1
|
Song W, Rahimian N, Hasanzade Bashkandi A. GRP78: A new promising candidate in colorectal cancer pathogenesis and therapy. Eur J Pharmacol 2025; 995:177308. [PMID: 39870235 DOI: 10.1016/j.ejphar.2025.177308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis. This review discusses the expression profile of GRP78 in CRC, highlighting its potential as a prognostic biomarker and its role in modulating the cellular mechanisms of CRC, including ER response regulation, cell proliferation, migration and invasion. The complex molecular interactions of GRP78 with key signaling pathways such as protein kinase B (Akt), Wnt, protein kinase R-like ER kinase (PERK), vascular endothelial growth factor (VEGF), and Kirsten rat sarcoma virus (Kras) are explored, elucidating its contributions to tumor survival, proliferation, invasion, and chemoresistance. GRP78's involvement in autophagy, glycolysis, and immune regulation further underscores its importance in CRC progression. The review also covers the therapeutic potential of targeting GRP78 in CRC, examining various natural products like curcumin, epigallocatechin gallate (EGCG), and aloe-emodin, which modulate GRP78 expression and activity. Additionally, GRP78's role in mediating resistance to chemotherapeutic agents like 5-fluorouracil (5-FU) and oxaliplatin is discussed, emphasizing its significance in the development of resistance mechanisms in CRC. In conclusion, GRP78 emerges as a central player in CRC pathogenesis and a promising target for therapeutic interventions aimed at improving treatment outcomes and overcoming chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Wang Song
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
| | - Neda Rahimian
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Cai J, Liao W, Wen J, Ye F, Nie Q, Chen W, Zhao C. Algae-derived polysaccharides and polysaccharide-based nanoparticles: A natural frontier in breast cancer therapy. Int J Biol Macromol 2025; 297:139936. [PMID: 39824414 DOI: 10.1016/j.ijbiomac.2025.139936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Breast cancer is the second leading cause of cancer-related mortality among women worldwide, with its progression closely tied to the tumor microenvironment. To address the limitations and adverse effects of conventional therapies, algal polysaccharides and their nanoparticle derivatives have emerged as promising and effective anti-breast cancer agents. These bioactive compounds, derived from algae, are distinguished by their natural origin, non-toxicity, and significant medical relevance. Notably, algal polysaccharide-based nanoparticles exhibit advantageous properties such as hydrophilicity, biodegradability, prolonged circulation, and selective accumulation in tumor tissues. This review explores the relationship between the structural attributes of algal polysaccharides and their therapeutic efficacy. It further highlights the advantages of algal polysaccharide-based nanoparticles as drug delivery systems, particularly their potential in tumor targeting and overcoming multidrug resistance, thereby providing a theoretical foundation for their application in breast cancer treatment.
Collapse
Affiliation(s)
- Jiaer Cai
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Liao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangting Ye
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Nie
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Utpal BK, Bouenni H, Zehravi M, Sweilam SH, Mortuza MR, Arjun UVNV, Shanmugarajan TS, Mahesh PG, Roja P, Dodda RK, Thilagam E, Almahjari MS, Rab SO, Koula D, Emran TB. Exploring natural products as apoptosis modulators in cancers: insights into natural product-based therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03876-8. [PMID: 40014131 DOI: 10.1007/s00210-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Cancer remains a leading cause of mortality globally, necessitating ongoing research and development of innovative therapeutic strategies. Natural products from plants, herbs, and marine species have shown great promise as anti-cancer therapies due to their bioactive components that alter cellular pathways, particularly apoptosis. This review explores the mechanism by which natural chemicals trigger the apoptosis of cancerous cells, which is crucial for eliminating them and halting tumor growth. These can affect the mitochondrial process by controlling the Bcl-2 protein family, increasing cytochrome c release, and activating caspases. They also activate death receptors like Fas and TRAIL to enhance the extrinsic apoptotic pathway. We focus on the main signaling channels involved, such as the endoplasmic reticulum (ER) stress-mediated apoptosis, extrinsic death receptor, and intrinsic mitochondrial pathways. The review explores the role of natural substances such as polyphenols, terpenoids, alkaloids, and flavonoids in promoting apoptotic cell death and increasing cancer cell susceptibility, potentially aiding in cancer treatments and the potential of combining natural products with traditional chemotherapeutic medicines to combat medication resistance and enhance therapeutic efficacy. Understanding cancer development involves inhibiting cell proliferation, regulating it, targeting apoptosis pathways, and using plant and marine extracts as apoptotic inducers.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | | | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Ponnammal Ganesan Mahesh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Pathakota Roja
- Department of Pharmacology, Sree Dattha Institute of Pharmacy, Sheriguda, Ibrahimpatnam, Hyderabad, Telangana, 501510, India
| | - Ravi Kalyan Dodda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | - Mohammed Saeed Almahjari
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Doukani Koula
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
4
|
Lara-Hernández G, Ramos-Silva JA, Pérez-Soto E, Figueroa M, Flores-Berrios EP, Sánchez-Chapul L, Andrade-Cabrera JL, Luna-Angulo A, Landa-Solís C, Avilés-Arnaut H. Anticancer Activity of Plant Tocotrienols, Fucoxanthin, Fucoidan, and Polyphenols in Dietary Supplements. Nutrients 2024; 16:4274. [PMID: 39770896 PMCID: PMC11678266 DOI: 10.3390/nu16244274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Plants and algae harbor diverse molecules with antioxidant activity and have been demonstrated to directly inhibit cancer cell growth and mitigate the oxidative damage associated with certain antitumor therapies. While antioxidant supplementation, either alone or in combination with chemotherapy, has shown promise in improving quality of life, further research is needed to explore the effects of antioxidant combinations on specific cancer cell lines. Methods: In this study, the in vitro cytotoxic and apoptotic properties of natural compounds derived from plants and algae, as well as certain dietary supplements, were investigated against various human cancer cell lines, including bone, leukemia, colorectal, breast, and prostate cancers. Results: Apple polyphenols, fucoxanthin, and plant-derived tocotrienols exhibited cytotoxic effects across all lines; however, tocotrienols demonstrated the most potent, time-dependent cytotoxic activity, with a half-inhibitory concentration (IC50) of 4.3 μg/mL in bone cancer cells. Analysis of dietary supplements 2.1, 4.0, and 10.0 revealed that supplement 10.0 exhibited specific cytotoxic activity against bone cancer line TIB-223 and colorectal cancer cell line Caco2, with IC50 values of 126 μg/mL and 158 μg/mL, respectively. Both tocotrienols and supplement 10.0 induced morphological changes in TIB-223 cells, inhibited cell migration (anti-metastatic activity), and promoted apoptosis, as evidenced by caspase 3/7 activation in both bone and colorectal cancer cells. Conclusions: These findings provide valuable insights for the development of targeted dietary supplements to enhance the anticancer effect of conventional chemotherapy in specific cancer types.
Collapse
Affiliation(s)
- Gabriel Lara-Hernández
- Laboratorio de Biomedicina y Salud Ocupacional, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México 07320, Mexico; (G.L.-H.); (E.P.-S.)
| | - José Alberto Ramos-Silva
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Campus Ciudad Universitaria, Av. Universidad S/N, San Nicolás de los Garza 66455, Mexico;
| | - Elvia Pérez-Soto
- Laboratorio de Biomedicina y Salud Ocupacional, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México 07320, Mexico; (G.L.-H.); (E.P.-S.)
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | | | - Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Ciudad de México 14389, Mexico; (L.S.-C.); (A.L.-A.)
| | - José Luis Andrade-Cabrera
- Laboratorio de Patología Clínica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Ciudad de México 14389, Mexico;
| | - Alexandra Luna-Angulo
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Ciudad de México 14389, Mexico; (L.S.-C.); (A.L.-A.)
| | - Carlos Landa-Solís
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Ciudad de México 14389, Mexico;
| | - Hamlet Avilés-Arnaut
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Campus Ciudad Universitaria, Av. Universidad S/N, San Nicolás de los Garza 66455, Mexico;
| |
Collapse
|
5
|
Zahariev N, Katsarov P, Lukova P, Pilicheva B. Novel Fucoidan Pharmaceutical Formulations and Their Potential Application in Oncology-A Review. Polymers (Basel) 2023; 15:3242. [PMID: 37571136 PMCID: PMC10421178 DOI: 10.3390/polym15153242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Fucoidan belongs to the family of marine sulfated, L-fucose-rich polysaccharides found in the cell wall matrix of various brown algae species. In the last few years, sulfated polysaccharides have attracted the attention of researchers due to their broad biological activities such as anticoagulant, antithrombotic, antidiabetic, immunomodulatory, anticancer and antiproliferative effects. Recently the application of fucoidan in the field of pharmaceutical technology has been widely investigated. Due to its low toxicity, biocompatibility and biodegradability, fucoidan plays an important role as a drug carrier for the formulation of various drug delivery systems, especially as a biopolymer with anticancer activity, used for targeted delivery of chemotherapeutics in oncology. Furthermore, the presence of sulfate residues with negative charge in its structure enables fucoidan to form ionic complexes with oppositely charged molecules, providing relatively easy structure-forming properties in combination with other polymers. The aim of the present study was to overview essential fucoidan characteristics, related to its application in the development of pharmaceutical formulations as a single drug carrier or in combinations with other polymers. Special focus was placed on micro- and nanosized drug delivery systems with polysaccharides and their application in the field of oncology.
Collapse
Affiliation(s)
- Nikolay Zahariev
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria; (N.Z.); (B.P.)
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria; (N.Z.); (B.P.)
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria;
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria; (N.Z.); (B.P.)
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Yang S, Li D, Liu W, Chen X. Polysaccharides from marine biological resources and their anticancer activity on breast cancer. RSC Med Chem 2023; 14:1049-1059. [PMID: 37360387 PMCID: PMC10285744 DOI: 10.1039/d3md00035d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/03/2023] [Indexed: 06/28/2023] Open
Abstract
In recent decades, natural products from marine organisms have been widely studied for the treatment of various breast cancers. Among them, polysaccharides have been favored by researchers because of their good effects and safety. In this review, polysaccharides from marine algae including macroalgae and microalgae, chitosan, microorganisms such as marine bacteria and fungi, and starfish are addressed. Their anticancer activities on different breast cancers and action mechanisms are discussed in detail. In general, polysaccharides from marine organisms are potential sources of low side-effect and high efficiency anticancer drugs for development. However, further research on animals and clinical research are needed.
