1
|
Shailesh H, Noor S, Hayati L, Belavendra A, Van Panhuys N, Abou-Samra AB, Worgall S, Janahi I. Asthma and obesity increase inflammatory markers in children. FRONTIERS IN ALLERGY 2025; 5:1536168. [PMID: 39902293 PMCID: PMC11788363 DOI: 10.3389/falgy.2024.1536168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025] Open
Abstract
Background Asthma and obesity are both characterized by inflammation. However, the combined impact of these conditions on inflammatory mechanisms in children has not been studied extensively. To address this gap, we investigated the interaction effects of asthma and obesity on inflammation in children. Methods The multiplex and singleplex assays were used to measure the levels of circulating cytokines, including IL-2, IL-5, IL-10, IL-13, IL-17A, IL-22, IL-33, IFN-γ, TNF-α, and the adipokine leptin, in plasma. The study included 97 children with normal weight and asthma (NW-A), 100 children with overweight/obesity and asthma (OO-A), 100 with overweight/obesity and no asthma (OO), and 67 normal weight children and no asthma (NW). The independent effects of asthma, obesity, and their interaction effect on these inflammatory markers were assessed using multiple regression analysis. Results Asthma was associated with the increased expression of pro-inflammatory cytokines, including IL-2, IL-5, IL-13, IL-17A, IL-22, IL-33, and TNF-α, and reduced levels of anti-inflammatory cytokine, IL-10 and adipokine, leptin in the circulation. Overweight/obesity was also linked to increased plasma levels of IL-5, IL-17A, IL-22, IL-33, TNF-α, and leptin and decreased levels of IL-10. In addition, obesity and asthma showed a significant interaction effect on the plasma levels of IL-5, IL-10, IL-17A, IL-33, TNF-α, and leptin. However, the interaction did not result in a synergistic or additive impact on cytokines, indicating a moderating effect of obesity on inflammation in pediatric asthma. Conclusion Both asthma and overweight/obesity were independently associated with increased expression of pro-inflammatory cytokines and decreased expression of anti-inflammatory cytokine in children. While the concurrent presence of asthma and obesity altered the inflammatory profile, it did not synergistically amplify the inflammation. These findings challenge the previous view that obesity enhances inflammation in individuals with asthma and highlight the importance of considering both conditions while treating obesity-associated asthma in children. Future studies are necessary to further explore the mechanisms that link obesity and asthma in the pediatric population.
Collapse
Affiliation(s)
- Harshita Shailesh
- Department of Pediatric Medicine, Division of Pulmonology, Sidra Medicine, Doha, Qatar
| | - Safa Noor
- Department of Pediatric Medicine, Division of Pulmonology, Sidra Medicine, Doha, Qatar
| | - Lena Hayati
- Department of Pediatric Medicine, Division of Pulmonology, Sidra Medicine, Doha, Qatar
| | - Antonisamy Belavendra
- Department of Pediatric Medicine, Division of Pulmonology, Sidra Medicine, Doha, Qatar
| | | | - Abdul Badi Abou-Samra
- Academic Health System, Hamad Medical Corporation, Qatar Metabolic Institute, Doha, Qatar
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, United States
| | - Ibrahim Janahi
- Department of Pediatric Medicine, Division of Pulmonology, Sidra Medicine, Doha, Qatar
- Department of Pediatrics, Weill Cornel Medicine-Qatar (WCM-Q), Doha, Qatar
| |
Collapse
|
2
|
Tamasauskiene L, Gradauskiene B. Profile of immune response during nasal challenge with dermatophagoides pteronyssinus in subjects with allergic airway diseases. J Inflamm (Lond) 2024; 21:41. [PMID: 39482718 PMCID: PMC11526524 DOI: 10.1186/s12950-024-00415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND T lymphocyte helper (Th) 2 plays the main role in pathogenesis of allergic airway diseases (AAD). Recent studies showed that interleukin (IL) 33, Th17 and Th22 also may be involved in allergic inflammation. The aim is to evaluate cytokine level before and after nasal challenge with Dermatophagoides pteronyssinus in patients with AAD. METHODS Patients with persistent allergic rhinitis (AR) with or without allergic asthma (AA) allergic to house dust mite and healthy individuals underwent nasal challenge with Dermatophagoides pteronyssinus. Measurements of IL-13, IL-17, IL-22 and IL-33 in serum and nasal lavage were performed before, 2 and 22 h after nasal challenge by ELISA. RESULTS . Ten patients with AR only, 6 patients with AR and AA and 7 healthy individuals were involved in the study. Serum IL-22 level significantly increased in patients with AR and AA and nasal lavage IL-22 tended to increase in patients with AAD after nasal challenge. Serum IL-13 level tended to increase in patients with AR and AA. IL-13 level in nasal lavage fluid decreased at 22 h after nasal challenge in patients with AR only. IL-17 level in serum and nasal lavage decreased in patients with AAD. Serum IL-33 tended to increase after nasal challenge whereas IL-33 in nasal lavage significantly decreased. CONCLUSION Cytokine profile differs between local and systemic compartments and between patients with allergic rhinitis only and patients with allergic rhinitis and asthma after nasal challenge.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
- Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas, Lithuania.
