1
|
Chen X, Wang J, Tang L, Ye Q, Dong Q, Li Z, Hu L, Ma C, Xu J, Sun P. The therapeutic effect of Fufang Zhenshu Tiaozhi (FTZ) on osteoclastogenesis and ovariectomized-induced bone loss: evidence from network pharmacology, molecular docking and experimental validation. Aging (Albany NY) 2022; 14:5727-5748. [PMID: 35832025 PMCID: PMC9365554 DOI: 10.18632/aging.204172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Fufang Zhenshu Tiaozhi (FTZ) has been widely used in clinical practice and proven to be effective against aging-induced osteoporosis in mice. This study aimed to explore the mechanism of FTZ against osteoclastogenesis and ovariectomized-induced (OVX) bone loss through the network pharmacology approach. The ingredients of FTZ were collected from the previous UPLC results, and their putative targets were obtained through multiple databases. Differentially expressed genes (DEGs) during osteoclastogenesis were identified through multi-microarrays analysis. The common genes between FTZ targets and DEGs were used to perform enrichment analyses through the clusterProfier package. The affinity between all FTZ compounds and enriched genes was validated by molecular docking. The effects of FTZ on osteoclastogenesis and bone resorption were evaluated by TRAP staining, bone resorption assay and RT-qPCR in vitro, while its effects on bone loss by ELISA and Micro-CT in vivo. Enrichment analyses indicated that the inhibitory effects of FTZ may primarily involve the regulation of inflammation, osteoclastogenesis, as well as TNF-α signaling pathway. 130 pairs docking results confirmed FTZ ingredients have good binding activities with TNF-α pathway enriched genes. FTZ treatment significantly reduced TRAP, TNF-α, IL-6 serum levels and increased bone volume in OVX mice. Consistently, in vitro experiments revealed that FTZ-containing serum significantly inhibited osteoclast differentiation, bone resorption, and osteoclast related mRNA expression. This study revealed the candidate targets of FTZ and its potential mechanism in inhibiting osteoclastogenesis and bone loss induced by OVX, which will pave the way for the application of FTZ in the postmenopausal osteoporosis treatment.
Collapse
Affiliation(s)
- Xiaojun Chen
- School of Molecular Sciences, University of Western Australia, Perth 6009, Western Australia, Australia
| | - Jiangyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Lin Tang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Qiuying Ye
- College of Food and Medicine, Qingyuan Polytechnic, Qingyuan 511510, Guangdong, China
| | - Qunwei Dong
- Department of Orthopedic, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
- Department of Orthopedic, Yunfu Hospital of Traditional Chinese Medicine, Yunfu 527300, Guangdong, China
| | - Zhangwei Li
- Department of Stomatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Li Hu
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Chenghong Ma
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth 6009, Western Australia, Australia
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, Guangdong, China
| |
Collapse
|
2
|
Glogauer J, Sun C, Wang Y, Glogauer M. The actin-binding protein Adseverin mediates neutrophil polarization and migration. Cytoskeleton (Hoboken) 2021; 78:206-213. [PMID: 34370397 DOI: 10.1002/cm.21684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/11/2022]
Abstract
Through the process of chemotactic migration, neutrophils are able to recruit to an inflammatory site and eliminate pathogens, thus playing a vital role in host defense. The process of neutrophil chemotaxis is mediated by dynamic actin reorganization and polymerization. Adseverin, an actin-binding protein and member of the Gelsolin superfamily of proteins, has been hypothesized to regulate goal directed movement through the capping and severing of actin filaments, but has never been investigated in the context of neutrophil chemotaxis. Using an Adseverin knockout mouse model, we show that Adseverin plays a role in subcortical F-actin assembly at the leading edge during chemotaxis through the generation of free barbed ends on existing actin filaments. In addition, in the absence of Adseverin, neutrophils show reduced speed of migration in vitro and in vivo. This study indicates that Adseverin is a regulator of actin filament generation during neutrophil chemotaxis.