Collapse
Affiliation(s)
- Shengfeng Yang
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital China
| | - Dacheng Li
- Department of Nuclear Medicine, Affiliated Hospital of Qingdao University China
| | - Weili Liu
- Department of Nuclear Medicine, Affiliated Hospital of Qingdao University China
| | - Xiaolin Chen
- Institute of Oceanology, Chinese Academy of Sciences China
| |
Collapse
|
7
|
Zayed A, Finkelmeier D, Hahn T, Rebers L, Shanmugam A, Burger-Kentischer A, Ulber R. Characterization and Cytotoxic Activity of Microwave-Assisted Extracted Crude Fucoidans from Different Brown Seaweeds. Mar Drugs 2023; 21:48. [PMID: 36662221 PMCID: PMC9863780 DOI: 10.3390/md21010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Microwave-assisted extraction (MAE) is recognized as a green method for extraction of natural products. The current research aimed to explore the MAE for fucoidans extraction from different brown seaweeds, including Fucus vesiculosus, F. spiralis, and Laminaria saccharina. Following several solvent-extraction pre-treatment steps and MAE optimization, the algal biomasses were extracted in a ratio of 1:25 in 0.1 M HCl containing 2 M CaCl2 for 1.0 min. The results showed that L. saccharina's extract was different from the others, regarding the highest sugar content reached 0.47 mg glucose equivalent/mg extract being confirmed by monosaccharide composition analysis and the lowest fucoidan content and sulfation degree at 0.09 mg/mg extract and 0.13, respectively. Moreover, these findings were confirmed by tentative structural elucidation based on Fourier-transform infrared spectrometry which also showed a different spectrum. However, the MAE enhanced melanoidins formation in products, which was confirmed by the intense band at 1420 cm-1. Interestingly, the results of monomeric composition showed that fucoidan extract by MAE from F. vesiculosus belonged to sulfated galactofucans which are known for their potential bioactivities. Furthermore, the cytotoxic activity of the four fucoidans in concentrations ranging from 4.9 µg/mL to 2500 µg/mL was investigated and correlated with the chemical characterization showing that F. vesiculosus_MAE fucoidan was the most potent and safest. The current research revealed the chemical heterogeneity of fucoidans regarding taxonomical class and used greener extraction method of fucoidans toward the achievement of the UN sustainability goals.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Doris Finkelmeier
- Innovation Field Cell and Tissue Technologies, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Thomas Hahn
- Innovation Field Industrial Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Lisa Rebers
- Innovation Field Cell and Tissue Technologies, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Anusriha Shanmugam
- Biology Department, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Anke Burger-Kentischer
- Innovation Field Cell and Tissue Technologies, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Anticancer and Antioxidant Activity of Water-Soluble Polysaccharides from Ganoderma aff. australe against Human Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232314807. [PMID: 36499132 PMCID: PMC9737215 DOI: 10.3390/ijms232314807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Wild mushrooms have gained great importance for being a source of biologically active compounds. In this work, we evaluate the anticancer and antioxidant activity of a water-soluble crude polysaccharide extract isolated from the fruiting bodies of the Ganoderma aff. australe (GACP). This mushroom was collected in San Mateo (Boyacá, Colombia) and identified based on macroscopic and microscopic characterization. GACP was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, high-performance liquid chromatography-diode array detector, and nuclear magnetic resonance. The antiradical and antioxidant activity were evaluated by different methods and its anticancer activity was verified in the osteosarcoma MG-63 human cell line. Chemical and spectroscopic analysis indicated that GACP consisted of β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and α-D-Glcp-(1→ residues. The results of the biological activity showed that GACP exhibited high antioxidant activity in the different methods and models studied. Moreover, the results showed that GACP impaired cell viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay) and cell proliferation (clonogenic assay) in a dose-response manner on MG-63 cells. The findings of this work promote the use of mushroom-derived compounds as anticancer and antioxidant agents for potential use in the pharmaceutical and food industries.
Collapse
|
9
|
Anisha GS, Padmakumari S, Patel AK, Pandey A, Singhania RR. Fucoidan from Marine Macroalgae: Biological Actions and Applications in Regenerative Medicine, Drug Delivery Systems and Food Industry. Bioengineering (Basel) 2022; 9:bioengineering9090472. [PMID: 36135017 PMCID: PMC9495336 DOI: 10.3390/bioengineering9090472] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The marine macroalgae produce a collection of bioactive polysaccharides, of which the sulfated heteropolysaccharide fucoidan produced by brown algae of the class Phaeophyceae has received worldwide attention because of its particular biological actions that confer nutritional and health benefits to humans and animals. The biological actions of fucoidan are determined by their structure and chemical composition, which are largely influenced by the geographical location, harvest season, extraction process, etc. This review discusses the structure, chemical composition and physicochemical properties of fucoidan. The biological action of fucoidan and its applications for human health, tissue engineering, regenerative medicine and drug delivery are also addressed. The industrial scenario and prospects of research depicted would give an insight into developing fucoidan as a commercially viable and sustainable bioactive material in the nutritional and pharmacological sectors.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, India
- Correspondence: or (G.S.A.); (R.R.S.)
| | - Savitha Padmakumari
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Center for Energy and Environmental Sustainability, Lucknow 226029, India
| | - Ashok Pandey
- Center for Energy and Environmental Sustainability, Lucknow 226029, India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Center for Energy and Environmental Sustainability, Lucknow 226029, India
- Correspondence: or (G.S.A.); (R.R.S.)
| |
Collapse
|
10
|
Yao W, Qiu HM, Cheong KL, Zhong S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int J Biol Macromol 2022; 221:472-485. [PMID: 36089081 DOI: 10.1016/j.ijbiomac.2022.09.055] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death in both developing and developed countries. With the increase in the average global life expectancy, it has become a major health problem and burden for most public healthcare systems worldwide. Due to the fewer side effects of natural compounds than of chemotherapeutic drugs, increasing scientific attention is being focused on the development of anti-cancer drugs derived from natural sources. Marine algae are an interesting source of functional compounds with diverse health-promoting activities. Among these compounds, polysaccharides have attracted considerable interest for many years because of their excellent anti-cancer abilities. They improve the efficacy of conventional chemotherapeutic drugs with relatively low toxicity to normal human cells. However, there are few reviews summarising the unique anti-cancer effects and underlying mechanisms of marine algae polysaccharides (MAPs). Thus, the current review focuses on updating the advances in the discovery and evaluation of MAPs with anti-cancer properties and the elucidation of their mechanisms of action, including the signalling pathways involved. This review aims to provide a deeper understanding of the anti-cancer functions of the natural compounds derived from medicinal marine algae and thereby offer a new perspective on cancer prevention and therapy with high effectiveness and safety.
Collapse
Affiliation(s)
- Wanzi Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Hua-Mai Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
11
|
Kabakov AE, Gabai VL. HSP70s in Breast Cancer: Promoters of Tumorigenesis and Potential Targets/Tools for Therapy. Cells 2021; 10:cells10123446. [PMID: 34943954 PMCID: PMC8700403 DOI: 10.3390/cells10123446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The high frequency of breast cancer worldwide and the high mortality among women with this malignancy are a serious challenge for modern medicine. A deeper understanding of the mechanisms of carcinogenesis and emergence of metastatic, therapy-resistant breast cancers would help development of novel approaches to better treatment of this disease. The review is dedicated to the role of members of the heat shock protein 70 subfamily (HSP70s or HSPA), mainly inducible HSP70, glucose-regulated protein 78 (GRP78 or HSPA5) and GRP75 (HSPA9 or mortalin), in the development and pathogenesis of breast cancer. Various HSP70-mediated cellular mechanisms and pathways which contribute to the oncogenic transformation of mammary gland epithelium are reviewed, as well as their role in the development of human breast carcinomas with invasive, metastatic traits along with the resistance to host immunity and conventional therapeutics. Additionally, intracellular and cell surface HSP70s are considered as potential targets for therapy or sensitization of breast cancer. We also discuss a clinical implication of Hsp70s and approaches to targeting breast cancer with gene vectors or nanoparticles downregulating HSP70s, natural or synthetic (small molecule) inhibitors of HSP70s, HSP70-binding antibodies, HSP70-derived peptides, and HSP70-based vaccines.
Collapse
Affiliation(s)
- Alexander E. Kabakov
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva 4, 249036 Obninsk, Russia;
| | - Vladimir L. Gabai
- CureLab Oncology Inc., Dedham, MA 02026, USA
- Correspondence: ; Tel.: +1-617-319-7314
| |
Collapse
|
12
|
Huang CW, Chen YC, Yin TC, Chen PJ, Chang TK, Su WC, Ma CJ, Li CC, Tsai HL, Wang JY. Low-Molecular-Weight Fucoidan as Complementary Therapy of Fluoropyrimidine-Based Chemotherapy in Colorectal Cancer. Int J Mol Sci 2021; 22:8041. [PMID: 34360807 PMCID: PMC8347453 DOI: 10.3390/ijms22158041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
This study investigated the roles of low-molecular-weight fucoidan (LMWF) in enhancing the anti-cancer effects of fluoropyrimidine-based chemotherapy. HCT116 and Caco-2 cells were treated with LMWF and 5-FU. Cell viability, cell cycle, apoptosis, and migration were analyzed in both cell types. Potential mechanisms underlying how LMWF enhances the anti-cancer effects of fluoropyrimidine-based chemotherapy were also explored. The cell viability of HCT116 and Caco-2 cells was significantly reduced after treatment with a LMWF--5FU combination. In HCT116 cells, LMWF enhanced the suppressive effects of 5-FU on cell viability through the (1) induction of cell cycle arrest in the S phase and (2) late apoptosis mediated by the Jun-N-terminal kinase (JNK) signaling pathway. In Caco-2 cells, LMWF enhanced the suppressive effects of 5-FU on cell viability through both the c-mesenchymal-epithelial transition (MET)/Kirsten rat sarcoma virus (KRAS)/extracellular signal-regulated kinase (ERK) and the c-MET/phosphatidyl-inositol 3-kinases (PI3K)/protein kinase B (AKT) signaling pathways. Moreover, LMWF enhanced the suppressive effects of 5-FU on tumor cell migration through the c-MET/matrix metalloproteinase (MMP)-2 signaling pathway in both HCT116 and Caco-2 cells. Our results demonstrated that LMWF is a potential complementary therapy for enhancing the efficacies of fluoropyrimidine-based chemotherapy in colorectal cancers (CRCs) with the wild-type or mutated KRAS gene through different mechanisms. However, in vivo studies and in clinical trials are required in order to validate the results of the present study.