| | - Brigita Gradauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
3
|
Abstract
Introduction: Allergic asthma is often associated with eosinophilic inflammation, which is related to the T-helper cell type 2 (Th2) cytokines and responsive to corticosteroids. However, there are also phenotypes of non-Th2-mediated asthma, which have poor responsivity to corticosteroids. The leading phenotype of non-Th2-mediated asthma is neutrophilic asthma, which is considered difficult to treat. Recently, IL-22 has been found to be involved in neutrophilic inflammation in asthma. However, studies on the role of IL-22 in asthma are still controversial as IL-22 has both pro-inflammatory and anti-inflammatory roles in asthma. This study examined whether the IL-22 level increased in acute neutrophilic asthma in the mouse model. Herein, we aimed to demonstrate increased IL-22 levels in neutrophilic asthma and elucidate the pathways leading to elevated neutrophil counts.Methods: Six-week old female BALB/c mice were sensitized and challenged with PBS, ovalbumin (OVA) or OVA + lipopolysaccharide (LPS). The mice were then assigned to one of the following five groups: (1) control (PBS/ PBS), (2) OVA/PBS, (3) OVA/OVA, (4) OVA+LPS/PBS, (5) OVA+LPS/OVA+LPS.Results: The levels of Th2 cytokines, IL-17, and IL-22 were assessed, with investigation of the neutrophil chemokines. This study showed that in the acute neutrophilic asthma, the levels of IL-17 and IL-22 were significantly higher than those in the OVA/OVA group, which represents acute eosinophilic asthma. Moreover, the level of CCL20 increased in the neutrophilic asthma group.Conclusion: Thus, this study suggests that in the acute neutrophilic asthma mouse model, IL-17 and IL-22 may increase with CCL20, resulting in neutrophilic inflammation.
Collapse
Affiliation(s)
- Kyu Yean Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hur
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hwa Young Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Allergy, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sook Young Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Allergy, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Ulu A, Sveiven S, Bilg A, Velazquez JV, Diaz M, Mukherjee M, Yuil-Valdes AG, Kota S, Burr A, Najera A, Nordgren TM. IL-22 regulates inflammatory responses to agricultural dust-induced airway inflammation. Toxicol Appl Pharmacol 2022; 446:116044. [PMID: 35525330 PMCID: PMC9133182 DOI: 10.1016/j.taap.2022.116044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
IL-22 is a unique cytokine that is upregulated in many chronic inflammatory diseases, including asthma, and modulates tissue responses during inflammation. However, the role of IL-22 in the resolution of inflammation and how this contributes to lung repair processes are largely unknown. Here, we tested the hypothesis that IL-22 signaling is critical in inflammation resolution after repetitive exposure to agricultural dust. Using an established mouse model of organic dust extract-induced lung inflammation, we found that IL-22 knockout mice have an enhanced response to agricultural dust as evidenced by an exacerbated increase in infiltrating immune cells and lung pathology as compared to wild-type controls. We further identified that, in response to dust, IL-22 is expressed in airway epithelium and in Ym1+ macrophages found within the parenchyma in response to dust. The increase in IL-22 expression was accompanied by increases in IL-22 receptor IL-22R1 within the lung epithelium. In addition, we found that alveolar macrophages in vivo as well as THP-1 cells in vitro express IL-22, and this expression is modulated by dust exposure. Furthermore, subcellular localization of IL-22 appears to be in the Golgi of resting THP1 human monocytes, and treatment with dust extracts is associated with IL-22 release into the cytosolic compartment from the Golgi reservoirs during dust extract exposure. Taken together, we have identified a significant role for macrophage-mediated IL-22 signaling that is activated in dust-induced lung inflammation in mice.
Collapse
Affiliation(s)
- Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Stefanie Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Amanpreet Bilg
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Jalene V Velazquez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Marissa Diaz
- Riverside Community College, Riverside, CA 92521, USA
| | - Maheswari Mukherjee
- Department of Medical Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ana G Yuil-Valdes
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santosh Kota
- Department of Preprofessional Biology, University of Florida, Gainesville, FL 32603, USA
| | - Abigail Burr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Aileen Najera
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80521, USA.
| |
Collapse
|
5
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
6
|
Tamasauskiene L, Sitkauskiene B. Systemic and local cytokine profile and risk factors for persistent allergic airway inflammation in patients sensitised to house dust mite allergens. BMC Pulm Med 2021; 21:424. [PMID: 34930201 PMCID: PMC8690867 DOI: 10.1186/s12890-021-01798-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Objective To evaluate cytokine profile, vitamin D status, symptom score and quality of life in patients with persistent allergic airway diseases sensitised to house dust mites (HDM) in comparison with healthy individuals. Material and methods Patients sensitized to HDM with persistent AR and having symptoms for at least 2 years with or without AA were involved into the study. Measurements of vitamin D level in serum and IL-10, IL-13, IL-17, IL-22, IL-33 and IFN-gamma in serum and nasal lavage were performed by ELISA. Results Eighty-one subjects were involved into the study. Serum IL-10 concentration was higher in patients with AR than in patients with AR and AA (6.71 ± 1.73 vs. 1.98 ± 0.24, p < 0.05). IFN-gamma level in nasal lavage was higher in patients with AR and AA than in patients with AR (p < 0.01) and healthy individuals (p < 0.05) (7.50 ± 0.37 vs. 6.80 ± 0.99 vs. 6.50 ± 0.22). Serum IL-22 negatively correlated with IL-22 in nasal lavage, whereas serum IFN-gamma positively correlated with IFN-gamma in nasal lavage. Positive correlation between serum IL-17 and total IgE and negative correlation between IL-17 in nasal lavage and eosinophils in nasal smear were found in patients with AR and AA. Serum IFN-gamma decreased the risk of AR for healthy individuals. Serum IL-10 and vitamin D decreased risk for development of AA for patients with AR. IL-22 in serum and IL-10 and IL-33 in nasal lavage increased this risk. Conclusion Novel cytokines such as IL-22, IL-17 and IL-33 and vitamin D may be involved in pathogenesis of persistent airway inflammation in patients sensitized to HDM.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas, Lithuania. .,Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009, Kaunas, Lithuania.