Collapse
Affiliation(s)
- Judah Glogauer
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Center, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Gupta A, Bansal M, Liyanage R, Upadhyay A, Rath N, Donoghue A, Sun X. Sodium butyrate modulates chicken macrophage proteins essential for Salmonella Enteritidis invasion. PLoS One 2021; 16:e0250296. [PMID: 33909627 PMCID: PMC8081216 DOI: 10.1371/journal.pone.0250296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/02/2021] [Indexed: 12/28/2022] Open
Abstract
Salmonella Enteritidis is an intracellular foodborne pathogen that has developed multiple mechanisms to alter poultry intestinal physiology and infect the gut. Short chain fatty acid butyrate is derived from microbiota metabolic activities, and it maintains gut homeostasis. There is limited understanding on the interaction between S. Enteritidis infection, butyrate, and host intestinal response. To fill this knowledge gap, chicken macrophages (also known as HTC cells) were infected with S. Enteritidis, treated with sodium butyrate, and proteomic analysis was performed. A growth curve assay was conducted to determine sub-inhibitory concentration (SIC, concentration that do not affect bacterial growth compared to control) of sodium butyrate against S. Enteritidis. HTC cells were infected with S. Enteritidis in the presence and absence of SIC of sodium butyrate. The proteins were extracted and analyzed by tandem mass spectrometry. Our results showed that the SIC was 45 mM. Notably, S. Enteritidis-infected HTC cells upregulated macrophage proteins involved in ATP synthesis through oxidative phosphorylation such as ATP synthase subunit alpha (ATP5A1), ATP synthase subunit d, mitochondrial (ATP5PD) and cellular apoptosis such as Cytochrome-c (CYC). Furthermore, sodium butyrate influenced S. Enteritidis-infected HTC cells by reducing the expression of macrophage proteins mediating actin cytoskeletal rearrangements such as WD repeat-containing protein-1 (WDR1), Alpha actinin-1 (ACTN1), Vinculin (VCL) and Protein disulfide isomerase (P4HB) and intracellular S. Enteritidis growth and replication such as V-type proton ATPase catalytic subunit A (ATPV1A). Interestingly, sodium butyrate increased the expression of infected HTC cell protein involving in bacterial killing such as Vimentin (VIM). In conclusion, sodium butyrate modulates the expression of HTC cell proteins essential for S. Enteritidis invasion.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Mohit Bansal
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Rohana Liyanage
- Department of Chemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Narayan Rath
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, Arkansas, United States of America
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, Arkansas, United States of America
| | - Xiaolun Sun
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
4
|
Wang Y, Mei Y, Song Y, Bachus C, Sun C, Sheshbaradaran H, Glogauer M. AP-002: A novel inhibitor of osteoclast differentiation and function without disruption of osteogenesis. Eur J Pharmacol 2020; 889:173613. [PMID: 33007291 DOI: 10.1016/j.ejphar.2020.173613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
AP-002 is a novel, gallium-based, anti-cancer oral compound in clinical development for cancer patients with bone metastases. We examined the effects of AP-002 on osteoclastogenesis, fusion, and osteogenesis. AP-002 exhibited a dramatic effect on osteoclast function without causing osteoclast cell death. The expression of tartrate-resistant acid phosphatase and cathepsin K mRNA levels was down-regulated in RAW264.7 cells treated with AP-002 in the presence of soluble receptor activator of NF-κB ligand. AP-002 was also found to block the fusion of osteoclasts from RAW264.7 cells. AP-002 had a similar inhibitory effect on RANKL-induced mouse primary bone marrow monocytes fusion. Human blood monocytes treated with AP-002 failed to form TRAcP/ACP5-positive cells. AP-002 caused these inhibitory effects without causing osteoclast cell death, which was in contrast to zoledronic acid controls. Furthermore, unlike zoledronic acid, AP-002 did not inhibit Rac1 activation. Gene expression analysis by microarrays showed that AP-002 significantly reverses the effects of RANKL-induced gene expression. These include several key osteoclast-differentiation/function-associated genes such as: Scinderin, OCSTAMP, Atp6v0d2, OSCAR, RhoU, Usp18, MMP9, and Trim30. The difference between AP-002 and zoledronic acid is also seen in its effects on osteogenesis. Osteoblast mineralization was promoted by AP-002 (0.1-3.0 μM), whereas zoledronic acid showed toxicity to osteoblasts at the concentration >0.5 μM, in the same dose range where it causes osteoclast cell death. Zoledronic acid therefore has no therapeutic window in its toxic effect on osteoclasts and osteoblasts. AP-002 promotes osteogenesis in this therapeutic window, while blocking osteoclast development. We therefore conclude that AP-002 has potential as a new anti-bone resorption agent, with a mechanism of action different compared with other currently marketed anti-bone resorption agents.
