1
|
Hurychová J, Dostál J, Kunc M, Šreibr S, Dostálková S, Petřivalský M, Hyršl P, Titěra D, Danihlík J, Dobeš P. Modeling seasonal immune dynamics of honey bee (Apis mellifera L.) response to injection of heat-killed Serratia marcescens. PLoS One 2024; 19:e0311415. [PMID: 39365765 PMCID: PMC11452037 DOI: 10.1371/journal.pone.0311415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The honey bee, Apis mellifera L., is one of the main pollinators worldwide. In a temperate climate, seasonality affects the life span, behavior, physiology, and immunity of honey bees. In consequence, it impacts their interaction with pathogens and parasites. In this study, we used Bayesian statistics and modeling to examine the immune response dynamics of summer and winter honey bee workers after injection with the heat-killed bacteria Serratia marcescens, an opportunistic honey bee pathogen. We investigated the humoral and cellular immune response at the transcriptional and functional levels using qPCR of selected immune genes, antimicrobial activity assay, and flow cytometric analysis of hemocyte concentration. Our data demonstrate increased antimicrobial activity at transcriptional and functional levels in summer and winter workers after injection, with a stronger immune response in winter bees. On the other hand, an increase in hemocyte concentration was observed only in the summer bee population. Our results indicate that the summer population mounts a cellular response when challenged with heat-killed S. marcescens, while winter honey bees predominantly rely on humoral immune reactions. We created a model describing the honey bee immune response dynamics to bacteria-derived components by applying Bayesian statistics to our data. This model can be employed in further research and facilitate the investigating of the honey bee immune system and its response to pathogens.
Collapse
Affiliation(s)
- Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jakub Dostál
- Department of Mathematical Analysis and Application of Mathematics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sara Šreibr
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Dalibor Titěra
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science Prague, Prague, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Araújo RDS, Viana TA, Botina LL, Bastos DSS, da Silva Alves BC, Machado-Neves M, Bernardes RC, Martins GF. Investigating the effects of mesotrione/atrazine-based herbicide on honey bee foragers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165526. [PMID: 37451454 DOI: 10.1016/j.scitotenv.2023.165526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
A mixture of the herbicides mesotrione and atrazine (Calaris®) is a widely used herbicide in agriculture in several countries. However, the possible toxicological effects of this formulation on non-target organisms require investigation. In this study, the effects of acute oral exposure to Calaris® were evaluated in Apis mellifera foragers. The effect of seven different concentrations of Calaris® on survival and sucrose consumption was studied, while the recommended concentration for field use (FC) and its 10× dilution (0.1 FC) were used to assess overall locomotor activity, respiratory rate, flight, midgut morphology, oxidative and nitrosative stresses, and hemocyte counting. The exposure to FC or 0.1 FC decreased locomotor activity and induced damage to the midgut epithelium. Additionally, the two tested concentrations reduced superoxide dismutase activity, nitric oxide levels, and total hemocyte count. FC also increased malondialdehyde content and 0.1 FC increased respiratory rate and decreased the proportion of prohemocytes. Overall, our findings evidenced significant harmful effects on A. mellifera foragers resulting from the ingestion of the Calaris® herbicide.
Collapse
Affiliation(s)
- Renan Dos Santos Araújo
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, 78698-000 Pontal do Araguaia, MT, Brazil.
| | - Thaís Andrade Viana
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.
| | - Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.
| | | | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.