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas, Lithuania
| |
Collapse
|
7
|
Wang J, Gao S, Zhang J, Li C, Li H, Lin J. Interleukin-22 attenuates allergic airway inflammation in ovalbumin-induced asthma mouse model. BMC Pulm Med 2021; 21:385. [PMID: 34836520 PMCID: PMC8620641 DOI: 10.1186/s12890-021-01698-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Allergic asthma is a chronic airway inflammatory disease with a number of cytokines participating in its pathogenesis and progress. Interleukin (IL)-22, which is derived from lymphocytes, acts on epithelial cells and play a role in the chronic airway inflammation. However, the actual role of IL-22 in allergic asthma is still unclear. Therefore, we explored the effect of IL-22 on allergic airway inflammation and airway hyperresponsiveness (AHR) in an ovalbumin (OVA)-induced asthma mouse model. METHODS To evaluate the effect of IL-22 in an allergic asthma model, BALB/c mice were sensitized and challenged with OVA; then the recombinant mouse IL-22 was administered intranasally 24 h prior to each challenge. The IL-22 levels in lung homogenates and bronchoalveolar lavage fluid (BALF) were measured by enzyme linked immunosorbent assay, respectively. AHR was evaluated through indicators including airways resistance (Rrs), elastance (Ers) and compliance (Crs); the inflammatory cell infiltration was assessed by quantification of differential cells counts in BALF and lung tissues stained by hematoxylin and eosin (H&E); IL-22 specific receptors were determined by immunohistochemistry staining. RESULTS The concentration of IL-22 was significantly elevated in the OVA-induced mice compared with the control mice in lung homogenates and BALF. In the OVA-induced mouse model, IL-22 administration could significantly attenuate AHR, including Rrs, Ers and Crs, decrease the proportion of eosinophils in BALF and reduce inflammatory cell infiltration around bronchi and their concomitant vessels, compared with the OVA-induced group. In addition, the expression of IL-22RA1 and IL-10RB in the lung tissues of OVA-induced mice was significantly increased compared with the control mice, while it was dramatically decreased after the treatment with IL-22, but not completely attenuated in the IL-22-treated mice when compared with the control mice. CONCLUSION Interleukin-22 could play a protective role in an OVA-induced asthma model, by suppressing the inflammatory cell infiltration around bronchi and their concomitant vessels and airway hyperresponsiveness, which might associate with the expression of its heterodimer receptors. Thus, IL-22 administration might be an effective strategy to attenuate allergic airway inflammation.
Collapse
Affiliation(s)
- Jingru Wang
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Shengnan Gao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, Graduate School of Chinese Academy of Medical Sciences, Peking Union Medical College, China-Japan Friendship Hospital, Beijing, 100730 China
| | - Jingyuan Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, Graduate School of Chinese Academy of Medical Sciences, Peking Union Medical College, China-Japan Friendship Hospital, Beijing, 100730 China
| | - Chunxiao Li
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Hongwen Li
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Jiangtao Lin
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| |
Collapse
|
8
|
Alemao CA, Budden KF, Gomez HM, Rehman SF, Marshall JE, Shukla SD, Donovan C, Forster SC, Yang IA, Keely S, Mann ER, El Omar EM, Belz GT, Hansbro PM. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy 2021; 76:714-734. [PMID: 32762040 DOI: 10.1111/all.14548] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of chronic immune and metabolic disorders is increasing rapidly. In particular, inflammatory bowel diseases, obesity, diabetes, asthma and chronic obstructive pulmonary disease have become major healthcare and economic burdens worldwide. Recent advances in microbiome research have led to significant discoveries of associative links between alterations in the microbiome and health, as well as these chronic supposedly noncommunicable, immune/metabolic disorders. Importantly, the interplay between diet, microbiome and the mucous barrier in these diseases has gained significant attention. Diet modulates the mucous barrier via alterations in gut microbiota, resulting in either disease onset/exacerbation due to a "poor" diet or protection against disease with a "healthy" diet. In addition, many mucosa-associated disorders possess a specific gut microbiome fingerprint associated with the composition of the mucous barrier, which is further influenced by host-microbiome and inter-microbial interactions, dietary choices, microbe immigration and antimicrobials. Our review focuses on the interactions of diet (macronutrients and micronutrients), gut microbiota and mucous barriers (gastrointestinal and respiratory tract) and their importance in the onset and/or progression of major immune/metabolic disorders. We also highlight the key mechanisms that could be targeted therapeutically to prevent and/or treat these disorders.