Collapse
Affiliation(s)
- Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-W.H.); (Y.-C.C.); (T.-C.Y.); (P.-J.C.); (T.-K.C.); (W.-C.S.); (C.-J.M.); (C.-C.L.); (H.-L.T.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-W.H.); (Y.-C.C.); (T.-C.Y.); (P.-J.C.); (T.-K.C.); (W.-C.S.); (C.-J.M.); (C.-C.L.); (H.-L.T.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Tzu-Chieh Yin
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-W.H.); (Y.-C.C.); (T.-C.Y.); (P.-J.C.); (T.-K.C.); (W.-C.S.); (C.-J.M.); (C.-C.L.); (H.-L.T.)
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, Kaohsiung Municipal Tatung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Po-Jung Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-W.H.); (Y.-C.C.); (T.-C.Y.); (P.-J.C.); (T.-K.C.); (W.-C.S.); (C.-J.M.); (C.-C.L.); (H.-L.T.)
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-W.H.); (Y.-C.C.); (T.-C.Y.); (P.-J.C.); (T.-K.C.); (W.-C.S.); (C.-J.M.); (C.-C.L.); (H.-L.T.)
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-W.H.); (Y.-C.C.); (T.-C.Y.); (P.-J.C.); (T.-K.C.); (W.-C.S.); (C.-J.M.); (C.-C.L.); (H.-L.T.)
| | - Cheng-Jen Ma
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-W.H.); (Y.-C.C.); (T.-C.Y.); (P.-J.C.); (T.-K.C.); (W.-C.S.); (C.-J.M.); (C.-C.L.); (H.-L.T.)
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ching-Chun Li
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-W.H.); (Y.-C.C.); (T.-C.Y.); (P.-J.C.); (T.-K.C.); (W.-C.S.); (C.-J.M.); (C.-C.L.); (H.-L.T.)
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-W.H.); (Y.-C.C.); (T.-C.Y.); (P.-J.C.); (T.-K.C.); (W.-C.S.); (C.-J.M.); (C.-C.L.); (H.-L.T.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-W.H.); (Y.-C.C.); (T.-C.Y.); (P.-J.C.); (T.-K.C.); (W.-C.S.); (C.-J.M.); (C.-C.L.); (H.-L.T.)
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|
13
|
Corso CR, Mulinari Turin de Oliveira N, Moura Cordeiro L, Sauruk da Silva K, da Silva Soczek SH, Frota Rossato V, Fernandes ES, Maria-Ferreira D. Polysaccharides with Antitumor Effect in Breast Cancer: A Systematic Review of Non-Clinical Studies. Nutrients 2021; 13:2008. [PMID: 34200897 PMCID: PMC8230509 DOI: 10.3390/nu13062008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose: To review the effects of polysaccharides and their proposed mechanisms of action in breast cancer experimental models. Data sources, selection, and extraction: Articles were selected by using PubMed, ScienceDirect, Scopus, and Medline, assessed from 1 May 2019 to 1 July 2020. The systematic review was registered in the International Prospective Register of Systematic Reviews (Prospero) under the number CRD42020169103. Results: Most of the studies explore algae polysaccharides (43.2%), followed by mushrooms (13.5%), plants (13.5%), fruits (10.8%), fungus (2.7%), bacteria, (2.7%), and sea animals (2.7%). A total of 8.1% investigated only in vitro models, 62.1% evaluated only in vivo models, and 29.7% evaluated in vitro and in vivo models. The mechanism of action involves apoptosis, inhibition of cellular proliferation, angiogenesis, and antimetastatic effects through multiple pathways. Conclusions: Findings included here support further investigations on the anti-tumor effect of polysaccharides. Some polysaccharides, such as fucoidan and β-glucans, deserve detailed and structured studies aiming at translational research on breast tumors, since they are already used in the clinical practice of other proposals of human health.
Collapse
Affiliation(s)
- Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Leonardo Moura Cordeiro
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Karien Sauruk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Suzany Hellen da Silva Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Virgilio Frota Rossato
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| |
Collapse
|
14
|
Chopra B, Dhingra AK. Natural products: A lead for drug discovery and development. Phytother Res 2021; 35:4660-4702. [PMID: 33847440 DOI: 10.1002/ptr.7099] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Natural products are used since ancient times in folklore for the treatment of various ailments. Plant-derived products have been recognized for many years as a source of therapeutic agents and structural diversity. A literature survey has been carried out to determine the utility of natural molecules and their modified analogs or derivatives as pharmacological active entities. This review presents a study on the importance of natural products in terms of drug discovery and development. It describes how the natural components can be utilized after small modifications in new perspectives. Various new modifications in structure offer a unique opportunity to establish a new molecular entity with better pharmacological potential. It was concluded that in this current era, new attempts are taken to utilize the compounds derived from natural sources as novel drug candidates, with a focus to find and discover new effective molecules that were referred to as "new entities of natural product drug discovery."
Collapse
Affiliation(s)
- Bhawna Chopra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Ashwani Kumar Dhingra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| |
Collapse
|
15
|
Aronia melanocarpa Elliot anthocyanins inhibit colon cancer by regulating glutamine metabolism. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Huang J, Pan H, Wang J, Wang T, Huo X, Ma Y, Lu Z, Sun B, Jiang H. Unfolded protein response in colorectal cancer. Cell Biosci 2021; 11:26. [PMID: 33514437 PMCID: PMC7844992 DOI: 10.1186/s13578-021-00538-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a gastrointestinal malignancy originating from either the colon or the rectum. A growing number of researches prove that the unfolded protein response (UPR) is closely related to the occurrence and progression of colorectal cancer. The UPR has three canonical endoplasmic reticulum (ER) transmembrane protein sensors: inositol requiring kinase 1 (IRE1), pancreatic ER eIF2α kinase (PERK), and activating transcription factor 6 (ATF6). Each of the three pathways is closely associated with CRC development. The three pathways are relatively independent as well as interrelated. Under ER stress, the activated UPR boosts the protein folding capacity to maximize cell adaptation and survival, whereas sustained or excessive ER triggers cell apoptosis conversely. The UPR involves different stages of CRC pathogenesis, promotes or hinders the progression of CRC, and will pave the way for novel therapeutic and diagnostic approaches. Meanwhile, the correlation between different signal branches in UPR and the switch between the adaptation and apoptosis pathways still need to be further investigated in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Huayang Pan
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Jinge Wang
- The Second Affiliated Hospital & College of Nursing, Harbin Medical University, Harbin, People's Republic of China
| | - Tong Wang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Xiaoyan Huo
- Pediatrics Department of The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yong Ma
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Zhaoyang Lu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Bei Sun
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Hongchi Jiang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China.
| |
Collapse
|
17
|
Kizilay G, Ersoy O, Cerkezkayabekir A, Topcu-Tarladacalisir Y. Sitagliptin and fucoidan prevent apoptosis and reducing ER stress in diabetic rat testes. Andrologia 2021; 53:e13858. [PMID: 33474733 DOI: 10.1111/and.13858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/29/2020] [Indexed: 12/31/2022] Open
Abstract
Sitagliptin increases the levels of incretin hormones and stimulates a decrease in blood glucose levels, by blocking the DPP4 enzyme. We have very limited information about impact of sitagliptin on male genital system and relationship between sitagliptin/diabetes/ER. Fucoidan can be effective in blood glucose homeostasis. We goal to explain of the effect of sitagliptin and introduce an approach of fucoidan treatment in experimental diabetes in male rats. Fifty-eight Wistar albino rats were divided into C-control group and D-diabetes group: 60 mg/kg streptozotocin intraperitoneal (i.p.); DS group: STZ + 10 mg/kg sitagliptin intragastric (i.g.); DF group: STZ + 100 mg/kg fucoidan i.p.; and DSF group: STZ + 10 mg/kg sitagliptin + 100 mg/kg fucoidan. A significant decrease was detected when DS, DF and DSF groups compared to group D in blood glucose levels, basement membrane thickness and also apoptotic cell/tubule index, pJNK, caspase 3, caspase 12, GRP78, CHOP and DPP4. Sitagliptin and fucoidan have been found to be effective in blood glucose homeostasis and reducing the expression of certain proteins that lead to apoptosis and especially the proteins in the ER stress pathway. Therefore, we think that both sitagliptin and fucoidan can be effective in preventing or eliminating histopathological damages in diabetic testicular tissues, and their treatment effects can be used more.
Collapse
Affiliation(s)
- Gulnur Kizilay
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | - Onur Ersoy
- Department of Pathology Laboratory Techniques, Vocational School of Health Services, Trakya University, Edirne, Turkey
| | | | | |
Collapse
|
18
|
Gupta D, Silva M, Radziun K, Martinez DC, Hill CJ, Marshall J, Hearnden V, Puertas-Mejia MA, Reilly GC. Fucoidan Inhibition of Osteosarcoma Cells Is Species and Molecular Weight Dependent. Mar Drugs 2020; 18:E104. [PMID: 32046368 PMCID: PMC7074035 DOI: 10.3390/md18020104] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidan is a brown algae-derived polysaccharide having several biomedical applications. This study simultaneously compares the anti-cancer activities of crude fucoidans from Fucus vesiculosus and Sargassum filipendula, and effects of low (LMW, 10-50 kDa), medium (MMW, 50-100 kDa) and high (HMW, >100 kDa) molecular weight fractions of S. filipendula fucoidan against osteosarcoma cells. Glucose, fucose and acid levels were lower and sulphation was higher in F. vesiculosus crude fucoidan compared to S. filipendula crude fucoidan. MMW had the highest levels of sugars, acids and sulphation among molecular weight fractions. There was a dose-dependent drop in focal adhesion formation and proliferation of cells for all fucoidan-types, but F. vesiculosus fucoidan and HMW had the strongest effects. G1-phase arrest was induced by F. vesiculosus fucoidan, MMW and HMW, however F. vesiculosus fucoidan treatment also caused accumulation in the sub-G1-phase. Mitochondrial damage occurred for all fucoidan-types, however F. vesiculosus fucoidan led to mitochondrial fragmentation. Annexin V/PI, TUNEL and cytochrome c staining confirmed stress-induced apoptosis-like cell death for F. vesiculosus fucoidan and features of stress-induced necrosis-like cell death for S. filipendula fucoidans. There was also variation in penetrability of different fucoidans inside the cell. These differences in anti-cancer activity of fucoidans are applicable for osteosarcoma treatment.