Collapse
Affiliation(s)
- Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yixue Mei
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yushan Song
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Carly Bachus
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Chan B, Parreno J, Glogauer M, Wang Y, Kandel R. Adseverin, an actin binding protein, regulates articular chondrocyte phenotype. J Tissue Eng Regen Med 2019; 13:1438-1452. [PMID: 31090208 DOI: 10.1002/term.2898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 11/11/2022]
Abstract
Chondrocytes dedifferentiate as a result of monolayer culture for cell number expansion. This is associated with the development of an elongated shape, increased actin polymerization, development of stress fibres, and expression of contractile molecules. Given the changes in actin status with dedifferentiation, the hypothesis of this study was that adseverin, an actin severing and capping protein, plays a role in regulating chondrocyte phenotype and function. This study reports that serial passaging of articular chondrocytes in monolayer culture resulted in loss of adseverin protein expression as early as Day 14 of culture and remained repressed in Passage 2 (P2) cells. Knockdown of adseverin by siRNA in primary chondrocytes promoted an increase in cell size and an elongated shape, actin stress fibres, decreased G-/F-actin ratio, and increased number of actin-free barbed ends. The cells also showed increased expression of the contractile genes and proteins, vinculin and α-smooth muscle actin, and increased ability to contract collagen gels. These are all features of dedifferentiation. These effects were due to adseverin as adseverin overexpression following transfection of the green fluorescent protein-adseverin plasmid partially reversed all of these changes in P2 chondrocytes. Furthermore, sox9 and aggrecan chondrogenic gene expression was upregulated, and collagen type I genes expression was downregulated with adseverin overexpression. The change in aggrecan mRNA expression had functional consequence as these cells exhibited increased total proteoglycan synthesis. These findings demonstrate that adseverin regulates features indicative of redifferentiation in passaged articular chondrocytes through modulation of the actin cytoskeleton status and potentially may regulate the maintenance of phenotype in primary chondrocytes.
Collapse
Affiliation(s)
- Byron Chan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Justin Parreno
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Rita Kandel
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Plasma Gelsolin: Indicator of Inflammation and Its Potential as a Diagnostic Tool and Therapeutic Target. Int J Mol Sci 2018; 19:ijms19092516. [PMID: 30149613 PMCID: PMC6164782 DOI: 10.3390/ijms19092516] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Gelsolin, an actin-depolymerizing protein expressed both in extracellular fluids and in the cytoplasm of a majority of human cells, has been recently implicated in a variety of both physiological and pathological processes. Its extracellular isoform, called plasma gelsolin (pGSN), is present in blood, cerebrospinal fluid, milk, urine, and other extracellular fluids. This isoform has been recognized as a potential biomarker of inflammatory-associated medical conditions, allowing for the prediction of illness severity, recovery, efficacy of treatment, and clinical outcome. A compelling number of animal studies also demonstrate a broad spectrum of beneficial effects mediated by gelsolin, suggesting therapeutic utility for extracellular recombinant gelsolin. In the review, we summarize the current data related to the potential of pGSN as an inflammatory predictor and therapeutic target, discuss gelsolin-mediated mechanisms of action, and highlight recent progress in the clinical use of pGSN.