Collapse
Affiliation(s)
- Charlotte A. Alemao
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Kurtis F. Budden
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Henry M. Gomez
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Saima F. Rehman
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Jacqueline E. Marshall
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Chantal Donovan
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Samuel C. Forster
- Department of Molecular and Translational Sciences Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases Monash University Clayton VIC Australia
| | - Ian A. Yang
- Thoracic Program The Prince Charles Hospital Metro North Hospital and Health Service Brisbane QLD Australia
- Faculty of Medicine UQ Thoracic Research Centre The University of Queensland Brisbane QLD Australia
| | - Simon Keely
- Hunter Medical Research Institute Priority Research Centre for Digestive Health and Neurogastroenterology University of Newcastle New Lambton Heights NSW Australia
| | - Elizabeth R. Mann
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
- Faculty of Biology Medicine and Health Manchester Collaborative Centre for Inflammation Research Manchester Academic Health Science Centre University of Manchester Manchester UK
| | - Emad M. El Omar
- St George & Sutherland Clinical School Microbiome Research Centre University of New South Wales Sydney NSW Australia
| | - Gabrielle T. Belz
- Diamantina Institute University of Queensland Woolloongabba QLD Australia
- Department of Medical Biology Walter and Eliza Hall Institute of Medical Research University of Melbourne Parkville VIC Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| |
Collapse
|
9
|
Tamasauskiene L, Gintauskiene VM, Bastyte D, Sitkauskiene B. Role of IL-22 in persistent allergic airway diseases caused by house dust mite: a pilot study. BMC Pulm Med 2021; 21:36. [PMID: 33478443 PMCID: PMC7819229 DOI: 10.1186/s12890-021-01410-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Persistent allergic airway diseases cause a great burden worldwide. Their pathogenesis is not clear enough. There is evidence that one of the recently described cytokine interleukin (IL) 22 may be involved in the pathogenesis of these diseases. Scientists argue if this cytokine acts as proinflammatory or anti-inflammatory agent. The aim of this study was to investigate IL-22 level in patients with persistent allergic airway diseases caused by house dust mite (HDM) in comparison with healthy individuals and to evaluate its relationship with IL-13 and IL-10 level, symptoms score and quality of life. METHODS Patients with persistent allergic rhinitis caused by HDM and having symptoms for at least 2 years with or without allergic asthma were involved into the study. Measurements of IL-22, IL-13 and IL-10 and in serum and nasal lavage was performed by ELISA. Questionnaires assessing symptoms severity and quality of life were used. RESULTS A tendency was observed that IL-22 in serum and nasal lavage was higher in patients with allergic airway diseases compared to control group (14.86 pg/ml vs. 7.04 pg/ml and 2.67 pg/ml vs. 1.28 pg/ml, respectively). Positive statistically significant correlation was estimated between serum IL-22 and serum IL-10 (rs = 0.57, p < 0.01) and IL-13 (rs = 0.44, p < 0.05) level. Moreover, positive significant correlation was found between IL-22 in nasal lavage and IL-10 in nasal lavage (rs = 0.37, p < 0.05). There was a negative statistically significant correlation between serum IL-22 and Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) (rs = - 0.42, p < 0.05). CONCLUSION Our study showed a possible anti-inflammatory effect of IL-22 in patients with persistent allergic airway diseases caused by HDM.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| | - Vilte Marija Gintauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| | - Daina Bastyte
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| |
Collapse
|
10
|
Zhou L, Zheng T, Zhu Z. Generation and Characterization of Inducible Lung and Skin-Specific IL-22 Transgenic Mice. Methods Mol Biol 2021; 2223:115-132. [PMID: 33226591 DOI: 10.1007/978-1-0716-1001-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
IL-22 is an IL-10 family cytokine that is increased in asthma and atopic dermatitis (AD). However, the specific role of IL-22 in the pathogenesis of allergic lung inflammation and AD in vivo has yet to be elucidated. We aimed to develop mouse models of allergic diseases in the lung and skin with inducible and tissue-specific expression of IL-22, using a tetracycline (Tet)-controlled system. In this chapter, we describe a series of protocols we have developed to generate a construct that contains the TRE-Tight promoter and mouse IL-22 cDNA based on this system. Furthermore, we describe how to generate TRE-Tight-IL-22 mice through pronuclear microinjection. In our approach, two Tet-on (CC10-rtTA or SPC-rtTA) and a Tet-off (K5-tTA) transgenic mouse lines are selected to crossbreed with TRE-Tight-IL-22 mice to generate inducible tissue-specific transgenic lines. The transgenic strains, CC10-rtTA/TRE-Tight-IL-22 (CC10-rtTA-IL-22) or SPC-rtTA/TRE-Tight-IL-22 (SPC-rtTA-IL-22) mice, do not produce detectable levels of IL-22 in their bronchoalveolar lavage (BAL) samples in the absence of doxycycline (Dox). However, oral Dox treatment of these mice induces IL-22 expression in the BAL, and the airway and lung epithelial cells. For K5-tTA/TRE-Tight-IL-22 (K5-tTA-IL-22) mice, to avoid potential IL-22 toxicity to mouse embryos, Dox is given starting at the time of breeding to suppress tTA and to keep the IL-22 transgene off until the K5-tTA-IL-22 mice are 6 weeks old. Experiments are then initiated by withdrawing Dox from the drinking water. In all cases, IL-22 protein can be detected by immunohistochemistry in the skin of Tg(+) animals, but not in the skin of Tg(-) animals. Utilizing transgenic technology based on the Tetracycline-controlled system, we have established inducible transgenic mouse models in which cytokine IL-22 can be expressed specifically in the lung or skin. These models are valuable for studies in vivo in a broad range of diseases involving IL-22 and will provide a new platform for research and for seeking novel therapeutics in the fields of inflammation, asthma, and allergic dermatitis.