Collapse
Affiliation(s)
- Dhanak Gupta
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Melissa Silva
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Karolina Radziun
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Diana C. Martinez
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Christopher J. Hill
- Department of Molecular Biology and Biotechnology (MBB), University of Sheffield, Sheffield S10 2TN, UK;
| | - Julie Marshall
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Miguel A. Puertas-Mejia
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| |
Collapse
|
19
|
Bae H, Lee JY, Yang C, Song G, Lim W. Fucoidan Derived from Fucus vesiculosus Inhibits the Development of Human Ovarian Cancer via the Disturbance of Calcium Homeostasis, Endoplasmic Reticulum Stress, and Angiogenesis. Mar Drugs 2020; 18:E45. [PMID: 31936539 PMCID: PMC7024155 DOI: 10.3390/md18010045] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Marine organisms are sources of several natural compounds with potential clinical use. However, only a few marine-based pharmaceuticals have been approved for use due to limited knowledge on their biological activities. Here, we identified the functional role of fucoidan extracted from Fucus vesiculosus on ovarian cancer. Fucoidan increased the death of ES-2 and OV-90 cells, through a reduction in proliferation, cell cycle arrest, releases of cytochrome c, reactive oxygen species (ROS) generation, and endoplasmic reticulum (ER) stress. Additionally, fucoidan increased the concentration of cytosolic and mitochondrial calcium in both cells. The decrease of cell proliferation was controlled by the inactivation of PI3K and MAPK signaling cascades in ES-2 and OV-90 cells. In a toxicity assay with normal zebrafish larvae, fucoidan did not induce toxicity, cardiotoxicity, development, kinesis, and apoptosis at different concentrations. However, it disrupted tumor formation and vascular development in a zebrafish xenograft model and angiogenesis transgenic (Tg, fli1-eGFP) model, respectively. Collectively, the results indicate that fucoidan may be a novel pharmaceutical for the management of human ovarian cancer.
Collapse
Affiliation(s)
- Hyocheol Bae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.B.); (C.Y.)
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Changwon Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.B.); (C.Y.)
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.B.); (C.Y.)
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
20
|
Narayani SS, Saravanan S, Ravindran J, Ramasamy MS, Chitra J. In vitro anticancer activity of fucoidan extracted from Sargassum cinereum against Caco-2 cells. Int J Biol Macromol 2019; 138:618-628. [PMID: 31344415 DOI: 10.1016/j.ijbiomac.2019.07.127] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/08/2019] [Accepted: 07/21/2019] [Indexed: 12/25/2022]
Abstract
Fucoidan is a marine sulfated polysaccharide, which is extracted from brown seaweed that has a wide range of bioactivities including anti-cancer properties. However, the underlying mechanism of fucoidan on its anti-cancer and apoptotic activity against colon cancer cell line Caco-2 remains to be elucidated. Hence, the present study evaluated the cytotoxicity, apoptotic and anti-cancer activity of fucoidan extracted from brown seaweed Sargassum cinereum against Caco-2 cell line. Cytotoxicity, morphological examination of nuclei, mitochondrial membrane potential, flow cytometry, reactive oxygen species (ROS) formation and detection of apoptotic efficacy of fucoidan were assessed by different assay protocols. Fucoidan inhibited growth of Caco-2 cells in a dose-dependent manner. IC50 concentration of fucoidan was found to be 250 μg/ml. AO/EB, Hoechst and Annexin V/PI staining confirmed the apoptosis induced by fucoidan in Caco-2 cells. Fucoidan was also found to increase ROS production and augment mitochondrial membrane permeability. The findings of the study suggest that fucoidan exerts potent anti-cancer and apoptotic effect on Caco-2 cells by enhancing ROS production. Thus, fucoidan may be used as a promising therapeutic regimen against various cancer cell types.
Collapse
Affiliation(s)
| | - S Saravanan
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, India
| | - J Ravindran
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Malaysia
| | - M S Ramasamy
- Indian Systems of Medicine - Natural Products Laboratory, MIT Campus of Anna University, AUKBC Research Centre, Anna University, Chennai, India
| | - J Chitra
- Indian Systems of Medicine - Natural Products Laboratory, MIT Campus of Anna University, AUKBC Research Centre, Anna University, Chennai, India
| |
Collapse
|
21
|
Niyonizigiye I, Ngabire D, Patil MP, Singh AA, Kim GD. In vitro induction of endoplasmic reticulum stress in human cervical adenocarcinoma HeLa cells by fucoidan. Int J Biol Macromol 2019; 137:844-852. [DOI: 10.1016/j.ijbiomac.2019.07.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 12/24/2022]
|
22
|
Keeley TS, Yang S, Lau E. The Diverse Contributions of Fucose Linkages in Cancer. Cancers (Basel) 2019; 11:E1241. [PMID: 31450600 PMCID: PMC6769556 DOI: 10.3390/cancers11091241] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fucosylation is a post-translational modification of glycans, proteins, and lipids that is responsible for many biological processes. Fucose conjugation via α(1,2), α(1,3), α(1,4), α(1,6), and O'- linkages to glycans, and variations in fucosylation linkages, has important implications for cancer biology. This review focuses on the roles that fucosylation plays in cancer, specifically through modulation of cell surface proteins and signaling pathways. How L-fucose and serum fucosylation patterns might be used for future clinical diagnostic, prognostic, and therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Tyler S Keeley
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
- University of South Florida Cancer Biology Graduate Program, Tampa, FL 33602, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA.
| |
Collapse
|
23
|
Kang S, Kang K, Chae A, Kim YK, Jang H, Min DH. Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. NANOSCALE 2019; 11:15173-15183. [PMID: 31380881 DOI: 10.1039/c9nr04495g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chemotherapy, the most commonly applied cancer treatment, often causes unexpected failure due to multidrug resistance (MDR). To overcome MDR, we have designed a platform to realize a combinational synergistic effect of a natural bioactive product (fucoidan), anticancer small compound (doxorubicin), and photothermal nanocarrier (Pt nanoparticle) to treat drug-resistant breast cancer cells. Especially, fucoidan, a sulfated, polysaccharide-structured, therapeutic biopolymer, has been recently recognized as a potential anticancer compound; however, its cancer-inhibiting efficacy has been regarded as low owing to its insufficient level in serum following its conventional oral ingestion. To enhance its potency, fucoidan was applied as a biocompatible surfactant and surface-coating biopolymer in nanocarrier synthesis to manufacture coral-like, fucoidan-coated Pt nanoparticles with a rough surface morphology by a one-pot method. As a result, the biological-thermo-chemo trimodal combination treatment showed excellent therapeutic efficiency against the MDR breast cancer cell MCF-7 ADR both in vitro and in vivo, and the computed tomography contrast effect was also confirmed from the constituent element Pt. Beyond universal application in drug delivery and photothermal therapy, the present approach of applying a MDR modulating/anticancer natural product from nanoparticle synthesis to theranostics will contribute greatly to maximizing their potential through interdisciplinary convergence in the near future.
Collapse
Affiliation(s)
- Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
24
|
Sajadimajd S, Momtaz S, Haratipour P, El-Senduny FF, Panah AI, Navabi J, Soheilikhah Z, Farzaei MH, Rahimi R. Molecular Mechanisms Underlying Cancer Preventive and Therapeutic Potential of Algal Polysaccharides. Curr Pharm Des 2019; 25:1210-1235. [DOI: 10.2174/1381612825666190425155126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
Background:
Algal polysaccharide and oligosaccharide derivatives have been shown to possess a
variety of therapeutic potentials and drug delivery applications. Algal polysaccharides contain sulfated sugar
monomers derived from seaweed including brown, red, and green microalgae. Here, in this review, the recent
progress of algal polysaccharides’ therapeutic applications as anticancer agents, as well as underlying cellular and
molecular mechanisms was investigated. Moreover, recent progress in the structural chemistry of important polysaccharides
with anticancer activities were illustrated.
Methods:
Electronic databases including “Scopus”, “PubMed”, and “Cochrane library” were searched using the
keywords “cancer”, or “tumor”, or “malignancy” in title/abstract, along with “algae”, or “algal” in the whole text
until July 2018. Only English language papers were included.
Results:
The most common polysaccharides involved in cancer management were sulfated polysaccharides, Fucoidans,
Carageenans, and Ulvan from different species of algae that have been recognized in vitro and in vivo.
The underlying anticancer mechanisms of algal polysaccharides included induction of apoptosis, cell cycle arrest,
modulation of transduction signaling pathways, suppression of migration and angiogenesis, as well as activation
of immune responses and antioxidant system. VEGF/VEGFR2, TGFR/Smad/Snail, TLR4/ROS/ER, CXCL12/
CXCR4, TGFR/Smad7/Smurf2, PI3K/AKT/mTOR, PBK/TOPK, and β-catenin/Wnt are among the main cellular
signaling pathways which have a key role in the preventive and therapeutic effects of algal polysaccharides
against oncogenesis.
Conclusion:
Algal polysaccharides play a crucial role in the management of cancer and may be considered the
next frontier in pharmaceutical research. Further well-designed clinical trials are mandatory to evaluate the efficacy
and safety of algal polysaccharides in patients with cancer.
Collapse
Affiliation(s)
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Pouya Haratipour
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Fardous F. El-Senduny
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Amin Iran Panah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jafar Navabi
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhaleh Soheilikhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1416663361, Iran
| |
Collapse
|
25
|
Chiu CF, Lai GY, Chen CH, Chiu CC, Hung SW, Chang CF. 6,7-Dihydroxy-2-(4'-hydroxyphenyl)naphthalene induces HCT116 cell apoptosis through activation of endoplasmic reticulum stress and the extrinsic apoptotic pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1609-1621. [PMID: 31190740 PMCID: PMC6512798 DOI: 10.2147/dddt.s193914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Colorectal cancer is the third leading cause of cancer-related deaths worldwide, and therefore, the development of novel drugs for its prevention and therapy are urgently required. This study aimed to determine the molecular mechanism of 6,7-dihydroxy-2-(4′-hydroxyphenyl) naphthalene (PNAP-6)-induced cytotoxicity in human colorectal cancer (HCT116) cells. Methods The effects of 2-phenylnaphthalene derivatives on HCT116 cell growth and viability were assessed by MTT assays. The mechanisms involved in the regulation of the extrinsic apoptosis and endoplasmic reticulum (ER) stress pathways by PNAP-6 were analyzed by annexin-V/propidium iodide flow cytometric analysis, Hoechst 33342 fluorescent staining, and Western blotting. Results PNAP-6 was shown to have an IC50 value 15.20 μM. It induced G2/M phase arrest in HCT116 cells, associated with a marked decrease in cyclin B and CDK1 protein expression and increased caspase activation, PARP cleavage, chromatin condensation, and sub-G1 apoptosis. Moreover, we found that the apoptotic effects of PNAP-6 proceeded through extrinsic apoptosis and ER stress pathways, by increasing the expression of Fas protein and ER stress markers, including PERK, ATF4, CHOP, p-IRE1α, and XBP-1s. Conclusion These results suggest that 2-phenylnaphthalene derivatives, such as PNAP-6, have potential as new treatments for colorectal cancer.