| | | | | |
Collapse
|
3
|
Maingi FM, Akutse KS, Ajene IJ, Omolo KM, Khamis FM. Immunological responses and gut microbial shifts in Phthorimaea absoluta exposed to Metarhizium anisopliae isolates under different temperature regimes. Front Microbiol 2023; 14:1258662. [PMID: 38029135 PMCID: PMC10666277 DOI: 10.3389/fmicb.2023.1258662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The invasive tomato leaf miner, Phthorimaea absoluta, is conventionally controlled through chemical insecticides. However, the rise of insecticide resistance has necessitated sustainable and eco-friendly alternatives. Entomopathogenic fungi (EPF) have shown potential due to their ability to overcome resistance and have minimal impact on non-target organisms. Despite this potential, the precise physiological mechanisms by which EPF acts on insect pests remain poorly understood. To attain a comprehensive understanding of the complex physiological processes that drive the successful control of P. absoluta adults through EPF, we investigated the impacts of different Metarhizium anisopliae isolates (ICIPE 665, ICIPE 20, ICIPE 18) on the pest's survival, cellular immune responses, and gut microbiota under varying temperatures. The study unveiled that ICIPE 18 caused the highest mortality rate among P. absoluta moths, while ICIPE 20 exhibited the highest significant reduction in total hemocyte counts after 10 days at 25°C. Moreover, both isolates elicited notable shifts in P. absoluta's gut microbiota. Our findings revealed that ICIPE 18 and ICIPE 20 compromised the pest's defense and physiological functions, demonstrating their potential as biocontrol agents against P. absoluta in tomato production systems.
Collapse
Affiliation(s)
- Felix Muendo Maingi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Unit for Environment Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Inusa Jacob Ajene
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Kevin Mbogo Omolo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | |
Collapse
|
4
|
Çakıcı Ö, Uysal M, Demirözer O, Gösterit A. Sublethal effects of thiamethoxam on immune system cells in the workers of Bombus terrestris (Hymenoptera: Apidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87424-87432. [PMID: 37422564 DOI: 10.1007/s11356-023-28654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Neonicotinoids harm especially bumblebees and other species in agricultural areas all over the world. The toxic effect of thiamethoxam from the neonicotinoid group has been little studied especially on bees. This research aimed to evaluate the effects of thiamethoxam on the immune system cells of Bombus terrestris workers. Different ratios of 1/1000, 1/100 and 1/10 of the recommended maximum application dose of thiamethoxam formed the experimental groups. Ten foraging workers were used for each dose and control groups. Contamination was ensured by spraying the prepared suspensions at different ratios to the bees for 20 s at a pressure of 1 atm. The effects of thiamethoxam on the structures of immune system cells of bumblebees and the amount of these cells were investigated after 48 h of exposure. In general, anomalies such as vacuolization, cell membrane irregularities and cell shape changes were detected in prohemocyte, plasmatocyte, granulocyte, spherulocyte and oenocytoid in each dose group. Hemocyte area measurements in all groups were examined comparatively between groups. In general, granulocyte and plasmatocyte sizes were decreased, while spherulocyte and oenocytoid were increased. It was also determined that there was a significant decrease in the amount of hemocytes in the 1 mm3 hemolymph as dose increased. The results of the study revealed that sublethal doses of thiamethoxam negatively affected hemocytes and their amounts of B. terrestris workers.
Collapse
Affiliation(s)
- Özlem Çakıcı
- Science Faculty, Biology Department, Ege University, Zoology Section, 35100, Bornova-Izmir, Turkey.
| | - Melis Uysal
- Science Faculty, Biology Department, Ege University, Zoology Section, 35100, Bornova-Izmir, Turkey
| | - Ozan Demirözer
- Department of Plant Protection, Faculty of Agriculture, Isparta Applied Science University, 32260, Isparta, Turkey
| | - Ayhan Gösterit
- Department of Animal Science, Faculty of Agriculture, Isparta Applied Science University, 32260, Isparta, Turkey
| |
Collapse
|
5
|