Collapse
Affiliation(s)
- Li Zhou
- Animal Bio-Safety Level III Laboratory, State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, China
| | - Tao Zheng
- Department of Molecular Microbiology and Immunology and Department of Pediatrics, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Zhou Zhu
- Department of Molecular Microbiology and Immunology and Department of Pediatrics, Brown University Warren Alpert Medical School, Providence, RI, USA.
| |
Collapse
|
11
|
Tamasauskiene L, Sitkauskiene B. Interleukin-22 in Allergic Airway Diseases: A Systematic Review. J Interferon Cytokine Res 2020; 40:125-130. [PMID: 31895598 DOI: 10.1089/jir.2019.0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The immune system plays an important role in the pathogenesis of many disorders, including allergic airway diseases. There are studies suggesting that interleukin (IL)-22 can be important in the development of these diseases. However, it is not known if this cytokine acts as proinflammatory or anti-inflammatory agent. This systematic review aimed to analyze level and role of IL-22 in patients with allergic airway diseases in comparison with healthy individuals. Systematic review included only observational studies with patients having allergic rhinitis and/or allergic asthma. The primary outcome measure was IL-22 level in patients with allergic asthma and/or allergic rhinitis. A total of 95 articles were found. Overall, 6 articles were included in systematic review. Five of these studies showed that IL-22 was increased in patients with allergic airway diseases compared with control group. Majority of studies revealed relation between IL-22 level and severity of allergic asthma and allergic rhinitis. Some studies showed positive relation between IL-22 level and total immunoglobulin E (IgE), specific IgE, and eosinophil count in nasal mucosa. IL-22 level is increased in children and adults with allergic airway diseases and is likely to be associated with proinflammatory features.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
12
|
Hebert KD, Mclaughlin N, Galeas-Pena M, Zhang Z, Eddens T, Govero A, Pilewski JM, Kolls JK, Pociask DA. Targeting the IL-22/IL-22BP axis enhances tight junctions and reduces inflammation during influenza infection. Mucosal Immunol 2020; 13:64-74. [PMID: 31597930 PMCID: PMC6917921 DOI: 10.1038/s41385-019-0206-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 02/04/2023]
Abstract
The seasonal burden of influenza coupled with the pandemic outbreaks of more pathogenic strains underscore a critical need to understand the pathophysiology of influenza injury in the lung. Interleukin-22 (IL-22) is a promising cytokine that is critical in protecting the lung during infection. This cytokine is strongly regulated by the soluble receptor IL-22-binding protein (IL-22BP), which is constitutively expressed in the lungs where it inhibits IL-22 activity. The IL-22/IL-22BP axis is thought to prevent chronic exposure of epithelial cells to IL-22. However, the importance of this axis is not understood during an infection such as influenza. Here we demonstrate through the use of IL-22BP-knockout mice (il-22ra2-/-) that a pro-IL-22 environment reduces pulmonary inflammation during H1N1 (PR8/34 H1N1) infection and protects the lung by promoting tight junction formation. We confirmed these results in normal human bronchial epithelial cells in vitro demonstrating improved membrane resistance and induction of the tight junction proteins Cldn4, Tjp1, and Tjp2. Importantly, we show that administering recombinant IL-22 in vivo reduces inflammation and fluid leak into the lung. Taken together, our results demonstrate the IL-22/IL-22BP axis is a potential targetable pathway for reducing influenza-induced pneumonia.
Collapse
Affiliation(s)
- K D Hebert
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - N Mclaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - M Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Z Zhang
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - T Eddens
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, USA
| | - A Govero
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - J M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - D A Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
13
|
Barnig C, Bezema T, Calder PC, Charloux A, Frossard N, Garssen J, Haworth O, Dilevskaya K, Levi-Schaffer F, Lonsdorfer E, Wauben M, Kraneveld AD, Te Velde AA. Activation of Resolution Pathways to Prevent and Fight Chronic Inflammation: Lessons From Asthma and Inflammatory Bowel Disease. Front Immunol 2019; 10:1699. [PMID: 31396220 PMCID: PMC6664683 DOI: 10.3389/fimmu.2019.01699] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Formerly considered as a passive process, the resolution of acute inflammation is now recognized as an active host response, with a cascade of coordinated cellular and molecular events that promotes termination of the inflammatory response and initiates tissue repair and healing. In a state of immune fitness, the resolution of inflammation is contained in time and space enabling the restoration of tissue homeostasis. There is increasing evidence that poor and/or inappropriate resolution of inflammation participates in the pathogenesis of chronic inflammatory diseases, extending in time the actions of pro-inflammatory mechanisms, and responsible in the long run for excessive tissue damage and pathology. In this review, we will focus on how resolution can be the target for therapy in "Th1/Th17 cell-driven" immune diseases and "Th2 cell-driven" immune diseases, with inflammatory bowel diseases (IBD) and asthma, as relevant examples. We describe the main cells and mediators stimulating the resolution of inflammation and discuss how pharmacological and dietary interventions but also life style factors, physical and psychological conditions, might influence the resolution phase. A better understanding of the impact of endogenous and exogenous factors on the resolution of inflammation might open a whole area in the development of personalized therapies in non-resolving chronic inflammatory diseases.