Collapse
|
7
|
Wang Y, Galli M, Shade Silver A, Lee W, Song Y, Mei Y, Bachus C, Glogauer M, McCulloch CA. IL1β and TNFα promote RANKL-dependent adseverin expression and osteoclastogenesis. J Cell Sci 2018; 131:jcs.213967. [PMID: 29724913 DOI: 10.1242/jcs.213967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Adseverin is an actin-binding protein involved in osteoclastogenesis, but its role in inflammation-induced bone loss is not well-defined. Here, we examined whether IL1β and TNFα regulate adseverin expression to control osteoclastogenesis in mouse primary monocytes and RAW264.7 cells. Adseverin was colocalized with subcortical actin filaments and was enriched in the fusopods of fusing cells. In precursor cells, adseverin overexpression boosted the formation of RANKL-induced multinucleated cells. Both IL1β and TNFα enhanced RANKL-dependent TRAcP activity by 1.6-fold and multinucleated cell formation (cells with ≥3 nuclei) by 2.6- and 3.3-fold, respectively. However, IL1β and TNFα did not enhance osteoclast formation in adseverin-knockdown cells. RANKL-dependent adseverin expression in bone marrow cells was increased by both IL1β (5.4-fold) and TNFα (3.3-fold). Luciferase assays demonstrated that this expression involved transcriptional regulation of the adseverin promoter. Activation of the promoter was restricted to a 1118 bp sequence containing an NF-κB binding site, upstream of the transcription start site. TNFα also promoted RANKL-induced osteoclast precursor cell migration. We conclude that IL1β and TNFα enhance RANKL-dependent expression of adseverin, which contributes to fusion processes in osteoclastogenesis.
Collapse
Affiliation(s)
- Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Matthew Galli
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Alexandra Shade Silver
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Wilson Lee
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Yushan Song
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Yixue Mei
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Carly Bachus
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| |
Collapse
|
8
|
Qiao X, Zhou Y, Xie W, Wang Y, Zhang Y, Tian T, Dou J, Yang X, Shen S, Hu J, Qiao S, Wu Y. Scinderin is a novel transcriptional target of BRMS1 involved in regulation of hepatocellular carcinoma cell apoptosis. Am J Cancer Res 2018; 8:1008-1018. [PMID: 30034938 PMCID: PMC6048394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023] Open
Abstract
Tumor metastasis suppressor factor BRMS1 can regulate the metastasis of breast cancer and other tumors. Here we report scinderin (SCIN) as a novel transcriptional target of BRMS1. SCIN protein belongs to the cytoskeletal gelsolin protein superfamily and its involvement in tumorigenesis remains largely illusive. An inverse correlation between the expression levels of BRMS1 and SCIN was observed in hepatocellular carcinoma (HCC) cells and tissues. On the molecular level, BRMS1 binds to SCIN promoter and exerts a suppressive role in regulating SCIN transcription. FACS analysis and caspase 9 immunoblot reveal that knockdown of SCIN expression can sensitize HCC cells to chemotherapeutic drugs, leading to suppression of tumor growth in vivo. Consistently, overexpression of SCIN protects cells from apoptotic death, contributing to increased xenografted HCC cell growth. In summary, our study reveals SCIN as a functional apoptosis regulator as well as a novel target of BRMS1 during HCC tumorigenesis. Inhibition of SCIN might bring a potential cancer therapy approach.