Kunc M, Dobeš P, Ward R, Lee S, Čegan R, Dostálková S, Holušová K, Hurychová J, Eliáš S, Pinďáková E, Čukanová E, Prodělalová J, Petřivalský M, Danihlík J, Havlík J, Hobza R, Kavanagh K, Hyršl P. Omics-based analysis of honey bee (Apis mellifera) response to Varroa sp. parasitisation and associated factors reveals changes impairing winter bee generation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103877. [PMID: 36403678 DOI: 10.1016/j.ibmb.2022.103877] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/24/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The extensive annual loss of honey bees (Apis mellifera L.) represents a global problem affecting agriculture and biodiversity. The parasitic mite Varroa destructor, associated with viral co-infections, plays a key role in this loss. Despite years of intensive research, the complex mechanisms of Varroa - honey bee interaction are still not fully defined. Therefore, this study employed a unique combination of transcriptomic, proteomic, metabolomic, and functional analyses to reveal new details about the effect of Varroa mites and naturally associated factors, including viruses, on honey bees. We focused on the differences between Varroa parasitised and unparasitised ten-day-old worker bees collected before overwintering from the same set of colonies reared without anti-mite treatment. Supplementary comparison to honey bees collected from colonies with standard anti-Varroa treatment can provide further insights into the effect of a pyrethroid flumethrin. Analysis of the honey bees exposed to mite parasitisation revealed alterations in the transcriptome and proteome related to immunity, oxidative stress, olfactory recognition, metabolism of sphingolipids, and RNA regulatory mechanisms. The immune response and sphingolipid metabolism were strongly activated, whereas olfactory recognition and oxidative stress pathways were inhibited in Varroa parasitised honey bees compared to unparasitised ones. Moreover, metabolomic analysis confirmed the depletion of nutrients and energy stores, resulting in a generally disrupted metabolism in the parasitised workers. The combined omics-based analysis conducted on strictly parasitised bees revealed the key molecular components and mechanisms underlying the detrimental effects of Varroa sp. and its associated pathogens. This study provides the theoretical basis and interlinked datasets for further research on honey bee response to biological threats and the development of efficient control strategies against Varroa mites.
Collapse
Affiliation(s)
- Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Rachel Ward
- Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| | - Saetbyeol Lee
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Sara Eliáš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eliška Pinďáková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Eliška Čukanová
- Department of Infectious Disease and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Jana Prodělalová
- Department of Infectious Disease and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jaroslav Havlík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
6
|
Intracellular cytokine detection based on flow cytometry in hemocytes from Galleria mellonella larvae: A new protocol. PLoS One 2022; 17:e0274120. [PMID: 36173940 PMCID: PMC9521830 DOI: 10.1371/journal.pone.0274120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
Invertebrates are becoming increasingly popular models for research on the immune system. The innate immunity possessed by insects shows both structural and functional similarity to the resistance displayed by mammals, and many processes occurring in insect hemocytes are similar to those that occur in mammals. However, the use of insects as research models requires the development of methods for working with hemocytes. The aim of this study was to develop a protocol for intracellular cytokine detection in Galleria mellonella larvae hemocytes based on flow cytometry. It describes the anticoagulant composition of the buffer, the optimal conditions for hemocyte permeabilization and fixation, as well as the conditions of cell centrifugation to prevent cell disintegration. A key element is the selection of staining conditions, especially the length of the incubation time with the primary antibody, which turned out to be much longer than recommended for mammalian cells. The development of these individual steps allowed for the creation of a reproducible protocol for cytokine detection using flow cytometry in wax moth hemocytes. This will certainly facilitate the development of further protocols allowing for wider use of insect cells in immunological research.
Collapse
|
7
|
Morfin N, Anguiano-Baez R, Guzman-Novoa E. Honey Bee (Apis mellifera) Immunity. Vet Clin North Am Food Anim Pract 2021; 37:521-533. [PMID: 34689918 DOI: 10.1016/j.cvfa.2021.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
At the individual level, honey bees (Apis mellifera) rely on innate immunity, which operates through cellular and humoral mechanisms, to defend themselves against infectious agents and parasites. At the colony level, honey bees have developed collective defense mechanisms against pathogens and pests, such as hygienic and grooming behaviors. An understanding of the immune responses of honey bees is critical to implement strategies to reduce mortality and increase colony productivity. The major components and mechanisms of individual and social immunity of honey bees are discussed in this review.