Collapse
Affiliation(s)
- Cindy Barnig
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | | | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Anne Charloux
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Nelly Frossard
- UMR 7200 CNRS/Université de Strasbourg, Laboratoire d'Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| | - Oliver Haworth
- Biochemical Pharmacology, William Harvey Research Institute, Bart's School of Medicine and Queen Mary University of London, London, United Kingdom
| | - Ksenia Dilevskaya
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Evelyne Lonsdorfer
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Marca Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anje A Te Velde
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AGEM, Amsterdam, Netherlands
| |
Collapse
|
14
|
PPARγ Agonist PGZ Attenuates OVA-Induced Airway Inflammation and Airway Remodeling via RGS4 Signaling in Mouse Model. Inflammation 2019; 41:2079-2089. [PMID: 30022363 DOI: 10.1007/s10753-018-0851-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone (PGZ) exhibits potential protective effects in asthma. Recently, regulator of G protein 4 (RGS4) has been reported to be associated with immunological and inflammatory responses. However, no evidence has shown the influence of PPARγ on RGS4 expression in airway disorders. In this study, BALB/c mice received ovalbumin (OVA) sensitization followed by OVA intranasal challenge for 90 days to establish a chronic asthma mouse model. Accompanied with OVA challenge, the mice received administration of PPARγ agonist PGZ (10 mg/kg) intragastrically or RGS4 inhibitor CCG 63802 (0.5 mg/kg) intratracheally. Invasive pulmonary function tests were performed 24 h after last challenge. Serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected for further analyses after the mice were sacrificed. We found that PPARγ agonist PGZ administration significantly attenuated the pathophysiological features of OVA-induced asthma and increased the expression of RGS4. In addition, the attenuating effect of PGZ on airway inflammation, hyperresponsiveness (AHR), and remodeling was partially abrogated by administration of RGS4 inhibitor CCG 63802. We also found that the downregulation of RGS4 by CCG 63802 also significantly increased inflammatory cell accumulation and AHR, and increased levels of IL-4, IL-13, eotaxin, IFN-γ, and IL-17A in BALF, and total and OV-specific IgE in serum. Furthermore, the inhibitory effects of PGZ on the activations of ERK and Akt/mTOR signaling, and MMPs were apparently reversed by CCG 63802 administration. In conclusion, the protective effect of PGZ on OVA-induced airway inflammation and remodeling might be partly regulated by RGS4 expression through ERK and Akt/mTOR signaling.
Collapse
|
15
|
Ito T, Hirose K, Nakajima H. Bidirectional roles of IL-22 in the pathogenesis of allergic airway inflammation. Allergol Int 2019; 68:4-8. [PMID: 30424940 DOI: 10.1016/j.alit.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Asthma is the most prevalent allergic disease of the airway, which is characterized by eosinophilic inflammation, mucus hyperproduction, and airway hyper-responsiveness. Although these pathognomonic features are mainly mediated by antigen-specific Th2 cells and their cytokines, such as IL-4, IL-5, and IL-13, recent studies have revealed that other inflammatory cells, including Th17 cells and innate lymphoid cells (ILCs), also play a critical role in the pathogenesis of asthma. IL-22, one of the cytokines produced by Th17 cells and type 3 ILCs, has distinct functional properties, as IL-22 exclusively acts on non-hematopoietic cells including epithelial cells of mucosal surface and exhibits a broad range of action in regeneration and host protection. In accordance with the fact that lung epithelial cells play a critical role in the pathogenesis of asthma, we and other groups have shown that IL-22 is involved in the regulation of allergic airway inflammation. In this review, we discuss recent advances in the biology of IL-22 and its involvement in the pathogenesis of allergic airway inflammation.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Rheumatology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
16
|
Tamasauskiene L, Sitkauskiene B. Role of Th22 and IL-22 in pathogenesis of allergic airway diseases: Pro-inflammatory or anti-inflammatory effect? Pediatr Neonatol 2018; 59:339-344. [PMID: 29292068 DOI: 10.1016/j.pedneo.2017.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/07/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
A new population of T cells known as Th22 was described for the first time in 2009. These cells are usually identified by the production of IL-22. However, this cytokine is also secreted by other cells such as Th1, Th2, Th17, natural killers, and innate lymphoid cells. Th22 is known as a pro-inflammatory agent in allergic skin diseases. Recently, more evidence has emerged showing associations between these cells and other diseases. The role of Th22 in asthma and allergic rhinitis is controversial: some authors suggest that Th22 has a pro-inflammatory effect, while others state that Th22 has anti-inflammatory properties. The aim of this article was to review the role of Th22 and IL-22 in allergic airway diseases based on the most recent literature. This review suggests that Th22 plays a significant role in the pathogenesis of allergic airway diseases and has predominantly anti-inflammatory properties. More studies are needed to clarify the role of Th22 in more detail.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
17
|
Liu Y, Yao Y, Wang ZC, Ning Q, Liu Z. Novel innate and adaptive lymphocytes: The new players in the pathogenesis of inflammatory upper airway diseases. Clin Exp Allergy 2018. [PMID: 29513401 DOI: 10.1111/cea.13128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Y. Liu
- Department of Otolaryngology-Head and Neck Surgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Y. Yao
- Department of Otolaryngology-Head and Neck Surgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Z.-C. Wang