Collapse
Affiliation(s)
- Xiaojing Qiao
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yiren Zhou
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Wenjuan Xie
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yi Wang
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yicheng Zhang
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Tian Tian
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
- Centre for Discovery Brain Sciences, University of EdinburghEdinburgh, EH89XD, Scotland
| | - Jianming Dou
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Xi Yang
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Suqin Shen
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Jianwei Hu
- Endoscopy Center and Department of General Surgery, Zhongshan Hospital of Fudan UniversityShanghai 200032, P. R. China
| | - Shouyi Qiao
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yanhua Wu
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| |
Collapse
|
9
|
Cao Y, Wang Y, Sprangers S, Picavet DI, Glogauer M, McCulloch CA, Everts V. Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism. Calcif Tissue Int 2017; 101:207-216. [PMID: 28389691 PMCID: PMC5498625 DOI: 10.1007/s00223-017-0271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/20/2017] [Indexed: 11/30/2022]
Abstract
Adseverin is an actin-severing/capping protein that may contribute to osteoclast differentiation in vitro but its role in bone remodeling of healthy animals is not defined. We analyzed bone and osteoclast structure in adseverin conditional null mice at alveolar and long bone sites. In wild-type and adseverin null mice, as measured by dual-energy X-ray absorptiometry, there were no differences of bone mineral content or bone mineral density, indicating no change of bone metabolism. In tibiae, TRAcP+ osteoclasts were formed in comparable numbers in adseverin null and wild-type mice. Ultrastructural analysis showed normal and similar abundance of ruffled borders, sealing zones, and mitochondria, and with no difference of osteoclast nuclear numbers. In contrast, analyses of long bone showed that in the absence of adseverin osteoclasts were smaller (120 ± 13 vs. 274 ± 19 µm2; p < 0.05), as were nuclear size and the surface area of cytoplasm. The nuclei of adseverin null osteoclasts exhibited more heterochromatin (31 ± 3%) than wild-type cells (8 ± 1%), suggesting that adseverin affects cell differentiation. The data indicate that in healthy, developing tissues, adseverin contributes to the regulation of osteoclast structure but not to bone metabolism in vivo.
Collapse
Affiliation(s)
- Yixuan Cao
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, 11N-43, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | - Sara Sprangers
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, 11N-43, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Daisy I Picavet
- Department of Cell Biology and Histology, Core Facility Cellular Imaging, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, 11N-43, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Li X, Ye JX, Xu MH, Zhao MD, Yuan FL. Evidence that activation of ASIC1a by acidosis increases osteoclast migration and adhesion by modulating integrin/Pyk2/Src signaling pathway. Osteoporos Int 2017; 28:2221-2231. [PMID: 28462470 DOI: 10.1007/s00198-017-4017-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/22/2017] [Indexed: 01/13/2023]
Abstract
UNLABELLED Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca2+-dependent integrin/Pyk2/Src signaling pathway. INTRODUCTION Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. METHODS In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. RESULTS Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. CONCLUSION Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.
Collapse
Affiliation(s)
- X Li
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - J-X Ye
- Department of Orthopaedics, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - M-H Xu
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - M-D Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - F-L Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China.
| |
Collapse
|
11
|
Wang CL, Wang H, Xiao F, Wang CD, Hu GL, Zhu JF, Shen C, Zuo B, Cui YM, Li D, Yuan-Gao, Zhang XL, Chen XD. Cyclic compressive stress-induced scinderin regulates progress of developmental dysplasia of the hip. Biochem Biophys Res Commun 2017; 485:400-408. [DOI: 10.1016/j.bbrc.2017.02.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/12/2017] [Indexed: 02/07/2023]
|
12
|
Rac1 Regulates the Proliferation, Adhesion, Migration, and Differentiation of MDPC-23 Cells. J Endod 2017; 43:580-587. [DOI: 10.1016/j.joen.2016.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/23/2016] [Accepted: 11/17/2016] [Indexed: 11/21/2022]
|
13
|
Scinderin promotes the invasion and metastasis of gastric cancer cells and predicts the outcome of patients. Cancer Lett 2016; 376:110-7. [PMID: 27033455 DOI: 10.1016/j.canlet.2016.03.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022]
Abstract
Invasion and metastasis are major malignant characteristics of human gastric cancer (GC), but the underlying molecular mechanisms are poorly understood. Recent studies have shown that scinderin (SCIN), an actin severing and capping protein that regulates the actin cytoskeleton, is involved in the proliferation and migration of certain cancer cells. Accordingly, this study aimed to investigate the potential role of SCIN in the invasion and metastasis of human GC cells and to evaluate its prognostic value for GC patients. We found that high levels of SCIN expression in GC tumors were correlated with poor overall survival of patients. Silencing of SCIN effectively suppressed the migratory and invasive capabilities of human GC cells in vitro and tumorigenicity and metastasis in vivo. Furthermore, knockdown of SCIN markedly inhibited the formation of filopodia, decreasing GC cell migration and the expression of Cdc42, an important regulator of filopodia by GC cells. These findings suggest that SCIN may be a novel prognostic marker and a potential therapeutic target in human GC.