Collapse
Affiliation(s)
- Nuria Morfin
- Research Associate, University of Guelph, School of Environmental Sciences, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada.
| | - Ricardo Anguiano-Baez
- Adjunct Professor, National Autonomous University of Mexico, Av. Universidad #3000, CU, Coyoacán, 04510, Mexico City, Mexico. https://twitter.com/richybat
| | - Ernesto Guzman-Novoa
- Professor and Head of the Honey Bee Research Centre, University of Guelph, School of Environmental Sciences, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Powner MB, Priestley G, Hogg C, Jeffery G. Improved mitochondrial function corrects immunodeficiency and impaired respiration in neonicotinoid exposed bumblebees. PLoS One 2021; 16:e0256581. [PMID: 34437613 PMCID: PMC8389381 DOI: 10.1371/journal.pone.0256581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023] Open
Abstract
Neonicotinoid pesticides undermine pollinating insects including bumblebees. However, we have previously shown that mitochondrial damage induced by neonicotinoids can be corrected by 670nm light exposure. But we do not know if this protection extends to immunity or what the minimum effective level of 670nm light exposure is necessary for protection. We use whole body bee respiration in vivo as a metric of neonicotinoid damage and assess the amount of light exposure needed to correct it. We reveal that only 1 min of 670nm exposure is sufficient to correct respiratory deficits induced by pesticide and that this also completely repairs damaged immunocompetence measured by haemocyte counts and the antibacterial action of hemolymph. Further, this single 1 min exposure remains effective for 3–6 days. Longer exposures were not more effective. Such data are key for development of protective light strategies that can be delivered by relatively small economic devices placed in hives.
Collapse
Affiliation(s)
- Michael Barry Powner
- Centre for Applied Vision Research, City University of London, London, United Kingdom
| | | | - Chris Hogg
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
McMenamin AJ, Parekh F, Lawrence V, Flenniken ML. Investigating Virus-Host Interactions in Cultured Primary Honey Bee Cells. INSECTS 2021; 12:653. [PMID: 34357313 PMCID: PMC8329929 DOI: 10.3390/insects12070653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Honey bee (Apis mellifera) health is impacted by viral infections at the colony, individual bee, and cellular levels. To investigate honey bee antiviral defense mechanisms at the cellular level we further developed the use of cultured primary cells, derived from either larvae or pupae, and demonstrated that these cells could be infected with a panel of viruses, including common honey bee infecting viruses (i.e., sacbrood virus (SBV) and deformed wing virus (DWV)) and an insect model virus, Flock House virus (FHV). Virus abundances were quantified over the course of infection. The production of infectious virions in cultured honey bee pupal cells was demonstrated by determining that naïve cells became infected after the transfer of deformed wing virus or Flock House virus from infected cell cultures. Initial characterization of the honey bee antiviral immune responses at the cellular level indicated that there were virus-specific responses, which included increased expression of bee antiviral protein-1 (GenBank: MF116383) in SBV-infected pupal cells and increased expression of argonaute-2 and dicer-like in FHV-infected hemocytes and pupal cells. Additional studies are required to further elucidate virus-specific honey bee antiviral defense mechanisms. The continued use of cultured primary honey bee cells for studies that involve multiple viruses will address this knowledge gap.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Verena Lawrence
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
10
|
Moyetta NR, Ramos FO, Leyria J, Canavoso LE, Fruttero LL. Morphological and Ultrastructural Characterization of Hemocytes in an Insect Model, the Hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae). INSECTS 2021; 12:insects12070640. [PMID: 34357299 PMCID: PMC8303341 DOI: 10.3390/insects12070640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Chagas’ disease is a debilitating and life-threatening disease endemic of the Americas, although it currently affects about six to seven million people around the world. The triatomines, also known as kissing bugs, are blood-feeding insects that play a key role in the transmission of Chagas’ disease since they are the vectors of the parasite Trypanosoma cruzi, the causative agent of the illness. On the other hand, the hemocytes are the cells present in the circulatory system of insects and other invertebrates. These cells are comparable to the white blood cells of vertebrates and fulfill vital functions in coagulation and defense against pathogens. The classification of hemocytes is mainly based in their cell shape, which is technically challenging to assess, and the authors have not always agreed upon this subject. In this study we combined different techniques to classify the hemocytes of the kissing bug Dipetalogaster maxima in a juvenile stage of development. We characterized the hemocytes in five types, including plasmatocytes, granulocytes, prohemocytes, adipohemocytes and oenocytes. These findings contribute to the understanding of insect and triatomine physiology and can be applied to unravel basic aspects of insect immune responses, coagulation cascades and endocrine processes. Abstract Hemocytes, the cells present in the hemolymph of insects and other invertebrates, perform several physiological functions, including innate immunity. The current classification of hemocyte types is based mostly on morphological features; however, divergences have emerged among specialists in triatomines, the insect vectors of Chagas’ disease (Hemiptera: Reduviidae). Here, we have combined technical approaches in order to characterize the hemocytes from fifth instar nymphs of the triatomine Dipetalogaster maxima. Moreover, in this work we describe, for the first time, the ultrastructural features of D. maxima hemocytes. Using phase contrast microscopy of fresh preparations, five hemocyte populations were identified and further characterized by immunofluorescence, flow cytometry and transmission electron microscopy. The plasmatocytes and the granulocytes were the most abundant cell types, although prohemocytes, adipohemocytes and oenocytes were also found. This work sheds light on a controversial aspect of triatomine cell biology and physiology setting the basis for future in-depth studies directed to address hemocyte classification using non-microscopy-based markers.