Collapse
Affiliation(s)
- Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Guan-Ying Lai
- Master Program for Pharmaceutical Manufacture, China Medical University, Taichung 40402, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan.,Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Chao Chiu
- Division of Animal Industry, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan, Hsinchu 300, Taiwan
| | - Shao-Wen Hung
- Division of Animal Industry, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan, Hsinchu 300, Taiwan.,Nursing Department, Yuanpei University, Xiangshan, Hsinchu 300, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan,
| |
Collapse
|
26
|
Hsu HY, Hwang PA. Clinical applications of fucoidan in translational medicine for adjuvant cancer therapy. Clin Transl Med 2019; 8:15. [PMID: 31041568 PMCID: PMC6491526 DOI: 10.1186/s40169-019-0234-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023] Open
Abstract
The chemical composition of fucoidan, a kind of sulfated polysaccharide mainly derived from brown seaweed, includes a substantial percentage of l-fucose. Fucoidan has various biological and pharmacological activities, such as anti-cancer/anti-tumor, anti-proliferation, anti-inflammatory and immune-modulatory functions, and fucoidan-related dietary supplements and nutraceuticals have recently drawn considerable attention. In this review, we aim to provide a current view of different aspects of fucoidan biological activity, with a focus on the anti-cancer regulatory effects of fucoidan on growth signaling mechanisms. First, we discuss historical aspects of fucoidan and fucoidan products, as well as the anti-cancer effects of fucoidan on various cancer cells. Second, we discuss fucoidan’s biological activities and induction of cell death in cancer cells, including multiple mechanisms and signal transduction pathways related to its anti-cancer effects. Next, we focus on fucoidan and fucoidan-derived products that have been marketed as dietary supplements or nutraceuticals for cancer, including anti-cancer effects of fucoidan when combined as an adjuvant with clinical drugs. Finally, case studies of fucoidan in complementary therapy and as an alternative medicine in animal and mouse models and human clinical trials to alleviate side effects of anti-cancer chemotherapy are discussed. Combining fucoidan with clinical therapeutic agents in the treatment of cancer patients, dissecting the related signal transduction pathways and investigating their dynamic interactions may reveal potential molecular targets in cancer prevention, therapies and key obstacles in the current development of anti-cancer strategies.
Collapse
Affiliation(s)
- Hsien-Yeh Hsu
- Institute of Taiwan Fucoidan Development, 1F, No. 123-1, Sec. 4, Bade Rd., Songshan Dist., Taipei, 105, Taiwan. .,Department of Biotechnology and Laboratory Science in Medicine, Institute of Biotechnology in Medicine, National Yang-Ming University, 155 Li-Nong Street, Shih-Pai, Taipei, Taiwan.
| | - Pai-An Hwang
- Institute of Taiwan Fucoidan Development, 1F, No. 123-1, Sec. 4, Bade Rd., Songshan Dist., Taipei, 105, Taiwan.,Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan
| |
Collapse
|
27
|
Bobiński M, Okła K, Bednarek W, Wawruszak A, Dmoszyńska-Graniczka M, Garcia-Sanz P, Wertel I, Kotarski J. The Effect of Fucoidan, a Potential New, Natural, Anti-Neoplastic Agent on Uterine Sarcomas and Carcinosarcoma Cell Lines: ENITEC Collaborative Study. Arch Immunol Ther Exp (Warsz) 2019; 67:125-131. [PMID: 30659312 PMCID: PMC6420609 DOI: 10.1007/s00005-019-00534-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/04/2019] [Indexed: 01/04/2023]
Abstract
The aim of the study was to assess the activity of fucoidan on the uterine sarcomas (MES-SA and ESS-1) and carcinosarcoma cell lines (SK-UT-1 and SK-UT-1B) and its toxicity on the human skin fibroblasts (HSF). Two uterine sarcomas and two carcinosarcoma cell lines were examined, as a control HSF were used. Cell viability was assessed with MTT test, apoptosis with caspase-3 activity and cell cycle by assessment of DNA synthesis. Fucoidan significantly decreases cell viability in SK-UT-1, SK-UT-1B, and ESS-1 cell lines, such effect was not observed in MES-SA. Fucoidan was not substantially affecting proliferation among normal cells. The tested agent induced apoptosis in all cell cultures used in the experiment. Fucoidan affects cell cycle of all tested cell lines except MES-SA by increasing percentage of cells in G0/sub-G1/G1 phase. Fucoidan do not only affect proliferation but induces apoptosis in selected uterine sarcoma and carcinosarcoma cell lines, so it has potential to be used as cytotoxic agent. Fucoidan seems to be promising anti-cancer agent for endometrial stromal sarcoma and carcinosarcoma.
Collapse
Affiliation(s)
- Marcin Bobiński
- 1st Chair and Department of Gynecological Oncology and Gynecology, Medical University of Lublin, Staszica 16, 20-081, Lublin, Poland.
| | - Karolina Okła
- 1st Chair and Department of Gynecological Oncology and Gynecology, Medical University of Lublin, Staszica 16, 20-081, Lublin, Poland
| | - Wiesława Bednarek
- 1st Chair and Department of Gynecological Oncology and Gynecology, Medical University of Lublin, Staszica 16, 20-081, Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | | | - Pablo Garcia-Sanz
- Laboratory of Translational Research, MD Anderson Cancer Center, Madrid, Spain
| | - Iwona Wertel
- 1st Chair and Department of Gynecological Oncology and Gynecology, Medical University of Lublin, Staszica 16, 20-081, Lublin, Poland
| | - Jan Kotarski
- 1st Chair and Department of Gynecological Oncology and Gynecology, Medical University of Lublin, Staszica 16, 20-081, Lublin, Poland
| |
Collapse
|
28
|
The Role of the ER-Induced UPR Pathway and the Efficacy of Its Inhibitors and Inducers in the Inhibition of Tumor Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5729710. [PMID: 30863482 PMCID: PMC6378054 DOI: 10.1155/2019/5729710] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Cancer is the second most frequent cause of death worldwide. It is considered to be one of the most dangerous diseases, and there is still no effective treatment for many types of cancer. Since cancerous cells have a high proliferation rate, it is pivotal for their proper functioning to have the well-functioning protein machinery. Correct protein processing and folding are crucial to maintain tumor homeostasis. Endoplasmic reticulum (ER) stress is one of the leading factors that cause disturbances in these processes. It is induced by impaired function of the ER and accumulation of unfolded proteins. Induction of ER stress affects many molecular pathways that cause the unfolded protein response (UPR). This is the way in which cells can adapt to the new conditions, but when ER stress cannot be resolved, the UPR induces cell death. The molecular mechanisms of this double-edged sword process are involved in the transition of the UPR either in a cell protection mechanism or in apoptosis. However, this process remains poorly understood but seems to be crucial in the treatment of many diseases that are related to ER stress. Hence, understanding the ER stress response, especially in the aspect of pathological consequences of UPR, has the potential to allow us to develop novel therapies and new diagnostic and prognostic markers for cancer.
Collapse
|
29
|
Corban M, Ambrose M, Pagnon J, Stringer D, Karpiniec S, Park A, Eri R, Fitton JH, Gueven N. Pathway Analysis of Fucoidan Activity Using a Yeast Gene Deletion Library Screen. Mar Drugs 2019; 17:E54. [PMID: 30646537 PMCID: PMC6356313 DOI: 10.3390/md17010054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/28/2022] Open
Abstract
Fucoidan, the sulfated fucose-rich polysaccharide derived from brown macroalgae, was reported to display some anti-cancer effects in in vitro and in vivo models that included apoptosis and cell cycle arrest. The proposed mechanisms of action involve enhanced immune surveillance and direct pro-apoptotic effects via the activation of cell signaling pathways that remain largely uncharacterized. This study aimed to identify cellular pathways influenced by fucoidan using an unbiased genetic approach to generate additional insights into the anti-cancer effects of fucoidan. Drug⁻gene interactions of Undaria pinnatifida fucoidan were assessed by a systematic screen of the entire set of 4,733 halpoid Saccharomyces cerevsiae gene deletion strains. Some of the findings were confirmed using cell cycle analysis and DNA damage detection in non-immortalized human dermal fibroblasts and colon cancer cells. The yeast deletion library screen and subsequent pathway and interactome analysis identified global effects of fucoidan on a wide range of eukaryotic cellular processes, including RNA metabolism, protein synthesis, sorting, targeting and transport, carbohydrate metabolism, mitochondrial maintenance, cell cycle regulation, and DNA damage repair-related pathways. Fucoidan also reduced clonogenic survival, induced DNA damage and G1-arrest in colon cancer cells, while these effects were not observed in non-immortalized human fibroblasts. Our results demonstrate global effects of fucoidan in diverse cellular processes in eukaryotic cells and further our understanding about the inhibitory effect of Undaria pinnatifida fucoidan on the growth of human cancer cells.
Collapse
Affiliation(s)
- Monika Corban
- School of Medicine, University of Tasmania; Hobart TAS 7001, Australia.
| | - Mark Ambrose
- School of Medicine, University of Tasmania; Hobart TAS 7001, Australia.
| | - Joanne Pagnon
- School of Medicine, University of Tasmania; Hobart TAS 7001, Australia.
| | | | | | - Ahyoung Park
- Marinova Pty Ltd., Cambridge TAS 7170, Australia.
| | - Raj Eri
- School of Health Sciences, University of Tasmania, Newnham TAS 7248, Australia.
| | - J Helen Fitton
- Marinova Pty Ltd., Cambridge TAS 7170, Australia.