- Department of Otolaryngology-Head and Neck Surgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Q. Ning
- Department of Infectious Disease; Institute of Infectious Disease; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Z. Liu
- Department of Otolaryngology-Head and Neck Surgery; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
18
|
Gurczynski SJ, Moore BB. IL-17 in the lung: the good, the bad, and the ugly. Am J Physiol Lung Cell Mol Physiol 2017; 314:L6-L16. [PMID: 28860146 DOI: 10.1152/ajplung.00344.2017] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The IL-17 family of cytokines has emerged over the last two decades as a pleiotropic group of molecules that function in a wide variety of both beneficial and detrimental (pathological) processes, mainly in mucosal barrier tissue. The beneficial effects of IL-17 expression are especially important in the lung, where exposure to foreign agents is abundant. IL-17A plays an important role in protection from both extracellular bacteria and fungi, as well as viruses that infect cells of the mucosal tracts. IL-17 coregulated cytokines, such as IL-22, are involved in maintaining epithelial cell homeostasis and participate in epithelial cell repair/regeneration following inflammatory insults. Thus, the IL-17/IL-22 axis is important in both responding to, and recovering from, pathogens. However, aberrant expression or overexpression of IL-17 cytokines contributes to a number of pathological outcomes, including asthma, pneumonitis, and generation or exacerbation of pulmonary fibrosis. This review covers the good, bad, and ugly aspects of IL-17 in the lung.
Collapse
Affiliation(s)
- Stephen J Gurczynski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
19
|
Lou H, Lu J, Choi EB, Oh MH, Jeong M, Barmettler S, Zhu Z, Zheng T. Expression of IL-22 in the Skin Causes Th2-Biased Immunity, Epidermal Barrier Dysfunction, and Pruritus via Stimulating Epithelial Th2 Cytokines and the GRP Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2543-2555. [PMID: 28228560 PMCID: PMC5360537 DOI: 10.4049/jimmunol.1600126] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/28/2017] [Indexed: 12/27/2022]
Abstract
Increased expression of Th22 cytokine IL-22 is a characteristic finding in atopic dermatitis (AD). However, the specific role of IL-22 in the pathogenesis of AD in vivo has yet to be elucidated. Consistent with observations in human AD, IL-22 was significantly increased in the AD skin of mice after epicutaneous sensitization to house dust mite allergen. Utilizing a skin-specific inducible transgenic system, we show in the present study that expression of IL-22 in the skin of mice caused an AD-like phenotype characterized by chronic pruritic dermatitis associated with Th2-biased local and systemic immune responses, downregulation of epidermal differentiation complex genes, and enhanced dermatitis upon epicutaneous allergen exposure. IL-22 potently induced the expression of gastrin-releasing peptide (GRP), a neuropeptide pruritogen, in dermal immune cells and sensory afferents and in their skin-innervating sensory neurons. IL-22 also differentially upregulated the expression of GRP receptor (GRPR) on keratinocytes of AD skin. The number of GRP+ cells in the skin correlated with the AD severity and the intensity of pruritus. IL-22 directly upregulated the expression of epithelial-derived type 2 cytokines (thymic stromal lymphopoietin and IL-33) and GRP in primary keratinocytes. Furthermore, GRP not only strongly induced thymic stromal lymphopoietin but it also increased the expression of IL-33 and GRPR synergistically with IL-22. Importantly, we found that the expression of GRP was strikingly increased in the skin of patients with AD. These results indicate that IL-22 plays important pathogenic roles in the initiation and development of AD, in part through inducing keratinocyte production of type 2 cytokines and activation of the GRP/GRPR pathway.
Collapse
Affiliation(s)
- Hongfei Lou
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
| | - Jingning Lu
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Eun Byul Choi
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Min Hee Oh
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Mingeum Jeong
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Sara Barmettler
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Zhou Zhu
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Tao Zheng
- Section of Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06510; and
| |
Collapse
|
20
|
Agache I, Rogozea L. Asthma Biomarkers: Do They Bring Precision Medicine Closer to the Clinic? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:466-476. [PMID: 28913985 PMCID: PMC5603474 DOI: 10.4168/aair.2017.9.6.466] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
Abstract
Measurement of biomarkers has been incorporated within clinical research of asthma to characterize the population and to associate the disease with environmental and therapeutic effects. Regrettably, at present, there are no specific biomarkers, none is validated or qualified, and endotype-driven choices overlap. Biomarkers have not yet reached clinical practice and are not included in current asthma guidelines. Last but not least, the choice of the outcome upholding the value of the biomarkers is extremely difficult, since it has to reflect the mechanistic intervention while being relevant to both the disease and the particular person. On the verge of a new age of asthma healthcare standard, we must embrace and adapt to the key drivers of change. Disease endotypes, biomarkers, and precision medicine represent an emerging model of patient care building on large-scale biologic databases, omics and diverse cellular assays, health information technology, and computational tools for analyzing sizable sets of data. A profound transformation of clinical and research pattern from population to individual risk and from investigator-imposed subjective disease clustering (hypothesis driven) to unbiased, data-driven models is facilitated by the endotype/biomarker-driven approach.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University of Brasov, Brasov, Romania.