Collapse
Affiliation(s)
- Natalia R. Moyetta
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (N.R.M.); (F.O.R.); (J.L.); (L.E.C.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Fabián O. Ramos
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (N.R.M.); (F.O.R.); (J.L.); (L.E.C.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (N.R.M.); (F.O.R.); (J.L.); (L.E.C.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Lilián E. Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (N.R.M.); (F.O.R.); (J.L.); (L.E.C.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Leonardo L. Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (N.R.M.); (F.O.R.); (J.L.); (L.E.C.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
- Correspondence:
| |
Collapse
|
11
|
Harwood G, Salmela H, Freitak D, Amdam G. Social immunity in honey bees: royal jelly as a vehicle in transferring bacterial pathogen fragments between nestmates. J Exp Biol 2021; 224:238089. [DOI: 10.1242/jeb.231076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023]
Abstract
ABSTRACT
Social immunity is a suite of behavioral and physiological traits that allow colony members to protect one another from pathogens, and includes the oral transfer of immunological compounds between nestmates. In honey bees, royal jelly is a glandular secretion produced by a subset of workers that is fed to the queen and young larvae, and which contains many antimicrobial compounds. A related form of social immunity, transgenerational immune priming (TGIP), allows queens to transfer pathogen fragments into their developing eggs, where they are recognized by the embryo's immune system and induce higher pathogen resistance in the new offspring. These pathogen fragments are transported by vitellogenin (Vg), an egg-yolk precursor protein that is also used by nurses to synthesize royal jelly. Therefore, royal jelly may serve as a vehicle to transport pathogen fragments from workers to other nestmates. To investigate this, we recently showed that ingested bacteria are transported to nurses' jelly-producing glands, and here, we show that pathogen fragments are incorporated into the royal jelly. Moreover, we show that consuming pathogen cells induces higher levels of an antimicrobial peptide found in royal jelly, defensin-1.
Collapse
Affiliation(s)
- Gyan Harwood
- Department of Entomology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, FI-00014 Helsinki, Finland
| | - Dalial Freitak
- Institute of Biology, Division of Zoology, University of Graz, A8010 Graz, Austria
| | - Gro Amdam
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432 Aas, Norway
| |
Collapse
|
12
|
Gábor E, Cinege G, Csordás G, Rusvai M, Honti V, Kolics B, Török T, Williams MJ, Kurucz É, Andó I. Identification of reference markers for characterizing honey bee (Apis mellifera) hemocyte classes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103701. [PMID: 32320738 DOI: 10.1016/j.dci.2020.103701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Cell mediated immunity of the honey bee (Apis mellifera) involves the activity of several hemocyte populations, currently defined by morphological features and lectin binding characteristics. The objective of the present study was to identify molecular markers capable of characterizing subsets of honey bee hemocytes. We developed and employed monoclonal antibodies with restricted reactions to functionally distinct hemocyte subpopulations. Melanizing cells, known as oenocytoids, were defined by an antibody to prophenoloxidase, aggregating cells were identified by the expression of Hemolectin, and phagocytic cells were identified by a marker expressed on granulocytes. We anticipate that this combination of antibodies not only allows for the detection of functionally distinct hemocyte subtypes, but will help to further the exploration of hematopoietic compartments, as well as reveal details of the honey bee cellular immune defense against parasites and microbes.