- School of Health Sciences, University of Tasmania, Newnham TAS 7248, Australia.
| | - Nuri Gueven
- School of Medicine, University of Tasmania; Hobart TAS 7001, Australia.
| |
Collapse
|
30
|
The anti-tumor activity of brown seaweed oligo-fucoidan via lncRNA expression modulation in HepG2 cells. Cytotechnology 2019; 71:363-374. [PMID: 30632031 DOI: 10.1007/s10616-019-00293-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/05/2019] [Indexed: 01/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death in Asia. HCC is less sensitive to chemotherapy and is known to express multidrug resistant genes to acquire resistance to chemotherapeutic agents, therefore the development of a potent HCC suppressor is essential in treating HCC. Our previous reports demonstrated that oligo-fucoidan from the brown seaweed Sargassum hemiphyllum elevates microRNA-29b to inhibit epithelial-mesenchymal transition in hepatoma cells. In this study, we aimed to examine in vitro effect of oligo-fucoidan in hepatocellular carcinoma through apoptosis and long noncoding RNA (lncRNA) pathway. Oligo-fucoidan was studied for its anti-hepatoma cells by MTT and DNA ladder analysis. And the mechanism was studied by flow cytometry, qPCR and western blot analysis. In this study, oligo-fucoidan induced sub-G1 phase cell cycle arrest and activation of caspases, indicating that the intrinsic and extrinsic apoptotic pathways were involved in the mechanism of oligo-fucoidan-induced cell death. Moreover, oligo-fucoidan significantly increased the expression of p53, p21, and p27, while cyclin-B1 and -D1 were decreased at the mRNA and protein levels. Finally, we showed that targeting apoptosis and cell cycle pathways could also contribute to the induction of the lncRNA-Saf and lncRNA-p21. Through human lncRNA profiler array analysis, the differential expression of lncRNAs in HCC cells following oligo-fucoidan exposure was further examined. These findings indicated that lncRNAs switched oligo-fucoidan-induced apoptosis, which might be potentially valuable in HCC adjuvant therapy.
Collapse
|
31
|
van Weelden G, Bobiński M, Okła K, van Weelden WJ, Romano A, Pijnenborg JMA. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar Drugs 2019; 17:E32. [PMID: 30621045 PMCID: PMC6356449 DOI: 10.3390/md17010032] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Fucoidan is a natural derived compound found in different species of brown algae and in some animals, that has gained attention for its anticancer properties. However, the exact mechanism of action is currently unknown. Therefore, this review will address fucoidans structure, the bioavailability, and all known different pathways affected by fucoidan, in order to formulate fucoidans structure and activity in relation to its anti-cancer mechanisms. The general bioactivity of fucoidan is difficult to establish due to factors like species-related structural diversity, growth conditions, and the extraction method. The main pathways influenced by fucoidan are the PI3K/AKT, the MAPK pathway, and the caspase pathway. PTEN seems to be important in the fucoidan-mediated effect on the AKT pathway. Furthermore, the interaction with VEGF, BMP, TGF-β, and estrogen receptors are discussed. Also, fucoidan as an adjunct seems to have beneficial effects, for both the enhanced effectiveness of chemotherapy and reduced toxicity in healthy cells. In conclusion, the multipotent character of fucoidan is promising in future anti-cancer treatment. However, there is a need for more specified studies of the structure⁻activity relationship of fucoidan from the most promising seaweed species.
Collapse
Affiliation(s)
- Geert van Weelden
- Faculty of Science, (Medical) Biology, Radboud University, 6525 XZ Nijmegen, The Netherlands.
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Marcin Bobiński
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Karolina Okła
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Willem Jan van Weelden
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands.
| | - Johanna M A Pijnenborg
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Kopplin G, Rokstad AM, Mélida H, Bulone V, Skjåk-Bræk G, Aachmann FL. Structural Characterization of Fucoidan from Laminaria hyperborea: Assessment of Coagulation and Inflammatory Properties and Their Structure–Function Relationship. ACS APPLIED BIO MATERIALS 2018; 1:1880-1892. [DOI: 10.1021/acsabm.8b00436] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Georg Kopplin
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, NTNU, Trondheim 7491, Norway
| | - Anne Mari Rokstad
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, NTNU, Trondheim 7030, Norway
| | - Hugo Mélida
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm SE-10691, Sweden
| | - Vincent Bulone
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm SE-10691, Sweden
| | - Gudmund Skjåk-Bræk
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, NTNU, Trondheim 7491, Norway
| | - Finn Lillelund Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, NTNU, Trondheim 7491, Norway
| |
Collapse
|
33
|
Kim C, Kim B. Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review. Nutrients 2018; 10:nu10081021. [PMID: 30081573 PMCID: PMC6115829 DOI: 10.3390/nu10081021] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second biggest cause of death worldwide. Despite a number of studies being conducted, the effective mechanism for treating cancer has not yet been fully understood. The tumor-microenvironment such as hypoxia, low nutrients could disturb function of endoplasmic reticulum (ER) to maintain cellular homeostasis, ultimately leading to the accumulation of unfolded proteins in ER, so-called ER stress. The ER stress has a close relation with cancer. ER stress initiates unfolded protein response (UPR) to re-establish ER homeostasis as an adaptive pathway in cancer. However, persistent ER stress triggers the apoptotic pathway. Therefore, blocking the adaptive pathway of ER stress or facilitating the apoptotic pathway could be an anti-cancer strategy. Recently, natural products and their derivatives have been reported to have anti-cancer effects via ER stress. Here, we address mechanisms of ER stress-mediated apoptosis and highlight strategies for cancer therapy by utilizing ER stress. Furthermore, we summarize anti-cancer activity of the natural products via ER stress in six major types of cancers globally (lung, breast, colorectal, gastric, prostate and liver cancer). This review deepens the understanding of ER stress mechanisms in major cancers as well as the suppressive impact of natural products against cancers via ER stress.
Collapse
Affiliation(s)
- Changmin Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
34
|
Zhang N, Bi C, Liu L, Dou Y, Tang S, Pang W, Deng H, Song D. IMB-6G, a novel N-substituted sophoridinic acid derivative, induces endoplasmic reticulum stress-mediated apoptosis via activation of IRE1α and PERK signaling. Oncotarget 2018; 7:23860-73. [PMID: 27009865 PMCID: PMC5029669 DOI: 10.18632/oncotarget.8184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/04/2016] [Indexed: 12/31/2022] Open
Abstract
Sophoridinic acid derivatives have received considerable attentions for their potencies in cancer therapy. IMB-6G is a novel N-substituted sophoridinic acid derivative with potent cytotoxicity against tumor cells. In the present study, we explored the antitumor abilities of IMB-6G in human hepatocellular carcinoma (HCC) cells and investigated the underlying mechanisms. We found that IMB-6G inhibited cell growth and induced mitochondrial-dependent apoptosis in HepG2 and SMMC7721 cells. Analyses of the molecular mechanism of IMB-6G-induced apoptosis indicated IMB-6G induced endoplasmic reticulum (ER) stress activation. Incubation of HCC cells with IMB-6G induced increase in Bip and CHOP levels, which precede induction of apoptosis. Further study showed IMB-6G activated IRE1α and PERK pathways but did not stimulated ATF6 pathway in HCC cells. Moreover, silencing of IRE1α dramatically abrogated IMB-6G-induced pro-apoptotic ASK1-JNK signaling. Importantly, interruption of CHOP rendered HCC cells sensitive to IMB-6G-induced apoptosis via inactivation of Bim, PUMA and Bax. Thus, the IRE1α-ASK1 and PERK-CHOP pathways may be a novel molecular mechanism of IMB-6G-induced apoptosis. Collectively, our study demonstrates that IMB-6G induces ER stress-mediated apoptosis by activating IRE1α and PERK pathways. Our findings provide a rationale for the potential application of IMB-6G in HCC therapy.
Collapse
Affiliation(s)
- Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chongwen Bi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yueying Dou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Sheng Tang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weiqiang Pang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
35
|
Jang B, Moorthy MS, Manivasagan P, Xu L, Song K, Lee KD, Kwak M, Oh J, Jin JO. Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer. Oncotarget 2018; 9:12649-12661. [PMID: 29560098 PMCID: PMC5849162 DOI: 10.18632/oncotarget.23898] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
In advanced cancer therapy, the combinational therapeutic effect of photothermal therapy (PTT) using near-infrared (NIR) light-responsive nanoparticles (NPs) and anti-cancer drug delivery-mediated chemotherapy has been widely applied. In the present study, using a facile, low-cost, and solution-based method, we developed and synthesized fucoidan, a natural polymer isolated from seaweed that has demonstrated anti-cancer effect, and coated NPs with it as an ideal candidate in chemo-photothermal therapy against cancer cells. Fucoidan-coated copper sulfide nanoparticles (F-CuS) act not only as a nanocarrier to enhance the intracellular delivery of fucoidan but also as a photothermal agent to effectively ablate different cancer cells (e.g., HeLa, A549, and K562), both in vitro and in vivo, with the induction of apoptosis under 808 nm diode laser irradiation. These results point to the potential usage of F-CuS in treating human cancer.
