 34533252 DOI: 10.1002/jbt.22914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disease with high morbidity. Omarigliptin is a novel antidiabetic drug that inhibits dipeptidyl peptidase-4 and alleviates inflammation and insulin resistance. In the present study, the anti-inflammatory and antioxidative stress property of omarigliptin will be investigated to explore the potential therapeutic effects of omarigliptin on NAFLD in mice models. A high-fat diet (HFD) was used to induce a NAFLD model in mice. Hematoxylin-eosin staining and detection on the concentrations of total cholesterol (TC) and triglyceride (TG) were used to evaluate lipid accumulation of the liver tissues. Liver function was evaluated by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase. The insulin resistance index, the concentration of glucose, and insulin in the serum were determined. The levels of malondialdehyde and superoxide dismutase activities were detected to access the oxidative stress state. The concentrations of interleukin (IL)-1α, IL-6, and CXCL1 were measured using an enzyme-linked immunosorbent assay. Western blot analysis was used to determine the expression levels of nuclear factor kappa B (NF-κB) p65 and SIRT1 in the liver tissues. Significant elevated body weight and liver weight, marked macrovesicular steatosis combined with hepatocellular ballooning on the liver tissues, accumulated TC and TG concentrations, damaged liver function, increased oxidative stress, and elevated production of inflammatory factors were all induced with an HFD and significantly reversed by treatment with omarigliptin. Also, the activated NF-κB signaling pathway, as well as suppressed SIRT1 expression level, were significantly reversed by omarigliptin. Omarigliptin protected against NAFLD by ameliorating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kanglin Wu
- Department of Emergency, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Lianfeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|