Collapse
Affiliation(s)
- Erika Gábor
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| | - Gyöngyi Cinege
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| | - Gábor Csordás
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| | - Miklós Rusvai
- University of Veterinary Medicine, 1078, Budapest, István u. 2., Hungary.
| | - Viktor Honti
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| | - Balázs Kolics
- Department of Plant Science and Biotechnology, University of Pannonia, Georgikon Faculty, Deák F. u. 16., 8360, Keszthely, Hungary.
| | - Tibor Török
- Department of Genetics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary.
| | - Michael J Williams
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden.
| | - Éva Kurucz
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| | - István Andó
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| |
Collapse
|
13
|
López-Madrigal S, Maire J, Balmand S, Zaidman-Rémy A, Heddi A. Effects of symbiotic status on cellular immunity dynamics in Sitophilus oryzae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:259-269. [PMID: 28802841 DOI: 10.1016/j.dci.2017.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Many insects maintain intracellular symbiosis with mutualistic bacteria that improve their adaptive capabilities in nutritionally poor habitats. Adaptation of insect immune systems to such associations has been shown in several symbiotic consortia, including that of the rice weevil Sitophilus oryzae with the gammaproteobacterium Sodalis pierantonius. Although authors have mostly focused on the role of humoral immunity in host-symbiont interactions, recent studies suggest that symbiotic bacteria may also interfere with the cellular, hemocyte-based, immunity. Here, we have explored hemocyte dynamics in S. oryzae in the presence or absence of S. pierantonius, and in response to bacterial challenges. We have identified five morphotypes within larval hemocytes, whose abundance and morphometry drastically change along insect development. We show that hemocytes make part of the weevil immune system by responding to pathogenic infections. In contrast with previous results on other insect species, however, our analyses did not reveal any symbiotic-dependent modulation of the hemocyte global population.
Collapse
Affiliation(s)
| | - Justin Maire
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France.
| | - Séverine Balmand
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France.
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France.
| | - Abdelaziz Heddi
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France.
| |
Collapse
|
14
|
Yang D, Zha G, Li X, Gao H, Yu H. Immune responses in the haemolymph and antimicrobial peptide expression in the abdomen of Apis mellifera challenged with Spiroplasma melliferum CH-1. Microb Pathog 2017; 112:279-287. [DOI: 10.1016/j.micpath.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/01/2022]
|
15
|
Gábor E, Cinege G, Csordás G, Török T, Folkl-Medzihradszky K, Darula Z, Andó I, Kurucz É. Hemolectin expression reveals functional heterogeneity in honey bee (Apis mellifera) hemocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:403-411. [PMID: 28713010 DOI: 10.1016/j.dci.2017.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
The identification of molecular markers considerably facilitated the classification and functional analysis of blood cell types. Apis mellifera hemocytes have been classified by morphological criteria and lectin binding properties; however, the use of molecular markers has been minimal. Here we describe a monoclonal antibody to a non-phagocytic subpopulation of A. mellifera hemocytes and to a constituent of the hemolymph clot. We demonstrate that the antibody identifies the A. mellifera hemolectin, a protein carrying human von Willebrand factor homology domains, characteristic of proteins involved in blood coagulation and platelet aggregation in mammals. Hemolectin expressing A. mellifera hemocytes contain the protein as cytoplasmic granules and contribute to the formation of a protein matrix, building up around foreign particles. Consequently, hemolectin as a marker molecule reveals a clear functional heterogeneity of hemocytes, allowing for the analytical separation of hemocyte classes, and could promote the molecular identification of hemocyte lineages in A. mellifera.