Collapse
Affiliation(s)
- Bian Jang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Jinshan District, Shanghai, China.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Busan, South Korea.,Interdisciplinary Program of Biomedical Mechanical and Electrical Engineering, Busan, South Korea
| | | | | | - Li Xu
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Jinshan District, Shanghai, China
| | - Kyeongeun Song
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Jinshan District, Shanghai, China.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, South Korea
| | - Kang Dae Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Korea
| | - Minseok Kwak
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, South Korea.,Department of Chemistry, Pukyong National University, Busan, South Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Busan, South Korea.,Interdisciplinary Program of Biomedical Mechanical and Electrical Engineering, Busan, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Jinshan District, Shanghai, China
| |
Collapse
|
36
|
Xue M, Liang H, Tang Q, Xue C, He X, Zhang L, Zhang Z, Liang Z, Bian K, Zhang L, Li Z. The Protective and Immunomodulatory Effects of Fucoidan Against 7,12-Dimethyl benz[a]anthracene-Induced Experimental Mammary Carcinogenesis Through the PD1/PDL1 Signaling Pathway in Rats. Nutr Cancer 2017; 69:1234-1244. [PMID: 29043842 DOI: 10.1080/01635581.2017.1362446] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fucoidan is a sulfated polysaccharide that is extracted from brown algae seaweed. This study was designed to evaluate the protective and immunomodulatory effects of dietary fucoidan on 7,12-dimethyl benz[a]anthracene (DMBA)-induced experimental mammary carcinogenesis in rats. Sixty Sprague-Dawley rats were randomly assigned to four equal groups: the control group (control group), the cancer model group (model group), and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg/kg·body weight, respectively. We found that fucoidan treatment decreased the tumor incidence and mean tumor weight and prolonged the tumor latency. Flow cytometric analyses revealed that the number of blood natural killer cells was higher after fucoidan treatment and that the proportions of CD4 and CD8 T cells were also increased. The serum levels of interleukin (IL)-6, IL-12p40, and interferon (IFN)-γ were higher in the rats treated with fucoidan compared to those of model rats. Moreover, the percentage of CD3+ Foxp3+ regulatory T cells in the blood and the levels of IL-10 and transforming growth factor β in the serum were lower in the rats treated with fucoidan. Furthermore, fucoidan treatment decreased the expression of Foxp3 and programmed cell death 1 ligand 1 (PDL1) in tumor tissues. The levels of p-phosphatidyl inositol kinase 3 and p-AKT in tumor tissues were also lower than those of model rats. These results suggest that a fucoidan-supplemented diet can inhibit DMBA-induced tumors in rats. This study provides experimental evidence toward elucidating the immune enhancement induced by fucoidan through the programmed cell death 1/PDL1 signaling pathway. The immunomodulatory effect is one of the possible mechanisms of the protective effect of fucoidan against mammary carcinogenesis.
Collapse
Affiliation(s)
- Meilan Xue
- a Qingdao University of Medicine , Qingdao , PR China
| | - Hui Liang
- a Qingdao University of Medicine , Qingdao , PR China
| | - Qingjuan Tang
- b College of Food Science and Engineering, Ocean University of China , Qingdao , PR China
| | - Chuanxing Xue
- c Qingdao Haixi City Development Ltd , Qingdao , PR China
| | - Xinjia He
- d Oncology Department , The Affiliated Hospital of Qingdao University , Qingdao , PR China
| | - Li Zhang
- a Qingdao University of Medicine , Qingdao , PR China
| | - Zheng Zhang
- a Qingdao University of Medicine , Qingdao , PR China
| | | | - Kang Bian
- a Qingdao University of Medicine , Qingdao , PR China
| | - Lichen Zhang
- a Qingdao University of Medicine , Qingdao , PR China
| | - Zhuxin Li
- a Qingdao University of Medicine , Qingdao , PR China
| |
Collapse
|
37
|
Hsu HY, Lin TY, Lu MK, Leng PJ, Tsao SM, Wu YC. Fucoidan induces Toll-like receptor 4-regulated reactive oxygen species and promotes endoplasmic reticulum stress-mediated apoptosis in lung cancer. Sci Rep 2017; 7:44990. [PMID: 28332554 PMCID: PMC5362958 DOI: 10.1038/srep44990] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
Fucoidan, a sulfated polysaccharide extracted from brown algae, exhibits anti-cancer activity. However, the effects and mechanism of fucoidan-induced apoptosis via endoplasmic reticulum (ER) stress is unclear. In this study, we demonstrated that fucoidan prevents tumorigenesis and reduces tumor size in LLC1-xenograft male C57BL/6 mice. Fucoidan induces an ER stress response by activating the PERK-ATF4-CHOP pathway, resulting in apoptotic cell death in vitro and in vivo. Furthermore, ATF4 knockdown abolishes fucoidan-induced CHOP expression and rescues cell viability. Specifically, fucoidan increases intracellular reactive oxygen species (ROS), which increase ATF4 and CHOP in lung cancer cells. Using the ROS scavenger N-acetyl-l-cysteine (NAC), we found that ROS generation is involved in fucoidan-induced ER stress-mediated apoptosis. Moreover, via Toll-like receptor 4 (TLR4) knockdown, we demonstrated that fucoidan-induced ROS and CHOP expression were attenuated. Our study is the first to identify a novel mechanism for the antitumor activity of fucoidan. We showed that fucoidan inhibits tumor viability by activating the TLR4/ROS/ER stress axis and the downstream PERK-ATF4-CHOP pathway, leading to apoptosis and suppression of lung cancer cell progression. Together, these results indicate that fucoidan is a potential preventive and therapeutic agent for lung cancer that acts via activation of ROS-dependent ER stress pathways.
Collapse
Affiliation(s)
- Hsien-Yeh Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tung-Yi Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Taipei, Taiwan.,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ju Leng
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Ming Tsao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chung Wu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
38
|
Hwang PA, Lin XZ, Kuo KL, Hsu FY. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells. MATERIALS 2017; 10:ma10030291. [PMID: 28772650 PMCID: PMC5503377 DOI: 10.3390/ma10030291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
Abstract
Fucoidan, an anionic, sulfated polysaccharide from brown seaweed, is known to exhibit antitumor and immunomodulatory functions. To develop an immune protection and chemotherapeutic agent, fucoidan-cisplatin nanoparticles (FCNPs) were designed. FCNPs were prepared by mixing cisplatin with fucoidan solution or fucoidan with cisplatin solution, followed by dialysis to remove trace elements. The nanoparticles, comprising 10 mg of fucoidan and 2 mg of cisplatin, which exhibited the highest cisplatin content and loading efficiency during the production process, were named as Fu100Cis20. The cisplatin content, cisplatin loading efficiency, nanoparticle size, and zeta potential of Fu100Cis20 were 18.9% ± 2.7%, 93.3% ± 7.8%, 181.2 ± 21.0 nm, and −67.4 ± 2.3 mV, respectively. Immune protection assay revealed that Fu100Cis20-treated RAW264.7 cells were protected from the cytotoxicity of cisplatin. Furthermore, antitumor assay indicated that Fu100Cis20-treated HCT-8 cells showed stronger cytotoxicity than those treated with cisplatin alone. These results suggested that fucoidan-based nanoparticles exhibited suitable particle size and high drug encapsulation, and that Fu100Cis20 has potential application in both immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| | - Xiao-Zhen Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| | - Ko-Liang Kuo
- Seafood Technology Division, Council of Agriculture Fisheries Research Institute, No. 199 Hou-Ih Road, Keelung City 202, Taiwan.
| | - Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| |
Collapse
|
39
|
Jang H, Kang K, El-Sayed MA. Facile size-controlled synthesis of fucoidan-coated gold nanoparticles and cooperative anticancer effect with doxorubicin. J Mater Chem B 2017; 5:6147-6153. [DOI: 10.1039/c7tb01123g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile one-pot synthesis, surface modification and doxorubicin conjugation of anticancer biopolymer fucoidan coated gold nanoparticle enabled highly efficient cancer therapy through cooperative treatment feasibility.
Collapse
Affiliation(s)
- Hongje Jang
- Laser Dynamics Laboratory
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Kyungtae Kang
- Department of Applied Chemistry
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Mostafa A. El-Sayed
- Laser Dynamics Laboratory
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
40
|
Wu L, Sun J, Su X, Yu Q, Yu Q, Zhang P. A review about the development of fucoidan in antitumor activity: Progress and challenges. Carbohydr Polym 2016; 154:96-111. [PMID: 27577901 DOI: 10.1016/j.carbpol.2016.08.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
Abstract
Fucoidan is composed of l-fucose, sulfate groups and one or more small proportions of d-xylose, d-mannose, d-galactose, l-rhamnose, arabinose, glucose, d-glucuronic acid and acetyl groups in different kinds of brown seaweeds. Many reports have demonstrated that fucoidan has antitumor activities on various cancers. However, until now, few reviews have discussed the antitumor activity of fucoidan and few reports have summarized detailed molecular mechanisms of its actions and antitumor challenges of fucoidan specially. In this review, the antitumor signaling pathway mechanisms related to fucoidan are elucidated as much detail as possible. Besides, the factors affecting the anticancer effects of fucoidan, the structural characteristics of fucoidan with anticancer activities and the challenges for the further development of fucoidan are also summarized and evaluated. The existing similar and different conclusions are summarized in an attempt to provide guidelines to help further research, and finally contribute to go into market as chemotherapeumtics.
Collapse
Affiliation(s)
- Lei Wu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Jing Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Xitong Su
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Qiuli Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Qiuyang Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
41
|
Wang YY, Zhao R, Zhe H. The emerging role of CaMKII in cancer. Oncotarget 2016; 6:11725-34. [PMID: 25961153 PMCID: PMC4494900 DOI: 10.18632/oncotarget.3955] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinases best known for its critical role in learning and memory. Recent studies suggested that high levels of CaMKII also expressed in variety of malignant diseases. In this review, we focus on the structure and biology properties of CaMKII, including the role of CaMKII in the regulation of cancer progression and therapy response. We also describe the role of CaMKII in the diagnosis of different kinds of cancer and recent progress in the development of CaMKII inhibitors. These data establishes CaMKII as a novel target whose modulation presents new opportunities for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yan-yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ren Zhao
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
42
|
Venkatesan J, Anil S, Kim SK, Shim MS. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery. Polymers (Basel) 2016; 8:30. [PMID: 30979124 PMCID: PMC6432598 DOI: 10.3390/polym8020030] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 01/17/2023] Open
Abstract
In recent years, there have been major advances and increasing amounts of research on the utilization of natural polymeric materials as drug delivery vehicles due to their biocompatibility and biodegradability. Seaweed polysaccharides are abundant resources and have been extensively studied for several biological, biomedical, and functional food applications. The exploration of seaweed polysaccharides for drug delivery applications is still in its infancy. Alginate, carrageenan, fucoidan, ulvan, and laminarin are polysaccharides commonly isolated from seaweed. These natural polymers can be converted into nanoparticles (NPs) by different types of methods, such as ionic gelation, emulsion, and polyelectrolyte complexing. Ionic gelation and polyelectrolyte complexing are commonly employed by adding cationic molecules to these anionic polymers to produce NPs of a desired shape, size, and charge. In the present review, we have discussed the preparation of seaweed polysaccharide-based NPs using different types of methods as well as their usage as carriers for the delivery of various therapeutic molecules (e.g., proteins, peptides, anti-cancer drugs, and antibiotics). Seaweed polysaccharide-based NPs exhibit suitable particle size, high drug encapsulation, and sustained drug release with high biocompatibility, thereby demonstrating their high potential for safe and efficient drug delivery.