| | - Liliana Rogozea
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University of Brasov, Brasov, Romania
| |
Collapse
|
21
|
Interleukin-17 Pathophysiology and Therapeutic Intervention in Cystic Fibrosis Lung Infection and Inflammation. Infect Immun 2016; 84:2410-21. [PMID: 27271746 DOI: 10.1128/iai.00284-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/31/2016] [Indexed: 01/13/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by an excessive neutrophilic inflammatory response within the airway as a result of defective cystic fibrosis transmembrane receptor (CFTR) expression and function. Interleukin-17A induces airway neutrophilia and mucin production associated with Pseudomonas aeruginosa colonization, which is associated with the pathophysiology of cystic fibrosis. The objectives of this study were to use the preclinical murine model of cystic fibrosis lung infection and inflammation to investigate the role of IL-17 in CF lung pathophysiology and explore therapeutic intervention with a focus on IL-17. Cftr-deficient mice (CF mice) and wild-type mice (WT mice) infected with P. aeruginosa had robust IL-17 production early in the infection associated with a persistent elevated inflammatory response. Intratracheal administration of IL-17 provoked a neutrophilic response in the airways of WT and CF animals which was similar to that observed with P. aeruginosa infection. The neutralization of IL-17 prior to infection significantly improved the outcomes in the CF mice, suggesting that IL-17 may be a therapeutic target. We demonstrate in this report that the pathophysiological contribution of IL-17 may be due to the induction of chemokines from the epithelium which is augmented by a deficiency of Cftr and ongoing inflammation. These studies demonstrate the in vivo contribution of IL-17 in cystic fibrosis lung disease and the therapeutic validity of attenuating IL-17 activity in cystic fibrosis.
Collapse
|
22
|
Abstract
Asthma is a complex, heterogeneous disorder with increasing prevalence. It is now recognized that several asthma phenotypes exist, including type 2-high and type 2-low (or non-type 2) subsets. As current research strives to identify subgroups of asthmatics that share disease pathobiology to establish endotypes, efforts to clarify the underlying molecular mechanisms of disease are needed and essential. IL-22 is thought to be a mediator of asthma pathogenesis, but whether this cytokine has a pathologic or beneficial role in the lung during severe disease is still debated. Studies focused on the regulation of this cytokine by its receptors and other inflammatory mediators during allergic airway responses are necessary to clarify its role in disease. Here, we discuss the ambiguity surrounding the role of IL-22 in asthma and considerations for targeting IL-22 therapeutically.
Collapse
Affiliation(s)
- Michelle L Manni
- a Department of Pediatrics , Children's Hospital of Pittsburgh of UPMC , Pittsburgh , PA , USA
| | - John F Alcorn
- a Department of Pediatrics , Children's Hospital of Pittsburgh of UPMC , Pittsburgh , PA , USA
| |
Collapse
|
23
|
Halwani R, Sultana A, Al-Kufaidy R, Jamhawi A, Vazquez-Tello A, Al-Muhsen S. Th-17 regulatory cytokines inhibit corticosteroid induced airway structural cells apoptosis. Respir Res 2016; 17:6. [PMID: 26772733 PMCID: PMC4715361 DOI: 10.1186/s12931-015-0307-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022] Open
Abstract
Background Although corticosteroid is a powerful anti-inflammatory drug that is used widely to control asthma, still severe asthmatics can develop steroid resistance. Airway fibroblasts are quite resistant to steroids during Idiopathic pulmonary fibrosis (IPF) and fibrosis in asthmatic lungs is not always controlled. Th-17 regulatory cytokine which are elevated in lung tissues of asthmatics were shown to enhance the survival of various types of cells. STAT factors are central to this anti-apoptotic function. However, it is not yet clear whether these cytokines contribute to steroid hypo-responsiveness in asthma. Therefore, in this study, we investigated the ability of Th-17 regulatory cytokines, specifically IL-21, IL22 and IL23, to protect structural airway cells against dexamethasone-induced apoptosis. Methods Primary human fibroblasts, ASM cells, and lung endothelial cells line were treated with IL-21, IL-22, and IL-23 cytokines before incubation with dexamethasone and the level of apoptosis was determined by measuring cellular Annexin-V using Flow cytometry. Results Our data indicated that treatment with Th-17 regulatory cytokines was effective in inhibiting induced apoptosis for both fibroblasts and endothelial cells but not ASM cells. STAT3 phosphorylation levels were also upregulated in fibroblasts and endothelial upon treatment with these cytokines. Interestingly, inhibiting STAT3 phosphorylation abrogated IL-21, IL-22, and IL-23 anti-apoptotic effect on fibroblasts and endothelial cells. Conclusions This data suggest that Th-17 regulatory cytokines may play a critical role in regulating the survival of fibroblasts during asthma, IPF as well as other chronic lung inflammatory diseases leading to enhanced fibrosis. Accordingly, findings of this paper may pave the way for more extensive research on the role of these regulatory cytokines in fibrosis development in various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rabih Halwani
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia.
| | - Asma Sultana
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Roua Al-Kufaidy
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| | - Amer Jamhawi
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| | - Alejandro Vazquez-Tello
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| | - Saleh Al-Muhsen
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| |
Collapse
|