Collapse
Affiliation(s)
- Erika Gábor
- Immunology Unit, Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - Gyöngyi Cinege
- Immunology Unit, Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - Gábor Csordás
- Immunology Unit, Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - Tibor Török
- Department of Genetics, University of Szeged, Közép Fasor 52, 6726 Szeged, Hungary.
| | - Katalin Folkl-Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - István Andó
- Immunology Unit, Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| | - Éva Kurucz
- Immunology Unit, Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, P.O.Box 521, H-6701 Szeged, Hungary.
| |
Collapse
|
16
|
Domingues CEC, Abdalla FC, Balsamo PJ, Pereira BVR, Hausen MDA, Costa MJ, Silva-Zacarin ECM. Thiamethoxam and picoxystrobin reduce the survival and overload the hepato-nephrocitic system of the Africanized honeybee. CHEMOSPHERE 2017; 186:994-1005. [PMID: 28835008 DOI: 10.1016/j.chemosphere.2017.07.133] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/30/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Apis mellifera perform important pollination roles in agroecosystems. However, there is often intensive use of systemic pesticides in crops, which can be carried to the colony by forage bees through the collection of contaminated pollen and nectar. Inside the colony, pollen loads are stored by bees that add honey and several enzymes to this pollen. Nevertheless, intra-colonial chronic exposure could induce sublethal effects in young bees exposed to a wide range of pesticides present in these pollen loads. This study was aimed to both determine the survival rate and evaluate the sublethal effects on the hepato-nephrocitic system in response to continuous oral exposure to lower concentrations of neonicotinoid thiamethoxam (TXT) and picoxystrobin fungicide (PXT). Exposure to a single chemical and co-exposure to both pesticides were performed in newly emerged honeybee workers. A significant decrease in the bee survival rates was observed following exposure to TXT (0.001 ng a.i./μL) and PXT (0.018 ng a.i./μL), as well as following co-exposure to TXT+PXT/2. After five days of continuous exposure, TXT induced sub-lethal effects in the organs involved in the detoxification of xenobiotics, such as the fat body and pericardial cells, and it also induced a significant increase in the hemocyte number. Thus, the hepato-nephrocitic system (HNS) reached the greatest level of activity of pericardial cells as an attempt to eliminate this toxic compound from hemolymph. The HNS was activated at low levels by PXT without an increase in the hemocyte number; however, the mobilization of neutral glycoconjugates from the trophocytes of the fat body was prominent only in this group. TXT and PXT co-exposure induced intermediary morphological effects in trophocytes and pericardial cells, but oenocytes from the fat body presented with atypical cytoplasm granulation only in this group. These data showed that the realistic concentrations of these pesticides are harmful to newly emerged Africanized honeybees, indicating that intra-colonial chronic exposure drastically reduces the longevity of bees exposed to neonicotinoid insecticide (TXT) and the fungicide strobilurin (PXT) as in single and co-exposure. Additionally, the sublethal effects observed in the organs constituting the HNS suggest that the activation of this system, even during exposure to low concentrations of theses pesticides, is an attempt to maintain homeostasis of the bees. These data together are alarming because these pesticides can affect the performance of the entire colony.
Collapse
Affiliation(s)
- Caio E C Domingues
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Biologia Estrutural e Funcional (LABEF), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Ecotoxicologia e Biomarcadores em Abelhas (LEBA), Sorocaba, SP, Brazil
| | - Fábio Camargo Abdalla
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Biologia Estrutural e Funcional (LABEF), Sorocaba, SP, Brazil.
| | - Paulo José Balsamo
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Biologia Estrutural e Funcional (LABEF), Sorocaba, SP, Brazil
| | - Beatriz V R Pereira
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Ecotoxicologia e Biomarcadores em Abelhas (LEBA), Sorocaba, SP, Brazil
| | - Moema de Alencar Hausen
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil
| | - Monica Jones Costa
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil
| | - Elaine C M Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Ecotoxicologia e Biomarcadores em Abelhas (LEBA), Sorocaba, SP, Brazil
| |
Collapse
|
17
|
Hystad EM, Salmela H, Amdam GV, Münch D. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes. PLoS One 2017; 12:e0184108. [PMID: 28877227 PMCID: PMC5587260 DOI: 10.1371/journal.pone.0184108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which—together with confocal microscopy and flow cytometry—allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.