Collapse
Affiliation(s)
| | - Sukumaran Anil
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, P.O Box 114, Jazan 45142, Saudi Arabia.
| | - Se-Kwon Kim
- Marine Bioprocess Research Center and Department of Marine-bio Convergence Science, Pukyong National University, Busan 608-737, Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Korea.
| |
Collapse
|
43
|
Shang Q, Shan X, Cai C, Hao J, Li G, Yu G. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance ofLactobacillusandRuminococcaceae. Food Funct 2016; 7:3224-32. [DOI: 10.1039/c6fo00309e] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study provides a new insight into the well-recognized beneficial effects of dietary fucoidan by demonstrating its positive modulations on gut microbiota.
Collapse
Affiliation(s)
- Qingsen Shang
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Xindi Shan
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Chao Cai
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Jiejie Hao
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Guoyun Li
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Guangli Yu
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| |
Collapse
|
44
|
Cai X, Bao L, Dai X, Ding Y, Zhang Z, Li Y. Quercetin protects RAW264.7 macrophages from glucosamine-induced apoptosis and lipid accumulation via the endoplasmic reticulum stress pathway. Mol Med Rep 2015; 12:7545-53. [PMID: 26398703 DOI: 10.3892/mmr.2015.4340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 08/24/2015] [Indexed: 11/05/2022] Open
Abstract
It is increasingly recognized that macrophages are a key cell in the development of atherosclerosis. Glucosamine, the product of the hexosamine biosynthetic pathway in diabetes mellitus, can disturb lipid metabolism, induce apoptosis and accelerate atherosclerosis via endoplasmic reticulum (ER) stress in various types of cells. Previous studies have indicated that quercetin possesses antidiabetic, anti‑oxidative, anti‑inflammatory and anti‑apoptotic activities as a flavonoid. Studies have also demonstrated its novel pharmacological properties for inhibiting ER stress. The present study focussed on the effects of quercetin on cell injury and ER stress in glucosamine‑induced macrophages. RAW264.7 macrophages were cultured with 15 mM glucosamine, following which the levels of apoptosis, intracellular total and free cholesterol, and apoptosis‑ and ER stress‑associated proteins were measured in the macrophages treated with or without quercetin. Additionally, the ratio of cholestryl ester/total cholesterol was calculated to observe the formation of foam cells. The results demonstrated that apoptosis and abnormal lipid accumulation in the RAW264.7 cells, which was induced by glucosamine, were significantly reversed by quercetin. In addition, quercetin treatment suppressed the increase of C/EBP homologous protein, and inhibited the activation of JNK and caspase‑12, which was induced by glucosamine. Quercetin also increased the expression level of full length activating transcriptional factor 6 and decreased the expression of glucose regulated protein 78. Of note, the beneficial effects of quercetin on the glucosamine‑induced RAW264.7 cells were reversed by treatment with tunicamycin. These findings suggest that quercetin may have properties to prevent glucosamine‑induced apoptosis and lipid accumulation via the ER stress pathway in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Lei Bao
- Department of Clinical Nutrition, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xiaoqian Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
45
|
Fitton JH, Stringer DN, Karpiniec SS. Therapies from Fucoidan: An Update. Mar Drugs 2015; 13:5920-46. [PMID: 26389927 PMCID: PMC4584361 DOI: 10.3390/md13095920] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 12/30/2022] Open
Abstract
Fucoidans are a class of sulfated fucose-rich polysaccharides found in brown marine algae and echinoderms. Fucoidans have an attractive array of bioactivities and potential applications including immune modulation, cancer inhibition, and pathogen inhibition. Research into fucoidan has continued to gain pace over the last few years and point towards potential therapeutic or adjunct roles. The source, extraction, characterization and detection of fucoidan is discussed.
Collapse
Affiliation(s)
- Janet Helen Fitton
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Damien N Stringer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Samuel S Karpiniec
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| |
Collapse
|
46
|
Farooqi AA, Li KT, Fayyaz S, Chang YT, Ismail M, Liaw CC, Yuan SSF, Tang JY, Chang HW. Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress. Tumour Biol 2015; 36:5743-52. [PMID: 26188905 PMCID: PMC4546701 DOI: 10.1007/s13277-015-3797-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Prior research has demonstrated how the endoplasmic reticulum (ER) functions as a multifunctional organelle and as a well-orchestrated protein-folding unit. It consists of sensors which detect stress-induced unfolded/misfolded proteins and it is the place where protein folding is catalyzed with chaperones. During this folding process, an immaculate disulfide bond formation requires an oxidized environment provided by the ER. Protein folding and the generation of reactive oxygen species (ROS) as a protein oxidative byproduct in ER are crosslinked. An ER stress-induced response also mediates the expression of the apoptosis-associated gene C/EBP-homologous protein (CHOP) and death receptor 5 (DR5). ER stress induces the upregulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor and opening new horizons for therapeutic research. These findings can be used to maximize TRAIL-induced apoptosis in xenografted mice. This review summarizes the current understanding of the interplay between ER stress and ROS. We also discuss how damage-associated molecular patterns (DAMPs) function as modulators of immunogenic cell death and how natural products and drugs have shown potential in regulating ER stress and ROS in different cancer cell lines. Drugs as inducers and inhibitors of ROS modulation may respectively exert inducible and inhibitory effects on ER stress and unfolded protein response (UPR). Reconceptualization of the molecular crosstalk among ROS modulating effectors, ER stress, and DAMPs will lead to advances in anticancer therapy.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan,
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Park HY, Choi IW, Kim GY, Kim BW, Kim WJ, Choi YH. Fucoidan induces G1 arrest of the cell cycle in EJ human bladder cancer cells through down-regulation of pRB phosphorylation. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Xin Z, Jiang S, Jiang P, Yan X, Fan C, Di S, Wu G, Yang Y, Reiter RJ, Ji G. Melatonin as a treatment for gastrointestinal cancer: a review. J Pineal Res 2015; 58:375-87. [PMID: 25752643 DOI: 10.1111/jpi.12227] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Gastrointestinal cancer is a disease that affects the population worldwide with high morbidity and mortality. Melatonin, an endogenously produced molecule, may provide a defense against a variety of cancer types. In particular, the ability of melatonin to inhibit gastrointestinal cancer is substantial. In this review, we first clarify the relationship between the disruption of the melatonin rhythm and gastrointestinal cancer (based on epidemiologic surveys and animal and human studies) and summarize the preventive effect of melatonin on carcinogenesis. Thereafter, the mechanisms through which melatonin exerts its anti-gastrointestinal cancer actions are explained, including inhibition of proliferation, invasion, metastasis, and angiogenesis, and promotion of apoptosis and cancer immunity. Moreover, we discuss the drug synergy effects and the role of melatonin receptors involved in the growth-inhibitory effects on gastrointestinal cancer. Taken together, the information compiled here serves as a comprehensive reference for the anti-gastrointestinal cancer actions of melatonin that have been identified to date and will hopefully aid in the design of further experimental and clinical studies and increase the awareness of melatonin as a therapeutic agent in cancers of the gastrointestinal tract.
Collapse
Affiliation(s)
- Zhenlong Xin
- State Key Laboratory of Cancer Biology, Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China; Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tameire F, Verginadis II, Koumenis C. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: Mechanisms and targets for therapy. Semin Cancer Biol 2015; 33:3-15. [PMID: 25920797 DOI: 10.1016/j.semcancer.2015.04.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
A variety of cell intrinsic or extrinsic stresses evoke perturbations in the folding environment of the endoplasmic reticulum (ER), collectively known as ER stress. Adaptation to stress and re-establishment of ER homeostasis is achieved by activation of an integrated signal transduction pathway called the unfolded protein response (UPR). Both ER stress and UPR activation have been implicated in a variety of human cancers. Although at early stages or physiological conditions of ER stress, the UPR generally promotes survival, when the stress becomes more stringent or prolonged, its role can switch to a pro-cell death one. Here, we discuss historical and recent evidence supporting an involvement of the UPR in malignancy, describe the main mechanisms by which tumor cells overcome ER stress to promote their survival, tumor progression and metastasis and discuss the current state of efforts to develop therapeutic approaches of targeting the UPR.
Collapse
Affiliation(s)
- Feven Tameire
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Program in Cell and Molecular Biology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Huang TH, Chiu YH, Chan YL, Chiu YH, Wang H, Huang KC, Li TL, Hsu KH, Wu CJ. Prophylactic administration of fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis tumor-bearing mice. Mar Drugs 2015; 13:1882-900. [PMID: 25854641 PMCID: PMC4413192 DOI: 10.3390/md13041882] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 02/08/2023] Open
Abstract
Fucoidan, a heparin-like sulfated polysaccharide, is rich in brown algae. It has a wide assortment of protective activities against cancer, for example, induction of hepatocellular carcinoma senescence, induction of human breast and colon carcinoma apoptosis, and impediment of lung cancer cells migration and invasion. However, the anti-metastatic mechanism that fucoidan exploits remains elusive. In this report, we explored the effects of fucoidan on cachectic symptoms, tumor development, lung carcinoma cell spreading and proliferation, as well as expression of metastasis-associated proteins in the Lewis lung carcinoma (LLC) cells-inoculated mice model. We discovered that administration of fucoidan has prophylactic effects on mitigation of cachectic body weight loss and improvement of lung masses in tumor-inoculated mice. These desired effects are attributed to inhibition of LLC spreading and proliferation in lung tissues. Fucoidan also down-regulates expression of matrix metalloproteinases (MMPs), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and vascular endothelial growth factor (VEGF). Moreover, the tumor-bearing mice supplemented with fucoidan indeed benefit from an ensemble of the chemo-phylacticity. The fact is that fucoidan significantly decreases viability, migration, invasion, and MMPs activities of LLC cells. In summary, fucoidan is suitable to act as a chemo-preventative agent for minimizing cachectic symptoms as well as inhibiting lung carcinoma metastasis through down-regulating metastatic factors VEGF and MMPs.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
- Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yi-Han Chiu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Yi-Lin Chan
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan.
| | - Ya-Huang Chiu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Aquatic Technology Laboratories, Agricultural Technology Research Institute, Hsinchu 30093, Taiwan.
| | - Hang Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Institute of Biomedical Nutrition, Hung Kuang University, Taichung 43302, Taiwan.
| | - Kuo-Chin Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan.
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuang-Hung Hsu
- Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Taoyuan 33302, Taiwan.
- Laboratory for Epidemiology, Department and graduate institute of health care management, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|