Collapse
|
14
|
Calcium-controlled conformational choreography in the N-terminal half of adseverin. Nat Commun 2015; 6:8254. [PMID: 26365202 PMCID: PMC4647846 DOI: 10.1038/ncomms9254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/03/2015] [Indexed: 01/23/2023] Open
Abstract
Adseverin is a member of the calcium-regulated gelsolin superfamily of actin-binding proteins. Here we report the crystal structure of the calcium-free N-terminal half of adseverin (iA1-A3) and the Ca(2+)-bound structure of A3, which reveal structural similarities and differences with gelsolin. Solution small-angle X-ray scattering combined with ensemble optimization revealed a dynamic Ca(2+)-dependent equilibrium between inactive, intermediate and active conformations. Increasing calcium concentrations progressively shift this equilibrium from a main population of inactive conformation to the active form. Molecular dynamics simulations of iA1-A3 provided insights into Ca(2+)-induced destabilization, implicating a critical role for the A2 type II calcium-binding site and the A2A3 linker in the activation process. Finally, mutations that disrupt the A1/A3 interface increase Ca(2+)-independent F-actin severing by A1-A3, albeit at a lower efficiency than observed for gelsolin domains G1-G3. Together, these data address the calcium dependency of A1-A3 activity in relation to the calcium-independent activity of G1-G3.
Collapse
|
15
|
Tian J, Qi W, Zhang Y, Glogauer M, Wang Y, Lai Z, Jiang H. Bioaggregate Inhibits Osteoclast Differentiation, Fusion, and Bone Resorption In Vitro. J Endod 2015; 41:1500-6. [DOI: 10.1016/j.joen.2015.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 02/06/2023]
|
16
|
Role of actin filaments in fusopod formation and osteoclastogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1715-24. [DOI: 10.1016/j.bbamcr.2015.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/19/2015] [Accepted: 04/06/2015] [Indexed: 12/16/2022]
|
17
|
Jiang H, Wang Y, Viniegra A, Sima C, McCulloch CA, Glogauer M. Adseverin plays a role in osteoclast differentiation and periodontal disease-mediated bone loss. FASEB J 2015; 29:2281-91. [PMID: 25681458 DOI: 10.1096/fj.14-265744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/23/2015] [Indexed: 01/27/2023]
Abstract
Osteoclast differentiation and function are highly dependent on the assembly and turnover of actin filaments, but little is known about the roles of actin binding proteins in these processes. Adseverin (Ads), a member of the gelsolin superfamily of actin capping and severing proteins, regulates actin filament turnover and can regulate the turnover of cortical actin filaments of chromaffin cells during exocytosis. Using a conditional Ads knockout mouse model, we confirmed our previous finding in cultured cells that Ads plays a role in osteoclastogenesis (OCG) and actin cytoskeletal organization in osteoclasts. Here we show that Ads is required for osteoclast formation and that when alveolar bone resorption is experimentally induced in mice, genetic deletion of Ads prevents osteoclast-mediated bone loss. Further, when Ads-null osteoclasts are cultured, they exhibit defective OCG, disorganized podosome-based actin filament superstructures, and decreased bone resorption. Reintroduction of Ads into Ads-null osteoclast precursor cells restored these osteoclast defects. Collectively, these data demonstrate a unique and osteoclast-specific role for Ads in OCG and osteoclast function.
Collapse
Affiliation(s)
- Hongwei Jiang
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yongqiang Wang
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ana Viniegra
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Corneliu Sima
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Christopher A McCulloch
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Michael Glogauer
- *Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Ontario, Canada; and Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|