Collapse
Affiliation(s)
- Eva Marit Hystad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
- * E-mail:
| | - Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Gro Vang Amdam
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Daniel Münch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
18
|
Brutscher LM, Daughenbaugh KF, Flenniken ML. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci Rep 2017; 7:6448. [PMID: 28743868 PMCID: PMC5526946 DOI: 10.1038/s41598-017-06623-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
Recent high annual losses of honey bee colonies are associated with many factors, including RNA virus infections. Honey bee antiviral responses include RNA interference and immune pathway activation, but their relative roles in antiviral defense are not well understood. To better characterize the mechanism(s) of honey bee antiviral defense, bees were infected with a model virus in the presence or absence of dsRNA, a virus associated molecular pattern. Regardless of sequence specificity, dsRNA reduced virus abundance. We utilized next generation sequencing to examine transcriptional responses triggered by virus and dsRNA at three time-points post-infection. Hundreds of genes exhibited differential expression in response to co-treatment of dsRNA and virus. Virus-infected bees had greater expression of genes involved in RNAi, Toll, Imd, and JAK-STAT pathways, but the majority of differentially expressed genes are not well characterized. To confirm the virus limiting role of two genes, including the well-characterized gene, dicer, and a probable uncharacterized cyclin dependent kinase in honey bees, we utilized RNAi to reduce their expression in vivo and determined that virus abundance increased, supporting their involvement in antiviral defense. Together, these results further our understanding of honey bee antiviral defense, particularly the role of a non-sequence specific dsRNA-mediated antiviral pathway.
Collapse
Affiliation(s)
- Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA. .,Pollinator Health Center, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
19
|
Brandt A, Grikscheit K, Siede R, Grosse R, Meixner MD, Büchler R. Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin. Sci Rep 2017; 7:4673. [PMID: 28680118 PMCID: PMC5498664 DOI: 10.1038/s41598-017-04734-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/19/2017] [Indexed: 01/13/2023] Open
Abstract
Queen health is crucial to colony survival of honeybees, since reproduction and colony growth rely solely on the queen. Queen failure is considered a relevant cause of colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides can severely affect the immunocompetence of queens of western honeybees (Apis mellifera L.). In young queens exposed to thiacloprid (200 µg/l or 2000 µg/l) or clothianidin (10 µg/l or 50 µg/l), the total hemocyte number and the proportion of active, differentiated hemocytes was significantly reduced. Moreover, functional aspects of the immune defence namely the wound healing/melanisation response, as well as the antimicrobial activity of the hemolymph were impaired. Our results demonstrate that neonicotinoid insecticides can negatively affect the immunocompetence of queens, possibly leading to an impaired disease resistance capacity.
Collapse
Affiliation(s)
- Annely Brandt
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany.
| | - Katharina Grikscheit
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35032, Marburg, Germany
| | - Reinhold Siede
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany
| | - Robert Grosse
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35032, Marburg, Germany
| | | | - Ralph Büchler
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany
| |
Collapse
|
20
|
Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria. PLoS One 2016; 11:e0167752. [PMID: 28002470 PMCID: PMC5176276 DOI: 10.1371/journal.pone.0167752] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022] Open
Abstract
Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies.
Collapse
|
21
|
Brutscher LM, Daughenbaugh KF, Flenniken ML. Antiviral Defense Mechanisms in Honey Bees. CURRENT OPINION IN INSECT SCIENCE 2015; 10:71-82. [PMID: 26273564 PMCID: PMC4530548 DOI: 10.1016/j.cois.2015.04.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation.
Collapse
Affiliation(s)
- Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA ; Institute on Ecosystems, Montana State University, Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA ; Institute on Ecosystems, Montana State University, Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
22
|
Zhang K, Yu S, Su J, Xu M, Tan P, Zhang Y, Xiang Z, Cui H. Identification and characterization of three novel hemocyte-specific promoters in silkworm Bombyx mori. Biochem Biophys Res Commun 2015; 461:102-8. [DOI: 10.1016/j.bbrc.2015.03.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 01/09/2023]
|
23
|
De Biasi S, Gibellini L, Cossarizza A. Uncompensated Polychromatic Analysis of Mitochondrial Membrane Potential Using JC‐1 and Multilaser Excitation. ACTA ACUST UNITED AC 2015; 72:7.32.1-7.32.11. [DOI: 10.1002/0471142956.cy0732s72] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia Modena Italy
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia Modena Italy
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia Modena Italy
| |
Collapse
|